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1 ∂ and ∂ Operations (01/12)

We define two operators ∂ and ∂ on differentiable functions on C (In Complex Made
Simple, these are called ∂

∂z and ∂
∂z ). The definitions are

∂ =
1

2
(
∂

∂x
− i ∂

∂y
),

∂ =
1

2
(
∂

∂x
+ i

∂

∂y
).

We will write ∂x, ∂y for ∂
∂x ,

∂
∂y for brevity.

Suppose that f = u + iv is a differentiable function on an open subset of C with u, v
real-valued. Then

∂f =
1

2
(∂xf + i∂yf)

=
1

2
((ux + ivx) + i(uy + ivy))

=
1

2
((ux − vy) + i(uy + vx)) .

This tells us that

∂f = 0⇔

{
ux = vy,

uy = −vx.

That is, ∂f = 0 is equivalent to the Cauchy-Riemann equations.
Suppose that f satisfies the Cauchy-Riemann equiations, so that ∂f = 0. What is

∂f = 0? Well,

∂f =
1

2
(∂xf − i∂yf)

=
1

2
(ux + ivx − i(uy + ivy))

=
1

2
(ux + ivx − i(−vx + iux))

=
1

2
(ux + ivx + ivx + ux)

= ux + ivx.

Recall that if f is complex differentiable (at a point or on a set) then

f ′ = ux + ivx.

That is, if ∂f = 0 and f is complex differentiable, then ∂f = f ′.
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We observe that {
∂x = ∂ + ∂,

∂y = i(∂ − ∂).

The operators ∂ and ∂ are complex linear. They also satisfy the product rule.

∂(fg) =
1

2
(∂x(fg)− i∂y(fg))

=
1

2
(f∂xg + g∂xf − if∂yg − ig∂yf)

= f · 1

2
(∂xg − i∂yg) + g · 1

2
(∂xf − ∂yf)

= f∂g + g∂f.

Similarly, ∂(fg) = f∂g + g∂f . We also have ∂f = ∂ f (this follows straight from the
definitions.) If f is a holomorphic function, then we have ∂f = 0 and so ∂f = 0.

∂ and ∂ also satisfy a chain rule. It says

∂(f ◦ g)(p) = ∂f(g(p)) · ∂g(p) + ∂f(g(p)) · ∂g(p)

and
∂(f ◦ g)(p) = ∂f(g(p)) · ∂g(p) + ∂f(g(p)) · ∂g(p).

To keep things simple, we can write the first one as

∂(f ◦ g) = ∂f ◦ g · ∂g + (∂f) ◦ g · ∂g.

To verify, let g = u+ iv, then

2∂(f ◦ g) = ∂x(f ◦ g)− i∂y(f ◦ g)

= (∂xf) ◦ g · ux + (∂yf) ◦ g · vx − i(∂xf) ◦ g · uy − i(∂yf) ◦ g · vy
= (∂xf) ◦ g · (ux − iuy) + (∂yf) ◦ g · (vx − ivy)
= (∂xf) ◦ g · (2∂u) + (∂yf) ◦ g · (2∂v)

= (∂xf) ◦ g · ∂(g + g) + (∂yf) ◦ g · ∂(g − g) · 1

i
= (∂xf) ◦ g · ∂g + (∂xf) ◦ g · ∂g − i(∂yf) ◦ g · ∂g − i(∂yf) ◦ g · ∂g
= ((∂xf) ◦ g − i(∂yf) ◦ g)∂g + ((∂xf) ◦ g + i(∂yf) ◦ g)∂g

= 2(∂f) ◦ g · ∂g + 2(∂f) ◦ g · ∂g.

So ∂(f ◦ g) = (∂f) ◦ g · ∂g + (∂f) ◦ g · ∂g.
Next, note that ∂ and ∂ commute and

∂∂ =
1

2
(∂x − i∂y) ·

1

2
(∂x + i∂y)

=
1

4
(∂2
x + i∂x∂y − i∂y∂x + ∂2

y)

=
1

4
(∂2
x + ∂2

y).
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That is,
∆ = 4∂∂ = 4∂∂

where ∆ is the Laplacian.

Proposition 1.1. Let U, V ⊂ C be open sets, g : U → V a holomorphic function, and
f ∈ C2(V ). Then

∆(f ◦ g) = ((∆f) ◦ g) · |g′|2.

Proof. We know that ∆ = 4∂∂. By the chain rule for ∂, ∂, we have

∂(f ◦ g) = (∂f) ◦ g · ∂g + (∂f) ◦ g · ∂ g
= (∂f) ◦ g · ∂g (because ∂g = 0 since g is holomorphic)

= (∂f) ◦ g · g′ (because g′ = ∂g when g is holomorphic).

So

∂∂(f ◦ g) = ∂
(
(∂f) ◦ g · g′

)
= ∂

(
(∂f) ◦ g

)
· g′ + (∂f) ◦ g · ∂g′ (product rule for ∂)

= ∂
(
(∂f) ◦ g

)
· g′ (because ∂g′ = ∂g′ = 0 since g′ is holomorphic)

= [(∂∂f) ◦ g · ∂g + (∂∂f) ◦ g · ∂g] · g′

= (∂∂f) ◦ g · ∂g · g′ (because ∂g = ∂g = 0 since g is holomorphic)

= (∂∂f) ◦ g · g′ · g′ (because ∂g = g′ when g is holomorphic)

= (∂∂f) ◦ g · |g′|2.

Multiplying both sides by 4 to get the required equation.

6



2 Harmonic Functions I (01/14)

Definition 2.1. Let V ⊂ C be an open set. A function f : V → C that is twice
continuously differentiable is said to be harmonic if ∆f = 0.

Remark 2.2. (i) Since ∆f = ∆f , the real and imaginary parts of a harmonic function
are also harmonic.

(ii) Holomorphic functions are harmonic. If g is holomorphic, then g is infinitely
differentiable and ∆g = 4∂∂g = 0 since ∂g = 0.

(iii) Thus the real and imaginary parts of holomorphic functions are harmonic.
(iv) Suppose that u is a harmonic function. Then ∂u is a holomorphic function. Here

is the reason. ∂u is C1 and ∂(∂u) = ∂∂u = 1
4∆u = 0 and so ∂u satisfies the Cauchy-

Riemann equations. This implies that ∂u is holomorphic.
(v) As a consequence, a harmonic function is C∞. This is because ∂u must be C∞

(since ∂u is holomorphic) and so u is also C∞.

Theorem 2.3. Let V ⊂ C be a simply connected open set and u a real-valued harmonic
function on V . Then there is some F ∈ H(V ) such that u = Re(F ).

Proof. We know that ∂u ∈ H(V ). Since V is simply connected, there is some G ⊂ H(V )
such that G′ = ∂u. Write G = A+Bi, where A,B are real-valued. Then G′ = Ax+Bxi =
By−Ayi. Also ∂u = 1

2(ux−iuy). Thus Ax = 1
2ux (by comparing real parts) and Ay = 1

2uy
(by comparing imaginary parts). So ∇(u− 2A) = (ux − 2Ax, uy − 2Ay) = 0. Let W be a
connected component of V . Then u−2A is constant on W , say cW . Then define F : V → C
by F (z) = 2G(z)− cW for z ∈W . Then F ⊂ H(V ) and Re(F ) = 2A+ cW = u.

Remark 2.4. This theorem has a converse (see Complex Made Simple).

This theorem has a lot of consequences for harmonic functions. One is that harmonic
functions are actually real analytic.

Theorem 2.5 (Strong Maximum Principle). Let V ⊂ C be a connected open set. Let u be
a real-valued harmonic function on V . If u has a local maximum point, then u is constant.

Proof. Say p ∈ V is a local maximum point and choose D(p, r) ⊂ V . Choose F ∈
H(D(p, r)) such that u = Re(F ). Consider exp(F ) ∈ H(D(p, r)). Well,

| exp(F )| = exp(Re(F )) = exp(u)

has a local maximum at p. Thus exp(F ) is constant and so | exp(F )| = exp(u) is constant.
Thus u is constant on D(p, r). It follows from the Weak Identity Principle (see homework
1) that u is constant.
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3 Harmonic Functions II (01/16)

Definition 3.1. Let V ⊂ C be an open set and f : V → C a continuous function. Then f
is said to have the Mean Value Property if for all p ∈ V and all r > 0 such that D(p, r) ⊂ V
we have

f(p) =
1

2π

∫ 2π

0
f(p+ reiθ) dθ.

Definition 3.2. Let V ⊂ C be an open set and f : V → C a continuous function. Then
f is said to have the Local Mean Value Property if for all p ∈ V there is some ρ > 0 such
that for all 0 < r < ρ we have D(p, r) ⊂ V and

f(p) =
1

2π

∫ 2π

0
f(p+ reiθ) dθ.

Remark 3.3. (i) Holomorphic functions have the Mean Value Property. This is a direct
consequence of the Cauchy Integral Formula.

(ii) If a function has the Mean Value Property then so do its real and imaginary parts.

Proposition 3.4. Harmonic functions have the Mean Value Property.

Proof. Let V ⊂ C be open, p ∈ V , and r > 0 be such that D(p, r) ⊂ V . Choose R > r
such that D(p,R) ⊂ V . Let u be a real-valued harmonic function on V . Since D(p,R)
is simply connected, there exists F ∈ H(D(p,R)) such that Re(F ) = u. By applying
the above remarks to F we know that F and hence u have the Mean Value Property on
D(p,R). This implies the required identity for D(p, r). This implies the general harmonic
functions have the Mean Value Property too, by linearity.

Definition 3.5. A family F of continuous real-valued functions on a connected open set
V is said to have the Weak Maximum Principle if whenever f ∈ F has a global maximum
in V then this function f must be constant.

We formulate the Strong Maximum Principle by replacing “global maximum” with
“local maximum”.

We already know the family of real-valued harmonic functions on a connected open
set has the Strong Maximum Principle.

Proposition 3.6. Let V be a connected open set and F denote the family of all functions
on V that are continuous, real-valued, and satisfy the Local Mean Value Property. Then
F has the Weak Maximum Principle.

Proof. Let f ∈ F and suppose that f achieves its global maximum value of M at some
point in V . Let S = {z ∈ V : f(z) = M}. By hypothesis, S is non-empty and S is closed
since f is continuous. I now wish to show that S is open. Suppose not and let p ∈ S be a
boundary point of S. Choose a ρ > 0 as in the Local Mean Value Property at p. Choose
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a point q ∈ D(p, ρ) such that f(q) < M . Let r = |p − q| < q. By the Local Mean Value
Property, we have

M = f(p)

=
1

2π

∫ 2π

0
f(p+ reiθ) dθ

< M

because the integrand is ≤M , continuous, and less than M at least at one point, namely
q. This is a contradiction. Thus S is open. By the connectedness of V , S = V and so f
is constant.

Definition 3.7. Let V ⊂ C be a bounded, connected open set. Let F be a family of real-
valued continuous functions on V . We say that F has the Very Weak Maximum Principle
if whenever M is a number and f ∈ F such that

lim infz→q,z∈V f(z) ≤M

for all q ∈ ∂V then f(z) ≤M for all z ∈ V .

Proposition 3.8. Let V ⊂ C be a bounded, connected open set. Let F be a family of
real-valued, continuous functions on V . Suppose that for all connected open sets W ⊂ V
the family {f |W : f ∈ F} satisfies the Local Mean Value Property. Then F has the Very
Weak Maximum Principle.

4 Harmonic Functions III (01/21)

We want to exhibit an explicit solution to the Dirichlet problem for the unit disk. Our
aim is that given f ∈ C(∂D), find a solution u ∈ C(D) ∩ C2(D) such that u|∂D = f and
∆u = 0.

For explicit solution, we need to start with some known solutions. How do we find
these? One way is to use separation of variables. We will use polar coordinates for the
separation. We know

∆ = ∂2
r +

1

r
∂r +

1

r2
∂2
θ .

Guess that u = g(r)h(θ). Then

∆u = g′′h+
1

r
g′h+

1

r2
gh′′ = 0.
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Divide by equation by gh, and we get

g′′

g
+

1

r

g′

g
+

1

r2

h′

h
= 0

⇒g′′

g
+

1

r

g′

g
= − 1

r2

h′

h

⇒r2g′′ + rg′

g
= −h

′′

h

This implies that both r2g′′+rg′

g and h′′

h must be constant. Call the second constant −k2.
We have

h′′

h
= −k2

⇒h′′ + k2h = 0.

A solution to this equation is eikθ. Another one is e−ikθ. All solutions are combinations of
these two. To make e±ikθ continuous functions on the circle, we must have k ∈ Z. Since
−k ∈ Z too, we can just consider eikθ.

Now we must have
r2g′′ + rg′

g
= k2,

i.e.,
r2g′′ + rg′ − k2g = 0

and this is an Euler equation. Try rα as a solution for the Euler equation, and we get

α(α− 1)rα + αrα − k2rα = 0.

So α2 − α+ α− k2 = 0 and hence
α = ±k.

This gives the separated solution r±keikθ for k ∈ Z. Since we require continuous functions
on D, we must take only positive powers of r. This means only r|k|eikθ are actually
acceptable, where k ∈ Z. Optimistically we form a combination of all these solutions with
equal weights

Pr(θ) =
∑
n∈Z

r|n|einθ.

This converges provided that r < 1. This function is called the Poisson Kernel . We hope
that the Poisson kernel should be harmonic and we should be able to create a solution to
the original Dirichlet problem by combining the Poisson kernel Pr and its translates in an
integral.

We need a lemma that gives us many different expressions for Pr so that we can deduce
its properties.
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5 Harmonic Functions IV (01/23)

Recall
Pr(θ) =

∑
n∈Z

r|n|einθ.

By comparison with a geometric series, the series defining the Poisson kernel converges
uniformly on the interval [0, p] for any p < 1. We assume that r ∈ [0, 1) when we write
down the Poisson kernel. We conclude

1

2π

∫ 2π

0
Pr(θ)dθ =

∑
n∈Z

r|n|
1

2π

∫ 2π

0
einθ dθ = 1

for all r since
1

2π

∫ 2π

0
einθ dθ =

{
1, if n = 0,

0, unless n = 0.

Next,

Pr(θ) =
∑
n∈Z

r|n|einθ

= 1 +
∞∑
n=1

rn(einθ + e−inθ)

= 1 + 2Re

( ∞∑
n=1

rneinθ

)
(since einθ = e−inθ)

= 1 + 2Re

( ∞∑
n=1

(reiθ)n

)

= 1 + 2Re

(
reiθ

1− reiθ

)
= Re

(
1 +

2reiθ

1− reiθ

)
= Re

(
1 + reiθ

1− reiθ

)
= Re

(
(1 + reiθ)(1− re−iθ)
(1− reiθ)(1− re−iθ)

)
= Re

(
1 + 2ir sin(θ)− r2

1− 2r cos(θ) + r2

)
=

1− r2

1− 2r cos(θ) + r2

=
1− r2

(1− r cos(θ))2 + r2 sin2(θ)
.
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So Pr(θ) is real-valued.
Pr(θ) > 0 for all r and θ (this follows from the last expression in the string). If δ > 0,

then Pr(θ)→ 0 as r → 1− uniformly for θ ∈ [−π,−δ]∪[δ, π]. Indeed for θ ∈ [−π,−δ]∪[δ, π],
we have

0 < Pr(θ) ≤
1− r2

(1− r cos(δ))2
≤ 1− r2

(1− cos(δ))2
.

This implies that uniform convergence claim.
Families of functions are called “approximate identities” if some property as in 5.1

holds.

Proposition 5.1. Suppose that gr : [−π, π] → R is a family of continuous, 2π-periodic,
positive functions depending on a parameter r ∈ [0, 1). Suppose that

1

2π

∫ π

−π
gr(θ) dθ = 1

for all r, and for any δ > 0, gr → 0 uniformly as r → 1− for θ ∈ [−π,−δ] ∪ [δ, π]. For
any f a continuous 2π-periodic function on [−π, π], define

(gr ∗ f)(θ) =
1

2π

∫ π

−π
gr(θ − ψ)f(ψ) dψ

(with gr and f extended periodically to R). Then gr ∗ f → f uniformly as r → 1−.

Proof. Well,

|(gr ∗ f)(θ)− f(θ)| =
∣∣∣∣ 1

2π

∫ π

−π
gr(θ − ψ)[f(ψ)− f(θ)]dψ

∣∣∣∣
=

∣∣∣∣ 1

2π

∫ π

−π
gr(ψ)[f(θ − ψ)− f(θ)]dψ

∣∣∣∣
≤ 1

2π

∫ −δ
−π

gr(ψ) |f(θ − ψ)− f(θ)| dψ +
1

2π

∫ δ

−δ
gr(ψ) |f(θ − ψ)− f(θ)| dψ

+
1

2π

∫ π

δ
gr(ψ) |f(θ − ψ)− f(θ)| dψ

=I1 + I2 + I3.

We have

I1 ≤
1

2π

∫ −δ
−π

η · 2Mdψ ≤ 2Mη

and similarly,
I3 ≤ 2Mη,
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I2 ≤
1

2π

∫ δ

−δ
gr(ψ)η dψ

≤ 1

2π

∫ π

−π
gr(ψ)η dψ

= η.

Thus |(gr ∗ f)(θ)− f(θ)| ≤ (4M + 1)η when r > r0 for all θ. Take η = ε
4M+2 to complete

the argument.

6 Harmonic Functions V (01/26)

Say f ∈ C(∂D). For 0 ≤ r < 1 we define

gr(θ) =
1

2π

∫ π

−π
Pr(θ − ψ)f(eiψ) dψ.

We can regard gr(θ) as a function on ∂D because gr is 2π-periodic. This is true because
Pr is 2π-periodic. Also, P0(θ) = 1 for all θ. Thus we may define the Poisson integral

P [f ](z) =
1

2π

∫ π

−π
Pr(θ − ψ)f(eiψ) dψ

where z ∈ D and z = reiθ with r ∈ [0, 1). This is well-defined by the previous observations.
We know that P [f ](reiθ) → f(eiθ) as r → 1− uniformly in θ. Also, if f is a real-valued
function, let z = reiθ, then we have

P [f ](z) =
1

2π

∫ π

−π
Re

(
1 + rei(θ−ψ)

1− rei(θ−ψ)

)
f(eiψ) dψ

= Re

(
1

2π

∫ π

−π

1 + ze−iψ

1− ze−iψ
f(eiψ) dψ

)
= Re(F (z)).

For fixed ψ,

z 7→ 1 + ze−iψ

1− ze−iψ
f(eiψ)

is a holomorphic function on D. Also, it is continuous as a function of ψ and z. By a
previous lemma from Complex Analysis I, it follows that F is holomorphic. (Recall∫

∆
F (z) dz =

1

2π

∫ π

−π

∫
∆

1 + ze−iψ

1− ze−iψ
f(eiψ) dz dψ

=
1

2π

∫ π

−π
o dψ

= 0
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and then Morera’s Theorem applies.) It follows that P [f ] is a harmonic function in D. If
f is not real valued, P [f ] is also harmonic. This follows because

P [f + ig] = P [f ] + iP [g].

Theorem 6.1. Let f ∈ C(∂D) and define u : D→ C by

u(z) =

{
P [f ](z) if z ∈ D,
f(z) if z ∈ ∂D.

Then u ∈ C(D), u|D is harmonic, and u|∂D = f . (Thus u solves the Dirichlet Problem for
the disk with f as the boundary data.)

