A First Book of ANSI C
Fourth Edition

Chapter 9
Character Strings

Objectives

e String Fundamentals

 Library Functions

* |nput Data Validation

* Formatting Strings (Optional)

« Case Study: Character and Word Counting
« Common Programming and Compiler Errors

A First Book of ANSI C, Fourth Edition

On a fundamental level, strings are simply
arrays of characters that can be manipulated
using standard element-by-element array-
processing technigues.

On a higher level, string library functions are
avallable for treating strings as complete
entities.

This chapter explores the input, manipulation,
and output of strings using both approaches.

We will also examine the particularly close
connection between string-handling functions
and pointers.

A First Book of ANSI C, Fourth Edition 3

9.1 String Fundamentals

* A string literal Is any sequence of
characters enclosed in double guotes.

» A string literal Is also referred to as a
string constant and string value, and
more conventionally as a string.

» For example, “This is a string”,

“HelloWord!”, and “xyz123*#@&” are all
strings.

A First Book of ANSI C, Fourth Edition

* Because a string Is stored as an array of
characters , the individual characters In
the array can be input, manipulated, or
output using standard array-handling
techniques utilizing either subscript or
pointer notations.

« The end-of-string null character is useful
for detecting the end of the string when
handing strings In this fashion

A First Book of ANSI C, Fourth Edition

String Input and Output

« Table 9.1 lists the commonly available library
functions for both character-by-character and
complete string input and output.

Table 9.1
Input Output
gets() puts()
scanf() printf()
getchar() putchar()

A First Book of ANSI C, Fourth Edition 6

Example of String Input and Output

Illustrates the use of gets() and puts() to input
Program 9.1

and output a string entered at the user’s terminal.

1 #include <stdio.h>

2 int main()

3 {

4 fdefine MSIZE 81

5 char message [MSIZE]; /* enough storage for 80 characters plus '\N0' */
6

7 printf ("Enter a string:\n");

g gets (message) ;

9 printf ("The string just entered is:\n");
10 puts (message) ;

11

12 return 0;

13 3}

Sample run:

Enter a string:
This 1is a test input of a string of characters.
The string just entered is:
This 1is a test input of a string of characters.

A First Book of ANSI C, Fourth Edition 7

* The gets() function used in Program 9.1
continuously accepts and stores the characters
typed at the terminal into the character array
named message.

* Pressing the Enter key at the terminal generates a
newline character, \n, which is interpreted by
gets() as the end-of-character entry.

« All the characters encountered by gets(), except
the newline character, are stored in the message

array.

A First Book of ANSI C, Fourth Edition 8

» Before returning, the gets() function
appends the null character to the stored set

of characters, as illustrated in Figure 9.2a.

t

"he puts()function is then used to display
ne string.

"he scanf() function reads a set of

characters up to either a blank space or a

newline character, whereas gets() stops

accepting characters only when a newline is

detected.

A First Book of ANSI C, Fourth Edition

* Trying to enter the characters This is a
string using the statement scanf(“%s”,
message); results in the word This being
assigned to the message array.

* Entering the complete line using a scanf()
function call would require a statement
such as

» scanf(“%s %s %s %s”, messagel,
message2, message3, messaged);

A First Book of ANSI C, Fourth Edition 10

This allows us to void strcopy(char string1[],

understand how the char string2[])
standard library {
functions are /1 i will be used as a subscript
constructed and to int i=0:
Create our own library while (string2[i]!=\0")
functions. {
For a specific example

) : ’ string1[i]=string?2|i];
consider the function . ng[l=string2{l

. : |+

strcopy(), which copies !
the contents of string2 i
to string1. // terminate the first string

string1[i]=\0’;

A First Book of ANSI C, Fourth Edition 11

Program 9.2: includes the strcopy()
function in a complete program

#include<stdio.h>

[*expects two arrays of chars */

void strcopy(char|],char|]);

int main()

{
/l enough storage for a complete line
char message[81];

/] enough storage for a copy of message
char newMessage[81];

inti;

printf(" Enter a sentence: ");
gets(message);

strcopy(newMessage, message);
[*pass two array addresses*/

puts(newMessage);
return O;

[* copy string?2 to stringl */
[*two arrays are passed */
void strcopy(char stringl] |,
char string2|])

int 1=0; // i will be used as a subscript
/[* check for the end-of-string */
while(string2[i]'="0")
{
[* copy the element to stringl*/
stringl[i]=string2]i];
I++:

}

[* teminate the first string */
string1[i]="\0";

Example Output
Enter a sentence: | am a CS CMU student.

| am a CS CMU student.

