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Regression with Basis Functions

I Supervised learning of a function f ∗ : X→ Y from training data
{xi , yi}n

i=1.

*
*

*

*

*

*

*

*



Regression with Basis Functions
I Assume a set of basis functions φ1, . . . , φK and parametrize a function:

f (x ; w) =
K∑

k=1

wkφk (x)

Parameters w = {w1, . . . ,wK}.
I Find optimal parameters

argmin
w

n∑
i=1

∣∣∣∣yi − f (xi ; w)

∣∣∣∣2 = argmin
w

n∑
i=1

∣∣∣∣yi −
∑K

k=1 wkφk (xi )

∣∣∣∣2
I We will be Bayesian in this lecture, so we need to rephrase using

probabilistic model with priors on parameters:

yi |xi ,w = f (xi ; w) + εi εi ∼ N (0, σ2)

wk ∼ N (0, τ2)

I Computer posterior p(w|{xi , yi}).



Regression with Basis Functions

f (x ; w) =
K∑

k=1

wkφk (x)

I What basis functions to use?

I How many basis functions to use?

I Do we really believe that the true f ∗(x) can be expressed as
f ∗(x) = f (x ; w∗) for some w∗?

εi ∼ N (0, σ2)

I Do we believe the noise process is Gaussian?



Density Estimation with Mixture Models
I Unsupervised learning of a density f ∗(x) from training samples {xi}.

* ** * ** * ** *** ****

I Perhaps use an exponential family distribution, e.g. Gaussian?

N (x ;µ,Σ) = |2πΣ|− 1
2 exp

(− 1
2 (x − µ)>Σ−1(x − µ)

)
Unimodal, restrictive shape, light tail...

I Use a mixture model instead,

f (x) =
K∑

k=1

πkN (x ;µk ,Σk )

I Do we believe that the true density is a mixture of K components?
I How many mixture components to use?



Latent Variable Modelling

I Say we have n vector observations x1, . . . , xn.

I Model each observation as a linear combination of K latent sources:

xi =
K∑

k=1

Λk yik + εi

yik : activity of source k in datum i .
Λk : basis vector describing effect of source k .

I Examples include principle components analysis, factor analysis,
independent components analysis.

I How many sources are there?

I Do we believe that K sources is sufficient to explain all our data?

I What prior distribution should we use for sources?



Topic Modelling with Latent Dirichlet Allocation

I Infer topics from a document corpus, topics
being sets of words that tend to co-occur
together.

I Using (Bayesian) latent Dirichlet allocation:

πj ∼ Dirichlet(αK , . . . ,
α
K )

θk ∼ Dirichlet( βW , . . . , βW )

zji |πj ∼ Multinomial(πj )

xji |zji ,θzji ∼ Multinomial(θzji )

I How many topics can we find from the
corpus?

topics k=1...K

document j=1...D

words i=1...nd

πj

zji

xji θk
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Modelling Data

I Models are almost never correct for real world data.

I How do we deal with model misfit?

I Quantify closeness to true model, and optimality of fitted model;
I Model selection or averaging;
I Increase the flexibility of your model class.

I Bayesian nonparametrics are good solutions from the second and third
perspectives.



Model Selection and Model Averaging

I Data x = {x1, x2, . . . , xn}.
I Model Mk parametrized by θk , for k = 1,2, . . ..

I Marginal likelihood:

p(x|Mk ) =

∫
p(x|θk ,Mk )p(θk ,Mk )dθk

I Model selection and averaging:

M = argmax
Mk

p(x|Mk ) or p(k , θk |x) =
p(k)p(θk |Mk )p(x|θk ,Mk )∑

k ′ p(k ′)p(θk ′ |Mk ′)p(x|θk ′ ,Mk ′)

I Model selection and averaging is to prevent overfitting and underfitting,
and are usually expense to compute.

I But reasonable and proper Bayesian methods should not overfit anyway
[Rasmussen and Ghahramani 2001].



Nonparametric Modelling

I What is a nonparametric model?

I A really large parametric model;
I A parametric model where the number of parameters increases

with data;
I A model over infinite dimensional function or measure spaces.
I A family of distributions that is dense in some large space.

I Why nonparametric models in Bayesian theory of learning?

I broad class of priors that allows data to “speak for itself”;
I side-step model selection and averaging.

I How do we deal with the very large parameter spaces?

I Marginalize out all but a finite number of parameters;
I Define infinite space implicitly (akin to the kernel trick) using either

Kolmogorov Consistency Theorem or de Finetti’s Theorem.



