
A First Book of ANSI C
Fourth Edition

Chapter 9

Character Strings

A First Book of ANSI C, Fourth Edition 2

Objectives

• String Fundamentals

• Library Functions

• Input Data Validation

• Formatting Strings (Optional)

• Case Study: Character and Word Counting

• Common Programming and Compiler Errors

A First Book of ANSI C, Fourth Edition 3

• On a fundamental level, strings are simply
arrays of characters that can be manipulated
using standard element-by-element array-
processing techniques.

• On a higher level, string library functions are
available for treating strings as complete
entities.

• This chapter explores the input, manipulation,
and output of strings using both approaches.

• We will also examine the particularly close
connection between string-handling functions
and pointers.

A First Book of ANSI C, Fourth Edition 4

9.1 String Fundamentals

• A string literal is any sequence of

characters enclosed in double quotes.

• A string literal is also referred to as a

string constant and string value, and

more conventionally as a string.

• For example, “This is a string”,

“ HelloWord!”, and “xyz123*!#@&” are all

strings.

A First Book of ANSI C, Fourth Edition 5

• Because a string is stored as an array of

characters , the individual characters in

the array can be input, manipulated, or

output using standard array-handling

techniques utilizing either subscript or

pointer notations.

• The end-of-string null character is useful

for detecting the end of the string when

handing strings in this fashion

A First Book of ANSI C, Fourth Edition 6

String Input and Output

• Table 9.1 lists the commonly available library

functions for both character-by-character and

complete string input and output.

Table 9.1

Input Output

gets() puts()

scanf() printf()

getchar() putchar()

A First Book of ANSI C, Fourth Edition 7

Example of String Input and Output

Sample run:
Enter a string:
This is a test input of a string of characters.
The string just entered is:
This is a test input of a string of characters.

illustrates the use of gets() and puts() to input

and output a string entered at the user’s terminal.

A First Book of ANSI C, Fourth Edition 8

• The gets() function used in Program 9.1

continuously accepts and stores the characters

typed at the terminal into the character array

named message.

• Pressing the Enter key at the terminal generates a

newline character, \n, which is interpreted by

gets() as the end-of-character entry.

• All the characters encountered by gets(), except

the newline character, are stored in the message

array.

A First Book of ANSI C, Fourth Edition 9

• Before returning, the gets() function

appends the null character to the stored set

of characters, as illustrated in Figure 9.2a.

• The puts()function is then used to display

the string.

• The scanf() function reads a set of

characters up to either a blank space or a

newline character, whereas gets() stops

accepting characters only when a newline is

detected.

A First Book of ANSI C, Fourth Edition 10

• Trying to enter the characters This is a
string using the statement scanf(“%s”,
message); results in the word This being
assigned to the message array.

• Entering the complete line using a scanf()
function call would require a statement
such as

• scanf(“%s %s %s %s”, message1,
message2, message3, message4);

A First Book of ANSI C, Fourth Edition 11

• This allows us to

understand how the

standard library

functions are

constructed and to

create our own library

functions.

• For a specific example,

consider the function

strcopy(), which copies

the contents of string2

to string1.

void strcopy(char string1[],

char string2[])

{

// i will be used as a subscript

int i=0;

while (string2[i]!=’\0’)

{

string1[i]=string2[i];

i++;

}

// terminate the first string

string1[i]=’\0’;

}

A First Book of ANSI C, Fourth Edition 12

Program 9.2: includes the strcopy()

function in a complete program

#include<stdio.h>

/*expects two arrays of chars */

void strcopy(char[],char[]);

int main()

{

// enough storage for a complete line

char message[81];

// enough storage for a copy of message

char newMessage[81];

int i;

printf(" Enter a sentence: ");

gets(message);

strcopy(newMessage, message);
/*pass two array addresses*/

puts(newMessage);

return 0;

}

/* copy string2 to string1 */

/*two arrays are passed */

void strcopy(char string1[],

char string2[])

{

int i=0; // i will be used as a subscript

/* check for the end-of-string */

while(string2[i]!='\0‘)

{

/* copy the element to string1*/

string1[i]=string2[i];

i++;

}

/* teminate the first string */

string1[i]='\0';

}

Example Output

Enter a sentence: I am a CS CMU student.

I am a CS CMU student.

A First Book of ANSI C, Fourth Edition 13

Character-by-Character Input

ขอ้ควรระวงั: ถา้ลืมใส่วงเลบ็ จะมีค่าเท่ากบั
c = (getchar() != '\n')

รับค่า string ทีละ character ผ่าน function ช่ือ
getchar() จนกระท่ัง user เคาะ enter.

A First Book of ANSI C, Fourth Edition 14

String Processing (continued)

สร้าง function ช่ือ getline() เพ่ือใช้รับค่า string ทีละ
character ผ่าน function ช่ือ getchar() จนกระท่ัง user

เคาะ enter.

A First Book of ANSI C, Fourth Edition 15

Library Functions

Note: Attempting to copy a larger string into a smaller string causes the copy to

overflow the destination array beginning with the memory area immediately

following the last array element.

