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Abstract—The ability to automatically interpret natural lan-
guage commands and actions has the potential of freeing up end-
users to interact with software artefacts without the syntactic,
vocabulary and formal constraints of a programming language.
As most semantic parsers for end-user programming have been
operating under a restricted vocabulary setting, it is unclear
how these approaches perform over conditions of high semantic
heterogeneity (e.g. in an open vocabulary). As the generation
of annotated data is costly and time-consuming, models that
effectively address complex learning problems constrained under
the assumption of small annotated data sets are highly relevant.
In this paper, we propose a semantic parsing approach to
map natural language commands to actions from a large and
heterogeneous frame set trained under a small set of annotated
data. The semantic parsing approach uses the combination
of semantic role labelling, distributional semantics geometric
features and semantic pivoting in order to address the semantic
matching problem in an open vocabulary setting.

I. INTRODUCTION

The application of semantic parsing to support end-user
programming (EUP) using natural language has been applied
in different domains of discourse, from the automation of
operating systems tasks [1] and application controlling [2], to
robotic movement control [3] and programming new mobile
behaviour[4]. The ability to automatically interpret commands
and actions using natural language has the potential of freeing
up end-users to interact with software without the syntactic,
vocabulary and formal constraints of a programming language.

The majority of semantic parsers targeting the interpretation
of natural language commands have focused on the inter-
pretation over small target frame sets, aiming at a particular
domain[5], [6], [7]. This is reflected in semantic parsing mod-
els which are evaluated under more constrained vocabulary
and syntactic (and thus) semantic heterogeneity conditions.

More recently, test collections targeting open-domain/large
command sets/large vocabulary/large syntactic heterogeneity
for EUP scenarios have emerged [8]. These test collections
reflect the existing opportunity of building semantic parsers
which could bridge the semantic gap between end-users and
the growing availability of software resources (libraries and
service hubs such as IFTTT' and Mashape?). These software
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resources are created by different designers/programmers with
different conceptualisations, reflecting different contexts of use
and requirements. As most semantic parsers for EUP have
been operating under a small vocabulary and more coherent
discourse assumptions, it is unclear how these approaches
generalise over high heterogeneity conditions.

Frequently machine learning techniques are at the centre of
current semantic parsing methods[9], [5], [10]. The assumption
behind the application of machine learning methods relies on
the existence of training data on a scale proportional to the
complexity of the task: simple tasks can be addressed with a
relatively small data set, while more complex tasks demand
large-scale annotated data[11].

As the generation of annotated data is costly and time-
consuming, models that effectively address complex problems
constrained under the assumption of small annotated data sets
are highly relevant.

This paper proposes a semantic parsing approach which tar-
gets large and heterogeneous frame sets and operates under the
restriction of small annotated data sets. The proposed model
consists of a distributional semantic parsing method with a
semantic pivoting heuristic. The proposed representation uses
geometric features over different distributional semantic spaces
to generate alignment hypothesis between natural language
terms and frames in an unsupervised manner. The pivoting
method consists of a classification approach which uses the
support of distributional and induced type features to provide
a score of the semantic reliability of the alignment. The
final semantic parsing approach aims at a supervised method
which can operate over open/multi-domain vocabularies and
can generalise from smaller training sets.

This paper is organised as follows: Section II describes
similar tasks and research initiatives related to the semantic
parsing of natural language commands. In Section III, we
formally present the problem of mapping commands to action
frames. Sections IV and V describe respectively our proposed
method and the experiment setup. In Section VI we analyse the
results. Finally, Section VII provides the final considerations
and the conclusion.



Action Instance Candidates

Relevance

Convert File[file=Chilean Pesos,

output format=Euro]

wrong frame

Make a Payment [invoice=1000, method=Chilean_Pesos]

wrong frame

Currency Convert[from_amount=Chilean Pesos, from=Euro, to=1000] right frame with wrong parameters
Currency Convert [from_amount=Euro, from=Chilean Pesos, to=1000] right frame with partial right parameters
Currency Convert [from_amount=1000, from=Chilean_Pesos, to=Euro] right frame with right parameters

TABLE I: List of possible action instance candidates for the command Exchange 1000 Chilean Pesos to Euro, where the last
row represents the user itent. The instance candidates are generated considering the action frames into the pivoting area.