Gaussian Processes
I A Gaussian process (GP) is a random function f : X→ R such that for

any finite set of input points x1, . . . , xn,f (x1)
...

f (xn)

 ∼ N

m(x1)

...
m(xn)

 ,
c(x1, x1) . . . c(x1, xn)

...
. . .

...
c(xn, x1) . . . c(xn, xn)




where the parameters are the mean function m(x) and covariance
kernel c(x , y).

I Note: a random function f is a stochastic process. It is a collection of
random variables {f (x)}x∈X one for each possible input value x .

I Can also be expressed as

f (x) =
K∑

k=1

wkφk (x) as K →∞.

[Rasmussen and Williams 2006]



Posterior and Predictive Distributions

I How do we compute the posterior and predictive distributions?

I Training set (x1, y1), (x2, y2), . . . , (xn, yn) and test input xn+1.

I Out of the (uncountably infinitely) many random variables {f (x)}x∈X
making up the GP only n + 1 has to do with the data:

f (x1), f (x2), . . . , f (xn+1)

I Training data gives observations f (x1) = y1, . . . , f (xn) = yn. The
predictive distribution of f (xn+1) is simply

p(f (xn+1)|f (x1) = y1, . . . , f (xn) = yn)

which is easy to compute since f (x1), . . . , f (xn+1) is Gaussian.

I This can be generalized to noisy observations yi = f (xi ) + εi or non-linear
effects yi ∼ D(f (xi )) where D(θ) is a distribution parametrized by θ.



Consistency and Existence

I The definition of Gaussian processes only give finite dimensional
marginal distributions of the stochastic process.

I Fortunately these marginal distributions are consistent .

I For every finite set x ⊂ X we have a distinct distribution
px([f (x)]x∈x). These distributions are said to be consistent if

px([f (x)]x∈x) =

∫
px∪y([f (x)]x∈x∪y)d [f (x)]x∈y

for disjoint and finite x,y ⊂ X.
I The marginal distributions for the GP are consistent because

Gaussians are closed under marginalization.

I The Kolmogorov Consistency Theorem guarantees existence of GPs,
i.e. the whole stochastic process {f (x)}x∈X.

I Further information in Peter Orbanz’ Bayesian nonparametric
tutorial.
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Bayesian Mixture Models

I Let’s be Bayesian about mixture models, and place
priors over our parameters (and to compute
posteriors).

I First, introduce variable zi indicator which
component xi belongs to.

zi |π ∼ Multinomial(π)

xi |zi = k ,µ,Σ ∼ N (µk ,Σk )

I Second, introduce conjugate priors for parameters:

π ∼ Dirichlet(αK , . . . ,
α
K )

µk ,Σk = θ∗k ∼ H = N -IW(0, s,d ,Φ)

[Rasmussen 2000]

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K



Gibbs Sampling for Bayesian Mixture Models

I All conditional distributions are simple to compute:

p(zi = k |others) ∝ πkN (xi ;µk ,Σk )

π|z ∼ Dirichlet(αK + n1(z), . . . , αK + nK (z))

µk ,Σk |others ∼ N -IW(ν′, s′,d ′,Φ′)

I Not as efficient as collapsed Gibbs sampling which
integrates out π,µ,Σ:

p(zi = k |others) ∝
α
K + nk (z−i )

α + n − 1
×

p(xi |{xi′ : i ′ 6= i , zi′ = k})

I Demo: fm_demointeractive.

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K



Infinite Bayesian Mixture Models

I We will take K →∞.

I Imagine a very large value of K .

I There are at most n < K occupied components, so
most components are empty. We can lump these
empty components together:

Occupied clusters:

p(zi = k |others) ∝
α
K +nk (z−i )

n − 1 + α
p(xi |x−i

k )

Empty clusters:

p(zi = kempty|z−i ) ∝ αK−K∗
K

n − 1 + α
p(xi |{})

I Demo: dpm_demointeractive.

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K



Infinite Bayesian Mixture Models

I We will take K →∞.

I Imagine a very large value of K .

I There are at most n < K occupied components, so
most components are empty. We can lump these
empty components together:

Occupied clusters:

p(zi = k |others) ∝
α
K +nk (z−i )

n − 1 + α
p(xi |x−i

k )

Empty clusters:

p(zi = kempty|z−i ) ∝ αK−K∗
K

n − 1 + α
p(xi |{})

I Demo: dpm_demointeractive.

zi

π

α

H

i = 1, . . . , n

xi

θ∗k
k = 1, . . . ,K



Infinite Bayesian Mixture Models

I The actual infinite limit of finite mixture models does not make sense:
any particular component will get a mixing proportion of 0.