Proof. We know u|D is harmonic. We know u|∂D is f . We don’t know that u is continuous.
We do know u|D is continuous and that u|∂D is continuous. We have to verify that u is
continuous at a point p ∈ ∂D.

s

q p

Figure 1:

Let ε > 0. We may find δ1 > 0 such that if s ∈ ∂D and |s−p| < δ1 then |u(s)−u(p)| < ε
2 .

We may find δ2 > 0 such that if r ∈ (1 − δ2, 1) then |u(reiα − u(eiα)| < δ
2 for all α. By
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the picture and the triangle inequality, we will be done if we can choose δ3 > 0 such that
if |p− q| < δ3 then |q| ∈ (1− δ2, 1). We can do this because |q|+ |p− q| ≤ |p| = 1 and so
if δ3 < δ2 then

|q| ≥ 1− |p− q| > 1− δ3 > 1− δ2.

This completes the proof.

For uniqueness, let’s start with an example on a unbounded domain.

Example 6.2. The function u(x, y) = y is harmonic on π+. It vanishes identically on
∂π+ (real axis). However, u 6≡ 0. So the Dirichlet problem in π+ with zero boundary data
has at least two solutions u and 0.

Theorem 6.3. Let V ⊂ C be an open, connected, bounded set. Let u1, u2 ∈ C(V ) be such
that u1|V and u2|V are harmonic and u1|∂V = u2|∂V . Then u1 = u2.

Proof. We may assume u1, u2 are real-valued. Let v = u1−u2. Then v is harmonic and so
v has the Mean Value Property in V . Thus v satisfies the Very Weak Maximum Principle.
Now if q ∈ ∂V then

lim
z→q,z∈V

sup v(z) = 0

since v is continuous on v and zero on ∂V . We conclude that v(z) ≤ 0 for all z ∈ V . Thus
u1(z) ≤ u2(z) for all z ∈ V . By the same argument, u2(z) ≤ u1(z) for all z ∈ V and so
u1 = u2 on V . This completes the proof.

Remark 6.4. This theorem applies to D and so P [f ] is the unique solution to the Dirichlet
problem.

7 Harmonic Functions VI (01/28)

Proposition 7.1. Let p ∈ C and R > 0. Then the Dirichlet problem with continuous
boundary data has one and only one solution on D(p,R).

Proof. We know that the Dirichlet problem with continuous boundary data has at most
one solution on the closure of any bounded, connected open set. If u ∈ C(D(p,R)), then
v defined by v(z) = u(p+Rz) is an element of C(D(0, 1)). We can reverse this by

u(w) = v

(
w − p
R

)
.

We also know that if φ is harmonic and h is holomorphic, then φ ◦ h is harmonic. (Recall
∆(φ ◦ h) = ((∆φ) ◦ h) · |h′|2 when h is holomorphic.) In particular, if u is harmonic then
so is v and vice versa.

Given continuous boundary data on D(p,R), say f , we define

g(z) = f(p+Rz).

15



This gives us g ∈ C(∂D). Then solve the Dirichlet problem to get v harmonic on D
continuous on D with g as boundary data. Then define u : D(p,R) → C by u(w) =
v
(w−p

R

)
. Then u solves the original problem.

Theorem 7.2. Let V be an open set in C and ψ be a continuous function on V that
satisfies the Local Mean Value Property. Then ψ is harmonic on V .

Proof. It suffices to show that for all p ∈ V there is a disk D(p,R) ⊂ V such that ψ|D(p,R)

is harmonic. Fix p we choose a disk D(p,R) such that D(p,R) ⊂ V . We know that
the Dirichlet problem with continuous boundary data can be solved for D(p,R). Let
u : D(p,R) → C be the solution for the boundary data ψ|∂D(p,R). By hypothesis, ψ has
the Local Mean Value Property in D(p,R). Also, u has the Local Mean Value Property
in D(p,R) because u|D(p,R) is harmonic. Thus u− ψ has the Local Mean Value Property

on D(p,R). Furthermore, u−ψ ∈ C(D(p,R)) and u−ψ ≡ 0 on ∂D(p,R). It follows from
the Very Weak Maximum Principle that u − ψ ≤ 0 on D(p,R). Similarly, ψ − u ≤ 0 on
D(p,R). Thus u = ψ on D(p,R) and so ψ is harmonic.

Let f ∈ C(∂D). Then for 0 ≤ r < 1, we have

P [f ](reiθ) =
1

2π

∫ π

−π
Pr(θ − ψ)f(eiψ) dψ

=
1

2π

∫ π

−π

(∑
n∈Z

r|n|ein(θ−ψ)

)
f(eiψ) dψ

=
∑
n∈Z

r|n| · 1

2π

∫ π

−π
ein(θ−ψ)f(eiψ) dψ

=
∑
n∈Z

r|n|einθ · 1

2π

∫ π

−π
f(eiψ)e−inψ dψ

=
∑
n∈Z

r|n|einθf̂(n)

where f̂(n) = 1
2π

∫ π
−π f(eiψ)e−inψ dψ is by definition the n-th Fourier coefficient. The

Fourier series of f is
∑

n∈Z f̂(n) · einθ. From our previous work we know

lim
r→1−

∑
n∈Z

r|n|einθf̂(n) = f(eiθ)

and average is uniform on D.

8 Harmonic Functions VII (01/30)

The Poisson integral is an Aut(D)-intertwining operator. What this means is that we have
an operator p : C(∂D)→ Harm(D) (here Harm(D) means harmonic functions on D). We

16



know that the group Aut(D) acts on the disk by holomorphic functions. If u ∈ Harm(D)
and ψ ∈ Aut(D) then u ◦ ψ ∈ Harm(D). We deduce from what we know that Aut(D) also
preserves ∂D. This means that if f ∈ C(∂D) and ψ ∈ Aut(D) then f ◦ ψ ∈ C(∂D). The
intertwining property says concretely that if f ∈ C(∂D) and ψ ∈ Aut(D), then

P [f ◦ ψ] = P [f ] ◦ ψ.

This equation is true! The simplest reason is that P [f ◦ ψ] is a harmonic function on D
with f ◦ ψ as its boundary data. P [f ] ◦ ψ is harmonic on D with boundary data f ◦ ψ
(because ψ is uniformly continuous on D). Now uniqueness implies that the two are equal.

Now we come to the Schwarz Reflection Principle.
Let D be a connected open set in C. Define

D+ = D ∩ π+,

D0 = D ∩ {real axis},
D− = D ∩ π−.

We say that D is symmetric about the real axis if {z|z ∈ D} = D. This means that D−

is the reflection of D+ in the real axis.

Theorem 8.1 (Most Basic Version of Schwarz Reflection Principle). Suppose that D ⊂ C
is a connected open set that is symmetric about the real axis. Let f ∈ C(D+∪D0)∩H(D+)
and suppose that f takes real values on D0. Then there is a function F ∈ H(D) such that
F |D+∪D0 = f and F (z) = F (z) for all z ∈ D.

Proof. We define F : D → C by

F (z) =


f(z), z ∈ D+,

f(z), z ∈ D0,

f(z), z ∈ D−.

If p ∈ D0 and (zn) is a sequence in D− such that zn → p then zn → p = p and so
f(zn)→ f(p) by the continuity of f on D+∪D0. Since f(p) ∈ R, f(zn)→ f(p). It follows
that F is continuous at p. Certainly, F is continuous on D+ and D−. Thus F ∈ C(D).

If q ∈ D− then q ∈ D and we may represent f as a power series centered at q with
a positive radius of convergence. Say f(z) =

∑∞
n=0 an(z − q)n on a small disk around q.

Then for z in a small disk about q, we have

f(z) =

∞∑
n=0

an(z − q)n =

∞∑
n=0

an(z − q)n.

Thus F is holomorphic on this disk around q. We claim that F is holomorphic on D.
This is done by Morera’s Theorem. Since F is continuous, we only need to verify that

17



Figure 2: Triangular Touches The Boundary

1

2
3

Figure 3: Separate The Triangular

∫
∆ F (z)dz = 0 for all triangles ∆ in D. If ∆ ⊂ D+ or ∆ ⊂ D−, we already know that∫
∆ F (z)dz = 0 because F ∈ H(D+) and F ∈ H(D−). The remaining case is that ∆

touches D0. The proof is to separate the triangles. Then∫
∆
F (z)dz = lim

ε→0+

∫
∆1+∆2+∆3

F (z)dz

= lim
ε→0+

∫
∆1

F (z)dz + lim
ε→0+

∫
∆2+∆3

F (z)dz

= 0.

This shows F ∈ H(D). The equation F (z) = F (z) follows from the definition of F .
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9 Harmonic Functions VIII (02/02)

Example 9.1. Let S = {x+ iy”− 1 < x < 1} and f : S → C be continuous such that f
is holomorphic on S and real valued on ∂S. Show that f extends to an entire function F
such that F (z) = F (z + 4) for all z ∈ C.

Reflect through the line Re(z) = 1. Do this by using the map z → 2 − z. Let
S′ = {x+ iy : 1 < x < 3} and define F : S ∪ S′ → C by

F (z) =

{
f(z) if z ∈ S,
f(2− z) if z ∈ S′.

The main point about this definition is that F is continuous. The sets in the piecewise
definition are closed so we just have to make sure that the two definitions agree on S∩S′ =
{1 + iy : y ∈ R}.

f(2− 1 + iy) = f(2− (1− iy)) = f(1 + iy) = f(1 + iy)

because f is real on ∂S. This verifies the requirement, so F is continuous. On int(S ∪S′),
F is holomorphic by Schwarz Reflection Principle (or by Morera’s Theorem). Next,

F (3 + iy) = f(2− 3 + iy) = f(−1 + iy)

= f(−1 + iy) (because f is real on ∂S)

= F (−1 + iy).

This means we can define F on {x+ iy : −1 < x < 7} by

F (z) =

{
F (z) if − 1 ≤ Re(z) ≤ 3,

F (z − 4) if 3 ≤ Re(z) ≤ 7.

We can continue in this way to extend F to the entire plane. The Identity Principle implies
that the resulting function satisfies F (z) = F (z + 4) for all z.

Theorem 9.2 (Schwarz Reflection Principle for Harmonic Functions). Let D be a con-
nected open set in C that is symmetric about the real axis. Let v : D+ ∪ D0 → R be a
harmonic function on D+ and continuous on D+ ∪D0 and assume that v|D0 = 0. Then
there is a harmonic function V : D → R such that V |D+ = v and V (z) = −V (z) for all
z ∈ D.

Proof. We define V : D → R by

V (z) =

{
v(z) if z ∈ D+ ∪D0,

−v(z) if z ∈ D− ∪D0.
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We need to verify that V is continuous. Both D+∪D0 and D−∪D0 are closed in D. Thus
we just have to show that the two definitions agree on the overlap, which is D0. This is
true because v|D0 ≡ 0 and −0 = 0.

To verify that V is harmonic, we will verify that V has the Local Mean Value Property.
If p ∈ D+ then we can take ρ > 0 small enough that D(p, ρ) ⊂ D+. If r ∈ [0, ρ) then

1

2π

∫ 2π

0
V (p+ reiθ) dθ

=
1

2π

∫ 2π

0
v(p+ reiθ) dθ

=v(p) (because v is harmonic)

=V (p).

If p ∈ D− then p ∈ D+ and so we have some ρ > 0 such that if r ∈ [0, ρ) then

v(p) =
1

2π

∫ 2π

0
v(p+ reiθ) dθ

=
1

2π

∫ 2π

0
v(p+ re−iθ) dθ (change of variable)

=
1

2π

∫ 2π

0
v(p+ reiθ) dθ.

Now take negative of both sides to get

V (p) =
1

2π

∫ 2π

0
V (p+ reiθ) dθ.

If p ∈ D0 then V (p) = 0. Also

1

2π

∫ 2π

0
V (p+ reiθ) dθ = 0

for small enough r because the values on the lower half circle are the negatives of the
value on the upper half circle. Thus V has the Local Mean Value Property and so V is
harmonic.

10 Harmonic Functions IX (02/04)

Recall that to use Schwarz Reflection Principle we always have a domain D that is sym-
metric with respect to the real axis. If f ∈ H(D+) extends continuously to D+ ∪D0, and
is real on D0 then f extends by reflection to an element of H(D). If v is a real-valued
harmonic function on D+ that extends continuously to D0 with value 0 on D0 then v
extends by reflection to an function harmonic on D. Now we prove another version of
Schwarz Reflection Principle.
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Theorem 10.1 (Schwarz Reflection Principle). Let D be a domain symmetric about the
real axis. Let f ∈ H(D+) and suppose that Im(f) extends continuously to D+ ∪D0 with
value 0 on D0. Then f extends to an element F ∈ H(D) such that F (z) = F (z) for all
z ∈ D. (In particular, the real part of f extends continuously to D).

Proof. All we have to do is to confirm that f extends continuously to D+ ∪D0. If it does,
then the theorem follows by applying the first version that we proved.

Let v = Im(f). Then v is harmonic on D+ and extends continuously to D+ ∪D0 with
value 0 on D0. By the second version of Schwarz Reflection, v extends to a harmonic
function V on D.

Dt

Next we choose a disk Dt centered at t ∈ D0 small enough that Dt ⊂ D for each t ∈ D0.
On each Dt, we have the harmonic function V defined. Also, Dt is simply connected. Thus
we may choose f̃t ∈ H(Dt) such that Im(f̃t) = V |Dt . Note that f̃t is not unique – we may
add or subtract a real constant to each one, and this is the only freedom in choosing f̃t.

Let t ∈ D0. We know that Im(f̃t) = V = v = Im(f) on the set Dt ∩D+. This means
that there is a real constant ct such that f − f̃t = ct on Dt ∩D+. Let ft = f̃t + ct for all
t ∈ D0. Then ft ∈ H(Dt) and f |Dt∩D+ = ft|Dt∩D+ .

Define F : D+ ∪ (∪t∈D0Dt)→ C by

f(z) =

{
f(z), z ∈ D+,

ft(z), z ∈ Dt.

21



F will be a continuous extension of f to D+ ∪ (∪t∈D0Dt) ⊃ D+ ∪D0, provided that we
can show that the different definitions of the value of f agree on the overlaps. We already
know that f |Dt∩D+ = ft|Dt∩D+ for all t ∈ D0. We also have to check that if s, t ∈ D0,
then ft|Dt∩Ds = fs|Dt∩Ds . Note that Dt ∩ Ds is always connected and Dt ∩ Ds ∩ D+ is
never empty if Dt ∩Ds 6= ∅. We know that

ft|Dt∩Ds∩D+ = f |Dt∩Ds∩D+ = fs|Dt∩Ds∩D+

and now the facts that fs, ft are holomorphic, Dt ∩Ds ∩D+ has limit point in Dt ∩Ds,
and Dt ∩Ds is connected imply that

ft|Dt∩Ds = fs|Dt∩Ds .

This verifies that F is continuous and hence f extends continuously to D+ ∩D0.

11 Harmonic Functions X (02/06)

Recall

Pr(θ) =
1− r2

1− 2r cos(θ) + r2
.

Thus
1− r
1 + r

=
1− r2

1 + 2r + r2
≤ Pr(θ) ≤

1− r2

1− 2r + r2
=

1 + r

1− r
.

So we get

(11.1)
1− r
1 + r

≤ Pr(θ) ≤
1 + r

1− r
, ∀θ,∀r ∈ [0, 1).

If we have u harmonic on D and continuous on D then u = P [u]. (The reason is that
both u and P [u] are harmonic, and they have the same boundary values.)

Assume that u is continuous on D, harmonic on D, and u(z) ≥ 0 for all z ∈ D. Then
for reiθ ∈ D we have

u(reiθ) =
1

2π

∫ π

−π
Pr(θ − ψ)u(eiψ) dψ.

We apply the inequality in (11.1) multiplied through by u(eiψ) and we get

1

2π

∫ π

−π

1− r
1 + r

u(eiψ) dψ ≤ u(reiθ) ≤ 1

2π

∫ π

−π

1 + r

1− r
u(eiψ) dψ,

Hence
1− r
1 + r

· 1

2π

∫ π

−π
u(eiψ) dψ ≤ u(reiθ) ≤ 1 + r

1− r
· 1

2π

∫ π

−π
u(eiψ) dψ.

Notice that
1

2π

∫ π

−π
u(eiψ) dψ = P [u](0) = u(0).
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Therefore,
1− r
1 + r

u(0) ≤ u(reiθ) ≤ 1 + r

1− r
u(0).

This is called the Harnack’s Inequality .
First improvement of this inequality is that if u ≥ 0 is harmonic in D then the inequality

still holds. (We are dropping u ∈ C(D).) Let 0 < ρ < 1. Define uρ(z) = u(ρz). Certainly
uρ ≥ 0, uρ is harmonic on D(0, 1

ρ) and in particular it is harmonic on D and continuous

on D. Thus
1− r
1 + r

uρ(0) ≤ uρ(reiθ) ≤
1 + r

1− r
uρ(0)

for all ρ ∈ (0, 1), r ∈ [0, 1), and all θ. So

1− r
1 + r

u(0) ≤ u(ρreiθ) ≤ 1 + r

1− r
u(0).

Now take the limit as ρ→ 1− to get the required inequality for u.
A consequence of this inequality is that if q1, q2 ∈ D then there are positive constants

c1, c2 such that
c1u(q1) ≤ u(q2) ≤ c2u(q1)

for all non-negative harmonic functions in D. This follows from

1− |q1|
1 + |q1|

u(0) ≤ u(q1) ≤ 1 + |q1|
1− |q1|

u(0),

1− |q2|
1 + |q2|

u(0) ≤ u(q2) ≤ 1 + |q2|
1− |q2|

u(0),

Moreover, if q1, q2 are restricted to lie in a compact set, then the constants c1, c2 may be
taken uniform for all q1, q2 in this compact set.

There is a version of Harnack’s Inequality for D(a,R). If u ≥ 0 is harmonic on D(a,R),
then v : D→ R given by

v(w) = u(a+Rw)

is harmonic and non-negative. The inverse relationship is

u(z) = v

(
z − a
R

)
.

We know that
1− r
1 + r

v(0) ≤ v(reiθ) ≤ 1 + r

1− r
v(0)

for all r ∈ [0, 1) and all θ. Then

1− r
1 + r

u(a) ≤ u(a+Rreiθ) ≤ 1 + r

1− r
u(a),
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So
1− ρ

R

1 + ρ
R

u(a) ≤ u(a+ ρeiθ) ≤
1 + ρ

R

1− ρ
R

u(a),

and so
R− ρ
R+ ρ

u(a) ≤ u(a+ ρeiθ) ≤ R+ ρ

R− ρ
u(a).

This is the Harnack’s Inequality for D(a,R), which would be very useful.
If also follows that if K ⊂ D(a,R) is a compact set, then there are positive constants

c1, c2 such that
c1u(q1) ≤ u(q2) ≤ c2u(q1)

for all q1, q2 ∈ K and all non-negative harmonic functions u in D(a,R).

Theorem 11.1 (Harnack’s Inequality). Let V ⊂ C be a connected open set and K ⊂ V a
compact set. Then there are positive constants c1, c2 such that

c1u(q1) ≤ u(q2) ≤ c2u(q1)

for all q1, q2 ∈ K and and all non-negative harmonic functions u on V .

The proof will be given in the next lecture.

12 Harmonic Functions XI (02/09)

Here is the proof for Theorem 11.1.