II. BACKGROUND

One of the first initiatives to create a test collection for
semantic parsing is the Air Travel Information System (ATIS)
data set[12] which includes requests about travel information
such as querying flights under cities and dates restrictions [13].
The ATIS test collection is a typical narrow-domain semantic
parsing task which is covered with a large training set in which
traditional machine learning techniques had succeeded [10].

More recently, most EUP semantic parsing scenarios have
shifted to parsing natural language commands within the
context of robotics. The Human Robot Interaction Corpus
(HuRIC)[14] describes a list of spoken commands between hu-
mans and robots, annotated using semantic frames and holistic
spatial semantics, which has been explored by grammar-based
and machine learning techniques that take advantage of both
formalisms in which the data is described [9], [15].

Frequently robot-oriented tasks require special attention to
the descriptions of spatial features and movements, which are
at the centre of the contribution of Artzi et al. [6] and Tellex
et al. [3]. Moreover, in 2014, SemEval hosted a task to parse
commands targeting the control of a robot arm that moves
objects around a board [7]. The work of Thomason et al.
[16] also focuses on spatial representation aspects, covering,
however, the acquisition of new vocabulary from dialogue
with humans. In contrast to addressing a vocabulary gap,
the challenge of these tasks relies on tracking expressions of
direction and movement.

In the context of natural language programming, Azaria et
al. [4] present a work on the task of mobile programming,
dealing with five commands and focusing its evaluation on
user experience aspects. Another initiative is the work of
Neelakantan et al [5], which purposes a machine learning
model to interpret questions against spreadsheets tasks which
require the application of functional operations. Their contri-
bution focus on the inference of a compositionality model for
the operations, and the evaluation setup is constrained to a
template-based syntax and a closed vocabulary set.

More recently Sales et al. [8] proposed a data set to deal
with natural language programming which differs from others
work in at least two aspects. First, the test collection presents
a high variability in both vocabulary and grammar structure,
when compared to the others test collection available so far.
Secondly, the test collection is composed of small training
sets for each frame, require the application of semantic parsing
methods which can operate over small annotated data sets [17].

In this paper, we use this test collection to motivate and
evaluate the semantic parsing approach. The test collection

contains sets of natural language commands and the asso-
ciated action frames corresponding to Web APIs, with the
corresponding mappings. The goal of this work is to develop
a model to map natural language command to action frames
under those restrictions.

IIT. MAPPING NATURAL LANGUAGE COMMANDS TO
ACTION FRAMES

The semantic parsing of natural language commands con-
sists of mapping a natural language command to a formal
function representation from a knowledge base. This function
representation, named in the context of this work as action
frame, is defined as a n-ary predicate-argument structure which
describes a function interface (or signature) within a software
system. In addition to the identification of which action frames
the command refers to, the mapping process also identifies its
parameters and their values (if any).

Taking as an example the natural language command which
verbalises the user’s intent:

Write to newton@sebastian.com asking him to take
a look at the NYT today.

In the example, the natural language command targets
the specific action frame named send an email present in
the knowledge base. Besides identifying the intended ac-
tion frame, the semantic parser also needs to isolate new-
ton@sebastian.com and take a look at the NYT today as argu-
ment values and recognise to which parameters (respectively,
to address and message in this case) they should be assigned
(among those offered by the action frame).

In the context of this paper, we name action instance the
instantiation of an action call which describes the action
frame itself along with values for its parameters, mapped
partially or totally, as exemplified below:

action frame: send an email

provider: Gmail

params:
message: ‘“take a look at the NYT today”
to address: “newton@sebastian.com”

We formalise the target problem as follows. Let A be a
knowledge base (KB) composed of a set of k action frames
(a1,az,...,ar). Let a; = (n;,l;, P;) be an element of A,
where n; is the action’s name, l; is the action’s provider
(a major object, service or functionality associated with the
action), and P; is the set of the action’s parameters. Let ag be
an instance of a;, which also holds values for their parameters,
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Fig. 1: The Seq2Seq Setting receives as input a set of features
related to the action description and the set of command
objects, whereas the output defines the action frame together
with their parameters values. The Classification Setting on its
turns defines a model that receives as input features related to
action instances and produces a class that defines the level of
representativeness of the user intent.

totally or partially. Let c; be a natural language command
which semantically represents a target action instance a;. The
goal is to build a model which, given a set of action frames A
and a natural language command c, returns a list B of ordered
action instances.