A First Book of ANSI C, Fourth Edition

12

Character-by-Character Input

‘g Program 9.3

1 #include <stdio.h> o, - - ; . 2

. . Sus1 String #ae character #wu function e
2 1nt main/))
3 getchar() aunseiiv User miz enter.
4 $define LSIZE B1
5 char message [LSIZE] ; /* enough storage for 80 characters plus '\0' */
3] char c;
7 int i;

9 v . Y A 1 < A 1 Y]

2] VBDAITISIN. mmﬂﬁmau PSUAUNINU

9 printf ("Enter a String:\n:l;//// c = (ngtCﬂlaI?() | = '\Il')
10 i = 0;

11 while(i < (LSIZE-1) && (¢ = getchar()) != '"‘\n')

12 {

13 message[i] = ¢; /* store the character entered */
14 14+

15 }

16 message[i] = '\0'; /* terminate the string */

17 printf ("The string just entered is: ‘\n");

18 puts (message) ;

15

20 return 0;

21 }

A First Book of ANSI C, Fourth Edition

String Processing (continued)

g Program 9.4

1 #include <stdioc.h>

2 wvoid getline(char []); /* function prototype */

3 #define LSIZE &1

4

5 int main()

6 {

7 char message [LSIZE] ; /* enough storage for 80 characters plus '\NO' */
a8

9 printf ("Enter a string: \n");
10 getline (message) ;
11 printf ("The string just entered is:\n");
1z puts (message) ;
13 _ ; ; . _
14 return 0; ase function e getline() wel¥suai string ias
o . character s function i getchar() aunszia user
17 wvoid getline(char strngl]) e enter.

18 {

19 int 1 = 0;

20 char c;

21
22 while(i < (LSIZE-1) && (c = getchar()) != '\n')
23 1

24 strngl[i] = <¢; /* store the character aentered */

25 1++;

26 }

27 strng[i] = 'Z\N0'; /* terminate the string */

28 1

A First Book of ANSI C, Fourth Edition

Library Functions

Table 9.2 String Library Routines (Required Header File is string.h)

the end of strl

Name Description Example

strepy (strl, str2) Copies str2 to strepy (test, "efgh")
strl, including
the '\ Q"

strecat(strl, str2) Appends str2 to strcat(test, "there")

strlen(string)

Returns the length of
string. Does not
include the '\0"' in
the length count.

strlen("Hello World!")

stremp (strl,

str?2)

Compares strl to
str2. Returns a
negative integer if
strl < str2, 0 if
strl == str2,
and a positive integer
if strl > str2.

strcmp ("Beb", "Bee")

Note: Attempting to copy a larger string into a smaller string causes the copy to

overflow the destination array beginning with the memory area immediately
following the last array element.
A First Book of ANSI C, Fourth Edition

Library Functions (continued)

* When comparing strings, their individual characters
are evaluated Iin pairs; If a difference is found, the
string with the first lower character is the smaller one

— "Good Bye" Is less than "Hello" because the first
'G' In Good Bye is less than the first 'H' in Hello

— "Hello" is less than "Hello " because the '\0'
terminating the first string is less thanthe ' ' in the

second string

— "123" s greaterthan "122" because '3'In 123 Is
greaterthan '2'in 122

- "1237" Is greater than "123" because '7"' in 1237
IS greater than '\0'in 123

A First Book of ANSI C, Fourth Edition 16

o -1 Oy N = W b

o

10
11
12
13
14
15
16
17
18
19
20

Library Functions (continued)