I In the Gibbs sampler we bypassed this by lumping empty clusters
together.

I Other better ways of making this infinite limit precise:

I Look at the prior clustering structure induced by the Dirichlet prior
over mixing proportions—Chinese restaurant process.

I Re-order components so that those with larger mixing proportions
tend to occur first, before taking the infinite limit—stick-breaking
construction.

I Both are different views of the Dirichlet process (DP).

I DPs can be thought of as infinite dimensional Dirichlet distributions.

I The K →∞ Gibbs sampler is for DP mixture models.
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A Tiny Bit of Measure Theoretic Probability Theory

I A σ-algebra Σ is a family of subsets of a set Θ such that

I Σ is not empty;
I If A ∈ Σ then Θ\A ∈ Σ;
I If A1,A2, . . . ∈ Σ then ∪∞i=1Ai ∈ Σ.

I (Θ,Σ) is a measure space and A ∈ Σ are the measurable sets.

I A measure µ over (Θ,Σ) is a function µ : Σ→ [0,∞] such that

I µ(∅) = 0;
I If A1,A2, . . . ∈ Σ are disjoint then µ(∪∞i=1Ai ) =

∑∞
i=1 µ(Ai ).

I Everything we consider here will be measurable.
I A probability measure is one where µ(Θ) = 1.

I Given two measure spaces (Θ,Σ) and (∆,Φ), a function f : Θ→ ∆ is
measurable if f−1(A) ∈ Σ for every A ∈ Φ.



A Tiny Bit of Measure Theoretic Probability Theory

I If p is a probability measure on (Θ,Σ), a random variable X taking
values in ∆ is simply a measurable function X : Θ→ ∆.

I Think of the probability space (Θ,Σ,p) as a black-box random
number generator, and X as a function taking random samples in Θ
and producing random samples in ∆.

I The probability of an event A ∈ Φ is p(X ∈ A) = p(X−1(A)).

I A stochastic process is simply a collection of random variables {Xi}i∈I
over the same measure space (Θ,Σ), where I is an index set.

I What distinguishes a stochastic process from, say, a graphical
model is that I can be infinite, even uncountably so.

I This raises issues of how do you even define them and how do you
ensure that they can even existence (mathematically speaking).

I Stochastic processes form the core of many Bayesian nonparametric
models.

I Gaussian processes, Poisson processes, gamma processes,
Dirichlet processes, beta processes...
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Dirichlet Distributions

I A Dirichlet distribution is a distribution over the K -dimensional probability
simplex:

∆K =
{

(π1, . . . , πK ) : πk ≥ 0,
∑

k πk = 1
}

I We say (π1, . . . , πK ) is Dirichlet distributed,

(π1, . . . , πK ) ∼ Dirichlet(λ1, . . . , λK )

with parameters (λ1, . . . , λK ), if

p(π1, . . . , πK ) =
Γ(
∑

k λk )∏
k Γ(λk )

n∏
k=1

πλk−1
k

I Equivalent to normalizing a set of independent gamma variables:

(π1, . . . , πK ) = 1P
k γk

(γ1, . . . , γK )

γk ∼ Gamma(λk ) for k = 1, . . . ,K



Dirichlet Distributions



Dirichlet Processes

I A Dirichlet Process (DP) is a random probability measure G over (Θ,Σ)
such that for any finite set of measurable partitions A1∪̇ . . . ∪̇AK = Θ,

(G(A1), . . . ,G(AK )) ∼ Dirichlet(λ(A1), . . . , λ(AK ))

where λ is a base measure.

6

A

A1

A A

A

A

2

3

4

5

I The above family of distributions is consistent (next slide), and
Kolmogorov Consistency Theorem can be applied to show existence (but
there are technical conditions restricting the generality of the definition).

[Ferguson 1973, Blackwell and MacQueen 1973]



Consistency of Dirichlet Marginals

I If we have two partitions (A1, . . . ,AK ) and (B1, . . . ,BJ) of Θ, how do we
see if the two Dirichlets are consistent?