Considering its nature, we can interpret this problem as
a translation of the natural language command to an ac-
tion instance. A typical method for solving this task is the
sequence-to-sequence (Seq2Seq) machine learning model [18]
which has represented the state-of-the-art for several natural
language processing tasks[19], [20], [21]. The seq2seq model
is designed to provide the target action frame and their set
of parameters values simultaneously. As further detailed in
Section V, this model did not succeed to solve the target prob-
lem, thereby our work concentrated on finding an alternative
architecture to do so.

IV. PROPOSED APPROACH

The proposed approach is based on the intuition that the
lower the training data is, the simpler the learning task should
be[11]. Hence, instead of inducing the action instance directly,
predicting at once both the action frame and its parameters
values, we generate possible action instances and let the new
model responsible for classifying them as representative or not
of the user intent.

Figure 1 compares the input and output of the seg2seq
architecture to the proposed remodelled architecture. The
degree of relevance provided by the classifier together with
other semantic features serves as input for a ranking model
which places the relevant action instances according to its

likelihood to represent the user intent.

For example, given the natural language command FEx-
change 1000 Chilean Pesos to Euro, the model previously
generate a set of candidate action instances, as depicted in
Table I, and then classifies them according to its relevance.
This output is consequently used in conjunction with a ranking
model as detailed in the next sections.

The semantic parsing approach relies on the use of frame
embeddings where actions and parameters are embedded in
distributional vector spaces. Geometric operators within the
vector spaces such as distance and density are used as an input
to the relevance ranking.

This approach got inspired by the work of Freitas [22] and
Sales et al. [23], whereas semantic similarity metrics are used
to match relevant content.

A. Semantic Parsing Steps

The semantic parsing is composed of four steps:

1) Semantic Role Labelling: In the first step, represented
by Equation 1, the model reduces the natural language
command (c) to a lightweight representation composed
of an action descriptor (d) and a set of command objects
(O) using a shallow parser;

2) Pivoting: Next, the pivoting function, represented by
Equation 2, aims at selecting a set of actions A, where
A c A |A] << |A| and (Va € Ala ~ c¢), in the
sense that the cardinality of the selected sub set is
significantly smaller than the original one, and those
elements are semantically related to the natural language
command. As the data set is small, this step reduces the
search space, maximising the probability of matching
the parameters;

3) Action Candidate Instance Generation: Further, the
third step generates the action instance candidates and
represents them according to the feature set described in
Section 1V-A3;

4) Relevance Ranking: The last step classifies the candi-
date action instances and ranks them to the final user.

The four steps are formalised in the following equations:

o(c) = (d,0) (1)
p(d,0,A) = A 2)
features(d,0,A) = Z (3)
y = classify(Z) )

In the following sections we describe the shallow parser
o(c), the pivoting function p(d, O, A), the extraction of fea-
tures and the final semantic parsing model.



natural language command (q) action descriptor (d) | set of command objects (01,02, ...,0k)
Exchange 1000 Chilean Pesos to Euro Exchange (1000, Chilean Pesos, Euro)

Send questions.doc to sandra@andrade.com | Send (questions.doc, sandra@andrade.com)
Find an image of the Sputnik-1 on Flickr Find image (image, Sputnik-1, Flickr)

Translate file.txt from German to English. Translate (file.txt, German, English)

TABLE II: Examples of natural language commands and their respective action descriptor and set of command objects which

are produced as result of the o function.

1) Shallow Parsing: Equation 1 formally represents the o
function, where c is a natural language command, d is the
action descriptor and O is the set of command objects.

The action descriptor is the minimal subset of tokens
present in the natural language command which plays a key
role in identifying the target action frame, usually corre-
sponding to the main verb. The set of command objects
comprises potential descriptors or values for the parameters,
also including indirect speeches. Table II depicts examples of
natural language commands and their representation as action
descriptors and sets of command objects.