Program 9.5

#include <stdio.h>

#include <string.h> /* required for the string function library */

int main()

{

fdefine MAXELS 50
char stringl [MAXELS]
char string2 [MAXELS]
int n;

"Hello";
"Hello there";

n = stremp(stringl, string2);

if (n < 0)

printf ("%s is less than %s\n\n", stringl, stringl);
else 1f (n == 0)

printf ("%s is equal to %s\n\n", stringl, string2);
elze

printf ("%s is greater than %s\n\n", stringl, string2);

printf("The lenath of stringl i1is %d characters\n". strleni(strinall}l:

A First Book of ANSI C, Fourth Edition 17

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

}

Library Functions (continued)

printf ("The length of string2 is %d characters\n\n", strlen(string2));
strecat (stringl," there World!");

printf ("After concatenation, stringl contains the string value\n");

printf ("%s\n", stringl);

printf ("The length of this string is %d characters\n\n",
strlen(stringl));

printf ("Type in a sequence of characters for string2:\n");

geta(atring2) ;

strepy (stringl, string2);

printf ("After copying string2 to stringl");
printf (" the string wvalue in stringl is:\n");
printf ("%s\n", stringl);

(

printf ("The length of this string is %d characters\n\n",
strlen(stringl));
printf ("\nThe starting address of the stringl string is: %d\n",
(void *) stringl);
return 0;

A First Book of ANSI C, Fourth Edition 18

Library Functions (continued)

« Sample output:

Hello is less than Hello there

The length of stringl is 5 characters
The length of string2 is 11 characters

After concatenation, stringl contains the string value
Hello there World!
The length of this string is 18 characters

Type in a sequence of characters for string2:

It's a wonderful day

After copying string2 to stringl, the string wvalue in
stringl is:

It's a wonderful day

The length of this string is 20 characters

The starting address of the stringl string is: 1244836

A First Book of ANSI C, Fourth Edition 19

Character Routines

Table 9.3 Character Library Routines (Required Header File is ctype .h)

Required Prototype

Description

Example

int

isalpha (char)

Returns a non-0 number if the character
is a letter; otherwise, it returns 0.

isalpha('a'")

int

isupper (char)

Returns a non-0 number if the character
is uppercase; otherwise, it returns 0.

isupper('a')

int

islower (char)

Returns a non-0 number if the character
is lowercase; otherwise, it returns O.

islower('a')

int

isdigit (char)

Returns a non-0 number if the character
is a digit (0 through 9); otherwise, it
returns 0.

isdigit('a'")

int

isascii (char)

Returns a non-0 number if the character
is an ASCII character; otherwise, it
returns 0.

isascii('a')

int

isspace (char)

Returns a non-0 number if the character
is a space, otherwise, it returns 0.

isspace(’

')

int

igprint (char)

Returns a non-0 number if the character
is a printable character; otherwise, it
returns 0.

isprint('a")

int

iscntrl (char)

Returns a non-0 number if the character
is a control character; otherwise, it
returns 0.

iscntrl('a')

int

ispunct (char)

Returns a non-0 number if the character
Is a punctuation character; otherwise, it
returns 0.

ispunct('!")

int

toupper (char)

Returns the uppercase equivalent if the
character is lowercase; otherwise, it
returns the character unchanged.

toupper('a')

int

tolower (char)

Returns the lowercase equivalent if the
character is uppercase; otherwise, it
returns the character unchanged.

tolower ('A')

A First Book of ANSI C, Fourth Edition

20

0 -1 3N s W b

e e el e e e
@ -1 G U WP O W

19
20
21
22
23
24
25

Character Routines (continued)

Program 9.6

#include <stdioc.h>
#include <ctype.h> /* required for the character function library */

int main)

{

/

#define MAXCHARS 100
char message [MAXCHARS] ;
vold convertToUpper (char []); /* function prototype */

printf ("\nType in any sequence of characters:\n");
gets (message) ;

convertTolUpper (message) ;

printf ("The characters just entered, in uppercase are:‘\n%=s\n", message);

return 0;

