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Abstract. We propose a new parameterization for describing forward and backward leanings of 

the straight human body with the feet fixed on the ground. During this motion stability of static 

equilibrium of the upright human body depends on the basic parameters such as coordinates XCG and 

YCG of the center of gravity of the body in the upright position and the radius R of the base of support. 

We introduce two coefficients k1= YCG/R and k2= XCG/R which are enough to calculate critical values 

of the angle α between the vertical axis OY and the axis of the cylinder the body is fitted into. We have 

calculated critical values αcr′ and αcr′′ when the body becomes unstable during leanings back and 

forward correspondingly. It is shown that stability of the upright body may be characterized by the 

angle αcr= |αcr′ |+|αcr′′| which strongly depends on k1 and weakly depends on k2 and αopt – the value of  α 

for the most stable position when the body’s center of gravity is exactly above the geometrical center of 

the base of support.  Stable equilibrium will be achieved for larger αcr and smaller | αopt|. 

 

Introduction 

Application of principles of balance and stability when performing specified sports skills is 

necessary to success. Many coaches would be wise to spend more time studying sport mechanics like 

balance and stability in order to improve the performance of their players [1]. 

To perform balance skills, athletes must have adequate strength to support the body, and they 

must be able to shift the weight quickly into the correct position at the right time. They must also know 

their position in space, called kinesthetic awareness, as well as possess quick reactions, coordination, 

agility, and flexibility. 

Within “mechanics” there are two sub-fields of study: statics, which is the study of systems that 

are in a state of constant motion either at rest (with no motion) or moving with a constant velocity; and 

dynamics, which is the study of systems in motion in which acceleration is present, which may involve 

kinematics [2]. 

In this work we discuss static equilibrium of the upright human body and propose a theoretical 

biomechanical model how to estimate stability of that equilibrium. 

 



General Theory 

Equilibrium is a state of zero acceleration where there is no change in the speed or direction of 

the body. Balance is the ability to control equilibrium (either static or dynamic). Stability is the 

resistance to a change in the body’s acceleration, or the resistance to a disturbance of the body’s 

equilibrium. 

Balance within muscle groups and alignment of the skeletal system affect body equilibrium and 

balance. Small shifts of bones can affect the whole skeletal system. 

The most important factors for achieving balance are the following [3, 4]: 

•A person has balance when the COG falls within the base of support (BOS) (the upright body is 

only stable when the line of gravity lies within the foot base); 

•A person has balance in direct proportion to the size of the BOS (the larger the base of support, 

the more balance); 

•A person has balance depending on mass (the greater the mass, the more balance). 

A unique point is associated with every body, around which the body’s mass is equally 

distributed in all directions.  This point is known as the center of mass or the mass centroid of the body.  

In the analysis of bodies subject to gravitational force, the center of mass may also be referred to as the 

center of gravity (CG), the point about which a body’s weight is equally balanced in all directions or 

the point about which the sum of the moments produced by the weights of the body segments is equal 

to zero (Fig. 1).   

 

 

FIGURE 1. Center of gravity and line of gravity of a human body. 

 



The CG of a perfectly symmetrical object of homogeneous density, and therefore homogeneous 

mass and weight distribution, is at the geometric center of the body.  However, when mass distribution 

within an object is not constant, the CG shifts in the direction of greater mass.  It is also possible for an 

object’s CG to be located physically outside of the object (Fig. 1 b.)). Line of gravity is gravity’s 

action line which is visualized as a vertical line projecting downwards from the center of gravity (Fig. 

1). 

A commonly used procedure for estimating the location of the total body CG from projected film 

images of the human body is known as the segmented method.  This procedure is based on the concept 

that since the body is composed of individual segments (each with its own CG), the location of the total 

body CG is a function of the location of the respective segmental CG’s.  Some body segments, 

however, are more massive than others and have a larger influence on the location of the total body 

CG.  When the products of each body segment’s CG location and its mass are summed and then 

divided by the sum of all the segmental masses (total body mass), the result is the location of the total 

body CG.  The segmental method uses data for average locations of individual body segment CG’s as 

related to a percentage of segment length.  Thus, 
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where XCG, YCG, ZCG are the coordinates of the total body CG,  xi, yi, zi are the coordinates of the 

individual segment CG’s, and  mi is the individual segment mass. 