I Because Dirichlet variables are normalized gamma variables and sums
of gammas are gammas, if (I1, . . . , Ij ) is a partition of (1, . . . ,K ),(∑

i∈I1 πi , . . . ,
∑

i∈Ij πi

)
∼ Dirichlet

(∑
i∈I1 λi , . . . ,

∑
i∈Ij λi

)



Consistency of Dirichlet Marginals

I Form the common refinement (C1, . . . ,CL) where each C` is the
intersection of some Ak with some Bj . Then:

By definition, (G(C1), . . . ,G(CL)) ∼ Dirichlet(λ(C1), . . . , λ(CL))

(G(A1), . . . ,G(AK )) =
(∑

C`⊂A1
G(C`), . . . ,

∑
C`⊂AK

G(C`)
)

∼ Dirichlet(λ(A1), . . . , λ(AK ))

Similarly, (G(B1), . . . ,G(BJ)) ∼ Dirichlet(λ(B1), . . . , λ(BJ))

so the distributions of (G(A1), . . . ,G(AK )) and (G(B1), . . . ,G(BJ)) are
consistent.

I Demonstration: DPgenerate.



Parameters of Dirichlet Processes
I Usually we split the λ base measure into two parameters λ = αH:

I Base distribution H, which is like the mean of the DP.
I Strength parameter α, which is like an inverse-variance of the DP.

I We write:

G ∼ DP(α,H)

if for any partition (A1, . . . ,AK ) of Θ:

(G(A1), . . . ,G(AK )) ∼ Dirichlet(αH(A1), . . . , αH(AK ))

I The first and second moments of the DP:

Expectation: E[G(A)] = H(A)

Variance: V[G(A)] =
H(A)(1− H(A))

α + 1

where A is any measurable subset of Θ.



Representations of Dirichlet Processes
I Draws from Dirichlet processes will always place all their mass on a

countable set of points:

G =
∞∑

k=1

πkδθ∗k

where
∑

k πk = 1 and θ∗k ∈ Θ.
I What is the joint distribution over π1, π2, . . . and θ∗1 , θ

∗
2 , . . .?

I Since G is a (random) probability measure over Θ, we can treat it as a
distribution and draw samples from it. Let

θ1, θ2, . . . ∼ G

be random variables with distribution G.
I What is the marginal distribution of θ1, θ2, . . . with G integrated out?
I There is positive probability that sets of θi ’s can take on the same

value θ∗k for some k , i.e. the θi ’s cluster together. How do these
clusters look like?

I For practical modelling purposes this is sufficient. But is this
sufficient to tell us all about G?



Stick-breaking Construction

G =
∞∑

k=1

πkδθ∗k

I There is a simple construction giving the joint distribution of π1, π2, . . .
and θ∗1 , θ

∗
2 , . . . called the stick-breaking construction.

θ∗k ∼ H

πk = vk

k−1∏
i=1

(1− vi )

vk ∼ Beta(1, α)

π

(4)π
(5)π

(2)π
(3)π

(6)π

(1)

I Also known as the GEM distribution, write π ∼ GEM(α).

[Sethuraman 1994]



Posterior of Dirichlet Processes

I Since G is a probability measure, we can draw samples from it,

G ∼ DP(α,H)

θ1, . . . , θn|G ∼ G

What is the posterior of G given observations of θ1, . . . , θn?

I The usual Dirichlet-multinomial conjugacy carries over to the
nonparametric DP as well:

G|θ1, . . . , θn ∼ DP(α + n, αH+
Pn

i=1 δθi
α+n )



Pólya Urn Scheme

θ1, θ2, . . . ∼ G

I The marginal distribution of θ1, θ2, . . . has a simple generative process
called the Pólya urn scheme.

θn|θ1:n−1 ∼ αH +
∑n−1

i=1 δθi

α + n − 1

I Picking balls of different colors from an urn:

I Start with no balls in the urn.
I with probability ∝ α, draw θn ∼ H, and add a ball of color θn into urn.
I With probability ∝ n − 1, pick a ball at random from the urn, record
θn to be its color and return two balls of color θn into urn.

I Pólya urn scheme is like a “representer” for the DP—a finite projection of
an infinite object G.

I Also known as the Blackwell-MacQueen urn scheme.

[Blackwell and MacQueen 1973]



Chinese Restaurant Process

I θ1, . . . , θn take on K < n distinct values, say θ∗1 , . . . , θ
∗
K .

I This defines a partition of (1, . . . ,n) into K clusters, such that if i is in
cluster k , then θi = θ∗k .

I The distribution over partitions is a Chinese restaurant process (CRP).