We implemented a simple but effective shallow parsing
based on an explicit grammar defined on the top of the de-
pendency tree and part-of-speech tags of the natural language
command. The shallow parser assumes the first verbal phrase
as the action descriptor and identifies the command objects
according to the rules listed in Table IIl. In addition to the
grammar, we classify indirect speeches as command objects
using the algorithm proposed in [24].

For each command objects, we associate a semantic type,
which is assigned by a named entity recogniser, whose imple-
mentation combines POS-tag rules with a gazetteer. It works
by searching for the longest chain of tokens that maps to an
element of the gazetteer, ignoring the tokens that are part of
indirect speech. For the experiments, we developed a gazetteer
using a subset of the DBpedia entities.

Resulted CO
Eorigin
Eorigin + Edest

Condition
¢(E) = (pobj|dobj[nsub)
¢(E) = (poss|amod)

TABLE III: The dependency-tree based rules to identify
command objects (CO). Be a dependency tree a tuple H =
(V,E,¢), where: V is a finite set of nodes each of them
representing tokens; 2 C V x V is a finite set of edges, where
Eorigin represents the node in the origin and Fg..¢ the node
in the destination; and ¢ : E — C' assigns a label from C to
each edge.

2) Pivoting: The goal of the pivoting function p (Equation
2) is to establish the set of relevant action frames.

The function operates in a hyperspace defined by a distribu-
tional semantic model in which both the lightweight command
representation and the action KB are projected as depicted in
Figure 2. As the distributional semantic model provides vector
representation only for single words, the representation of the
command and actions are generated by composing the vectors
of the words present in their descriptions.

The pivoting function defines the set of relevant action
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Fig. 2: Reading from left to right, first the natural language
command Exchange 1000 Chilean Pesos to Euro is projected
into the action space in which the full set of actions are already
represented. For each action into the pivoting area, the model
projects into the parameter subspaces (from, from_amount,
to in the case of Currency Converter) and also projects the
command objects (1000, Chilean Pesos, Euro). Geometric
features in the spaces define the feature set which will be
later input to the classifier.

frames (A) by calculating a geometric measure in the hyper-
space as shown in Figure 2. Then, each action frame into the
area leads to another space where the command objects and
the action parameters are projected based on the semantic
representation of their names, types and densities. Considering
the relation many-to-many between action parameters (i) (the
parameters present in the action) and command objects (j) (the
candidates values in the command), each pair [action frame,
command] generates a set of action instances resulted from
the permutation P;.

3) Feature Extraction: The classification model interprets
the geometric measure as an indicator of semantic relatedness.
Consequently, the model represents each action instance by the



following list of features:

o cos(d,i1): The semantic relatedess between the action
description (d) and the action name (n);

e MaXg<;j<m cos(é’lj“e“”7 f): The maximum semantic relat-
edness between the command objects (o) and the provider
Ok

o cos(d'rel, p;): The set of semantic relatedness between
the pairs composed of the command objects (o) and action
parameter (p);

. cos(é’;yp © pi): The set of semantic relatedness between
the pairs composed of the semantic type of the parameter
description(o) and the action parameter (p);

o den(p;): The set of the densities of the action parameters.

These semantic relatedness scores are used as input features
to identify jointly the most relevant action frame and the best
configuration of parameters values.

4) Matching Model: The matching model classifies the
action frame instances into:

¢ (i) wrong frame (score 0);

o (i) right frame with wrong parameters (score 1);

o (iii) right frame with partial right parameters (score 2);
o (iv) right frame with right parameters (score 3).

This small, but discriminative set of classes works as a data
augmentation method, in the sense that it enables the existence
of many training instances of the same class, even considering
the small training data set the task offers.

Equation 5 defines the score function from which the
ranking is generated, where the classify function receives
as input the set of features disposed as a unique vector z.

classify(z) = 1000 + Z(zl) 5)
=0

The multiplication in the score function guarantees that
action instances from a higher class is always ranked above
those classified in lower classes.

V. EXPERIMENTS

Besides the mapping of natural language commands to ac-
tion frames, the original Task 11 at SemEval 2017, demanded
the construction of a logic algorithm and the resolution of
parameters’ co-references[8]. It is not a coincidence that only
one team participated in the challenge and this team had
succeeded in less than 6% of the test collection[17]°. Despite
the relevance of the proposed challenge, its level of granularity
makes the problem too ambitious given the volume of data
released.