The masses of body segments can be count if you know the total height and weight of a person. 

One of frequently used methods was described by Zatsiorskji and Selujanov (1979), who determined 

the parameters B0, B1 a B2 for each body segment. The equation for body mass is following 

 

 mi=B0+B1m+B2h, (2) 

  

where m (kg) is total mass of a person  and  h (in cm!) is height of a person.. The parameters B0 , 

B1 a B2 see [5].  

Centre of gravity of body segments [5] was determined experimentally: hand (manus) 39:61 %, 

forearm 43:57 %, upper arm 44:56 %, head+neck 50:50 %, trunk 42:58% (from shoulder), thigh 

43:57%, shank 41:59 %, foot 40:60 % of total length of each segment ( from  proximal end). 



 
FIGURE 2. Slices and bases of support. 

 

Base of support is the supporting area beneath the body, it includes the points of contact with the 

supporting surface and the area between them; these points may be body parts (such as feet), or 

extensions of body parts (such as crutches or other walking aids) (Fig. 2). 

Consider an arbitrary area A in the x-y plane.  Let A be divided into parts and denote the 

positions of the parts by The centroid, or average position of the area, is given by: 
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In summary, high stability (low mobility) is characterized by a large base of support, a low center 

of gravity, a centralized center of gravity projection within the base of support, a large body mass, and 

high friction at the ground interface. Low stability (high mobility), in contrast, occurs with a small base 

of support, a high center of gravity, a center of gravity projection near the edge of the base of support, a 

small body mass, and low friction. 

 

Biomechanical Model of the Upright Human Body 

Let’s consider first two tilted cylinders.  The base of support for the cylinders is the area where 

they are in contact with the floor. For the two cylinders below, the left cylinder’s CG is above the base 

of support so the upward support force from the base is aligned with the downward force of gravity 

(Fig. 3). 



FIGURE 3.

For the cylinder on the right the CG is not above the base of

align and instead create a torque that rotat

FIGURE 4. a.) Sportsman’s base of support, b.) 

 

A similar approach may be used for

Fig. 4 a.) you see the base of support of a sportsman.

placed into a cylinder (Fig. 4 b.)). 

his body straight and feet still on the ground. 

as it is shown in Fig. 5. The sportsman’s center of gravity will rotate around O

projection of the sportsman’s center of gravity in the upright position

sportsman’s body will depend on the angle 

 
FIGURE 3. Two tilted cylinders and their lines of gravity.

 

For the cylinder on the right the CG is not above the base of support so these two forces cannot 

a torque that rotates the object, tipping it over. 

a.) Sportsman’s base of support, b.) Upright human body fitted into the

cylinder. 

A similar approach may be used for modeling the upright human body’s static equilibrium.

base of support of a sportsman. We can imagine the sportsman as if he has been 

 Let’s consider the sportsman’s leanings back and forward keeping 

his body straight and feet still on the ground. During the motion the cylinder also will

The sportsman’s center of gravity will rotate around O

projection of the sportsman’s center of gravity in the upright position and the position of the 

nd on the angle α between the axis of the cylinder and the OY

 
Two tilted cylinders and their lines of gravity. 

support so these two forces cannot 

 
human body fitted into the imaginary 

upright human body’s static equilibrium. In 

the sportsman as if he has been 

back and forward keeping 

cylinder also will change its form 

The sportsman’s center of gravity will rotate around O′, where O′ is the 

the position of the 

s of the cylinder and the OY axis. 



 
FIGURE 5. Different positions of a straight human body: a.) upright position, b.) critical position 

during backward leaning, c.) critical position during forward leaning, d.) the most stable position of the 

body, e.) comparative diagram for the positions shown in Figures a.) - d.). 