Proof. Let p ∈ V . Define

S = {z ∈ V | there is a disk D(z, r) ∈ V and constants k1, k2 > 0 such that

k1u(p) ≤ u(q) ≤ k2u(p) for all q ∈ D(z, r) and all non-negative

harmonic functions u}

First, S 6= ∅ because p ∈ S by our previous Harnack’s Inequality for a disk.
Second, S is open. If z ∈ S, then we choose D(z, r) as in the definition. If w ∈ D(z, r)

then we choose D(w, ρ) ⊂ D(z, r). The disk D(w, ρ) has the required property, so w ∈ S.
Thus D(z, r) ⊂ S. This shows S is open.

Third, we want to show that S is closed in V . Suppose that ζ ∈ clV (S) and choose
a sequence (ζn) in S such that ζn → ζ. Now ζ ∈ V and so I may choose R > 0 such
that D(ζ, 2R) ⊂ V . Choose m such that ζm ∈ D(ζ,R). I claim that there is a two-sided
estimate for u(z) in terms of u(p) for all z ∈ D(ζ,R). If so then ζ ∈ S and so S is
closed in V . By definition, the fact that ζm ∈ S implies that there is a two-sided estimate
for u(ζm) in terms of u(p). By the version of Harnack’s Inequality for disks, applied to
D(ζ,R) ⊂ D(ζ, 2R) there is a uniform two-sided estimate for u(z) in terms of u(ζm) for all
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ζm

ζ

2R

R
p

V

z ∈ D(ζ,R). By transitivity of inequality, we have a uniform two-sided estimate for u(z)
in terms of u(p) for all z ∈ D(ζ,R). This verifies that f is closed in V . By connectedness,
S = V .

Next, let K ⊂ V be a compact set. For each z ∈ K let D(z, rz) be a disk as in the
previous step. Then {D(z, rz)} is an open cover of K, so we can choose a finite subcover
{D(z, rz)|z ∈ F}. For each z ∈ F , we have an estimate

Azu(p) ≤ u(w) ≤ Bzu(p)

for all w ∈ D(z, rz) and all non-negative harmonic functions u. Let

A = min{Az|z ∈ F}, B = max{Bz|z ∈ F}.

Then
Au(p) ≤ u(w) ≤ Bu(p)

for all w ∈ K. If w1, w2 are in K, then

u(w1) ≤ Bu(p) ≤ A−1Bu(w2).

Similarly,
u(w2) ≤ A−1Bu(w1).

So
AB−1u(w2) ≤ u(w1).

This completes the proof.
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Theorem 12.1. Let V be a connected open set in C. The set of harmonic functions is a
closed subset of C(V ) with the topology of uniform convergence on compact subsets.

Proof. Let (un) be a sequence of harmonic functions of V and suppose that un → u
uniformly on compact subsets of V , with u ∈ C(V ). We have to show that u is harmonic.
We check that u has the Mean Value Property. Suppose that D(z, r) ⊂ V . Then ∂D(z, r)
is a compact subset of V and so un|∂D(z,r) → u|∂D(z,r) uniformly. Also, un(z) → u(z).
Thus,

u(z) = lim
n→∞

un(z)

= lim
n→∞

1

2π

∫ π

−π
un(z + reiθ) dθ

=
1

2π

∫ π

−π
lim
n→∞

un(z + reiθ) dθ (since convergence is unifrom)

=
1

2π

∫ π

−π
u(z + reiθ) dθ

and so u has the Mean Value Property.

Theorem 12.2 (Harnack’s Theorem). Let V be a connected open set and suppose that
(un) is a pointwise increasing sequence of harmonic functions in V . Then either (un)
converges uniformly to ∞ on compact subsets of V or (un) converges uniformly to a
harmonic function u on compact subsets.

Proof. By replacing un by un − u1 we may assume that un ≥ 0 on V . Suppose that
un(z0)→∞ for some z0 ∈ V . Let K ⊂ V be compact then K ∪ {z0} is also compact and
so there are A,B positive constants such that

Aun(z0) ≤ un(z) ≤ Bun(z0)

for all z ∈ K. This shows that un →∞ uniformly on K.
Otherwise, (un(z)) is bounded above for all z ∈ V . Choose z0 ∈ V . Let K ⊂ V be a

compact set and note that

um(z)− un(z) ≤ B(um(z0)− un(z0))

for all z ∈ K and all m ≥ n. This shows that (un) is uniformly Cauchy on K. The limit
u is continuous and harmonic by the previous theorem.
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13 Hermitian Metrics on Plane Domains I (02/11)

Let U ⊂ C be domain (a connected open set).

Definition 13.1. A Hermitian metric on U is a continuous function ρ : U → [0,∞) such
that the restriction of ρ to the set {z ∈ U |ρ(z) 6= 0} is C2.

Definition 13.2. The Hermitian metric ρ is said to be non-degenerate if it does not take
the value 0.

Say we have a Hermitian metric on a domain U and γ : [a, b] → U is a piecewise
smooth path. Then we define the ρ-length of γ to be

Lρ(γ) =

∫ b

a
|γ′(t)|ρ(γ(t)) dt.

We also define a function dρ : U × U → [0,∞) by

dρ(p, q) = inf{Lρ(γ)| all piecewise smooth γ : [0, 1]→ U such that γ(0) = p, γ(1) = q}.

This function always satisfies
(1) dρ(p, q) ≥ 0,
(2) dρ(p, q) = dρ(q, p),
(3) dρ(p, s) ≤ dρ(p, q)+dρ(q, s). If ρ is non-degenerate, then dρ is a metric on U . Generally,
it is a pseudometric.

Example 13.3. ρ : C→ [0,∞) given by ρ(z) = 1 for all z ∈ C. In this case, Lρ(γ) is the
usual length of γ and dρ is the usual distance on C.

How do we know? Let p, q ∈ C. Translation of C does not change Lρ(γ) (because ρ is
constant). Rotation of C also does not change Lρ(γ). Thus, we may assume that p = 0
and q ∈ [0,∞). Let γ : [0, 1] → C be a path from 0 to q. Then γ(t) = (x(t), y(t)) for
some x, y : [0, 1] → R. Define σ : [0, 1] → C be σ(t) = (x(t), 0). σ is piecewise smooth.
γ(0) = (x(0), y(0)) = 0 and so y(0) = 0. γ(1) = (x(1), y(1)) = q and so y(1) = 0. Thus
σ(0) = (x(0), 0) = 0 and σ(1) = (x(1), 0) = q. Now

Lσ(γ) =

∫ 1

0
|γ′(t)|dt =

∫ 1

0

√
(ẋ(t))2 + (ẏ(t))2 dt

≥
∫ 1

0
|ẋ(t)| dt

≥
∫ 1

0
ẋ(t) dt

= x(1)− x(0)

= q.

This tells us that dρ(p, q) ≥ q. The line segment [0, q] realizes the length q. Thus dρ(0, q) =
q = |0 − q|. Since the normal distance is invariant under translation and rotation, dρ
coincides with the normal distance.
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Example 13.4. The Poincare metric on D(o,R) is

ρR(z) =
R

R2 − |z|2
.

(Note that a lot of people use 2R
R2−|z|2 .)

Example 13.5. The spherical metric on C is

σ(z) =
z

1 + |z|2
.

Next time I want to justify the name of spherical metric. After that, I will define
pull-back of metrics and reformulate the Schwarz-Pick Lemma.

14 Hermitian Metrics on Plane Domains II (02/13)

Recall
S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}.

There are two metrics on S2.

α

p

q

Figure 4: Spherical metric
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The first one is the chordal metric. The distance between p, q ∈ S2 is

dchordal(p, q) = ‖p− q‖.

The second one is the spherical metric. The distance between p, q ∈ S2 is

dspherical(p, q) = arccos(p · q).

dchordal and dspherical are comparable:

2

π
dspherical(p, q) ≤ dchordal(p, q) ≤ dspherical(p, q).

Remark 14.1. Why is dspherical actually a metric? To show that dspherical is actually a
metric, we will show that

dspherical(p, q) = min{L(γ)|γ : [0, 1]→ S2is a piecewise smooth path with

γ(0) = p, γ(1) = q, where L(γ) =

∫ 1

0
‖γ′(t)‖ dt.}

p

ψ

θ

0

Figure 5: Spherical coordinates
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q

p

Figure 6:

On the sphere, I will use spherical coordinates (see Figure 5) with θ as the azimuth
and ψ as the zenith: 

x = cos(θ) sin(ψ),

y = sin(θ) sin(ψ),

z = cos(ψ).

Rotation of the sphere about 0 does not change dspherical. It also does not change L(γ).
Thus I may assume that p, q both lie on the great circle where θ = 0 (see the above
figure). Let γ : [0, 1] → S2 be a piecewise smooth path. Then we may find functions
θ, ψ : [0, 1]→ R such that they are piecewise smooth and

γ(t) =

cos(θ(t)) sin(ψ(t))
sin(θ(t)) sin(ψ(t))

cos(ψ(t))

 .

Then

γ′(t) =

− sin(θ) sin(ψ) · θ̇ + cos(θ) cos(ψ) · ψ̇
cos(θ) sin(ψ) · θ̇ + sin(θ) cos(ψ) · ψ̇

− sin(ψ) · ψ̇

 ,

‖γ′(t)‖2 = sin2(ψ)(θ̇)2 + (ψ̇)2,
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L(γ) =

∫ 1

0

√
sin2(ψ)(θ̇)2 + (ψ̇)2 dt

≥
∫ 1

0
|ψ̇| dt

≥ |ψ(1)− ψ(0)|
= dspherical(p, q).

This verifies that

dspherical(p, q) ≤ inf{L(γ)|γ : [0, 1]→ S2is a piecewise smooth path with

γ(0) = p, γ(1) = q, where L(γ) =

∫ 1

0
‖γ′(t)‖ dt.}

Actually

dspherical(p, q) = min{L(γ)|γ : [0, 1]→ S2is a piecewise smooth path with

γ(0) = p, γ(1) = q, where L(γ) =

∫ 1

0
‖γ′(t)‖ dt.}

because the great arc achieves the minimum.
Let p : C→ S2 be the inverse of stereographic projection. Then

p(x+ iy) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
,
x2 + y2 − 1

1 + x2 + y2

)
.

We want to know what Hermitian metric σ on C is such that

Lσ(γ) = L(p ◦ γ).

Note that if we find such a σ then

dσ(z, w) = dspherical(p(z), p(w)).

Say we have a path γ : [0, 1]→ C. We have to compute ‖(p ◦ γ)′(t)‖. This is because

L(p ◦ γ) =

∫ 1

0
‖(p ◦ γ)′‖dt.

We want

L(p ◦ γ) =

∫ 1

0
‖(p ◦ γ)′‖dt

=

∫ 1

0
|γ′(t)|σ(γ(t)) dt

= Lσ(γ).

Let γ(t) = x(t) + y(t)i, then

‖(p ◦ γ)′(t)‖ =
2

1 + x2 + y2
|γ′(t)| = 2

1 + |γ(t)|2
|γ′(t)|

This tells us that σ(z) = 2
1+|z|2 works. That is, dσ(z, w) = dspherical(p(z), p(w)).

31



15 Hermitian Metrics on Plane Domains III (02/18)

We now come to the pullback of Hermitian metrics.
Say f : U → V is a holomorphic function and ρ is a Hermitian metric on V . Then we

define a metric on U by
(f∗ρ)(z) = ρ(f(z))|f ′(z)|.

(f∗ρ)(z) can be zero in two ways – either ρ(f(z)) = 0 or f ′(z) = 0. Certainly f∗ρ is a
continuous function into [0,∞). If we pick a point in Ũ = {z ∈ U |(f∗ρ)(z) 6= 0}, then f∗ρ
is C2 near this point.

γ

f∗ρ on U

f ◦ γ

ρ on V

f

Here is the explanation for why the pullback is defined this way.

Lρ(f ◦ γ) =

∫ 1

0

∣∣(f ◦ γ)′(t)
∣∣ ρ((f ◦ γ(t))) dt

=

∫ 1

0

∣∣f ′(γ(t)) · γ′(t)
∣∣ ρ(f(γ(t))) dt

=

∫ 1

0

∣∣γ′(t)∣∣ ρ(f(γ(t)))
∣∣f ′(γ(t))

∣∣ dt
=

∫ 1

0

∣∣γ′(t)∣∣ (f∗ρ)(γ(t)) dt

= Lf∗ρ(γ).
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If γ is a path from p to q in U then f ◦ γ is a path from f(p) to f(q) in V . We have just
seen that these two paths have the same length. It follows that

dρ(f(p), f(q)) ≤ df∗ρ(p, q).

This inequality is not generally an equality, but it is if f is conformal equivalence. To see
this, we would like to apply the inequality to f−1 : V → U . To do this, we should verify
that the pullback is functorial.

U V ν on W

f g

Figure 7:

Functorial says
(g ◦ f)∗ν = f∗g∗ν.

Now

f∗g∗ν(z) = g∗ν(f(z))
∣∣f ′(z)∣∣

= ν(g(f(z))) ·
∣∣g′(f(z))

∣∣ · ∣∣f ′(z)∣∣
= ν(g ◦ f(z))

∣∣(g ◦ f)′(z)
∣∣

= (g ◦ f)∗ν(z).

In particular, (f−1)∗(f)∗ρ = ρ and so the previous argument works to show that dρ(f(p), f(q)) =
df∗ρ(p, q) if f is a conformal equivalence. That is, a conformal equivalence becomes an
isometry (of pseudometrics) between U and V .
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We have actually seen pullback of Hermitian metrics in disguise. If f : D → D is
holomorphic then the Schwarz-Pick Lemma says

|f ′(z)|
1− |f(z)|2

≤ 1

1− |z|2

for all z ∈ D. 1
1−|z|2 is the Poincare metric ρ1 on D(0, 1). Also,

(f∗ρ1)(z) = ρ1(f(z))|f ′(z)| = |f ′(z)|
1− |f(z)|2

.

So
f∗ρ1 ≤ ρ1.

The idea is to generalize this inequality. The key is to introduce the curvature of a metric.
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16 Curvature I (02/23)

Let U ⊂ C be a domain. Let ρ : U → [0,∞) be a Hermitian metric. We define the
curvature of ρ to be kρ : {z ∈ U |ρ(z) 6= 0} → R by

kρ(z) =
−∆ log(ρ)(z)

ρ2(z)
.

The curvature is a conformal invariant and this is what makes it so important.
Say A > 0. Then Aρ is also a Hermitian metric on U . Moreover,

kAρ(z) =
−∆ log(Aρ)(z)

(Aρ(z))2

=
−∆[log(A) + log(ρ)](z)

A2ρ2(z)

=
−∆ log(ρ)(z)

A2ρ2(z)
(since ∆ log(A) = 0)

=
1

A2
kρ(z).

Theorem 16.1 (Conformal Invariance of Curvature). Let U, V be domains, f : U → V a
holomorphic function and ν a Hermitian metric on V . Then

kf∗ν(w) = kν(f(w))

for all w such that both sides are defined.
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Proof. On the set where kf∗ν is defined, we have

kf∗ν = −∆ log(f∗ν)

(f∗ν)2

= −∆ log ((ν ◦ f) · |f ′|)
(ν ◦ f)2 · |f ′|2

= −∆ log(ν ◦ f) + ∆ log |f ′|
(ν ◦ f)2 · |f ′|2

= − ∆ log(ν ◦ f)

(ν ◦ f)2 · |f ′|2

(because at a point where kf∗ν is defined, f ′ is not 0. It is therefore

not 0 near this point and so log |f ′| is harmonic.)

= −∆ [(log ◦ν) ◦ f ]

(ν ◦ f)2|f ′|2

= −(∆(log ◦ν) ◦ f) · |f ′|2

(ν ◦ f)2|f ′|2

(recall if g is holomorphic and ψ is C2 then ∆(ψ ◦ g) = (∆ψ ◦ g) · |g′|2.)

= −∆(log ◦ν) ◦ f
(ν ◦ f)2

= kν ◦ f.

This is equivalent to the required property.

Remark 16.2. kν(f(w)) is defined when ν(f(w)) 6= 0. kf∗ν(w) is defined when f∗ν(w) 6=
0 which is equivalent to ν(f(w)) 6= 0 and f ′(w) 6= 0.

Example 16.3. Let’s compute kρR where ρR : D(0, R)→ [0,∞) is

ρR(z) =
R

R2 − |z|2
.
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I will use ∆ = 4∂∂. I start with

∂ log(ρR) = ∂ log

(
R

R2 − |z|2

)
= ∂

(
log(R)− log(R2 − |z|2)

)
= −∂ log(R2 − |z|2)

= −∂ log(R2 − x2 − y2)

= −1

2
(∂x + i∂y) log(R2 − x2 − y2)

= −1

2

(
−2x

R2 − x2 − y2
+ i

−2y

R2 − x2 − y2

)
=

x+ iy

R2 − x2 − y2

=
z

R2 − zz
.

Thus

∂∂ log(ρR) = ∂

(
z

R2 − zz

)
=

(R2 − zz)∂z − z∂(R2 − zz)
(R2 − zz)2

=
R2 − zz − z(−z)

(R2 − zz)2
(since ∂(z) = 1, ∂z = 0)

=
R2

(R2 − zz)2

=
R2

(R2 − |z|)2
.

Therefore, ∆ log(ρR) = 4R2

(R2−|z|)2 . Thus,

kρR = −
4R2

(R2−|z|)2(
R

R2−|z|

)2 = −4.

What we are aiming for is a generalization of the Schwarz-Pick Lemma. Recall that
the Schwarz-Pick Lemma can be rephrased as saying that if f : D → D is holomorphic
then f∗ρ1 ≤ ρ1. We know that f∗ρ1 has curvature −4 at every point where it is defined.
In general, we will show that if ν is a Hermitian metric on D with kν ≤ 4 at every point
where it is defined, then ν ≤ ρ1.
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17 Curvature II (02/25)

Lemma 17.1. Let U ⊂ C be an open set and ϕ : U → R a C2 function that has a local
maximum at q ∈ U . Then ∆ϕ(q) ≤ 0.

Proof. Suppose not. Then either ϕxx(q) > 0 or ϕyy(q) > 0. Assume that ϕxx(q) > 0.
Consider the function x 7→ ϕ(x, q2) where q = (q1, q2). The second derivative of this
function is positive at q1, and so positive at all x near enough to q1, since the second
derivative is continuous. We know that q is a critical point of ϕ since it is a local maximum
and so the derivative of x 7→ ϕ(x, q2) is zero at q1. By the Mean Value Theorem, the
derivative is strictly positive to the right of q1 and so there are points as close to q1 as
desired such that ϕ(x, q2) > ϕ(q1, q2). This contradicts the fact that q is a local maximum
point for ϕ.

Theorem 17.2 (Ahlfors-Schwarz-Pick Lemma). Let ν be a Hermitian metric on D(0, R)
for some R > 0. Suppose that kν(z) ≤ −4 for all z where kν is defined. Then ν(z) ≤ ρR(z)
for all z ∈ D(0, R).

Proof. The inequality kν(z) ≤ −4 says

−∆(log(ν))(z)

(ν(z))2
≤ −4,

which is equivalent to
∆(log(ν)) ≥ 4ν2.

We know that kρR = −4 for all z and so

∆(log(ρR)) = 4ρ2
R.

Actually, ∆(log(ρr)) = 4ρ2
r on D(0, r) for all 0 < r < R. Choose r ∈ (0, R). Define

ψ : D(0, r)→ R by

ψ(z) =
ν(z)

ρr(z)
.