A First Book of ANSI C, Fourth Edition 16

Library Functions (continued)

• When comparing strings, their individual characters
are evaluated in pairs; if a difference is found, the
string with the first lower character is the smaller one

– "Good Bye" is less than "Hello" because the first

'G' in Good Bye is less than the first 'H' in Hello

– "Hello" is less than "Hello " because the '\0'

terminating the first string is less than the ' ' in the

second string

– "123" is greater than "122" because '3' in 123 is

greater than '2' in 122

– "1237" is greater than "123" because '7' in 1237

is greater than '\0' in 123

A First Book of ANSI C, Fourth Edition 17

Library Functions (continued)

A First Book of ANSI C, Fourth Edition 18

Library Functions (continued)

A First Book of ANSI C, Fourth Edition 19

Library Functions (continued)

• Sample output:
Hello is less than Hello there

The length of string1 is 5 characters

The length of string2 is 11 characters

After concatenation, string1 contains the string value

Hello there World!

The length of this string is 18 characters

Type in a sequence of characters for string2:

It's a wonderful day

After copying string2 to string1, the string value in
string1 is:

It's a wonderful day

The length of this string is 20 characters

The starting address of the string1 string is: 1244836

A First Book of ANSI C, Fourth Edition 20

Character Routines

A First Book of ANSI C, Fourth Edition 21

Character Routines (continued)

A First Book of ANSI C, Fourth Edition 22

Conversion Routines

A First Book of ANSI C, Fourth Edition 23

Conversion Routines (continued)

A First Book of ANSI C, Fourth Edition 24

Input Data Validation

• Successful programs always try to anticipate
invalid data and isolate such data from being
accepted and processed

– First validate that the data is of the correct type; if
not, request the user to re-enter the data

– Explain why the entered data was invalid

• One of the most common methods of validating
input data is to accept all numbers as strings

– Each character can then be checked to ensure that it
complies with the data type being requested

A First Book of ANSI C, Fourth Edition 25

Input Data Validation (continued)

A First Book of ANSI C, Fourth Edition 26

Input Data Validation (continued)

A First Book of ANSI C, Fourth Edition 27

Input Data Validation (continued)

• We can use isvalidInt() in a loop that

continually requests an integer until a valid integer

value is entered
Set an integer variable named isanInt to 0

do

Accept a string value

If the string value does not correspond to an integer

Display the error message "Invalid integer - Please re-enter: "

Send control back to expression being tested by the do-while statement

Set isanInt to 1 (this causes the loop to terminate)

while(isanInt is 0)

Return the integer corresponding to the entered string

A First Book of ANSI C, Fourth Edition 28

…

Input Data Validation (continued)

A First Book of ANSI C, Fourth Edition 29

Creating a Personal Library

• Programmers create their own libraries of functions

– This permits the functions to be incorporated in any
program without further expenditure of coding time

• Each file in a library contains related functions
– #include <C:\\mylibrary\\dataChecks.h>

– #include "C:\\mylibrary\\dataChecks.h"

• The #include statement for dataChecks.h must be

placed after the #include statements for the stdio.h

and stdlib.h header files (the functions in

dataChecks.h require stdio.h and stdlib.h functions

to correctly compile)

A First Book of ANSI C, Fourth Edition 30

Formatting Strings

• Examples:

– printf("|%25s|","Have a Happy Day");

•| Have a Happy Day|

– printf("|%-25s|","Have a Happy Day");

•|Have a Happy Day |

– printf("|%25.12s|","Have a Happy

Day");

•| Have a Happy|

– printf("|%.12s|","Have a Happy Day");

•|Have a Happy|

A First Book of ANSI C, Fourth Edition 31

In-Memory String Conversions

• The sprintf() and sscanf() functions provide

capabilities for writing and scanning strings to and from

memory variables

– sprintf(disStrn,"%d %d", num1, num2);

– sscanf(data,"%c%lf %d",&dol,&price,&units);

• "$23.45 10"

– sscanf(date,"%d/%d/%d", &month, &day, &year);

• "07/01/94"

A First Book of ANSI C, Fourth Edition 32

Format Strings

• The control string containing the conversion control
sequences need not be explicitly contained within
the function
– printf("$%5.2f %d",num1,num2);

– Or,
char fmat[] = "$%5.2f %d";

printf(fmat,num1,num2);

• Useful for listing format strings with other variable
declarations at the beginning of a function

– If you need to change a format, it is easy to find the
desired control string without searching to locate the
appropriate printf() or scanf() function calls

A First Book of ANSI C, Fourth Edition 33

Case Study: Character and Word

Counting

• We construct two string-processing functions

– Count the number of characters in a string

– Count words in a sting

• What constitutes a word?