To focus on the mapping of natural language commands to
action frames, two curators reformulated the original task by
(i) removing co-references and (if) isolating and merging the
original commands in such a way that privileged variance in
vocabulary and syntax structure.

Action name Provider Parameters

Create a status message Facebook status message
Currency converter null from amount, from, to
Open garage door Garageio Which door

Create an issue GitHub repository, title, body
Create new contact Google Contacts | full name, email...

TABLE IV: Examples of action frames present in the KB.

A. Data

After this process, the test collection ended up with 185
natural language commands. With regard to the action knowl-
edge base, we kept those extracted from IFTTT and others
referenced in the evaluation scenarios, adapting some of them
to guarantee accurate semantic description, which resulted in a
KB of 2005 action frames. The new data set composed of the
action KB and the mappings of natural language commands
to action frames is available at https://rebrand.ly/nlc-dataset.

Table IV shows some examples of action frames present in
the action KB.

Given the similarity to our target problem, we considered
the use of the data set defined by Quirk et al. [25] which
was also extracted from the ifttr.com platform. The data set
comprises descriptions of if-then recipes provided by users.
However, the task requires only the identification of the action
frames, keeping aside the instantiation of the parameter values.
This limitation cannot be overcome since the data set does not
contain the parameters values, nor there is any guarantee that
those values are explicitly present in the recipe descriptions.

As a baseline, we designed the experiments to evaluate both
a Seq2Seq model and the proposed semantic parsing method.

To fix the problem of imbalanced classes in the training
data, we applied the random majority under-sampling with
replacement, making use of the imbalanced-1learn library
[26].

B. Sequence-to-Sequence Model

We implemented a Seq2Seq neural network composed of
LSTM cells as recurrent unit in the style of [18]. The input
layer was designed to receive a matrix Z € R® containing
the set of instances, represented by the action’s descriptor and
the set of command objects expressed as 300-length vectors
extracted from the Google-News-300 Word2Vec model.

The training process was conducted in two steps. In the first
step, we encoded each action frame in the KB as input, in order
to make the model aware of every action frame. Secondly, the
training data was applied in a 10-fold cross-validation fashion.

We evaluated different network architectures varying the
number of layers (1 to 3), nodes (1 to 3 times the input size),
epoches (up to 500), learning rates (0.001, 0.003, 0.01, 0.03,
0.1) and batch sizes (100%, 50% and 25% of the training
data).

All the evaluated Seq2Seq models delivered a F1-Score of
0.

3Considering the mapping of action frames and parameter values.



. s . . Identity TF/IDF Nearest Neighbours
Classifier/Pivoting function | Scenario —ocall VIRR —ocall TIRR rocall VIRR
Random Forest TOP-10 0.4217 | 0.1264 | 0.6594 | 0.2878 | 0.6825 0.3038

TOP-50 0.7549 | 0.1426 | 0.7778 | 0.2932 | 0.8551 0.3120
Support Vector Machine TOP-10 0.0476 | 0.0099 | 0.4298 | 0.1901 | 0.3608 0.1207
TOP-50 0.2280 | 0.0123 | 0.6224 | 0.1978 | 0.6232 0.1187
TOP-10 0.0738 | 0.0187 | 0.4798 | 0.2063 | 0.3944 0.1323
MLP - Neural Network TOP-50 | 03110 | 0.0311 | 0.7015 | 02171 | 0.7292 | 0.1514

TABLE V: Recall and mean reciprocal rank for the combination of different pivoting functions and classifiers evaluated in the

TOP-10 and TOP-50 scenarios.

C. The Proposed Model

To evaluate the proposed model, we instantiated different
implementations for both the pivoting function and the classi-
fier. The pivoting function assumed three implementations:

o Identity: In the first case, p implements the identity
function. This configuration means that no filter is applied
and aims at measure the relevance of the pivoting step;

o TF/IDF: A natural candidate for a pivoting function is the
TDF/IDF weighting scheme, which conditions the target
actions to those that overlaps vocabulary with the query.
TDF/IDF pivoting function in average limits the number
of target action frames to 10.

o Nearest Neighbours: The third approach uses an nearest
neighbours method to select the 50 closest action frames,
when projecting the natural language command into the
distributional semantic space. This type of function is
not limited to the overlapping of vocabulary, but expands
their relation to the latent notion of semantics defined by
the distributional vector model.