Note that ψ(z) ≥ 0 for all z and that lim|z|→r ψ(z) = 0. (Note that ν is bounded on D(0, r)
and lim|z|→r− ρr(z) =∞.) The function ψ must achieve a maximum value somewhere on
D(0, r). Call this maximum Mr and let qr be a point in D(0, r) where the maximum is
achieved. We aim to show that Mr ≤ 1. If Mr = 0 then we are done, so assume not. Then
Mr > 0 and so ν(qr) 6= 0. We may find an open set U ⊂ D(0, r), qr ∈ U such that ν never
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vanished on U . By Lemma 17.1,

0 ≥ ∆ log(ψ)

(note, log is monotone increasing, so log(ψ) also has a maximum at qr)

= ∆

(
log(

ν

ρr
)

)
(qr)

= ∆(log(ν)− log(ρr))(qr)

= (∆(log(ν))−∆(ρr))) (qr)

≥ 4ν2(qr)− 4ρ2
r(qr) (note ∆(log(ρr)) = 4ρ2

r)

= 4ρ2
r(qr) ·

(
ν2(qr)

ρ2
r(qr)

− 1

)
= 4ρ2

r(qr)
(
ψ2(qr)− 1

)
= 4ρ2

r(qr)(M
2
r − 1).

This implies that M2
r − 1 ≤ 0 and so Mr ≤ 1. We have now proved that ν(z)

ρr(z)
≤ 1 for all

z ∈ D(0, r). That is, ν(z) ≤ ρr(z) for all z ∈ D(0, r). We now let r → R−1 to conclude
that ν(z) ≤ ρR(z) for all z ∈ D(0, R).

Corollary 17.3 (Ahlfors-Schwarz-Pick Lemma). Let U ⊂ C be a domain with a metric ν
on it that satisfies kν(z) ≤ −c for all z ∈ U where the curvature is defined. Here c > 0 is
a constant. Let f : D(0, R)→ U be a holomorphic function. Then

(f∗ν)(w) ≤ 2√
c
ρR(w)

for all w ∈ D(0, R).

Proof. Let ν̃ =
√
c

2 ν. Then

kν̃(z) =
kν(z)

c/4
=

4kν(z)

c
≤ −4.

Thus kf∗ν̃(w) ≤ −4 for all w ∈ D(0, R) where it is defined. (This is because kf∗ν̃(w) =
kν̃(f(w)) whenever both are defined.) By Theorem 17.2, it follows that

kf∗ν̃(w) ≤ ρR(w)

for all w ∈ D(0, R). But

f∗ν̃ =

√
c

2
f∗ν

and the required inequality follows.
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Remark 17.4. Liouville’s Theorem follows from this. Say f : C → C is bounded and
entire. Choose K such that f(C) ⊂ D(0,K). We know that ρR on D(0,K) has curvature
-4 and so (f∗ρK)(w) ≤ ρR(w) for any R > 0. But limR→∞ ρR(w) = 0 (because ρR(w) =

R
R2−|w|2 ) and so (f∗ρK)(w) = 0 for all w. Recall that (f∗ρK)(w) = ρK(f(w))|f ′(w)|. Also

ρK(f(w)) 6= 0 and so f ′(w) = 0 for all w. Thus f is constant.

18 Curvature III (02/27)

Our main aim now is to find a non-degenerate metric µ on C\{0, 1} such that kµ(z) ≤
−c < 0 for all z ∈ C\{0, 1}.

We will construct µ as a product µ = µ0µ1 where µ0 is a metric on C\{0} and µ1 is a
metric on C\{1}. We will have

kµ(z) =
kµ0(z)

µ2
1(z)

+
kµ1(z)

µ2
0(z)

.

I will take

µ0(z) =
1 + |z|zα

|z|2β
where α and β are constants that will be chosen later. I will take

µ1(z) =
1 + |z − 1|2α

|z − 1|2β
.

Note that
log(µ0(z)) = log(1 + |z|2α)− log(|z|2β)

and
∆ log(|z|2β) = 0

and so
∆ log(µ0(z)) = ∆ log(1 + |z|2α).

Use ∆ = 4∂∂ to compute this.

∂ log(1 + |z|2α) = ∂ log(1 + (x2 + y2)α)

=
1

2

(
2α(x2 + y2)α−1x

1 + (x2 + y2)α
+ i

2α(x2 + y2)α−1y

1 + (x2 + y2)α

)
=
α(x+ iy)(x2 + y2)α−1

1 + (x2 + y2)α

=
αz|z|2α−2

1 + |z|2α

=
αz · zα−1 · zα−1

1 + zαzα
(locally on C\{0})

=
αzαzα−1

1 + zαzα
.

40



Thus,

∂∂ log(1 + |z|2α) = ∂

(
αzαzα−1

1 + zαzα

)
=

(1 + zαzα)α2zα−1zα−1 − αzαzα−1 · αzα−1zα

(1 + zαzα)2

=
α2|z|2α−2

(1 + |z|2α)2
.

Thus

∆ log(1 + |z|2α) =
4α2|z|2α−2

(1 + |z|2α)2
.

This gives

kµ0(z) = − 4α2|z|2α−2

(1 + |z|2α)2
· |z|4β

(1 + |z|2α)2
= −4α2|z|2α+4β−2

(1 + |z|2α)4
.

We assume now that
α+ 2β = 1

so that 2α+ 4β = 2 and

kµ0(z) =
−4α2

(1 + |z|2α)4
.

Let

µ1(z) =
1 + |z − 1|2α

|z − 1|2β
.

Then

kµ1(z) =
−4α2

(1 + |z − 1|2α)4
.

With u = u0u1, we get

kµ(z) =
−4α2

(1 + |z|2α)4
· |z − 1|4β

(1 + |z − 1|2α)2
+

−4α2

(1 + |z − 1|2α)4
· |z|4β

(1 + |z|2α)2
.

We need limz→∞ kµ(z) to be some negative value or −∞. If we impose the condition

4β = 12α,

then limz→∞ kµ(z) = −8α2. We need α+ 2β = 1 and β = 3α, and so α = 1
7 and β = 3

7 .
Note that

µ(z) =
1 + |z|2/7

|z|6/7
· 1 + |z − 1|2/7

|z − 1|6/7
.

With this choice, we have

lim
z→0

kµ(z) = − 1

49
,
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lim
z→1

kµ(z) = − 1

49
,

lim
z→∞

kµ(z) = − 8

49
.

BA

C

D

0 1

Figure 8:

We use a picture (see the above figure) to illustrate the value of kµ. kµ < − 1
98 on A.

kµ < − 1
98 on B. C is a compact set, and on here kµ achieves a negative maximum. On D

kµ < − 4
49 . It follows that there exists a constant c > 0 such that

kµ(z) ≤ −c

for all z ∈ C\{0, 1}. Also note that µ is non-degenerate.

Theorem 18.1 (Litter Picard Theorem). If f is an entire function that omits two values
from its image, then f is constant.

Proof. Suppose that f omits two values. By composition f with a linear map, we may
assume that the omitted values are 0 and 1. Thus f : C → C\{0, 1}. Let R > 0. By the
Ahlfors-Schwarz-Pick Lemma, we have

(f∗µ)(z) ≤ 2√
c
· R

R2 − |z|2
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for all z ∈ D(0, R). Fix z ∈ C and take R > |z|, then let R → ∞ in the inequality. We
obtain

µ(f(z))|f ′(z)| ≤ 0.

Thus
µ(f(z))|f ′(z)| = 0.

We know that µ(f(z)) 6= 0 and so f ′(z) = 0. But z was arbitrary, and so f ′ ≡ 0. Thus f
is constant.
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19 Curvature IV (03/02)

On S2 we have the spherical metric dspherical. We showed that dspherical derives from
the construction of minimizing the length of paths joining two points. The metric space
(S2, dspherical) is compact.

Let U ⊂ C be a domain. Then the space C(U, S2) is a metric space in such a way that
(fn) ⊂ C(U, S2) converges to a point f ∈ C(U, S2) if and only if fn|K → f |K uniformly
for all compact set K ⊂ U . It is a consequence of the Arzela-Ascoli Theorem that subset
F ⊂ C(U, S2) is precompact if and only if it is equicontinuous. (Note that any subset of
S2 is precompact, so the other condition in Arzela-Ascoli Theorem is automatic.)

We know thatM(U) (the set of all meromorphic functions on U) is a subset of C(U, S2).
Recall that meromorphic is the same as holomorphic from U to S2 (=C∞) and not con-
stantly ∞. More explicitly, f : U → S2 is holomorphic if
(1) f : U → S2 is continuous,
(2) f is holomorphic on f−1(S2\{0, 0, 1}),
(3) 1

f is holomorphic on f−1(S2\{(0, 0,−1)}).
The key to understanding when a family is equicontinuous inside C(U, S2) is the “spher-

ical derivative”.
Say that we have a holomorphic function f : U → S2 whose image does not include

∞. Then we can think of f as a map F : U → C composed with p : C→ S2. We want to
pullback the Hermitian metric on S2 that leads to dspherical under f . We already calculated
the pullback of this metric under p. We got the spherical metric σ(z) = 2

1+|z|2 . Thus the

pullback of the Hermitian metric on S2 by f is

(F ∗σ)(z) =
2|f ′(z)|

1 + |f(z)|2
.

By definition,

f#(z) =
2|f ′(z)|

1 + |f(z)|2

is the spherical derivative of f at z.

Lemma 19.1. Let f : U → S2 be a holomorphic function whose image includes neither 0
nor ∞. Then

f#(z) =

(
1

f

)#

(z)

for all z ∈ U .
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Proof. We know ( 1
f )′(z) = −f ′(z)

f(z) and so

(
1

f

)#

(z) =
2
∣∣∣−f ′(z)f(z)

∣∣∣
1 +

∣∣∣ 1
f(z)

∣∣∣2
=

2|f ′(z)|
1 + |f(z)|2

= f#(z).

We can use this to extend the spherical derivative to functions that do include ∞ in
their image. We can make this more concrete.

First, suppose f has a simple pole at p and f(z) = c−1

z−p + h(z), h holomorphic at p.
Then

f(z) =
c−1 + (z − p)h(z)

z − p
and so

1

f(z)
=

z − p
c−1 + (z − p)h(z)

.

This gives (
1

f(z)

)′
=
c−1 + (z − p)h(z)− (z − p)k(z)

(c−1 + (z − p)h(z))2

where k(z) is the derivative of the button. So

f#(z) =

(
1

f

)#

(z) =
2 c−1+(z−p)h(z)−(z−p)k(z)

(c−1+(z−p)h(z))2

1 +
∣∣∣ z−p
c−1+(z−p)h(z)

∣∣∣2 .

Now

f#(p) = lim
z→p

(
1

f

)#

(z) = 2 ·
∣∣∣∣ 1

c−1

∣∣∣∣ =
2

|c−1|
.

Second, if f has a double or higher pole at p then f#(p) = 0.
The sequence of constant functions (n) ⊂ C(C, S2) converges to the constant function

at ∞. This tells us that M(U) is not a closed subset of C(U, S2). In fact, cl(M(U)) =
M(U) ∪ {∞}.

If (fn) is a sequence of holomorphic functions on U and fn → ∞ in C(U, S2) then
we say that (fn) is compactly divergent . Concretely, (fn) is compactly divergent if given
K ⊂ C compact and B a number, there is a N such that |fn(z)| ≥ B for all z ∈ K and
all n ≥ N .
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20 Curvature V (03/06)

Theorem 20.1 (Marty’s Theorem, 1931). Let U ⊂ C be a domain. Let F be a family of
functions in M(U). Then F is precompact in C(U, S2) if and only if for all compact sets
K ⊂ U , there is a constant MK > 0 such that f#(z) ≤MK for all z ∈ K and all f ∈ F .

Proof. I will only show that the bound on the spherical derivatives implies that F is
precompact. Let p ∈ U . I will show that F is equicontinuous at p. Choose a disk
D(p, r) ⊂ U . Let q ∈ D(p, r). I need to estimate dσ(f(p), f(q)) for f ∈ F . Let σ : [0, 1]→
D(p, r) be the line segment from p to q. Then

dσ(f(p), f(q)) ≤ Lσ(f ◦ σ)

= Lf∗σ(γ)

=

∫ 1

0
|γ′(t)|(f∗σ)(γ(t)) dt

=

∫ 1

0
|γ′(t)|f#σ(γ(t)) dt

≤MD(p,r)

∫ 1

0
|γ′(t)|dt

= MD(p,r)|p− q|.

That is, F is uniformly Lipschitz at p. Thus F is equicontinuous at p. Thus, plus Arzela-
Ascoli Theorem, implies the theorem.

Corollary 20.2. Let F ⊂ H(U) where U ⊂ C is a domain and suppose that for every
compact K ⊂ U , f#(z) ≤ MK for some constant MK , all f ∈ F , and all z ∈ K. Then
given (fn) ∈ F , we can find a subsequence (fnk) that either converges uniformly on compact
subsets of U to f ∈ H(U) or is compactly divergent.

Theorem 20.3 (Montel’s Great Theorem/Fundamental Theorem on Normality). Let U ⊂
C be a domain. Let F ∈ M(U) be a family of functions and suppose that there are three
distinct points A,B,C ∈ S2 such that f(U) ∈ S2\{A,B,C} for all f ∈ F . Then F is
precompact.

We need a lemma.

Lemma 20.4. Let

µ(z) =
1 + |z|2/7

|z|6/7
· 1 + |z − 1|2/7

|z − 1|6/7

be the metric that we previously constructed on C\{0, 1}. Then there is a constant L > 0
such that σ(z) ≤ L · µ(z) for all z ∈ C\{0, 1}.
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Proof. Consider σ(z)
µ(z) on C\{0, 1}. We have limz→0 µ(z) = ∞ and limz→1 µ(z) = ∞ and

so limz→0
σ(z)
µ(z) = 0 and limz→1

σ(z)
µ(z) = 0. Also,

lim
z→∞

σ(z)

µ(z)
= lim

z→∞

2

1 + |z|2
· |z|

6/7

1 + |z|2/7
· |z − 1|6/7

1 + |z − 1|2/7
= lim

z→∞

|z|8/7

|z|2
= 0

because 8/7 < 2. It follows that σ(z)
µ(z) is bounded above on C\{0, 1}, as required.

Now we are ready to prove the Fundamental Theorem on Normality.

Proof of Theorem 20.3. Without loss of generality, I may assume that the three points
omitted by F are 0, 1,∞. In order to verify that the spherical derivatives of F are bounded
on compact subsets, it suffices to verify that they are bounded on disks around each point.
Choose p ∈ U and a disk D(p, 2R) ⊂ U . We may assume that p = 0 by composing the
family with z 7→ z − p. By the Ahlfors-Schwarz-Pick Lemma, there is a constant N > 0
such that f∗µ ≤ Nρ2R for any holomorphic function f : D(0, 2R) → C\{0, 1}. Thus, for
any holomorphic function f : D(0, 2R)→ C\{0, 1}, we have

f∗σ ≤ L · f∗µ ≤ L ·N · ρ2R.

Thus, if z ∈ D(0, R), then

(f∗σ)(z) ≤ L ·N · 2R

4R2 − |z|2
≤ L ·N · 2R

4R2 −R2
=

2LN

3R
.

Thus, we have

f#(z) ≤ 2LN

3R

for all z ∈ D(0, R). This verifies the hypothesis of Marty’s Theorem for the family of all
holomorphic functions U → C\{0, 1}.

21 Curvature VI (03/09)

Theorem 21.1 (Great Picard Theorem). Suppose that f ∈ H(D′(0, r)) with r > 0 has
an essential singularity at 0. Then f(D′(0, r)) is either C or C\{p} for some p ∈ C.

Proof. Suppose to the contrary that f(D′(0, r)) ⊂ C\{p, q} for some p, q ∈ C, p 6= q. By
composing with a linear map if necessary, we may assume that f(D′(0, r)) ⊂ C\{0, 1}.
For n ≥ 1, we define fn ∈ H(D′(0, r)) by

fn(z) = f
( z
n

)
.

Note that fn(D′(0, r)) ⊂ f(D′(0, r)) ⊂ C\{0, 1}. It follows from the Fundamental The-
orem on Normality that {fn|n ≥ 1} is normal (precompact in C(D′(0, r), S2)) (when
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regarded as a family in M(D′(0, r), S2)). Hence we may find a subsequence (fnk) such
that either fnk → g uniformly on compact subsets of D′(0, q) for some g ∈ H(D′(0, q)) or
(fnk) is compactly divergent.

Assume first that fnk → g. This means that fnk → g uniformly on the set K =
{z||z| = r

2}. Now g is bounded on K and so there is some M > 0 such that |fnk(z)| ≤M
for all k ≥ 1 and all z ∈ K. It follows that |f(z)| ≤M for all z such that |z| = r

2nk
for any

k ≥ 1. It follows from the Maximum Modulus Principle that |f(z)| ≤ M for all z such
that r

2nk+1
≤ |z| ≤ r

2nk
. It follows that |f(z)| ≤ M for all z ∈ D′(0, r

2n1
). By Riemann’s

Removable Singularity Theorem, f has a removable singularity at 0, a contradiction.
We conclude that (fnk) must be compactly divergent. Because we have assumed that

the image of f (and hence of fnk) does not contain 0,
(

1
fnk

)
is a sequence of holomorphic

functions on D′(0, r). They are constructed from 1
f ∈ H(D′(0, r)) by the same method as

fnk → 0 uniformly on compact subsets of D′(0, r). We conclude that 1
f has a removable

singularity at 0 (by rerunning the previous argument) and 1
f (0) = 0. Thus f has a pole

at 0, a contradiction. This means that f admits at most one value from its image.
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22 Runge’s Theorem and the Mittag-Leffler Theorem I (03/11)

We begin this chapter with a problem from comprehensive exam.
Comprehensive Exam Problem: Let f ∈ H(D) ∩ C(D). Show that f can be

uniformly approximated on compact subsets of D by rational functions of the form

r(z) =
n∑
k=1

ak
z − zk

, ak ∈ C, |zk| = 1 for 1 ≤ k ≤ n.

(i.e., ∀K ⊂ D compact, ∀ε > 0, ∃r(z) of the given type such that |r(z)−f(z)| < ε,∀z ∈ K.)
Solution. Start with Cauchy’s Integral Formula for the circle |z| = r < 1. It says

f(z) =
1

2πi

∫
|w|=r

f(w)

w − z
dw

valid for all z such that |z| < r. Next, because f extends continuously to D we may let
r → 1− to conclude that

f(z) =
1

2πi

∫
|w|=1

f(w)

w − z
dw

for all z ∈ D. So

f(z) =
1

2πi

∫ 2π

0

f(eiθ)

eiθ − z
ieiθ dθ

=
1

2π

∫ 2π

0

f(eiθ)

eiθ − z
eiθ dθ

=
1

2π

∫ 2π

0

eiθf(eiθ)

eiθ − z
dθ

=
1

2π

∫ 2π

0
g(θ, z)dθ

where

g(θ, z) =
eiθf(eiθ)

eiθ − z
.

A Riemann sum for this integral looks like

∑
k=1

ng(θ∗k, z)∆θk =
n∑
k=1

eiθ
∗
kf(eiθ

∗
k)

eiθ
∗
k − z

∆θk

=

n∑
k=1

ak
z − zk

if zk = eiθ
∗
k and ak = −eiθ∗kf(eiθ

∗
k)∆θk.
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Recall that a tagged partition P of [a, b] is a choice of numbers

a = t0 < t1 < t2 · · · < tn = b

and a choice of sj ∈ [tj−1, tj ] for all 1 ≤ j ≤ n. The mesh of P is

‖P‖ = max
1≤j≤n

(tj − tj−1).