 

There are three main positions:  

1.) The sportsman’s CG is exactly above the back edge of the base of support A (Fig. 5 b.)); 

2.) The sportsman’s CG is exactly above the front edge of the base of support B (Fig. 5 c.)); 

3.) The sportsman’s CG is exactly above the geometrical center of the base of support O (Fig. 5 

d.)); 

In the first two positions increasing of α will lead to the transition from balanced equilibrium to 

unbalanced equilibrium. In the third position the sportsman’s body will have maximal stability. Let αcr′, 

αcr′′ and αopt be the corresponding values of α. These three positions will be determined by the 

corresponding values of α: αcr′, αcr′′ and αopt, which can be calculated using the following formulas:  

 (4) 
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Where k1, k2 and k3 are coefficients determined by the following equations: 
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R is the radius of the base of support, XCG and YCG – are the initial coordinates of the sportsman’s 

center of gravity in the upright position, l= YCG is the length of the segment connecting CG of the 

sportsman and O′. 

Formulas (4)-(9) allow us to estimate how stable the upright position of the sportsman is. High 

stability is characterized by large value of the angle αcr=|αcr′|+|αcr′′| and small value of αopt. The model 

may be successfully applied not only to the upright position of the human body but to all positions 

where the motion of the sportsman’s body can be described using tilted cylinders as well. 

 

Discussion 

In this section we will show how values of αcr′, αcr′′, αcr and αopt depend on the basic initial 

parameters of the sportsman: XCG and YCG  - the initial coordinates of the sportsman’s center of gravity 

and R – the radius of the base of support. Using formulas (4-9) we have calculated αcr′, αcr′′ and αcr as 

functions of k2 where k2 changes from -1 to 1. In Fig. 6 a.), b.) are shown graphs of αcr′, αcr′′ calculated 

for k1=2, 4, 6, 8, 10. We see that αcr′ increases when k2 increases and αcr′′ decreases when k2 increases 

and dependencies have almost linear character for k1=4, 6, 8, 10.     

 
FIGURE 6. Dependencies of αcr′and αcr′′ on the ratio of XCG to R. 

 

In Fig. 6 a.) are shown graphs of αcr calculated for k1=2, 4, 6, 8, 10. We see that for k1=4, 6, 8, 10 

αcr weakly depends on k2 and dependencies have almost linear character: αcr(k1, k2)≈const if k1 is fixed. 

In Fig. 6 b.) we calculated how αcr(k1, 0) depends on k1. If k1≥4 when we can find αcr(k1, 0) from Fig 6. 

b.) and for all -1≤k2≤1we will have good approximation αcr(k1, k2)≈ αcr(k1, 0). For αcr(k1, 0) we can use 

a simple formula αcr(k1, 0)≈120/k1, which fits very well into the graph of αcr(k1, 0) shown in Fig. 6 b.). 



The coefficient k1=l/R depends mainly on the proportions of the sportsman: his height and feet size. 

Lower sportsmen with larger base of support will be more stable. Obviously, αcr decreases from 60° to 

0° while the value of k1 increases from 2 to +∞. 

     FIGURE 7. a.) Dependence of αcr on the ratio of XCG to R for k1=2, 4, 6, 8, 10. b.) Dependence of 

αcr(k1, 0) on k1. 

 

Using our formula (6) we can calculate the dependence of αopt on k3=XGC/YGC (see Fig. 7). Here 

negative values of αopt correspond to the negative values of XGC and mean that the sportsman must lean 

forward to reach the optimal position of equilibrium. If αopt>0 the sportsman must lean backward in 

order to reach the optimal position. The dependence is almost linear in the range -0.6≤k3≤0.6 and can 

be described by the formula αopt ≈58·k3=58·XCG/YCG. 

 
FIGURE 7. Dependence of αopt on k2. 



Taking into account that the average ratio of y coordinate of center of mass to height in males is 

approximately 0.560 and the average ratio of center of mass to height in females is approximately 

0.543 we can calculate the average values of αcr′, αcr′′, αcr and αopt for males and females. 

For male sportsmen standing upright CG has coordinates (-0.5·R, 0.56·h), where h is the 

sportsman’s height and R/h≈1/12. In this case k1man=l/R≈0.56·12=6.72. For female sportsmen CG has 

coordinates (-0.5·R, 0.543·h) and k1woman=l/R≈0.543·12=6.516. 