/ this function converts all lowercase characters to uppercase

vold convertToUpper (char messagel[])

{

int i;
for(i = 0; message[i] != "\NO'; i++)
message[i] = toupper(message[i]);

A First Book of ANSI C, Fourth Edition

21

Conversion Routines

Table 9.4 Conversion Routines (Required Header File is stdlib.h)

Prototype

Description

Example

int atol(string)

Converts an ASCII string to an
integer. Conversion stops at the first
noninteger character.

atoi("1234")

double atof(string)

Converts an ASCII string to a double-
precision number. Conversion stops
at the first character that cannot be
interpreted as a double.

atof ("12.34")

char[] itoa(string)

Converts an integer to an ASCII
string. The space allocated for the
returned string must be large
enough for the converted value.

itoa(l234)

A First Book of ANSI C, Fourth Edition

22

W -1 O U = W

[e]

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Conversion Routines (continued)
Program 9.7

#include <stdio.h>
#include <string.h>
#include <stdlib.h> // required for test conversion function library

int main()

{

#define MAXELS 20
char tCest[MAXELS] = "1234";
int num;
double dnum;

num = ateol(test);
printf("The string %s as an integer number is %4d\n", test,num);
printf ("This number divided by 2 is: 24d\n", num/3);

strcat(test, ".96");
dnum = atof(test);
printf("\nThe string %sg as a double number is: %f\n", test,dnum);

printf ("This number divided by 2 is: %f\n", dnum/3);

return 0;

}

A First Book of ANSI C, Fourth Edition

23

Input Data Validation

« Successful programs always try to anticipate
iInvalid data and isolate such data from being
accepted and processed

— First validate that the data is of the correct type; if
not, request the user to re-enter the data

— Explain why the entered data was invalid

* One of the most common methods of validating
Input data is to accept all numbers as strings

— Each character can then be checked to ensure that it
complies with the data type being requested

A First Book of ANSI C, Fourth Edition 24

Input Data Validation (continued)

Program 9.8
1 #include <stdio.h>
2 #include <stdlibk.h> /* needed to convert a string to an integer */
3 #define MAXCHARS 40
4 #define TRUE 1
5 #define FALSE 0
&
7 int isvalidInt(char []); /* function prototype */
8
9 int maini()
10 {
11
12 char wvalue [MAXCHAERES] ;
13 int number;
14
15 printf ("Enter an integer: ") ;
16 gets (value) ;
17
18 if (isvalidInt(value)== TRUE)
19 {
20 rnumber = atoil (value) ;
21 printf ("The number you entered i=s %d\n", number):;
22 }
23 aelse
24 printf ("The number yvou entered is not a valid integer.i\n");
25
26 return 0;
27 1
28

A First Book of ANSI C, Fourth Edition

In!qut Data Validation (continued)

29 svalidInt(char wvall[])

30

31 int start = 0;

3z int i;

33 int walid = TRUE;

34 int sign = FALSE;

35

36 /* check for an empty string */

37 if (val[0] == '"\0') walid = FALSE;

38

39 /* check for a leading sign */

40 if (vall[0] == '-' || val[0] == '"+")

41 {

42 gign = TRUE;

43 start = 1; /* start checking for digits after the sign */
44 }

45

46 /* check that there is at least one character after the sign */
47 if(gign == TRUE && wval[l] == '\0') walid = FALSE;

48

49 /*now check the string, which we know has at least one non-sign char */
50 i = start;

51 while(wvalid == TRUE && wval[i] != '"\0")

52 {

53 if (val[i] =< 'O || val[i] = '9") /* check for a non-digit */
54 wvalid = FALSE;

55 i++;

56 }

57

58 return wvalid;

59 1

A First Book of ANSI C, Fourth Edition

Input Data Validation (continued)

« We canuse isvalidInt () in aloop that

continually requests an integer until a valid integer
value Is entered
Set an integer variable named isanint to O
do
Accept a string value
If the string value does not correspond to an integer

Display the error message "Invalid integer - Please re-enter: "
Send control back to expression being tested by the do-while statement