The Riemann sum of g for P is

R(P, g) =
n∑
j=1

g(sj)(tj − tj−1).

Lemma 22.1. Let a < b and K be a compact metric space. Let g : [a, b] ×K → C be a
continuous function. Let ε > 0. There is some δ > 0 such that if P is a tagged partition
of [a, b] with ‖p‖ < δ then ∣∣∣∣∫ b

a
g(t, z)dt−R(P, g(·, z))

∣∣∣∣ < ε

for all z ∈ K (where R is the Riemann sum for P ).

Proof. We begin by writing∣∣∣∣∫ b

a
g(t, z)dt−R(P, g(·, z))

∣∣∣∣ =

∣∣∣∣∣∣
∫ b

a
g(t, z)dt−

n∑
j=1

g(sj , z)(tj − tj−1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑
j=1

∫ tj

tj−1

g(t, z)dz −
n∑
j=1

∫ tj

tj−1

g(sj , z)dz

∣∣∣∣∣∣
≤

n∑
j=1

∫ tj

tj−1

|g(t, z)− g(sj , z)| dz.

Let η > 0 and choose δ > 0 such that if d∞ ((t, z), (s, w)) < δ then

|g(t, z)− g(s, w)| < η.

(Here we are using the fact that [a, b]×K is compact and that g is uniformly continuous.)
If ‖P‖ < δ then d∞ ((t, z), (sj , z)) < δ for all t ∈ [tj−1, tj ]. Thus if ‖P‖ < δ then∣∣∣∣∫ b

a
g(t, z)dt−R(P, g(·, z))

∣∣∣∣ < n∑
j=1

∫ tj

tj−1

ηdt =
n∑
j=1

η(tj − tj−1)

= η(b− a).

If we choose η = ε
b−a , then we can get the required conclusion.
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Lemma 22.2. Let V ⊂ C be open and K ⊂ V be compact. Then there is a cycle Γ such
that Γ∗ ⊂ V \K, Ind(Γ, z) = 0 for all z ∈ C\V , Ind(Γ, z) = 0 or 1 for all z ∈ V \Γ∗, and
Ind(Γ, z) = 1 for all z ∈ K.

For a proof of Lemma 22.2, see Chapter 10 of Complex Made Simple, page 196-199.
Based on Lemma 22.1, Lemma 22.2, and the Homology Version of Cauchy’s Integral

Formula, we now know that if V ⊂ C is an open set, K ⊂ C is compact, and f ∈ H(V ),
then f can be approximated uniformly on K by a rational function whose poles lie in
C\K. (They will lie on Γ∗ where Γ is a cycle as in Lemma 22.2.)

23 Runge’s Theorem and the Mittag-Leffler Theorem II
(03/13)

We denote R to be the space of all rational functions on C. Note that if R ∈ R, then we
can think of R as a function from C∞ to C∞.

RA is the space of all rational functions whose poles lie in A. Note that if R ∈ RA
then R may be written as a sum

R =
∑
a∈A

Ra

where Ra ∈ R{a}. This is the partial fractions expression of R.

R(z) = P (z) +
∑

a∈A\{∞}

na∑
j=1

ca,j
(z − a)j

.

We have ca,j = 0 for all but finitely many a. Note that P ∈ R∞. In fact, R∞ is exactly
the space of all polynomials.

Lemma 23.1. Let K ⊂ C be a compact set and D(p, r) ⊂ C\K. Let ε > 0 and R be
a rational function with all its poles lying in D(p, r). Let q ∈ D(p, r). Then there is
S ∈ R{q} such that |R(z)− S(z)| < ε for all z ∈ K.

Proof. It is sufficient to show that if α ∈ D(p, r) and β ∈ D(p, r), then 1
z−β can be

uniformly approximated on K by an element of R{α}. Well,

(23.1)
1

z − β
=
∞∑
n=0

(β − α)n

(z − α)n+1
.

We can ignore the polynomial part since it would not have poles in the disk and thus, we
can approximate it by itself and kill it off. We have to switch back and forth between
thinking of this in C and C∞.

If z ∈ K, then we can find a disk centered at β such that if α lies in this disk, then
|α− β| < 1

2 |z − α| for all z ∈ K. Then the common ratio in Equation 23.1 is less than or
equal to 1

2 for all z ∈ K and so the series converges uniformly on this disk. This shows
that we can push poles from β to any sufficiently close by point.
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Lemma 23.2. Let K ⊂ C be a compact set. Suppose that A(0, N,∞) ⊂ C\K. Then we
can approximate a rational function with poles in A(0, N,∞)∪ {∞} uniformly on K by a
rational function with poles at specified q ∈ A(0, N,∞) ∪ {∞}.

Proof. Critical formulas are the following:

(23.2)
1

z − β
=

∞∑
n=0

− zn

βn+1
,

(23.3) z = β − β
∞∑
n=0

(
z

z − β

)n
.

Formula 23.2 allows us to approximate 1
z−β uniformly on K by polynomials provided

that |β| is large enough. For example, |β| ≥ 2N would work. Formula 23.3 allows us to
approximate z uniformly on K by rational functions with poles at β provided that |β| is
sufficiently large. To handle the case where |β| is smaller, use Lemma 23.1.

Lemma 23.3. Let K ⊂ C be compact. Let A ⊂ C∞ be a set such that every connected
component of C∞\K contains some point of A. Then any rational function whose poles
(in C∞) do not lie in K may approximated uniformly on K by an element of RA.

24 Runge’s Theorem and the Mittag-Leffler Theorem III
(03/23)

If q ∈ C∞ then a standard neighborhood of q is D(q, r) if q 6=∞ and A(0, k,∞) ∪ {∞} if
q =∞. We showed previously that if p, q belongs to a standard neighborhood of w ∈ C∞,
R ∈ R{p}, ε > 0, K is a compact set disjoint from the neighborhood then there is R̃ ∈ R{q}
such that |R(z)− R̃(z)| < ε for all z ∈ K.

Lemma 24.1. Let U ⊂ C be an open set, K ⊂ U a compact set, A ⊂ C∞\K a set that
meets each component of C∞\K, R ∈ RC∞\K , ε > 0. Then there is R̃ ∈ RA such that

|R(z)− R̃(z)| < ε for all z ∈ K.

Proof. By the Partial Fractional Expression, it suffices to assume that R ∈ R{q} with
q ∈ C∞\K. Let C be the component of C∞\K that contains q. Define

S ={w ∈ C|R can be uniformly approximated as closely as desired

on K by an element of R{w}}.

Well, we know q ∈ S and so S 6= ∅. If w ∈ S then we may choose a standard neighborhood
B of w that is contained in C. (This is because C is open in C∞.) By the previous
work, since R can be uniformly approximated on K by an element of R{w}, it can also be
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uniformly approximated on K by an element of R{z} for any z ∈ B. Thus B ⊂ S and so S
is open. Now suppose that w ∈ clC(S). We may choose a standard neighborhood B ⊂ C
of w. Then B ∩ S 6= ∅. Choose z ∈ B ∩ S. Then R can be approximated uniformly on
K by an element of R{z}. It follows that R may be uniformly approximated on K by an
element of R{w}. Thus w ∈ S. Thus S is closed in C. It follows that S = C. In particular,
there is some a ∈ A such that a ∈ C = S. Thus R may be uniformly approximated on K
by an element of R{a} ⊂ RA.

Theorem 24.2 (Runge’s Theorem, Version 1). Let U ⊂ C be open, K ⊂ U compact,
A ⊂ C∞\K a set that meets every component of C∞\K, f ∈ H(U), ε > 0. Then there is
R ∈ RA such that |f(z)−R(z)| < ε for all z ∈ K.

Proof. We know that there is a cycle Γ such that Γ∗ ⊂ U\K, Ind(Γ, w) = 0 for all w 6∈ U ,
Ind(Γ, z) = 1 for all z ∈ K. This implies that

f(z) =
1

2πi

∫
Γ

f(w)

w − z
dw

for all z ∈ K by the Homology version of Cauchy’s Integral Formula. We may approximate
the integral (and hence f) uniformly on K by a Riemann sum. This Riemann sum is an
element of RΓ∗ . Now Γ∗ ⊂ C∞\K and so this is an element of RC∞\K . By Lemma 24.1,
this may be uniformly approximated by an element of RA.

25 Runge’s Theorem and the Mittag-Leffler Theorem IV
(03/25)

Let U ⊂ C be open. We obtained a compact exhaustion by defining

Kn = D(0, n) ∩ {z ∈ U | d(z,C\U) ≥ 1

n
}

= D(0, n) ∩
⋂

p∈C\U

{z| |z − p| ≥ 1

n
}.

Then

C∞\Kn = (A(0, n,∞) ∪ {∞}) ∩
⋃

p∈C\U

D(p,
1

n
).

We want to verify that every component of C∞\Kn contains a component of C∞\U .
The only way this could fail is if there were some component C of C∞\Kn such that
C ∩ (C∞\U) = ∅. Since C ⊂ C∞\Kn, either C contains some point in D(p, 1

n) with
p ∈ C\U or C contains some point in A(0, n,∞) ∪ {∞}. But note that D(p, 1

n) and
A(0, n,∞)∪{∞} are all connected sets. Thus C contains either D(p, 1

n) for some p ∈ C\U
or A(0, n,∞) ∪ {∞}. Therefore, C does not contain some point of C\U .

Now we come to the second version of Runge’s Theorem, and this is the version that
people usually refer to.
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Theorem 25.1 (Runge’s Theorem, Version 2). Let U ⊂ C be an open set. Let A ⊂ C∞\U
be a set that meets every component of C∞\U . Let f ∈ H(U). Then there is a sequence
(gn) such that gn ∈ RA and gn → f in H(U).

Proof. We choose a compact exhaustion (Kn) of U such that every component of C∞\Kn

contains a component of C∞\U . Note that A meets every component of C∞\Kn for all
n ≥ 1. By Theorem 24.2, for each n ≥ 1 we may choose gn ∈ RA such that |f(z)−g(z)| < 1

n
for all z ∈ Kn. Let K ⊂ U be a compact set. Then {int(Kn)|n ≥ 1} are an open cover
of K. Thus there is a finite subcover and, since int(Kn) increases with n, there is some
m ≥ 1 such that K ⊂ int(Km). In fact, K ⊂ Kn for all n ≥ m. Thus, |f(z) − g(z)| < 1

n
for all z ∈ K and all n ≥ m. This shows that gn → f uniformly on K, as required.

Theorem 25.2. Let U ⊂ C be open. Then U is simply connected if and only if C∞\U is
connected.

Remark 25.3. In Theorem 25.2, we are not assuming U is connected, so U is simply
connected means every component of U is simply connected in the sense of the topology.

Proof of Theorem 25.2. Suppose C∞\U is not connected. Then it has a disconnection
C∞\U = K1 ∪ K2. Since C∞\U is closed, it is compact. Thus K1,K2 (closed subsets
of C∞\U) are both compact. One of them contains ∞; renumber if necessary so that
∞ ∈ K1. Then K2 is a compact subset of C. Consider

V = C∞\K1 = U ∪K2.

This is an open set in C and it contains the compact set K2. This means that we can find
a cycle Γ such that Γ∗ ⊂ V \K2 = U , Ind(Γ, w) = 0 for all w 6∈ V and Ind(Γ, z) = 1 for all
z ∈ K2. This gives us a cycle Γ in U such that the index of Γ about some points in the
component of U is non-zero. This tells us that U is not simply connected. This verifies
that if U is simply connected, then C∞\U is connected.

Now suppose that C∞\U is connected. Then the set A = {∞} meets every component
of C∞\U . Recall that RA is exactly the set of polynomials. Let f ∈ H(U) be non-

vanishing, so that f ′

f ∈ H(U). By Runge’s Theorem with A = {∞}, we may find a

sequence (gn) of polynomials such that gn → f ′

f in H(U). Let γ be a loop in U . Then∫
γ

f ′(w)

f(w)
dw = lim

n→∞
gn(w)dw = 0

because polynomials always have antiderivatives. This implies that f has a logarithm
on U . So U is simply connected (either U = C or each component of U is conformal
equivalent to D.)
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26 Runge’s Theorem and the Mittag-Leffler Theorem V
(03/27)

Suppose that a function f that is holomorphic on D′(p, r) and has a pole at p. Then f
has a Laurent expansion

f(z) =
∞∑

n=−m
cn(z − p)n

=
c−m

(z − p)m
+ · · ·+ c−1

z − p
+ c0 + c1(z − p) + c2(z − p)2 + · · · .

The rational function
c−m

(z − p)m
+ · · ·+ c−1

z − p
is called the principal part of f at p. We will write P (f, p) for the principal part of f at
p. If f ∈ M(U) then f has a set of poles, say E ⊂ U . We know that E is discrete in U .
That is, U is closed in U and every point of E is isolated in E. E might still be infinite,
by if so any limit points must lie on ∂U .

Example 26.1. (1) E might be Z where U = C, for example, the function csc(πz).
(2) E might be {1− 1

n |n ≥ 1} where U = D.

You can try to reverse this. That is, start with U and a plausible E and ask for
a function f ∈ M(U) with poles at the points of E. More precisely, we could ask for
f ∈ M(U) such that E is its set of poles and P (f, p) is chosen ahead of time. Mittag-
Leffler’s Theorem says that this is always possible.

Theorem 26.2 (Mittag-Leffler’s Theorem). Let U ⊂ C be an open set, E ⊂ U be a set
that has no limit points in U , and for each p ∈ E, let Rp be a rational function of the form

c−m
(z − p)m

+ · · ·+ c−1

z − p

where m ≥ 1. Then there is f ∈ M(U) such that f has poles only at the points of E and
P (f, p) = Rp for all p ∈ E.

Proof. Choose a compact exhaustion of U , say (Kn), such that it has the extra property
(every component of C∞\Kn contains a component of C∞\U). Note that E ∩Kn is finite
for all n ≥ 1. Write E1 = E ∩K1 and En = E ∩ (Kn\Kn−1). Let gn =

∑
p∈En Rp. Let

A = C∞\U . By Runge’s Theorem, we may choose hn ∈ RA such that h1 = 0 and

|gn(z)− hn(z)| < 1

2n

for all z ∈ Kn−1 when n ≥ 2. Let us define

f =

∞∑
n=1

(gn − hn).
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We have to check that this converges appropriately and has the right properties. Fix l ≥ 1
and consider the sum defining f on Kl. We can write

f(z) =
l∑

n=1

(gn(z)− hn(z)) +
∞∑

n=l+1

(gn(z)− hn(z)).

Note that Kl ⊂ Kn−1 for all n ≥ l + 1. Thus |gn(z) − hn(z)| < 1
2n for all z ∈ Kl and all

n ≥ l+1. So
∑∞

n=l+1(gn(z)−hn(z)) converges uniformly on Kl by the Weierstrauss M-test.
The limit is holomorphic on int(Kl). The first sum is finite and defines a meromorphic
function on int(Kl). This shows (since

⋃
int(Kl) = U) that f ∈M(U).

Say q ∈ U . Choose l such that q ∈ int(Kl−1). Then we have

f(z) =

l∑
n=1

(gn(z)− hn(z)) +

∞∑
n=l+1

(gn(z)− hn(z))

on int(Kl). The second term is holomorphic at every point of int(Kl−1). Also, (hn) are
all holomorphic on U . Thus

P (f, q) = P

(
l∑

n=1

gn, q

)
=

l∑
n=1

P (gn, q).

This expression shows firstly, if q 6∈ E then f does not have a pole at q; secondly, if q ∈ E
then f does not have a pole at q and the principal part is the correct thing.
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27 The Weierstrass Factorization Theorem I (03/30)

The aim is that given a sequence (ζn) of complex numbers we attempt to find an entire
function having a zero at each ζn (with multiplicity) and no other zeroes.

We definitely need ζn → ∞ for this to be possible. We could assume that ζn 6= 0
(deal with 0 separately) and try

∏∞
n=1(1 − z

ζn
). The only problem is convergence. From

before, the product will converge provided that the sum
∑∞

n=1

∣∣∣ 1
ζn

∣∣∣ converges. In fact,

if this condition holds then the product converges uniformly on compact sets and solves
the problem. So we have solved the problem for ζn = n2 or ζn = 2n, · · · . The idea is to
modify the product by introducing an exponential factor in each term. Doing this avoids
any new zeroes and may help with convergence.

To find the appropriate exponential factor, we really only need to work on D because
z
ζn
∈ D for all large enough n. Try a factor (1− z) exp(·). We know (1− z) exp(− log(1−

z)) = 1 on D. We know that

Pn(z) =
n∑
j=1

zj

j

is the Maclaurin polynomial of order n for − log(1− z), so we try

En(z) = (1− z) exp(Pn(z)).

We hope that En is pretty close to 1 on D.
To estimate |1− En(z)| on D, we start with calculating E′n(z).

E′n(z) = (1− z)P ′n(z) exp(Pn(z))− exp(Pn(z))

= [(1− z)(
n∑
j=1

zj−1)− 1] exp(Pn(z))

= [(1− zn)− 1] exp(Pn(z))

= −zn exp(Pn(z)).

So
(1− En(z))′ = zn exp(Pn(z)).

Also
En(0) = (1− 0) exp(Pn(0)) = 1.

Thus 1−En(z) vanishes at 0. Now we conclude that 1−En(z) has a zero of order exactly

(n+ 1) at 0. It follows that 1−En(z)
zn+1 has a removable singularity at 0 and so we may (and

do) extend it to be entire. We know that

1− En(z) =
∞∑
k=0

ckz
n+k+1
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and for some complex numbers ck. So

(1− En(z))′ =

∞∑
k=0

ck · (n+ k + 1) · zn+k = zn exp(Pn(z)).

Hence

exp(Pn(z)) =

∞∑
k=0

ck · (n+ k + 1) · zk.

On the other hand,

exp(Pn(z)) =

∞∑
l=0

1

l!
(Pn(z))l

=
∞∑
l=0

1

l!

 n∑
j=1

zj

j

l

=

∞∑
l=0

1

l!
zl

 n∑
j=1

zj−1

j

l

.

We conclude that

ck · (n+ k + 1) = coefficients of zk in

k∑
l=0

1

l!
zl

 n∑
j=1

zj−1

j

l

≥ 1

k!

and so

ck ≥
1

k!(n+ k + 1)
> 0.

Go back to
1− En(z)

zn+1
=
∞∑
k=0

ckz
k
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armed with knowledge that ck > 0 for all k. It follows that if |z| ≤ 1 then∣∣∣∣1− En(z)

zn+1

∣∣∣∣ ≤ ∞∑
k=0

|ck| · |z|k

=

∞∑
k=0

ck · |z|k

≤
∞∑
k=0

ck · 1k

=
1− En(1)

1n+1

=
1− 0

1
= 1.

We have proved the following lemma.

Lemma 27.1. If |z| ≤ 1 then |1− En(z)| ≤ |z|n+1.

What do we need for
∏∞
k=1Enk( zζk ) to converge uniformly on compact subsets of C?