A First Book of ANSI C, Fourth Edition 34

Program Requirement: Character

Counting

• Pass a string to a function and have the function

return the number of characters in the string

• Any character in the string (blank, printable, or

nonprintable character) is to be counted

• The end-of-string NULL character is not to be

included in the final count

A First Book of ANSI C, Fourth Edition 35

Analyze the Problem

• Determine the input data

• Determine the required outputs

• List the algorithm(s) relating the inputs to the

outputs

A First Book of ANSI C, Fourth Edition 36

Analyze the Problem (continued)

A First Book of ANSI C, Fourth Edition 37

Code the Function

int countchar(char list[])

{

int i, count = 0;

for(i = 0; list[i] != '\0'; i++)

count++;

return(count);

}

A First Book of ANSI C, Fourth Edition 38

Test and Debug the Function

…

A First Book of ANSI C, Fourth Edition 39

Requirement Specification: Word

Counting

• The last word does not have a trailing blank

• More than one blank may be used between words

• Leading blanks may be used before the first word

A First Book of ANSI C, Fourth Edition 40

Analyze the Problem

• Determine the input data

• Determine the required outputs

• Algorithm:
Set an integer variable named inaword to the symbolic constant NO

Set the word count to 0

For all the characters in the array

If the current character is a blank

set inaword to NO

Else if (inaword equals NO)

set inaword to the symbolic constant YES

increment the word count

EndIf

EndFor

Return the count

A First Book of ANSI C, Fourth Edition 41

Code the Function

int countword(char list[])

#define YES 1

#define NO 0

{

int i, inaword, count = 0;

inaword = NO;

for(i = 0; list[i] != '\0'; i++)

{

if (list[i] == ' ')

inaword = NO;

else if (inaword == NO)

{

inaword = YES;

count++;

}

}

return(count);

}

A First Book of ANSI C, Fourth Edition 42

Test and Debug the Function

…

A First Book of ANSI C, Fourth Edition 43

Test and Debug the Function

(continued)

• A sample run using Program 9.11 follows:
Type in any number of words: This is a test line

with a bunch of words

The number of words just entered is 10

• Further tests that should be performed are

– Enter words with multiple spaces between them

– Enter words with leading spaces before the first word

– Enter words with trailing spaces after the last word

– Enter a sentence that ends in a period or question

mark

A First Book of ANSI C, Fourth Edition 44

Common Programming Errors

• Forgetting the terminating NULL character, '\0',
when processing existing strings in a character-by-
character manner

• Forgetting to terminate a newly created character
string with the NULL character

• Forgetting that the newline character, '\n', is a
valid data input character

• Forgetting to include the string.h, ctype.h, and
stdlib.h header files when using the string
library, character library, and conversion library
functions, respectively

A First Book of ANSI C, Fourth Edition 45

Common Compiler Errors

A First Book of ANSI C, Fourth Edition 46

Common Compiler Errors (continued)

A First Book of ANSI C, Fourth Edition 47

String & Pointer
#include <stdio.h>

int main()

{

char *message2 = "this is a string";

printf("\nThe string is: %s", message2);

printf("\n The first address of this string is %p", message2);

message2 = "A new message";

printf("\nThe string is now: %s", message2);

printf("\n The first address of this string is %p", message2);

return 0;

}

A First Book of ANSI C, Fourth Edition 4848

String & Pointer (Cont.)

A First Book of ANSI C, Fourth Edition 49

#include <stdio.h>

int main()

{

int n;

char *seasons[] = { "Winter",

"Spring",

"Summer",

"Fall"};

for(n = 0; n < 4; ++n)

printf("\nThe season is %s.",seasons[n]);

return 0;

}

Pointer Arrays (Program)

A First Book of ANSI C, Fourth Edition 50

Pointer Arrays

seasons[0] = "Winter";

seasons[1] = "Spring";

seasons[2] = "Summer";

seasons[3] = "Fall";

A First Book of ANSI C, Fourth Edition 51

#include <stdio.h>

int main()

{

int n;

char *seasons[] = { "Winter",

"Spring",

"Summer",

"Fall"};

printf("\nEnter a month (use 1 for Jan., 2 for Feb., etc.): ");

scanf("%d", &n);

n = (n % 12) / 3; /* create the correct subscript */

printf("The month entered is a %s month.",seasons[n]);

return 0;

}

Scaling a set of numbers
into a more useful set

A First Book of ANSI C, Fourth Edition 52

Scaling a set of numbers into a
more useful set (Cont.)

A First Book of ANSI C, Fourth Edition 53

Summary

• A string is an array of characters terminated by the
NULL ('\0') character

• Character arrays can be initialized using a string
assignment of the form char arrayName[] = "text";

• Strings can always be processed using standard

array-processing techniques

• The gets(), scanf(), and getchar() library

functions can be used to input a string

• The puts(), printf(), and putchar() functions
can be used to display strings

A First Book of ANSI C, Fourth Edition 54

Summary (continued)

• Many standard library functions exist for processing
strings as a complete unit

• The standard C library also includes individual
character-handling functions (ctype.h)

• One of the major uses of strings is validating user
input, which is an essential part of any program

• The conversion routines atoi() and atof() are
provided in the stdlib.h header file for
converting strings to integer and double-precision
numeric values