I Generating from the CRP:

I First customer sits at the first table.
I Customer n sits at:

I Table k with probability nk
α+n−1 where nk is the number of customers

at table k .
I A new table K + 1 with probability α

α+n−1 .
I Customers⇔ integers, tables⇔ clusters.

9
1

2
3

4 5
6 7

8



Chinese Restaurant Process

0 2000 4000 6000 8000 100000
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100
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200

customer

ta
bl

e

!=30, d=0

I The CRP exhibits the clustering property of the DP.

I Rich-gets-richer effect implies small number of large clusters.
I Expected number of clusters is K = O(α log n).



Exchangeability

I Instead of deriving the Pólya urn scheme by marginalizing out a DP,
consider starting directly from the conditional distributions:

θn|θ1:n−1 ∼ αH +
∑n−1

i=1 δθi

α + n − 1

I For any n, the joint distribution of θ1, . . . , θn is:

p(θ1, . . . , θn) =
αK ∏K

k=1 h(θ∗k )(mnk − 1)!∏n
i=1 i − 1 + α

where h(θ) is density of θ under H, θ∗1 , . . . , θ
∗
K are the unique values, and

θ∗k occurred mnk times among θ1, . . . , θn.

I The joint distribution is exchangeable wrt permutations of θ1, . . . , θn.

I De Finetti’s Theorem says that there must be a random probability
measure G making θ1, θ2, . . . iid. This is the DP.



De Finetti’s Theorem
Let θ1, θ2, . . . be an infinite sequence of random variables with joint
distribution p. If for all n ≥ 1, and all permutations σ ∈ Σn on n objects,

p(θ1, . . . , θn) = p(θσ(1), . . . , θσ(n))

That is, the sequence is infinitely exchangeable. Then there exists a (unique)
latent random parameter G such that:

p(θ1, . . . , θn) =

∫
p(G)

n∏
i=1

p(θi |G)dG

where ρ is a joint distribution over G and θi ’s.

I θi ’s are independent given G.

I Sufficient to define G through the conditionals p(θn|θ1, . . . , θn−1).

I G can be infinite dimensional (indeed it is often a random measure).

I The set of infinitely exchangeable sequences is convex and it is an
important theoretical topic to study the set of extremal points.

I Partial exchangeability: Markov, group, arrays,...
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Binary Latent Variable Models

I Consider a latent variable model with binary sources/features,

zik =

{
1 with probability µk ;
0 with probability 1− µk .

I Example: Data items could be movies like “Terminator 2”, “Shrek” and
“Lord of the Rings”, and features could be “science fiction”, “fantasy”,
“action” and “Arnold Schwarzenegger”.

I Place beta prior over the probabilities of features:

µk ∼ Beta(αK ,1)

I We will again take K →∞.



Indian Buffet Processes
I The Indian Buffet Process (IBP) is akin to the Chinese restaurant

process but describes each customer with a binary vector instead of
cluster.

I Generating from an IBP:

I Parameter α.
I First customer picks Poisson(α) dishes to eat.
I Subsequent customer i picks dish k with probability mk

i ; and picks
Poisson(αi ) new dishes.

Tables

C
u

s
to

m
e

rs

Dishes

C
u

s
to

m
e

rs



Indian Buffet Processes and Exchangeability

I The IBP is infinitely exchangeable. For this to make sense, we need to
“forget” the ordering of the dishes.

I “Name” each dish k with a Λ∗k drawn iid from H.
I Each customer now eats a set of dishes: Ψi = {Λ∗k : zik = 1}.
I The joint probability of Ψ1, . . . ,Ψn can be calculated:

p(Ψ1, . . . ,Ψn) = exp

(
−α

n∑
i=1

1
i

)
αK

K∏
k=1

(mk − 1)!(n −mk )!

n!
h(Λ∗k )

K : total number of dishes tried by n customers.
Λ∗k : Name of k th dish tried.
mk : number of customers who tried dish Λ∗k .

I De Finetti’s Theorem again states that there is some random measure
underlying the IBP.

I This random measure is the beta process.

[Griffiths and Ghahramani 2006, Thibaux and Jordan 2007]



Beta Processes

I A beta process B ∼ BP(c, αH) is a random discrete measure with form:

B =
∞∑

k=1

µkδθ∗k

where the points P = {(θ∗1 , µ1), (θ∗2 , µ2), . . .} are spikes in a 2D Poisson
process with rate measure:

cµ−1(1− µ)c−1dµαH(dθ)

I The beta process with c = 1 is the de Finetti measure for the IBP. When
c 6= 1 we have a two parameter generalization of the IBP.