Set isanint to 1 (this causes the loop to terminate)
while(isanint is 0)
Return the integer corresponding to the entered string

A First Book of ANSI C, Fourth Edition 27

17
18

15
20

21
22
23
24
25
26
27
28
29
20
31
32
33
34
35
36
37
38
39

Input Data Validation (continued)
Program 9.9

#define TRUE 1
#define FALSE 0
#define MAXCHARS 40
int getanInt()

{
int isvalidInt (char []1); /* function prototype */

int isanInt = FALSE;
char wvalue [MAXCHAES] ;

do
{
gets (value) ;
if (isvalidInt(value)} == FALSE)
{
printf("Invalid integer - Please re-enter: ");
continue; /* send control to the do-while expression test */
}
igsanInt = TRUE;
lwhile (isanInt == FALSE) ;

return (atoi(wvalue)) ; /* convert to an integer */

}

A First Book of ANSI C, Fourth Edition 28

Creating a Personal Library

* Programmers create their own libraries of functions

— This permits the functions to be incorporated in any
program without further expenditure of coding time

« Each file in a library contains related functions
— #include <C:\\mylibrary\\dataChecks.h>
— #include "C:\\mylibrary\\dataChecks.h"
 The #include statement for dataChecks.h must be
placed after the #include statements for the stdio.h
and stdlib.h header files (the functions in

dataChecks.h require stdio.h and stdlib.h functions
to correctly compile)

A First Book of ANSI C, Fourth Edition 29

Formatting Strings

« Examples:
—-printf (" |%25s|","Have a Happy Day") ;
o | Have a Happy Day|
-printf (" |%-25s|","Have a Happy Day");
e |Have a Happy Day |
—printf (" |%25.12s|","Have a Happy
Day") ;
o | Have a Happy|
-printf (" |%.12s|","Have a Happy Day") ;
e | Have a Happy|

A First Book of ANSI C, Fourth Edition 30

In-Memory String Conversions

 The sprintf () and sscanf () functions provide

capabilities for writing and scanning strings to and from
memory variables
— sprintf (disStrn,"%d 3d", numl, num2) ;

— sscanf (data, "%c%1lf %d", &dol, &price, &units) ;
. "$23.45 10"

— sscanf (date,"%d/%d/%d", &month, &day, &year):;
e "07/01/94"

A First Book of ANSI C, Fourth Edition 31

Format Strings

* The control string containing the conversion control
sequences need not be explicitly contained within
the function

— printf ("$%5.2f $d", numl,num?2) ;
— Or,
char fmat[] = "$%5.2f %d4d";
printf (fmat, numl, num?2) ;

« Useful for listing format strings with other variable

declarations at the beginning of a function

— If you need to change a format, it is easy to find the
desired control string without searching to locate the
appropriate printf () or scanf () function calls

A First Book of ANSI C, Fourth Edition 32

Case Study: Character and Word
Counting
« We construct two string-processing functions

— Count the number of characters in a string

— Count words in a sting
 \WWhat constitutes a word?

A First Book of ANSI C, Fourth Edition

33

Program Requirement: Character
Counting

« Pass a string to a function and have the function
return the number of characters in the string

* Any character in the string (blank, printable, or
nonprintable character) is to be counted

* The end-of-string NULL character is not to be
iIncluded in the final count

A First Book of ANSI C, Fourth Edition

34

Analyze the Problem

« Determine the input data
* Determine the required outputs

 List the algorithm(s) relating the inputs to the
outputs

A First Book of ANSI C, Fourth Edition 35

Analyze the Problem (continued)

Start End
counting here counting here
Keep counting until \0 is found

Index: 0O 1 2 3 n+1
Count: 1 2 3 n+1 n+2 m+1

. ELLL’L

Figure 9.5 Counting characters in a string

A First Book of ANSI C, Fourth Edition 36

Code the Function

int countchar (char list][])

{

int 1, count = 0;
for(i = 0; listf[i] !'= "\O0'; 1i++)
count++,;

return (count) ;