∞∏
k=1

Enk(
z

ζk
) =

∞∏
k=1

(
1 + (Enk(

z

ζk
)− 1)

)
will converge uniformly on compact subsets provided that

∞∑
k=1

|Enk(
z

ζk
)− 1|

converges uniformly on compact subsets. Recall ζk →∞, so for z in compact set z
ζk
→ 0

uniformly. Except for a finite number of terms, we will have

∞∑
k=k0

|Enk(
z

ζk
)− 1| ≤

∞∑
k=k0

| z
ζk
|nk+1 (by the lemma)

≤
∞∑

k=k0

(
R

|ζk|
)nk+1

provided |z| ≤ R on the compact set. Can we make
∑∞

k=1( R
|ζk|)

nk+1 converge by choosing

nk (based on |ζk|) Actually nk = k always works. If ζk →∞ then
∑∞

k=1( R
|ζk|)

nk+1 always
converges. Why? Because the tail is directly comparable to a geometric series.
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28 The Weierstrass Factorization Theorem II (04/01)

Last time we defined

En(z) = (1− z) exp

(
n∑
k=1

zk

k

)
.

Note E0(z) = 1− z, E1(z) = (1− z) exp(z), · · · .

Lemma 28.1. |1− En(z)| ≤ |z|n+1 for all z ∈ D.

Lemma 28.2. If (ζm) is a sequence of complex numbers such that ζm →∞ and

∞∑
m=1

(
R

|ζm|
)nm+1 <∞

for all R > 0 then
∏∞
m=1Enm( z

ζm
) converges uniformly on compact subsets of C to an

entire function with zeroes at the elements of {ζm|m ≥} with multiplicities at α equal to
#{m|ζm = α}.

Theorem 28.3 (Weierstrass Factorization Theorem). Let f ∈ H(C)\{0}. Let (ζm)Mm=1

be the sequence of non-zeroes of f listed with multiplicity. (Here 0 ≤M ≤ ∞). Then there
is an integer N ≥ 0 and an entire function g such that

f(z) = zNeg(z)
N∏
m=1

Em(
z

ζm
)

for all z ∈ C.

Proof. We already observed that ζm → ∞ if M = ∞. We also observed that if M = ∞,
then

∑∞
m=1( R

|ζm|)
m+1 is convergent for all R > 0. Let N be the order of 0 as a zero of f .

This means that P (z) = zN
∏M
m=1Em( z

ζm
) is an entire function whose zeroes math the

non-zero zeroes of f in both location and multiplicity. Let

h(z) =
f(z)

P (z)
.

This function extends to be entire (the zeroes of P are removable singularity). Moreover,
h is non-vanishing. So there exists g ∈ H(C) such that h(z) = eg(z) since C is simply
connected.

Theorem 28.4. Let f ∈ M(C). Then there are g, h ∈ H(C) such that f = g
h and h is

not identically zero.
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Proof. If f ≡ 0 then take g ≡ 0 and h ≡ 1. Now assume f 6≡ 0. The poles of f are at most
countable and my be arranged in a sequence (ζm)Mm=1 of the non-zero poles together with
0 a pole of multiplicity N . Let h(z) = zN

∏M
m=1Em( z

ζm
). Note that h has a zero at each

pole of f with equal multiplicity. The function g = fh extends to be an entire function
and so we have f = g

h .

What about sets that aren’t C? Say U ⊂ C is an open set. Firstly, can you find a
holomorphic function on U with prescribed zeroes? The answer is yes. Secondly, can you
get a Weierstrass factorization theorem? The answer is not exactly. Thirdly, isM(U) the
field of fractions of H(U)? The answer is yes provided U is connected (this follows once
we had an affirmative answer to the first question).

How do we get the affirmative answer to the first question? It is easiest to explain
when (ζm) is bounded. If it is, then we can find a sequence of points (µm) ⊂ C\U such
that |ζm − µm| → 0 as m→∞. Then we use

∞∏
m=1

Em

(
ζm − µm
z − µm

)
.

29 The Weierstrass Factorization Theorem III (04/03)

Lemma 29.1. Let U ⊂ C be an open set and (ζm) be a sequence in U with no limit points
in U and finite multiplicities. Assume that (ζm) is bounded. Then disc(ζm,C\U)→ 0.

Proof. We know that if we define

Kn = {z ∈ U |d(0, z) ≤ n, disc(z,C\U) ≥ 1

n
}.

Then (Kn) is a compact exhaustion of U . Note that since (ζm) is bounded, we have
d(0, ζm) ≤ n for all m and all sufficiently large n. Choose N such that this holds if n ≥ N .
If n ≥ N , then

ζm ∈ Kn ⇔ disc(ζm,C\U) ≥ 1

n
.

The set {m : ζm ∈ Kn} is finite and so the number of m such that disc(ζm,C\U) ≥ 1
n is

finite for all n. This implies that disc(ζm,C\U)→ 0.

This allows us to show that given a bounded sequence (ζm) with finite multiplicities
in an open set U , we can find f ∈ H(U) whose zeroes are precisely the ζm with multi-
plicities. By the lemma, we can find ζm ∈ C\U such that |ζm − µm| → 0. The product∏∞
m=1Em

(
ζm−µm
z−µm

)
will work. Suppose K ⊂ U is a compact set. Then disc(K,C\U) > 0

and so there is η > 0 such that |µm − z| ≥ η for all m ≥ 1 and all z ∈ K. Thus∣∣∣∣ζm − µmz − µm

∣∣∣∣ ≤ 1

η
|µm − ζm|
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for all z ∈ K and all m ≥ 1. Thus
(
ζm−µm
z−µm

)
converges to 0 uniformly on K. It follows

from the inequality
|1− Em(w)| ≤ |w|m+1

for all w ∈ D that the product is uniformly convergent onK. Note that
∏∞
m=1Em

(
ζm−µm
z−µm

)
has a simple zero at z = ζm, no other zeroes, and is holomorphic on U . This expression
solves our problem.

The general case of the result has one more reduction. Let U ⊂ C be open, (ζm) a
finite multiplicity sequence in U that has no limit points in U . Choose p ∈ U , p 6= ζm for
any m. Since p is not a limit point of the sequence, |ζm−p| ≥ η for some positive η and all

m. Thus the sequence
(

1
ζm−p

)
is bounded. We find µm ∈ C\Ũ where Ũ = { 1

z−p : z ∈ U}

such that
∣∣∣ 1
ζm−p − µm

∣∣∣→ 0 and we use the product

∞∏
m=1

Em

(
µm − 1

µ−p

µm − 1
z−p

)
.

You have to check that the singularity at p is removable.

Theorem 29.2. Let U ⊂ C be an open set and (ζm) a sequence with finite multiplicity
and no limit points in U . Then there exists f ∈ H(U) whose zeroes are precisely the ζm
counted with multiplicity.

One application: Let U ⊂ C be a simply connected open set and let f ∈ H(U) such
that all the zeroes of f are of even order. Then there exists g ∈ H(U) such that f = g2.
Note that the statement implies that f 6≡ 0. Let (ζm) be the sequence (finite or infinite)
of zeroes of f listed without multiplicity and let Nm be the order of ζm as a zero of f .
Note the assumption implies that 2|Nm for all m. By the theorem, we may find h ∈ H(U)
such that the zeroes of h are also at ζm but the order of the zero at ζm is 1

2Nm. Define

ψ = f
h2

. This extends to be holomorphic on U and non-vanishing. Since ψ ∈ H(U) is
non-vanishing, there exists ϕ ∈ H(U) such that ψ = ϕ2 because U is simply connected.
Thus ϕ2 = f

h2
. So f = (ϕh)2 = g2 with g = ϕh ∈ H(U).

Next time I want to apply Mittag-Leffler and this theorem to establish holomorphic
interpolation. The basic version is the following.

Theorem 29.3 (Holomorphic Interpolation, Basic Version). Suppose U ⊂ C is open, (ζm)
is a sequence without repetition in U with no limit points, (cm) is a sequence of complex
numbers. Then there exists f ∈ H(U) such that f(ζm) = cm.

30 The Weierstrass Factorization Theorem IV (04/06)

Definition 30.1. An open set U ⊂ C is called a domain of holomorphy if it is connected
and for all connected open sets V ⊃ U, V 6= U , there is some f ∈ H(U) such that f is not
the restriction to U of any element of H(V ).
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Lemma 30.2. Let U ⊂ C be an open set. Then we may find a set S ⊂ U such that S has
no limit points in U but every point of ∂U is a limit point of S.

Proof. For all m ≥ 1, the set ∂U ∩ D(0,m) is compact. Thus there is a countable set
An ⊂ ∂U ∩ D(0,m) that is dense in ∂U ∩ D(0,m). Let A = ∪∞m=1Am. Then A is
countable and dense in ∂U . For each a ∈ A, we may choose a sequence (zn(a)) in U such
that zn(a) → a. Note that we may assume that the map (a, n) 7→ zn(a) is one-to-one,
because there are always uncountably many choices for zn(a).

Choose a compact exhaustion (Km) of U . Enumerate the elements of A as (al). Define
S to contain all the elements of the sequence (zn(a1)), all the elements of the sequence
(zn(a2)) that do not lie in K1, all the elements of the sequence (zn(a3)) that do not lie in
K2, and so on, i.e.,

S = {zn(al)|zn(al) 6∈ Kl−1 for l ≥ 2}.
Note that only a finite number of the terms in the sequence (zn(al)) lie in any particular
Km. It follows that S ∩Km is finite for every m. It follows that S has no limit points in
U . It also follows that S contains the tail of each sequence (zn(al)). Thus al ∈ cl(S) for
all l. Thus ∂U ⊂ cl(S) since {al|l ≥ 1} is dense in ∂U . It follows from S ∩ ∂U = ∅ that
every point of ∂U is a limit point of S.

Theorem 30.3. Every non-empty connected open subset of C is a domain of holomorphy.

Proof. Let U be a connected open subset of C. If U = C, then the definition is vacuously
satisfied. Otherwise, ∂U 6= ∅. Let S ⊂ U be a set as in Lemma 30.2. We may find
f ∈ H(U) such that f has a simple zero at every element of S, but no other zeroes.
Let V ) U be a connected open set. Suppose that g ∈ H(V ) and g|U = f . Since V is
connected, V must contain at least one boundary point of U , say p. Then g is zero at
every element of S and so the zero set of g has a limit point (p) in V . By the Identity
Principle, g ≡ 0. Thus f ≡ 0, contrary to our construction.

31 The Weierstrass Factorization Theorem V (04/08)

Let U ⊂ C be an open set. Let S ⊂ U be a set with no limit points in U . Suppose that we
are given a polynomial Ps(z) ∈ C[z− s]\{0} for each s ∈ S. We aim to show that there is
f ∈ H(U) such that the power series expansion of f centered at s ∈ S is

Ps(z) + higher order terms.

This is a very strong type of interpolation, since it is equivalent to specifying the value of
f and a finite number of derivatives at each point of S.

Let ns = deg(Ps) for each s ∈ S. We know already that we can choose a g ∈ H(U)
such that g has a zero of order exactly ns + 1 at each point of S and no other zeroes. For
each s ∈ S, we have a power series

g(z) = ks(z − s)ns+1 + higher order terms
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where ks 6= 0 for all s ∈ S. This means that

Ps(z)

g(z)
= Rs(z) + a power series

where
Rs(z) =

as,ns+1

(z − s)ns+1
+

as,ns
(z − s)ns

+ · · ·+ as,1
z − s

, as,j ∈ C.

We know from Runge’s Theorem that there is h ∈ M(U) such that h has poles only at
the points in S and the principal part of h at s ∈ S is Rs(z). Now define f = gh. Initially,
f ∈ M(U). However, the only possible poles of f are at points of S. Actually, these are
removable singularities because the zero of g at s ∈ S has order exactly ns + 1, whereas
the pole of h has order at most ns + 1. Thus f extends to an element of H(U). Fix s ∈ S.
Then we have

f(z) =g(z) (Rs(z) + power series ) (on a delected disk D′(s, r) for some r > 0)

=g(z)Rs(z) + g(z) · (power series)

=Ps(z) + terms higher than (z − s)ns + terms higher than (z − s)ns .

Thus f works to solve the problem. This completes the proof of the “Holomorphic Inter-
polation Theorem”.
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32 Maximum Modulus Principle Revisited I (04/10)

We begin this chapter with a problem from comprehensive exam.
Comprehensive Exam, August 2009, Problem 5: Let

S = {z ∈ C|0 < Re(z) < 1, Im(z) > 0}.

Let f ∈ H(S)∩C(S). Suppose that |f(z)| ≤ 1 for all z in the boundary of S. Also suppose
that |f(z)| ≤ |z| for all z ∈ S. Show that |f(z)| ≤ 1 for all z ∈ S.

We use Phragmèn-Lindelöf’s idea to solve this problem.
The first ingredient is the following lemma.

Lemma 32.1. Let U ⊂ C be open. Let f ∈ H(U) ∩ C(U). Suppose that |f(z)| ≤ M for
all z ∈ ∂U and limz→∞ |f(z)| = 0. Then |f(z)| ≤M for all z ∈ U .

Proof. Let ε > 0 and w ∈ U . Choose R > 0 such that |w| < R and if |z| ≥ R, then
|f(z)| ≤ M + ε. Consider V = U ∩ D(0, R). Then V is a bounded open set, and
∂V ⊂ ∂U ∪ ∂D(0, R). It follows that |f(z)| ≤ M + ε for z ∈ ∂V . Thus |f(w)| ≤ M + ε.
Since ε > 0 was arbitrary, |f(w)| ≤M , since w ∈ U was arbitrary, we are done.

The second ingredient in Phragmèn-Lindelöf results is a family of auxiliary functions
that you have to discover. Back to the problem, the hint says to consider

gε(z) = f(z)eiεz,

then let ε→ 0+. Note
eiε(x+iy) = eiεx · e−εy

and so
|eiε(x+iy)| = e−εy.

Thus |eiεz| ≤ 1 for all ε > 0 and all z ∈ S. Also, for z large, |eiεz| → 0 rather quickly. In
fact,

|gε(z)| ≤ |z| · e−εy

≤ (1 + y)e−εy

→ 0 as |z| <∞ in S2.

Note the first ingredient implies

|gε(z)| ≤ 1, ∀z ∈ S.

Let ε→ 0+ to conclude
|f(z)| ≤ 1, ∀z ∈ S.

So we have solved the problem.
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Let σ > 0 and define
Sσ = {x+ iy| − σ < x < σ}.

The aim is to find out what the hypothesis for a Phragmèn-Lindelöf Theorem on Sσ should
be. We look for a function that is bounded on ∂Sσ and grows quickly as z → ∞ inside
the strip.

Define g ∈ H(Sσ) ∩ C(Sσ) by

g(z) = cos(
π

2σ
z).

Then

g(x+ iy) = cos(
πx

2σ
+ i

πy

2σ
)

= cos(
πx

2σ
) · cos(i

πy

2σ
)− sin(

πx

2σ
) · sin(i

πy

2σ
)

= cos(
πx

2σ
) · cosh(

πy

2σ
)− i sin(

πx

2σ
) · sinh(

πy

2σ
)

and so
Re(g(x+ iy)) = cos(

πx

2σ
) · cosh(

πy

2σ
).

Let
h(z) = exp(g(z)) = exp(cos(

π

2σ
z)).

Then
|h(z)| = | exp(g(z))| = exp(Re(g(x+ iy)))

and so
|h(x+ iy)| = exp(cos(

πx

2σ
) · cosh(

πy

2σ
)).

It follows that |h(z)| ≤ 1 for z ∈ ∂Sσ, but |h(z)| → ∞ fairly quickly as |y| → ∞ for any
z = x+ iy ∈ Sσ.

Theorem 32.2 (Phragmèn-Lindelöf Theorem). Let σ > 0 and

Sσ = {x+ iy| − σ < x < σ}.

Let f ∈ H(Sσ) ∩ C(Sσ) and suppose that |f(z)| ≤ M for all z ∈ ∂Sσ. Suppose that there
are constants c,K > 0 and α ∈ (0, π2σ ) such that

|f(z)| ≤ K exp(ceα|z|)

for all z ∈ Sσ. Then |f(z)| ≤M for all z ∈ Sσ.

66



Proof. Choose β ∈ (α, π2σ ). Let ε > 0 and consider

hε(z) = exp(−ε cos(βz)).

Then

|hε(z)| = exp(−εRe(βz)) = exp(−ε cos(βx) cosh(βy)) (where z = x+ iy).

So
|hε(z)| ≤ exp(−ε cos(βσ) cosh(βy)) (where z = x+ iy)

for all z = x+ iy ∈ Sσ. It follows that |hε(z)| ≤ 1 for all z ∈ Sσ. Thus

|(fhε)(z)| ≤M, ∀z ∈ ∂Sσ.

Moreover,

|(fhε)(z)| ≤K exp(ceα|z|) exp(−ε cos(βσ) cosh(βy))

= exp

(
ln(K) + ceα|z| − ε cos(βσ)

2
· (eβy + e−βy)

)
≤ exp

(
ln(K) + ceασe|y| − ε cos(βσ)

2
· (eβy + e−βy)

)
(because |z| ≤ |y|+ σ on Sσ.)

(32.1)

for all z ∈ Sσ. As y → ∞, the exponent in 32.1 is going to −∞ because β > α and so
eβy + e−βy eventually dominates eα|y|. Thus

lim
z→∞

(fhε)(z) = 0.

From Lemma 32.1 we conclude that

|(fhε)(z)| ≤M

for all z ∈ Sσ. However,
lim
ε→0+

hε(z) = 1

for all z. Thus,
|f(z)| = lim

ε→0+
|(fhε)(z)| ≤M

for all z ∈ Sσ.

Remark 32.3. You will often see this Phragmèn-Lindelöf Theorem stated with the esti-
mate

|f(z)| ≤ K exp(c|z|A)

for some c,K,A > 0. Actually, this is weaker.

Remark 32.4. An entire function f is “of exponential type” if

|f(z)| ≤ K exp(τ |z|)

for some K, τ > 0.
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33 Maximum Modulus Principle Revisited II (04/13)

Here is another proof of the corollary to the Maximum Modulus Principle (Lemma 32.1),
using “Landau trick”.

Theorem 33.1. Let U ⊂ C be a bounded open set and f : U → C a holomorphic function.
Suppose that there is a constant M > 0 such that

lim supz→ζ,z∈U |f(z)| ≤M

for all ζ ∈ ∂U . Then |f(w)| ≤M for all w ∈ U .

Proof. Let ε > 0. We may cover the boundary of U by open disks such that |f(w)| ≤M+ε
for w in any of the intersections of these disks with U . Since ∂U is compact (U is bounded),
I may choose a finite subcover from these disks. Let w ∈ U and choose a compact subset
K of U such that w ∈ K and the complement of K in U is contained in the union of the
disks. Choose a cycle Γ such that Γ∗ ⊂ U\K, Ind(Γ, z) = 0 for all z 6∈ U , and Ind(Γ, p) = 1
for all p ∈ K. Choose m ≥ 1. Apply the Homology Version of Cauchy’s Integral Formula
to fm and Γ. We get

fm(w) =
1

2πi

∫
Γ

fm(ζ)

ζ − w
dζ

since fm ∈ H(U). Now I will estimate using the ML-inequality. Let δ = disc(w,Γ∗). I get

|fm(w)| ≤ 1

2π

(M + ε)m

δ
· L(Γ)

for all m ≥ 1. Thus by taking m-th roots,

|f(w)| ≤ M + ε

(2πδ)1/m
· (L(Γ))1/m.

Now take the limit as m→∞, we get

|f(w)| ≤ M + ε

1
· 1 = M + ε.

Now ε > 0 was arbitrary and so |f(w)| ≤M .

Next, we combine Landau’s trick with the Phragmèn-Lindelöf Method.