I This is an example of a completely random measure.

I A beta process does not have Beta distributed marginals.

[Hjort 1990, Ghahramani et al. 2007]



Stick-breaking Construction for Beta Processes

I When c = 1 it was shown that the following generates a draw of B:

vk ∼ Beta(1, α) µk = (1− vk )
k−1∏
i=1

(1− vi ) θ∗k ∼ H

B =
∞∑

k=1

µkδθ∗k

I The above is the complement of the stick-breaking construction for DPs!

π

(4)π
(3)µ

(6)µ

(1)µ
(2)µ

(4)µ
(5)µ

(5)π

(2)π
(3)π

(6)π

(1)

[Teh et al. 2007]



Applications of Indian Buffet Processes

I The IBP can be used in concert with different likelihood models in a
variety of applications.

Z ∼ IBP(α) X ∼ F (Z ,Y )

Y ∼ H p(Z ,Y |X ) =
p(Z ,Y )p(X |Z ,Y )

p(X )

I Latent factor models for distributed representation [Griffiths and
Ghahramani 2005].

I Matrix factorization for collaborative filtering [Meeds et al 2007].

I Latent causal discovery for medical diagnostics [Wood et al 2006].

I Protein complex discovery [Chu et al 2006].

I Psychological choice behaviour [Görür and Rasmussen 2006].

I Independent Components Analysis [Knowles and Ghahramani 2007].



Infinite Independent Components Analysis

I Each image Xi is a linear combination of sparse features:

Xi =
∑

k

Λ∗k yik

where yik is activity of feature k with sparse prior. One possibility is a
mixture of a Gaussian and a point mass at 0:

yik = zik aik aik ∼ N (0,1) Z ∼ IBP(α)

I An ICA model with infinite number of features.

[Knowles and Ghahramani 2007]
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Topic Modelling with Latent Dirichlet Allocation

I Infer topics from a document corpus, topics
being sets of words that tend to co-occur
together.

I Using (Bayesian) latent Dirichlet allocation:

πj ∼ Dirichlet(αK , . . . ,
α
K )

θk ∼ Dirichlet( βW , . . . , βW )

zji |πj ∼ Multinomial(πj )

xji |zji ,θzji ∼ Multinomial(θzji )

I Can we take K →∞?

topics k=1...K

document j=1...D

words i=1...nd

πj

zji

xji θk



Hierarchical Dirichlet Processes



Hierarchical Dirichlet Processes

I Use a DP mixture for each group.

I Unfortunately there is no sharing of clusters
across different groups because H is smooth.

I Solution: make the base distribution H discrete.

I Put a DP prior on the common base distribution.

[Teh et al. 2006]

H

1i

1ix

θ

G1 G

x

θ

2

2i

2i



Hierarchical Dirichlet Processes

I A hierarchical Dirichlet process:

G0 ∼ DP(α0,H)

G1,G2|G0 ∼ DP(α,G0) iid

I Extension to larger hierarchies is straightforward. 1i

1ix
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x

θ
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Hierarchical Dirichlet Processes

I Making G0 discrete forces shared cluster between G1 and G2.



Hierarchical Dirichlet Processes

I Document topic modelling:

I Allows documents to be modelled with DP mixtures of topics, with
topics shared across corpora.

I Infinite hidden Markov modelling:

I Allows HMMs with an infinite number of states, with transitions from
each allowable state to every other allowable state.

I Learning discrete structures from data:

I Determining number of objects, nonterminals, states etc.



Infinite Hidden Markov Models

z0 z1 z2 zτ

x1 x2 xτ

β πk

θ∗k
∞

β ∼ GEM(γ) πk |β ∼ DP(α,β) zi |zi−1,πzi−1 ∼ Multinomial(πzi−1 )

θ∗k ∼ H xi |zi , θ
∗
zi
∼ F (θ∗zi

)

I Hidden Markov models with an infinite number of states.

I Hierarchical DPs used to share information among transition probability
vectors prevents “run-away” states.

[Beal et al. 2002, Teh et al. 2006]



Hierarchical Modelling

i=1...n2

φ2

x2i

i=1...n3

φ3

x3i

i=1...n1

φ1

x1i

I Better estimation of parameters.