A First Book of ANSI C, Fourth Edition

0 =1 O N = W k) B

W

10
11
12
13
14
15
16
17
18

Test and Debug the Function

Program 9.10

#include <stdio.h>
#define MAXNUM 1000

int countchar(char []); /* function prototype */

int main()

{
char message [MAXNUM] ;
int numchar;

printf ("\nType in any number of characters: ");

gets (message) ;

numchar = countchar(message) ;

printf ("The number of characters just entered is %d\n", numchar);

return 0;

A First Book of ANSI C, Fourth Edition

Requirement Specification: Word
Counting

« The last word does not have a trailing blank
* More than one blank may be used between words
« Leading blanks may be used before the first word

A First Book of ANSI C, Fourth Edition

39

Analyze the Problem

« Determine the input data
* Determine the required outputs
 Algorithm:

Set an integer variable named inaword to the symbolic constant NO
Set the word count to O
For all the characters in the array
If the current character is a blank
set inaword to NO
Else if (inaword equals NO)
set inaword to the symbolic constant YES
increment the word count
Endlf
EndFor
Return the count

A First Book of ANSI C, Fourth Edition

40

Code the Function

int countword (char list[])
#define YES 1
#define NO O

{

int 1, 1naword, count = 0;
inaword = NO;
for(i = 0; list[i] !'= "\O'; i++)
{
if (listf[i] == " ")
inaword = NO;
else 1f (inaword == NO)

{
inaword = YES;
count++;

}
}

return (count) ;

}

A First Book of ANSI C, Fourth Edition

Test and Debug the Function

Program 9.11

1 #include <stdio.h>

2 #define MAXNUM 1000

3

4 int countword(char []); /* function prototype */
5

f 1nt main()

7 {

8 char message [MAXNUM] ;

g int numchar;
10
11 printf ("\nType in any number of words: ");
12 gets (message) ;
13 numchar = countword(message) ;
14 printf ("The number of words just entered is %d\n", numchar);
15
16 return 0;
17 1}
18

A First Book of ANSI C, Fourth Edition 42

Test and Debug the Function
(continued)

* A sample run using Program 9.11 follows:

Type 1n any number of words: This 1s a test line
with a bunch of words

The number of words just entered is 10

* Further tests that should be performed are
— Enter words with multiple spaces between them
— Enter words with leading spaces before the first word
— Enter words with trailing spaces after the last word

— Enter a sentence that ends in a period or question
mark

A First Book of ANSI C, Fourth Edition 43

Common Programming Errors

Forgetting the terminating NULL character, '\0"',
when processing existing strings in a character-by-
character manner

Forgetting to terminate a newly created character
string with the NULL character

Forgetting that the newline character, '\n"',Is a
valid data input character

Forgetting to include the string.h, ctype.h, and
stdlib.h header files when using the string
library, character library, and conversion library
functions, respectively

A First Book of ANSI C, Fourth Edition 44

Common Compiler Errors

Error

Typical Unix-based
Compiler Error
Message

Typical Windows-based
Compiler Error
Message

Attempting to assign a
single character into an ele-

(W) Operation
between types

error cannot
convert from

ment of the array using "unsigned char" and | 'const char [2]'
double, rather than single "unsigned char*" is | to 'char'

quotes. For example, not allowed.

message [5] = "A";

Not using a system (S) Undeclared error: 'NULL'
predefined constant in all identifier NULL. undeclared

capital letters. For example, identifier
message[10] = NULL;

Forgetting to insert a length (S) Explicit error: 'message'’

in the Size of the Array
without initializers. For
example,

char messagel(];

dimension
specification or
initializer
required for an
auto or static
array.

unknown size

A First Book of ANSI C, Fourth Edition

45

Common Compiler Errors (continued)

Error

Typical Unix-based
Compiler Error
Message

Typical Windows-based
Compiler Error
Message

Comparing against an
escape sequence that is
inside double quotes. For
example, while((c =
getchar()) != "\n")

(W) Operation
between types
and "unsigned
char*" 1s not
allowed.