Theorem 33.2. Let U ⊂ C be an open set with U 6= C. Let f ∈ H(U) and assume that
f is bounded. Suppose that there is a constant M > 0 such that

lim supz→ζ,z∈U |f(z)| ≤M

for all ζ ∈ ∂U . Then |f(w)| ≤M for all w ∈ U .
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Proof. Let ε > 0. Note that ∂U 6= ∅. Choose p ∈ ∂U . I may find a disk centered at p such
that if z ∈ disk ∩ U then |f(z)| ≤ M + ε. This means that I may find q ∈ U and r > 0
such that |f(z)| ≤Mε for all z ∈ D(q, r). Let m ≥ 1 and consider the function

gm(w) =
r

w − q
fm(w).

Let V = U\D(q, r). Then ∂V ⊂ ∂U ∪ ∂D(q, r). On ∂U , I have the estimate

lim supz→ζ,z∈U |gm(z)| ≤ r

disc(q, ∂U)
· (M + ε)m.

On ∂D(q, r), I have the estimate

|gm(z)| ≤ (M + ε)m.

Moreover,
lim

w→∞,w∈V
|gm(w)| = 0.

It follows from Lemma 32.1 that

|gm(w)| ≤ K(M + ε)m

where
K = max {1, r

disc(q, ∂U)
}

for all w ∈ V . It follows that∣∣∣∣ r

w − q

∣∣∣∣1/m · |f(w)| ≤ K1/m(M + ε)

for all w ∈ V . Let m→∞ to conclude that

|f(w)| ≤M + ε,∀w ∈ V.

We also have |f(w)| ≤ M + ε for all w ∈ D(q, r). Thus |f(w)| ≤ M + ε,∀w ∈ U . Now
ε > 0 was arbitrary and so |f(w)| ≤M,∀w ∈ U .

Remark 33.3. We considered gm(w) = r
w−qf

m(w). Here fm(w) is the setting up for
Laudau trick, and r

w−q is an auxiliary function for Phragmèn-Lindelöf Method.
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34 The Gamma Function I (04/15)

Definition 34.1. We define the Gamma function Γ : πR → C by

Γ(z) =

∫ ∞
0

tz−1e−t dt.

To see that this makes sense, first think about tz−1. We define

tw = ew ln(t)

for t > 0 and w ∈ C. Note that w 7→ tw is entire. We have

tw1+w2 = e(w1+w2) ln(t) = ew1 ln(t) · ew2 ln(t) = tw1 · tw2 .

Also,
|tw| = |ew ln(t)| = eRe(w ln(t)) = eRe(w)·ln(t) = tRe(w).

Next, the integral∫ ∞
0

tz−1e−t dt =

∫ ∞
0

Re(tz−1)e−t dt+ i

∫ ∞
0

Im(tz−1)e−t dt

is the sum of two ordinary improper Riemann integral. What about convergence? The
function tz−1e−t is uniformly integrable on (0,∞) and the uniform integrability is uniform
in z provided that you have ε > 0, M > ε such that ε ≤ Re(z) ≤ M. What this means is
that given η > 0 there are r > 0 and R > 0 such that if ε ≤ Re(z) ≤M then

(34.1)

∣∣∣∣∫ r2

r1

tz−1e−t dt

∣∣∣∣ < η,

(34.2)

∣∣∣∣∫ R2

R1

tz−1e−t dt

∣∣∣∣ < η,

for all 0 < r1 < r2 < r and R < R1 < R2.
For 34.1, ∣∣∣∣∫ r2

r1

tz−1e−t dt

∣∣∣∣ ≤ ∫ r2

r1

tRe(z)−1e−t dt

≤
∫ r2

r1

tRe(z)−1 dt

≤ tRe(z)

Re(z)

∣∣∣∣r2
r1

=
r

Re(z)
2

Re(z)
− r

Re(z)
1

Re(z)

<
rRe(z)

Re(z)
.
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We can choose r < 1. Then∣∣∣∣∫ r2

r1

tz−1e−t dt

∣∣∣∣ ≤ rε

ε
→ 0 as r → 0+

because ε > 0. A note about 34.2:

tz−1e−t = (tz−1e−t/2) · e−t/2

where tz−1e−t/2 is bounded for t ≥ 1.
In particular, the integral defining Γ(z) always converges for z ∈ πR. Also, Γ is a

holomorphic function.
Recall that the basic method for showing that a function defined by an integral is

holomorphic is to use Morera’s Theorem. This means verifying that Γ(z) is continuous
as a function of z and

∫
∆ Γ(w) dw = 0 for all triangle ∆ such that the boundary of the

triangle as well as its interior is a subset of the right half plane πR. For continuity, it
suffices to show that we have the continuity on ε ≤ Re(z) ≤ M for all ε > 0,M > ε.
Suppose z1, z2 lie in this set. Then

Γ(z1)− Γ(z2) =

∫ ∞
0

(tz1−1 − tz2−1)e−t dt

=

(∫ r

0
+

∫ R

r
+

∫ ∞
R

)
(tz1−1 − tz2−1)e−t dt

= something uniformly small +

∫ R

r
(tz1−1 − tz2−1)e−t dt+ something uniformly small.

Uniform continuity implies that the middle integral can be made small by making z1 close
to z2. This gives continuity of Γ.

For the other part of Morera’s Theorem, we want to say∫
∆

Γ(w) dw =

∫
∆

(∫ ∞
0

tw−1e−t dt

)
dw

=

∫ ∞
0

(∫
∆
tw−1e−t dw

)
dt

=

∫ ∞
0

0dt

(since w 7→ tw−1 is holomorphic,

∫
∆
tw−1e−t dw = 0)

= 0.

The interchange (of
∫∞

0 and
∫

∆) can be justified for
∫ R
r tw−1e−t dt by Fubini from Ad-

vanced Calculus. |
∫

∆

∫ r
0 t

w−1e−t dtdw| and |
∫

∆

∫∞
R tw−1e−tdtdw| are less than any positive

number by a suitable choice of r and R.
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In fact, Γ extends to be an element of M(C). Start with a z ∈ πR. Then

Γ(z) =

∫ ∞
0

tz−1e−t dt

=

∫ 1

0
tz−1e−t dt+

∫ ∞
1

tz−1e−t dt

=

∫ 1

0
tz−1

( ∞∑
m=0

(−1)m

m!
tm

)
dt+ F (z)

=
∞∑
m=0

(−1)m

m!

∫ 1

0
tz+m−1 dt+ F (z)

=

∞∑
m=0

(−1)m

m!
· 1

z +m
+ F (z)

= F (z) +
∞∑
m=0

(−1)m

m!(z +m)

Now F (z) =
∫∞

1 tz−1e−t dt is an entire function of z. This is because it is uniformly inte-

grable at ∞ for all z. Then the same arguments apply. The other term
∑∞

m=0
(−1)m

m!(z+m) is

uniformly convergent on compact subsets of C\{m ∈ Z|m ≤ 0}. In fact,
∑∞

m=0,m6=k
(−1)m

m!(z+m)

is uniformly convergent on compact subsets of C\{m ∈ Z|m ≤ 0,m 6= k}. This implies
that Γ ∈M(C) with simple poles at 0,−1,−2,−3, · · · with known residues.

35 The Gamma Function II (04/17)

The Gamma function is defined as

Γ(z) =

∫ ∞
0

tz−1e−t dt

for Re(z) > 0. Γ extends to a meromorphic function on C with simple poles at 0,−1,−2, · · ·
and no other singularities.

I want to evaluate

In(z) =

∫ 1

0
tz−1(1− t)n dt
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where n ∈ {0, 1, 2, · · · }. Note that

I0(z) =

∫ 1

0
tz−1 dt =

1

z
,

I1(z) =

∫ 1

0
tz−1(1− t) dt =

1

z
− 1

z + 1
=

1

z(z + 1)
,

In(z) =

∫ 1

0
tz−1(1− t)n dt

=

∫ 1

0
tz−1(1− t)n−1(1− t) dt

=

∫ 1

0
tz−1(1− t)n−1 dt−

∫ 1

0
tz(1− t)n−1 dt

= In−1(z)− In−1(z + 1).

We get In(z) = In−1(z)− In−1(z + 1) for all n ≥ 1.

I2(z) = I1(z)− I1(z + 1) =
1

z(z + 1)
− 1

(z + 1)(z + 2)
=

2

z(z + 1)(z + 2)
.

In special functions, we denote

(z)n = z(z + 1)(z + 2) · · · (z + n− 1).

Guess

In(z) =
n!

(z)n+1

and then verify it by induction.
Now go back to ∫ 1

0
tz−1(1− t)n dt =

n!

(z)n+1
.

I want to change variable, replacing t by t
n , I get∫ 1

0

(
t

n

)z−1

·
(

1− t

n

)n
· 1

n
dt =

n!

(z)n+1

⇒ 1

nz

∫ 1

0
tz−1

(
1− t

n

)n
dt =

n!

(z)n+1

⇒
∫ 1

0
tz−1

(
1− t

n

)n
dt =

nzn!

(z)n+1
.

Naively, we try n→∞, we get∫ 1

0
tz−1e−t dt = lim

n→∞

nzn!

(z)n+1
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because limn→∞(1− t
n)n = e−t. Note that

lim
n→∞

nzn!

(z)n+1
= lim

n→∞

nz−1n!

(z)n
· z

z + n
= lim

n→∞

nz−1n!

(z)n
.

Can we justify

lim
n→∞

∫ n

0
tz−1(1− t

n
)n dt =

∫ ∞
0

tz−1e−t dt ?

Yes. How? We could use real analysis. We still need some information about how
(1− t

n)n → e−t.

36 The Gamma Function III (04/20)

Last time we arrived at

lim
n→∞

∫ n

0
tz−1(1− t

n
)n dt.

Here Re(z) > 0.

Lemma 36.1. Fix t ≥ 0 and consider the function g : (t,∞)→ R by

g(x) = (1− t

x
)x.

Then g is an increasing function of x.

Proof. Let h(x) = ln(g(x)) = x ln(1− t
x). It suffices to show that h is increasing. Well,

h′(x) = ln(1− t

x
) + x · 1

1− t
x

· t
x2

= ln(1− t

x
) +

t/x

1− t/x

= −
∞∑
m=1

1

m
(
t

x
)m +

∞∑
m=1

(
t

x
)m

=
∞∑
m=1

(1− 1

m
)(
t

m
)m

≥ 0.

Corollary 36.2. Fix N > 0, N ∈ N. Then the sequence
(
(1− t

n)n
)
n≥N converges uni-

formly to e−t on [0, N ]. Moreover, (1− t
n)n ≤ e−t for all n ≥ t.
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Proof. We know that (1− t
n)n → e−t pointwise for all t ≥ 0. Moreover, Lemma 36.1 shows

that (1− t
n)n is an increasing sequence once n > t. It follows that

(1− t

n
)n ≤ e−t

for n > t. Fix N as in the statement. The conclusion follows from Dini’s Theorem.
Here is the statement of Dini’s Theorem. Let X be a compact metric space, (gn)

a sequence of continuous real-valued functions on X such that (gn(x)) is an increasing
sequence for each x ∈ X. Also suppose that g is a continuous real-valued function on X
and g(x) = limn→∞ gn(x) for all x ∈ X. Then gn → g uniformly.

Now we want to show

lim
n→∞

∫ n

0
tz−1(1− t

n
)n dt =

∫ ∞
0

tz−1e−t dt, Re(z) > 0.

Let ε > 0. Choose N > 0, N ∈ N such that∫ ∞
N

tRe(z)−1e−t dt <
ε

3
.

Let n ≥ N . ∣∣∣∣∫ n

N
tz−1(1− t

n
)n dt

∣∣∣∣ ≤ ∫ ∞
N

tRe(z)−1e−t dt <
ε

3
.

Now, for n ≥ N ,∣∣∣∣∫ n

0
tz−1(1− t

n
)ndt−

∫ ∞
0

tz−1e−t dt

∣∣∣∣ ≤ ∣∣∣∣∫ N

o
tz−1

[
(1− t

n
)n − e−t

]
dt

∣∣∣∣
+

∫ n

N
tRe(z)−1(1− t

n
)ndt+

∫ ∞
N

tRe(z)−1e−tdt

≤
∣∣∣∣∫ N

0
tz−1

[
(1− t

n
)n − e−t

]
dt

∣∣∣∣+
2ε

3
.

The fact that (1− t
n)n → e−t uniformly on [0, N ] now shows that the first term is < ε

3 for
sufficiently large n. The required limit follows.

Why did we care?
We showed by induction and change of variable that∫ n

0
tz−1(1− t

n
)n dt =

nz · n!

(z)n+1
=

nz · n!

z(z + 1)(z + 2) · · · (z + n)
.

Also,

Γ(z) =

∫ ∞
0

tz−1e−t dt
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by induction for Re(z) > 0. We conclude that

Γ(z) = lim
n→∞

nz · n!

z(z + 1) · · · (z + n)

for all Re(z) > 0. Now we mess around.

nz · n!

z(z + 1) · · · (z + n)
=

nz

z( z+1
1 ·

z+2
2 · · ·

z+n
n )

=
nz

z(1 + z)(1 + z
2) · · · (1 + z

n)

=
nze−z−z/2−···−z/n

z(1 + z)e−z(1 + z
2)e−z/2 · · · (1 + z

n)e−z/n

=
ez(ln(n)−1−1/2−···−1/n)

z
∏n
j=1(1 + z

j )e−z/j
.

Thus we get for Re(z) > 0,

Γ(z) = lim
n→∞

ez[ln(z)−Hn]

z
∏n
j=1(1 + z

j )e−z/j

=
e−γz

z
∏∞
j=1(1 + z

j )e−z/j

where

γ = lim
n→∞

(Hn − ln(n)) = lim
n→∞

(1 +
1

2
+ · · ·+ 1

n
− ln(n)).

A better formula is
1

Γ(z)
= zeγz

∞∏
j=1

(1 +
z

j
)e−z/j .

The right hand side defines an entire function. Thus 1
Γ ∈ H(C. It follows that Γ never

takes the value 0.

37 The Gamma Function IV (04/22)

Last time we arrived that

1

Γ(z)
= zeγz

∞∏
m=1

(1 +
z

m
)e−z/m
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valid for all z ∈ C with simple poles 0,−1,−2, · · · . So

1

Γ(z)Γ(−z)
= zeγz

∞∏
m=1

(
1 +

z

m

)−z/m
· (−z)e−γz

∞∏
m=1

(
1− z

m

)z/m
(both products are absolutely convergent, uniformly on compact sets)

= −z2
∞∏
m=1

(
1− z2

m2

)

= − z
π
· πz

∞∏
m=1

(
1− z2

m2

)
= − z

π
sin(πz).

(from an earlier product evaluation)

So
1

Γ(z)Γ(−z)
= −z sin(πz)

π

for all z 6= 0.
1

Γ(z)(−z)Γ(−z)
=

sin(πz)

π

for all z 6= 0. So

Γ(z)Γ(1− z) =
sin(πz)

π

for all z ∈ C\Z (recall wΓ(w) = Γ(w + 1)). This is called the Reflection Formula for the
Gamma Function.

Taking z = 1
2 in this formula we get(

Γ(
1

2
)

)2

=
π

sin(π2 )
= π.

From the integral definition we know that Γ(x) > 0 for all x > 0. Thus Γ(1
2) =

√
π.

Note that this allows us to evaluate Γ(z) whenever z is half an integer because wΓ(w) =
Γ(w + 1). For example,

Γ

(
3

2

)
=

1

2
Γ(

1

2
) =

√
π

2
.

Also, Γ(1) =
∫∞

0 e−t dt = 1. This allows us to evaluate Γ(z) for all integral z.
Another perspective on Γ(1

2) =
√
π is that we also know that

Γ(z) = lim
n→∞

nz · n!

(z)n+1
= lim

n→∞

nz−1n!

(z)n
.
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Thus

Γ

(
1

2

)
= lim

n→∞

n−
1
2 · n!

(1
2)n

.

Note (
1

2

)
n

=

(
1

2

)
·
(

3

2

)
·
(

5

2

)
· · ·
(

1

2
+ n− 1

)
=

(
1

2

)
·
(

3

2

)
·
(

5

2

)
· · ·
(

2n− 1

2

)
=

1 · 3 · 5 · · · (2n− 1)

2n

=
1

2n
· 1 · 2 · 3 · · · (2n− 1) · 2n

2 · 4 · 6 · · · (2n)

=
1

2n
· (2n)!

2n · 1 · 2 · 3 · · ·n

=
(2n)!

22n · n!
.

So

Γ

(
1

2

)
= lim

n→∞

22n · n−1/2 · (n!)2

(2n)!

= lim
n→∞

22n

n1/2 ·
(

2n
n

)
=
√
π.

Recall
2n∑
j=0

(
2n

j

)
= 22n.

In addition,

√
π = lim

n→∞

n−1/2 · 2n · n!

1 · 3 · 5 · · · (2n− 1)

= lim
n→∞

(
1√
n
· 2 · 4 · 6 · · · (2n)

1 · 3 · 5 · · · (2n− 1)

)
.

(This is basically the square root of Wallis’ formula.)

Back to
1

Γ(z)
= zeγz

∞∏
m=1

(1 +
z

m
)e−z/m.
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We can take the logarithmic derivative to get

−Γ′(z)

Γ(z)
=

1

z
+ γ +

∞∑
m=1

(
1
m

1 + z
m

− 1

m

)

=
1

z
+ γ +

∞∑
m=1

(
1

z +m
− 1

m

)
for all z ∈ C\{0,−1,−2, · · · }. We can set z = 1 in this formula to get

−Γ′(1)

Γ(1)
=

1

1
+ γ +

∞∑
m=1

(
1

1 +m
− 1

m

)
= 1 + γ − 1 (telescoping series)

= γ.

We know that Γ(1) = 1. We get
Γ′(1) = −γ.

We also get

− d

dt

(
Γ′(z)

Γ(z)

)
= − 1

z2
+
∞∑
m=1

−1

(z +m)2
.

So
d

dt

(
Γ′(z)

Γ(z)

)
=

1

z2
+
∞∑
m=1

1

(z +m)2
.

For positive real x, we get

d

dx

(
d

dx
ln(Γ(x))

)
=

∞∑
m=0

1

(x+ n)2
> 0.

This tells us that ln(Γ) is convex on (0,∞) (concave up).

d2

dx2
(ln(f)) =

d

dx

(
f ′

f

)
=
ff ′′ − (f ′)2

f2

=
f ′′

f
−
(
f ′

f

)2

.

If ln(f) is concave up, then

f ′′

f
−
(
f ′

f

)2

≥ 0

and so f ′′ ≥ 0.
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38 The Gamma Function V (04/24)

Γ(z) =

∫ ∞
0

tz−1e−t dt

is called the Eulerian integral of the 2nd kind. The Eulerian integral of the 1st kind is∫ 1

0
tz−1(1− t)w−1 dt.

It converges provided that Re(z) > 0,Re(w) > 0. Euler wrote

B(z, w) =

∫ 1

0
tz−1(1− t)w−1 dt

and B(·, ·) is called the Beta function.
Assume that Re(z),Re(w) are large (≥ 3 would be fine). One recurrence relation for

B is

B(z, w) =

∫ 1

0
tz−1(1− t)w−1 dt

=

∫ 1

0
tz−1(1− t)w−2(1− t) dt

=

∫ 1

0
tz−1(1− t)w−2 dt−

∫ 1

0
tz(1− t)w−2 dt

= B(z, w − 1)−B(z + 1, w − 1).