I Multitask learning, learning to learn: generalizing across related tasks.
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I Better estimation of parameters.
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Pitman-Yor Processes

I Two-parameter generalization of the Chinese restaurant process:

p(customer n sat at table k |past) =

{
nk−β

n−1+α if occupied table
α+βK
n−1+α if new table

I Associating each cluster k with a unique draw θ∗k ∼ H, the
corresponding Pólya urn scheme is also exchangeable.

I De Finetti’s Theorem states that there is a random measure underlying
this two-parameter generalization.

I This is the Pitman-Yor process.

I The Pitman-Yor process also has a stick-breaking construction:

πk = vk

k−1∏
i=1

(1− vi ) βk ∼ Beta(1− β, α + βk) θ∗k ∼ H G =
∞∑

k=1

πkδθ∗k

[Pitman and Yor 1997, Perman et al. 1992]



Pitman-Yor Processes

I Two salient features of the Pitman-Yor process:

I With more occupied tables, the chance of even more tables
becomes higher.

I Tables with smaller occupancy numbers tend to have lower chance
of getting new customers.

I The above means that Pitman-Yor processes produce Zipf’s Law type
behaviour, with K = O(αnβ).
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Pitman-Yor Processes

Draw from a Pitman-Yor process
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Hierarchical Pitman-Yor Language Models

I Pitman-Yor processes can be suitable models for many natural
phenomena with power-law statistics.

I Language modelling with Markov assumption:

p(Mary has a little lamb)

≈p(Mary)p(has|Mary)p(a|Mary has)p(little|has a)p(lamb|a little)

I Parameterize with p(w3|w1,w2) = Gw1,w2 [w3] and use a hierarchical
Pitman-Yor process prior:

Gw1,w2 |Gw2 ∼ PY(α2, β2,Gw2 )

Gw2 |G∅ ∼ PY(α1, β1,G∅)
G∅|U ∼ PY(α0, β0,U)

I State-of-the-art results, connection to Kneser-Ney smoothing.

[Goldwater et al. 2006a, Teh 2006b, Wood et al. 2009]



Image Segmentation with Pitman-Yor Processes

I Human segmentations of images also seem to follow power-law.

I An unsupervised image segmentation model based on dependent
hierarchical Pitman-Yor processes achieves state-of-the-art results.

[Sudderth and Jordan 2009]
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Summary
I Motivation for Bayesian nonparametrics:

I Allows practitioners to define and work with models with large
support, sidesteps model selection.

I New models with useful properties.
I Large variety of applications.

I Various standard Bayesian nonparametric models:
I Dirichlet processes
I Hierarchical Dirichlet processes
I Infinite hidden Markov models
I Indian buffet and beta processes
I Pitman-Yor processes

I Touched upon two important theoretical tools:
I Consistency and Kolmogorov’s Consistency Theorem
I Exchangeability and de Finetti’s Theorem

I Described a number of applications of Bayesian nonparametrics.

I Missing: Inference methods based on MCMC, variational etc,
consistency and convergence.



Other Introductions to Bayesian Nonparametrics

I Zoubin Gharamani, UAI 2005 Tutorial.

I Michael Jordan, NIPS 2005 Tutorial.

I Volker Tresp, ICML nonparametric Bayes workshop 2006.

I Peter Orbanz, Foundations of Nonparametric Bayesian Methods, 2009.

I I have given a number myself (check webpage).

I I have an introduction to Dirichlet processes [Teh 2007], and another to
hierarchical Bayesian nonparametric models [Teh and Jordan 2010].



Bayesian Nonparametric Software

I Hierarchical Bayesian Compiler (HBC). Hal Daume III.
http://www.cs.utah.edu/ hal/HBC/

I DPpackage. Alejandro Jara.
http://cran.r-project.org/web/packages/DPpackage/index.html

I Hierarchical Pitman Yor Language Model. Songfang Huang.
http://homepages.inf.ed.ac.uk/s0562315/progs/index.html

I Nonparametric Bayesian Mixture Models. Yee Whye Teh.
http://www.gatsby.ucl.ac.uk/ ywteh/research/software.html

I Others...
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Representations of Dirichlet Processes
I Posterior Dirichlet process:

G ∼ DP(α,H)

θ|G ∼ G
⇐⇒

θ ∼ H

G|θ ∼ DP
(
α + 1, αH+δθ

α+1

)
I Pólya urn scheme:

θn|θ1:n−1 ∼ αH +
∑n−1

i=1 δθi

α + n − 1

I Chinese restaurant process:

p(customer n sat at table k |past) =

{
nk

n−1+α if occupied table
α

n−1+α if new table

I Stick-breaking construction:

πk = βk

k−1∏
i=1

(1− βi ) βk ∼ Beta(1, α) θ∗k ∼ H G =
∞∑

k=1

πkδθ∗k



Posterior Dirichlet Processes

I Suppose G is DP distributed, and θ is G distributed:

G ∼ DP(α,H)

θ|G ∼ G

I We are interested in:

I The marginal distribution of θ with G integrated out.
I The posterior distribution of G conditioning on θ.