] il‘lt]

error: '!=' : no
conversion from
'const char *' to
'int'

Providing an incorrect path
for including header files.
For example,

#include "c:\\
stdio.h"

(S) #include file
"c:\\stdio.h" not
found.

fatal error:
Cannot open
include file:
'c:\\stdio.h': No
such file or
directory

A First Book of ANSI C, Fourth Edition

46

String & Pointer

#include <stdio.h>
Int main()

{

char *message2 = "this is a string"’;

printf("\nThe string is: %s", message?2);
printf("\n The first address of this string is %p", message2);

message2 = "A new message";
printf("\nThe string is now: %s", message?2);
printf("\n The first address of this string is %p", message2);

return O, &4 "C:ACProgrammingl CTAS ourceCode\Chapterd\D ebugtPGM9_5.exe™

}' The string iz: thiz iz a string

The first address of this string iz AA420094
The string iz now: A new message
The first address of this string iz B0428838FPress an

A First Book of ANSI C, Fourth Edition 47

String & Pointer (Cont.)

message? s a pointer variable

An address »

%

First the

address
points t | h|li1] s 1| s a s |t

here —
f

The address of this location is initially stored in message?2

Then the
address is

changedto | A nilel|w m|e|s|s|lalg
point here —»

f

The address of this location is then stored in message?2

A First Book of ANSI C, Fourth Edition

Pointer Arrays (Program)

#include <stdio.h>
int main()
{

intn;

char *seasons[] = { "Winter",

"Spri ng " ¢ |"C:ACProgramminglCT\SourceCode\Chapter93Debu... [8[=] [E3
"Summer"” season is Winter.
: season is Spring.
season iz Summer.
"Fa“"}; season iz Fall.Press any key to continue

for(n =0; n <4; ++n)
printf("\nThe season is %s.",seasons[n]);

return O;

}

A First Book of ANSI C, Fourth Edition 49

Pointer

seasons(0]:

seasons[1]:

seasons(2]:

seasons(3]:

Seasons
Seasons

Seasons

Seasons

W N B o

Arrays

seasons array

Somewhere in memory:

Address of

W in Winter

W

1

Il

t

\0

Address of

SinSpring |
Address of

\(

Fin Fall

\0

i
S in Summer \
Address of |

\0

= "Winter":
="Spring";
="Summer";

= "Fall";

A First Book of ANSI C, Fourth Edition

50

Scaling a set of numbers
info a more useful set

#include <stdio.h>

int main()
{ -
Int n;
char *seasons[] = { "Winter",
"Spring",
"Summer”,
"Fall"};

printf("\nEnter a month (use 1 for Jan., 2 for Feb., etc.): ");
scanf("%d", &n);

n=(n%12)/3; /[*create the correct subscript */
printf(""The month entered is a %s month.",seasons[n]);

return O;

}

A First Book of ANSI C, Fourth Edition

51

Scaling a set of numbers into a
more useful set (Cont.)

Months Season
December, January, February Winter
March, April, May Spring
June, July, August Summer
September, October, November Fall

| "C-ACProgramminglCT\SourceCode\Chapter9'Debug\PGMI_7 exe" !EI

Enter a month {use 1 for Jan.. 2 for Feh., etc.?: §
The month entered iz a Spring month.Press any key to continueld

1 J v

A First Book of ANSI C, Fourth Edition

Summary

A string Is an array of characters terminated by the
NULL ('\0") character

Character arrays can be initialized using a string
assignment of the form char arrayName[] = "text";

Strings can always be processed using standard
array-processing technigues

The gets (), scanf (), and getchar () library
functions can be used to input a string

The puts (), printf (), and putchar () functions
can be used to display strings

A First Book of ANSI C, Fourth Edition 53

Summary (continued)

« Many standard library functions exist for processing
strings as a complete unit

* The standard C library also includes individual
character-handling functions (ctype.h)

* One of the major uses of strings Is validating user
Input, which is an essential part of any program

 The conversion routines atoi () and atof () are
provided in the stdlib.h header file for
converting strings to integer and double-precision
numeric values

A First Book of ANSI C, Fourth Edition 54

