1.1 CALCULATING the AREA of a TRIANGLE using TRIGONOMETRY

The area of a triangle : $\quad A=\frac{1}{2} a b \sin C$

1. Use trigonometry to calculate the area of each triangle below.

2. Calculate the area of each parallelogram below.
(a)

(b)

3. Find the area of the following triangles:

4. Mr. Fields is planting a rose-bed in his garden. It is to be in the shape of an equilateral triangle of side 2 m .

What area of lawn will he need to remove to plant his rose-bed?
5. Calculate the area of triangle ABC where $\mathrm{AB}=14 \mathrm{~cm}, \mathrm{AC}=17 \mathrm{~cm}, \angle \mathrm{ABC}=110^{\circ}$ and $\angle \mathrm{BCA}=47^{\circ}$.

6. For safety reasons the sides of a footbridge are to be covered with triangular panels.

Each panel is an isosceles triangle as shown.

(a) Find the area of each panel.
(b) If there are 7 panels on each side of the bridge, find the total area of material required to cover the bridge.
7. Given that the area of this triangle is $20 \mathrm{~cm}^{2}$, calculate the size of the obtuse angle ABC .

8. In triangle $\mathrm{ABC}, \mathrm{AB}=14 \mathrm{~m}$ and $\mathrm{AC}=10 \mathrm{~m}$. Angle $\mathrm{BAC}=150^{\circ}$.

Given that $\sin 150^{\circ}=0 \cdot 5$, calculate the area of triangle $A B C$.
9. The area of a triangular flag is $429 \cdot 5 \mathrm{~cm}^{2}$.

Calculate the size of the obtuse angle ABC .