With regard to the classifier, we evaluated three learning
methods: Random Forest, Support Vector Machine and a
simple Multilayer Perceptron Neural Network (MLP). We
evaluated each learning method in different fashions, identify-
ing their hyperparameters by grid search. For Random Forest,
the number of estimators ranged into (100, 300, 1000, 3000,
10000), the maximum number of features assumed the sqrt or
the log2 of the total available. For the Support Vector Machine
classifier the grid search was applied considering the kernel
varying into linear, sigmoid and polynomial (with 2, 3, 5
degrees) and gamma into the logspace(-9, 3, 3), keeping a fixed
C=1. Finally, for the MLP network, we evaluated under the
same variation specified for the Seq2Seq model. The classifiers
receive the input as described in Section IV-A3.

We evaluate our architecture purposely with off-the-shelf
implementations for both the pivoting function and the clas-
sifier. This decision seeks to highlight the relevance of the
feature selection and model architecture to the final solution.

Our experiments used the skip-gram model generated over
the Google news data set as the distributional space model
[27]. To speed up the development, we used the Indra word
embedding server [28].

VI. RESULTS AND DISCUSSION

Table V shows the results of the proposed approach in
different combinations of pivoting functions and classifiers,

measured in relation to the recall and mean reciprocal rank
(MRR). The evaluation was carried out in two scenarios: the
first considers the actions ranked up to the 10th position,
whereas the second, up to the 50th. In the experiments, we
assumed that only one action frame corresponded to the target
answer. This assumption makes precision a redundant indicator
since it can be derived from the recall.

The application of the identity function as a pivoting
function represents the absence of a pivoting area in the
sense that the full action KB is considered in the classifi-
cation step. Given the simplicity of the feature set and the
straightforwardness of the matching model, the results show
that the pivoting function plays a key role in increasing the
accuracy. The experiments in which the identity function is
present consistently deliver lower recall, as shown in Figure 3.
Even when combined with Random Forest, where the identity
function had a more competitive performance in recall, Figure
4a shows the target action instances are significantly lower
ranked.

The other two pivoting functions have similar results in
recall, with a slight advantage to Nearest Neighbours from
TF/IDFE. This is explained by the fact that the TF/IDF ignores
relevant action frames more often than Nearest Neighbours.

Random Forest is by far the best classifier considering either
recall or MRR in all of the evaluation scenarios, whereas the
SVM and MLP classifiers perform similarly in relation to the
recall. Our assumptions is that the set of semantic relatedness
features shows a high level of independence, producing many
sub-optimal areas that can be better avoided by a tree-based
learning model. This assumption is reinforced considering the
scenarios in conjunction with the identity function. The higher
volume of data tends to generate more sub-optimal spaces
and represents exactly the scenario where the classifiers shows
larger gaps.

We conjecture that the Seq2Seq approach overloads the
learning model demanding the identification of the target
action over a set of thousands of frames, besides the correct
map of the parameters values. The low relation between the
number of classes vs. the number of training examples, which
explain its failure.

In conclusion, the combination of a random-forest classifier
with the nearest-neighbours pivoting function was able to solve
up to 68% considering the TOP-10 and up to 85% when
considering the TOP-50, with the MRR scoring around 0.3,
which means that the target action instances are placed in
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average at the 3rd or 4th positions.

VII. CONCLUSION

In this paper we propose a semantic parsing method to map
natural language commands to action frames for large and
heterogeneous frame sets under a restricted set of annotated
data. The proposed distributional semantic parsing method
operating with a nearest-neighbours pivoting and a random
forest alignment quality classifier achieved a recall of 0.682
and a mean reciprocal rank of 0.303 for the TOP-10 results
over a knowledge base of 2005 distinct action frames.

As a future work, we plan to analyse the suitability of
the proposed semantic parsing model as a foundation for the
definition of a search-and-run programming model.
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