Another is

B(z, w) =

∫ 1

0
tz−1(1− t)w−1 dt

=

∫ 1

0
d

(
1

z
tz
)
· (1− t)w−1

=
1

z
tz · (1− t)w−1

∣∣∣∣1
0

−
∫ 1

0

1

z
tz · (w − 1)(1− t)w−2(−1)dt

=
w − 1

z

∫ 1

0
tz(1− t)w−2 dt

=
w − 1

z
B(z + 1, w − 1).

Thus,

B(z, w) = B(z, w − 1)−B(z + 1, w − 1)

= B(z, w − 1)− z

w − 1
B(z, w)
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and so
(1 +

z

w − 1
)B(z, w) = B(z, w − 1),

z + w − 1

w − 1
B(z, w) = B(z, w − 1).

We can write this as

B(z, w) =
z + w

w
B(z, w + 1).

We can iterate this formula to get

B(z, w) =
z + w

w
B(z, w + 1)

=
z + w

w
· z + w + 1

w + 1
B(z, w + 2)

=
z + w

w
· z + w + 1

w + 1
· z + w + 2

w + 2
B(z, w + 3)

= · · ·

=
(z + w)n

(w)n
B(z, w + n) for n ≥ 1.

More explicitly,

B(z, w) =
(z + w)n

(w)n

∫ 1

0
tz−1(1− t)n(1− t)w−1 dt

=
(z + w)n

(w)n

∫ n

0

(
t

n

)z−1(
1− t

n

)n(
1− t

n

)w−1 dt

n

=
(z + w)n

(w)n
· 1

nz

∫ n

0
tz−1

(
1− t

n

)n(
1− t

n

)w−1

dt

=
(z + w)n
nz+w−1 · n!

· n
w−1n!

(w)n

∫ n

0
tz−1

(
1− t

n

)n(
1− t

n

)w−1

dt

(Note

(
1− t

n

)w−1

→ 1 uniformly on [0, N ]).

We may take the limit as n→∞ in this expression to obtain

B(z, w) =
1

Γ(z + w)
· Γ(w)

∫ ∞
0

tz−1e−tdt

=
Γ(z)Γ(w)

Γ(z + w)
.

Theorem 38.1 (Euler-Beta function evaluation). For Re(z),Re(w) > 0, we have∫ 1

0
tz−1(1− t)w−1 dt =

Γ(z)Γ(w)

Γ(z + w)
.
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Proof. We verified this formula for Re(z),Re(w) ≥ 3. However, for fixed w where Re(w) >
0, the function z 7→

∫ 1
0 t

z−1(1−t)w−1dt is holomorphic in Re(z) > 0 (by theorems of Fubini
and Morera). We have

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
provided Re(w) ≥ 3,Re(z) ≥ 3

and so the Identity Principle extends the formula to Re(z) > 0, Re(w) ≥ 3. Repeat to
extend the range to Re(w) > 0 as well.

39 The Gamma Function VI (04/27)

Let z ∈ C and consider

(z)n(z +
1

2
)n = z · (z + 1) · · · (z + n− 1) · (z +

1

2
) · (z +

1

3
) · (z +

2n− 1

2
).

Then

22n(z)n(z +
1

2
)n = (2z) · (2z + 2) · · · (2z + 2n− 2) · (2z + 1) · (2z + 3) · · · (2z + 2n− 1)

= (2z)(2z + 1)(2z + 2) · · · (2z + 2n− 2)(2z + 2n− 1)

= (2z)2n.

That is,

(2z)2n = 22n · (z)n · (z +
1

2
)n.

Based on this, we consider

Γ(2z) = lim
m→∞

m2z−1 ·m!

(2z)m

= lim
n→∞

(2n)2z−1 · (2n)!

(2z)2n

= lim
n→∞

22z−1 · n2z−1 · (2n)!

22n · (z)n · (z + 1
2)n

= 22z−1 lim
n→∞

nz−1 · n!

(z)n
· n

z− 1
2 · n!

(z + 1
2)n
· n

1
2 · (2n)!

22n · (n!)2

= 22z−1 lim
n→∞

nz−1 · n!

(z)n
· n

z− 1
2 · n!

(z + 1
2)n
·
n

1
2 ·
(

2n
n

)
22n

= 22z−1Γ(z)Γ(z +
1

2
) · 1√

π
.
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(The evaluation of the last limit follows from our earlier discussion of Γ(1
2) =

√
π.) So we

end up with

Γ(2z) =
22π − 1√

π
Γ(z)Γ(z +

1

2
).

This is called (Legendre’s) Duplication Formula.

Remark 39.1. There is a similar formula for

Γ(z) · Γ(z +
1

l
) · Γ(z +

2

l
) · · ·Γ(z +

l − 1

l
)

for l ∈ N\{0}. It is called (Gauss’) Division Formula.

Consider C\(−∞, 0]. This set is open, simply connected, and it doesn’t consider 0.
This means there is a determination of logarithm of z on the set. We will fix

log(reiθ) = ln(r) + iθ where r > 0 and − π < θ < π.

Note that this log agrees with ln on (0,∞). We also know that Γ ∈ H(C\(−∞, 0]) and
Γ is non-vanishing. This means that Γ has a logarithm on C\(−∞, 0] also. Any such
logarithm might be written as log Γ provided we recall that it need not be the composition
of Γ with a determination of logarithm on Γ(C\(−∞, 0]). In particular, you should never
write log(Γ). We can pin log Γ by choosing a value at one point. Since Γ(1) = 1, we can
(and do) insist that (log Γ)(1) = 0. We know that the function x 7→ (log Γ)(x)− ln(Γ(x))
takes values in 2πiZ for all x ∈ (0,∞). The function is continuous, and takes the value 0
at 1. Thus it is constantly zero because (0,∞) is connected. Thus

(log Γ)(x) = ln(Γ(x)) for x > 0.

We know that
Γ(z + 1) = zΓ(z)

This means that (log Γ)(z + 1) is a logarithm of log(z) + (log Γ)(z). When x is real and
positive, we have

(log Γ)(x+ 1) = ln(Γ(x+ 1))

= ln(xΓ(x))

= ln(x) + ln(Γ(x))

= log(x) + (log Γ)(x)

and so we have
(log Γ)(z + 1) = log(z) + (log Γ)(z)

for z ∈ (0,∞). It follows from the Identity Principle that

(log Γ)(z + 1) = log(z) + (log Γ)(z)

for all z ∈ C\(−∞, 0].
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Lemma 39.2 (Raabe’s Formula). If z ∈ C\(−∞, 0], then∫ 1

0
(log Γ)(z + t)dt = z log(z)− z + C

for some fixed real constant C.

Proof. Let F : C\(−∞, 0]→ C be

F (z) =

∫ 1

0
(log Γ)(z + t)dt.

Then F is holomorphic (by Morera’s Theorem) and

F ′(z) =

∫ 1

0

∂

∂z
[(log Γ)(z + t)] dt

=

∫ 1

0

∂

∂t
[(log Γ)(z + t)] dt

= (log Γ)(z + 1)− (log Γ)(z)

= log z.

We also have
(z log(z)− z)′ = log(z).

Thus
F (z) = z log(z)− z + C

for some constant C. The constant is real because both sides are real when z ∈ (0,∞).

40 The Gamma Function VII (04/29)

Last time we proved that ∫ 1

0
(log Γ)(z + t)dt = z log(z)− z + C

for some real constant C and all z ∈ C\(−∞, 0].

Lemma 40.1. Let ϕ : [0, 1]→ C be C2. Then∣∣∣∣∫ 1

0
ϕ(t) dt− ϕ(

1

2
)

∣∣∣∣ ≤ 1

12
max
[0,1]
|ϕ′′|.
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Proof. It suffices to show that∣∣∣∣∫ 1

0
ϕ(t) dt− ϕ(

1

2
)

∣∣∣∣ ≤ 1

12
max
[0,1]
|ϕ′′|

when ϕ : [0, 1]→ R. To establish this, let

M = max
[0,1]
|ϕ′′|

and observe that by Taylor’s Formula, we have

ϕ(
1

2
) + ϕ′(

1

2
)(t− 1

2
)− M

2
(t− 1

2
)2 ≤ ϕ(t) ≤ ϕ(

1

2
) + ϕ′(

1

2
)(t− 1

2
) +

M

2
(t− 1

2
)2

Now integrate from 0 to 1 throughout the inequality.

To apply Lemma 40.1 to ϕ(t) = (log Γ)(z + t) to get the size of (log Γ)(z + 1
2), I need

to estimate (log Γ)′′. Specifically, I need to know a bound for (log Γ)′′(z) when |z| is large.
This can’t be done on C\(−∞, 0]. We can do this on

Sα = {reiθ|r > 0,−α < θ < α}

with 0 < α < π (see Figure 9). Recall that

(log Γ)′′(z) =
∞∑
m=0

1

(z +m)2
.

Let’s assume that m ≥ 1 and |z| ≥ 1. We claim that there are constants c1, c2 > 0
such that

|z +m| ≥ c1|z|, |z +m| ≥ c2|z|

for all z ∈ Sα. (The constants depends on α.) First, what if z ∈ πR? So |z + m| ≥ |z|,
|z +m| ≥ m for these z (see Figure 10). What if z ∈ πL? Assume α > π

2 , w is the closest
point to −m in Sα. Then (see Figure 11)

|w +m|
m

= sin(π − α),

|w +m|
|w|

= tan(π − α).

These are fixed non-zero ratios, which are c1, c2. For any other point, the inequalities are
better.

To estimate (log Γ)′′(z) =
∑∞

m=0
1

(z+m)2
for z ∈ Sα we break the sum

(log Γ)′′(z) =
k∑

m=0

1

(z +m)2
+

∞∑
m=k+1

1

(z +m)2
.
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-1-2-3-4-5

Figure 9: Sα

-m

z

m

|z|
|z+m|

-m

z

m

|z|
|z+m|

Figure 10: z ∈ πR

Thus ∣∣(log Γ)′′(z)
∣∣ ≤ 1

c2
1

k∑
m=0

1

|z|2
+

1

c2
2

∞∑
m=k+1

1

m2

≤ k + 1

c2
1

· 1

|z|2
+

1

c2
2

· 1

k
( by integral test)

=
1

c2
1

· k + 1

|z|2
+

1

c2
2

· 1

k
.
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-m

w
|w+m|

|w|

m

Figure 11: z ∈ πL

Now choose k such that
|z| ≤ k ≤ |z|+ 1.

Then we get ∣∣(log Γ)′′(z)
∣∣ ≤ 1

c2
1

· |z|+ 2

|z|2
+

1

c2
2

· 1

|z|

=

(
1

c2
1

+
1

c2
2

)
· 1

|z|
+

2

c2
1

· 1

|z|2

≤ 3

c2
1

+
1

c2
2

(since
1

|z|2
<

1

|z|
).

We can state this as the inequality ∣∣(log Γ)′′(z)
∣∣ ≤ M

|z|

for all z ∈ Sα with |z| ≥ 1. Here M is a constant that depends on α.
Now we assemble everything.∫ 1

0
(log Γ)(z + t) dt = z log(z)− z + C,∣∣∣∣∫ 1

0
(log Γ)(z + t) dt− (log Γ)(z − 1

2
)

∣∣∣∣ ≤ 1

12
· max
t∈[0,1]

∣∣(log Γ)′′(z + t)
∣∣

max
t∈[0,1]

∣∣(log Γ)′′(z + t)
∣∣ ≤ k

|z|
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for |z| ≥ 2. We arrive at

(log Γ)(z +
1

2
) = z log z − z + C + E(z)

with |E(z)| ≤ Kα
|z| for |z| ≥ 2, z ∈ Sα. What about C? We find C by |Γ(1

2 + it)| where

t > 0. We know Γ(z)Γ(1− z) = π
sin(πz) (Reflection Formula). Set z = 1

2 + it.

Γ

(
1

2
+ it

)
Γ

(
1

2
− it

)
=

π

sin(π2 + πit
)

=
π

cos(πit)

=
π

cosh(πt)

=
2π

eπt + e−πt
.

We also know that
1

Γ(z)
= zeγz

∞∏
m=1

(1 +
z

m
)e−z/m

and so

1

Γ(z)
= zeγz

∞∏
m=1

(1 +
z

m
)e−z/m = zeγz

∞∏
m=1

(1 +
z

m
)e−z/m =

1

Γ(z)
.

That is, Γ(z) = Γ(z). Thus∣∣∣∣Γ(1

2
+ it

)∣∣∣∣2 = Γ

(
1

2
+ it

)
Γ

(
1

2
+ it

)
= Γ

(
1

2
+ it

)
Γ

(
1

2
− it

)
=

2π

eπt + e−πt
.

So ∣∣∣∣Γ(1

2
+ it

)∣∣∣∣2 =
2π

eπt + e−πt
.

We can use this to find C exactly.

41 The Gamma Function VIII (05/01)

We know that

(log Γ)(z +
1

2
) = z log z − z + C + E(z)
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where C is a real constant, z ∈ Sα = {reiθ|r > 0,−α < θ < α}, 0 < α < π, |Ez| ≤ Kα
|z| for

|z| ≥ 2. We also know from Reflection Formula that∣∣∣∣Γ(1

2
+ it

)∣∣∣∣2 =
2π

eπt + e−πt
.

So

Re

(
(log Γ)(z +

1

2
)

)
= ln

∣∣∣∣Γ(1

2
+ it

)∣∣∣∣
=

1

2
ln

(
2π

eπt + e−πt

)
=

1

2
ln(2π)− 1

2
ln(eπt + e−πt)

=
1

2
ln(2π)− 1

2
ln(eπt(1 + e−2πt))

=
1

2
ln(2π)− π

2
t− 1

2
ln(1 + e−2πt).

Notice 1
2 ln(1 + e−2πt)→ 0 as t→∞. On the other hand, (suppose t > 0), we have

Re

(
(log Γ)(z +

1

2
)

)
= Re(it log(it)) + C + Re(E(it))

= Re
(
it · (ln(t) + i

π

2
)
)

+ C + Re(E(it))

= −π
2
t+ C + Re(E(it)).

Notice Re(E(it))→ 0 as t→∞. By comparing the two evaluations of Re
(
(log Γ)(z + 1

2)
)

as t→∞, we find that

C =
1

2
ln(2π).

Lemma 41.1 (Raabe’s Formula).∫ 1

0
(log Γ)(z + t) dt = z log(z)− z +

1

2
ln(2π)

for z ∈ C\(−∞, 0].

So

(log Γ)(z +
1

2
) = z log(z)− z +

1

2
ln(2π) + E(z)

where

|E(z)| ≤ Kα

|z|
.
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To finish, we put z + 1
2 in place of z, simplify, exponentiate.

(log Γ)(z + 1) = (z +
1

2
) log(z +

1

2
)− z − 1

2
+

1

2
ln(2π) + E(z)

= (z +
1

2
) log(z) + (z +

1

2
)[log(z +

1

2
)− log(z)]− z − 1

2
+

1

2
ln(2π) + E(z)

= (z +
1

2
) log(z) + (z +

1

2
) log(1 +

1

2z
)− z − 1

2
+

1

2
ln(2π) + E(z)

(be careful about arguments)

= (z +
1

2
) log(z) +

1

2
− z − 1

2
+

1

2
ln(2π) + Ẽ(z)

(because log(1 +
1

2z
) =

1

2z
+ ˜̃E(z) with | ˜̃E(z)| ≤ M

|z|
)

= (z +
1

2
) log(z)− z +

1

2
ln(2π) + Ẽ(z).

Thus
Γ(z + 1) ∼

√
2πz

(z
e

)z
as z →∞ in Sα.

This means

lim
z→∞,z∈Sα

Γ(z + 1)√
2πz

(
z
e

)z = 1.

Actually, ∣∣∣∣∣ Γ(z + 1)√
2πz

(
z
e

)z − 1

∣∣∣∣∣ ≤ Lα
|z|
.

Corollary 41.2.

lim
n→∞

n!√
2πn

(
n
e

)n = 1.

There is an asymptotic series

Γ(z + 1) ∼
√

2πz
(z
e

)z [
1 +

c1

z
+
c2

z2
+
c3

z3
+ · · ·

]
as z →∞ in Sα. Here c1 = 1

12 .
It is possible to write

Γ(z + 1) =
√

2πz
(z
e

)z [
1 +

d1

z
+

d2

z(z + 1)
+

d3

z(z + 1)(z + 2)
+ · · ·

]
that converges in πR. It is a consequence of “Binet’s second integral”.

There are many other variations.
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Ahlfors-Schwarz-Pick Lemma, 37, 38

chordal metric, 28
compactly divergent, 44
Conformal Invariance of Curvature, 34
curvature of a Hermitian metric, 34

Fundamental Theorem on Normality, 45

Great Picard Theorem, 46

harmonic, 6
Harnack’s Inequality, 22, 23
Harnack’s Inequality for D(a,R), 23
Harnack’s Theorem, 25
Hermitian metric, 26

intertwining property, 16

Litter Picard Theorem, 41
Local Mean Value Property, 7

Marty’s Theorem, 45
Mean Value Property, 7
Montel’s Great Theorem, 45

non-degenerate Hermitian metric, 26

Poincare metric, 27
Poisson integral, 12
Poisson Kernel, 9
pullback of Hermitian metrics, 31

Schwarz Reflection Principle, 16, 20
Schwarz Reflection Principle for Harmonic

Functions, 18
Schwarz Reflection Principle, Most Basic Ver-

sion, 16
spherical derivative, 43
spherical metric, 27, 28

Strong Maximum Principle, 6, 7

Very Weak Maximum Principle, 8

Weak Identity Principle, 6
Weak Maximum Principle, 7

91


	 and  Operations (01/12)
	Harmonic Functions I (01/14)
	Harmonic Functions II (01/16)
	Harmonic Functions III (01/21)
	Harmonic Functions IV (01/23)
	Harmonic Functions V (01/26)
	Harmonic Functions VI (01/28)
	Harmonic Functions VII (01/30)
	Harmonic Functions VIII (02/02)
	Harmonic Functions IX (02/04)
	Harmonic Functions X (02/06)
	Harmonic Functions XI (02/09)
	Hermitian Metrics on Plane Domains I (02/11)
	Hermitian Metrics on Plane Domains II (02/13)
	Hermitian Metrics on Plane Domains III (02/18)
	Curvature I (02/23)
	Curvature II (02/25)
	Curvature III (02/27)
	Curvature IV (03/02)
	Curvature V (03/06)
	Curvature VI (03/09)
	Runge's Theorem and the Mittag-Leffler Theorem I (03/11)
	Runge's Theorem and the Mittag-Leffler Theorem II (03/13)
	Runge's Theorem and the Mittag-Leffler Theorem III (03/23)
	Runge's Theorem and the Mittag-Leffler Theorem IV (03/25)
	Runge's Theorem and the Mittag-Leffler Theorem V (03/27)
	The Weierstrass Factorization Theorem I (03/30)
	The Weierstrass Factorization Theorem II (04/01)
	The Weierstrass Factorization Theorem III (04/03)
	The Weierstrass Factorization Theorem IV (04/06)
	The Weierstrass Factorization Theorem V (04/08)
	Maximum Modulus Principle Revisited I (04/10)
	Maximum Modulus Principle Revisited II (04/13)
	The Gamma Function I (04/15)
	The Gamma Function II (04/17)
	The Gamma Function III (04/20)
	The Gamma Function IV (04/22)
	The Gamma Function V (04/24)
	The Gamma Function VI (04/27)
	The Gamma Function VII (04/29)
	The Gamma Function VIII (05/01)