 

sex k1 k2 αcr′(grad) αcr′′(grad) αcr αopt(grad) 

male 6.72 -1 0.00 -17.32 17.32 -8.56 

female 6.52 -1 0.00 -17.88 17.88 -8.83 

male 6.72 -0.7 2.56 -14.65 17.21 -5.98 

female 6.52 -0.7 2.64 -15.12 17.76 -6.17 

male 6.72 -0.5 4.27 -12.90 17.17 -4.27 

female 6.52 -0.5 4.40 -13.31 17.71 -4.40 

male 6.72 0 8.56 -8.56 17.12 0.00 

female 6.52 0 8.83 -8.83 17.66 0.00 

male 6.72 0.5 12.90 -4.27 17.17 4.27 

female 6.52 0.5 13.31 -4.40 17.71 4.40 

male 6.72 0.7 14.65 -2.56 17.21 5.98 

female 6.52 0.7 15.12 -2.64 17.76 6.17 

male 6.72 1 17.32 0.00 17.32 8.56 

female 6.52 1 17.88 0.00 17.88 8.83 

 

Table 1. Values of αcr′, αcr′′, αcr and αopt for males (k1=6.72) and females ( k1=6.52) for k2= -1.0, -

0.7, -0.5, 0.0, 0.5, 0.7, 1.0. 

 

We have calculated αcr′, αcr′′, αcr and αopt for males (k1=6.72) and females (k1=6.52) for different 

values of k2=-1.0, -0.7, -0.5, 0.0, 0.5, 0.7, 1.0. The results are displayed in Table 1. We see that 

αcr≈17.25° for males and αcr≈17.80° for females. For the typical value of k2= -0.5 (see Fig. 4 a.)) αopt≈-

4.27° for males and αopt≈-4.40° for females. This means that females are slightly more balanced than 

males but in order to achieve the most stable position they have to lean their bodies slightly more 

forward than males. 

 

Conclusion 

In this work we investigate how stability of equilibrium of the upright human body depends on 

the basic parameters such as coordinates XCG and YCG of the center of gravity of the body in the upright 



position and the radius R of the base of support. We introduce two coefficients k1= YCG/R and k2= 

XCG/R which are enough to calculate critical values of the angle α between the vertical axis OY and the 

axis of the cylinder the body is fitted into. We have calculated critical values of α - αcr′ and αcr′′ when 

the body becomes unstable during leanings back and leaning forward correspondingly. It is shown that 

stability of the upright body may be characterized by the angle αcr= |αcr′ |+|αcr′′| which strongly depends 

on k1 and weakly depends on k2 and αopt – the value of  α for the most stable position when the body’s 

center of gravity is exactly above the geometrical center of the base of support.  

In summary, high stability will require larger values of αcr and smaller values of αopt. We have 

derived approximate formulas for αcr : αcr(k1, k2)≈120/k1=120·R/YCG if k2≥4 and αopt: αopt 

≈58·k3=58·XCG/YCG if -0.6≤k3≤0.6. 

We have calculated values of αcr′, αcr′′, αcr and αopt for males (the average value of k1 is 6.72) and 

females (the average value of k1 is 6.52) and different values of k2= -1.0, -0.7, -0.5, 0.0, 0.5, 0.7, 1.0. 

For k2= -0.5 (the average value of k2) αcr=17.17° and αopt=-4.27° in men and αcr=17.71° and αopt=-4.40° 

in women. We see that women are slightly more stable than men.  

The proposed model may be successfully applied to all body positions which can be described 

using tilted cylinders. 

 

 

References: 

1. P. Grimshaw and A. Burden, Sport and Exercise Biomechanics, 2007, ISBN 0-203-48830-X, pp. 

156-163. 

2. Diana Cotoros, Biomechanical Analyzes of Human Body Stability and Equilibrium, Proceedings 

of the World Congress on Engineering 2010, Vol II, WCE 2010, June 30 - July 2, 2010, London, U.K. 

3. Duane Knudson, Fundamentals of Biomechanics, 2003 Kluwer Academics/Plenum Publishers, 

New York, ISBN 0-306-47474-3, pp.178-188. 

4. Zatsiorskyi, V.M., Fundamentals of sports metrology, PHC&S, 1979, Moscow, Russian 

Federation. 

5. Mc Ginnis, Peter Merton, Biomechanics of Sports and Exercise, 2
nd

 edition, 2005, ISBN 0-7360-

5101-5, pp. 137-143. 

 

 