Posterior Dirichlet Processes

Conjugacy between Dirichlet Distribution and Multinomial.

I Consider:

(π1, . . . , πK ) ∼ Dirichlet(α1, . . . , αK )

z|(π1, . . . , πK ) ∼ Discrete(π1, . . . , πK )

z is a multinomial variate, taking on value i ∈ {1, . . . ,n} with probability
πi .

I Then:

z ∼ Discrete
(

α1P
i αi
, . . . , αKP

i αi

)
(π1, . . . , πK )|z ∼ Dirichlet(α1 + δ1(z), . . . , αK + δK (z))

where δi (z) = 1 if z takes on value i , 0 otherwise.

I Converse also true.



Posterior Dirichlet Processes
I Fix a partition (A1, . . . ,AK ) of Θ. Then

(G(A1), . . . ,G(AK )) ∼ Dirichlet(αH(A1), . . . , αH(AK ))

P(θ ∈ Ai |G) = G(Ai )

I Using Dirichlet-multinomial conjugacy,

P(θ ∈ Ai ) = H(Ai )

(G(A1), . . . ,G(AK ))|θ ∼ Dirichlet(αH(A1)+δθ(A1), . . . , αH(AK )+δθ(AK ))

I The above is true for every finite partition of Θ. In particular, taking a
really fine partition,

p(dθ) = H(dθ)

i.e. θ ∼ H with G integrated out.
I Also, the posterior G|θ is also a Dirichlet process:

G|θ ∼ DP
(
α + 1,

αH + δθ
α + 1

)



Posterior Dirichlet Processes

G ∼ DP(α,H)

θ|G ∼ G
⇐⇒

θ ∼ H

G|θ ∼ DP
(
α + 1, αH+δθ

α+1

)



Pólya Urn Scheme

I First sample:
θ1|G ∼ G G ∼ DP(α,H)

⇐⇒ θ1 ∼ H G|θ1 ∼ DP(α + 1, αH+δθ1
α+1 )

I Second sample:
θ2|θ1,G ∼ G G|θ1 ∼ DP(α + 1, αH+δθ1

α+1 )

⇐⇒ θ2|θ1 ∼ αH+δθ1
α+1 G|θ1, θ2 ∼ DP(α + 2, αH+δθ1 +δθ2

α+2 )

I nth sample

θn|θ1:n−1,G ∼ G G|θ1:n−1 ∼ DP(α + n − 1, αH+
Pn−1

i=1 δθi
α+n−1 )

⇐⇒ θn|θ1:n−1 ∼ αH+
Pn−1

i=1 δθi
α+n−1 G|θ1:n ∼ DP(α + n, αH+

Pn
i=1 δθi

α+n )



Stick-breaking Construction
I Returning to the posterior process:

G ∼ DP(α,H)

θ|G ∼ G
⇔

θ ∼ H

G|θ ∼ DP(α + 1, αH+δθ
α+1 )

I Consider a partition (θ,Θ\θ) of Θ. We have:

(G(θ),G(Θ\θ))|θ ∼ Dirichlet((α + 1)αH+δθ
α+1 (θ), (α + 1)αH+δθ

α+1 (Θ\θ))

= Dirichlet(1, α)

I G has a point mass located at θ:

G = βδθ + (1− β)G′ with β ∼ Beta(1, α)

and G′ is the (renormalized) probability measure with the point mass
removed.

I What is G′?



Stick-breaking Construction
I Currently, we have:

G ∼ DP(α,H)

θ ∼ G
⇒

θ ∼ H

G|θ ∼ DP(α + 1, αH+δθ
α+1 )

G = βδθ + (1− β)G′

β ∼ Beta(1, α)

I Consider a further partition (θ,A1, . . . ,AK ) of Θ:

(G(θ),G(A1), . . . ,G(AK ))

=(β, (1− β)G′(A1), . . . , (1− β)G′(AK ))

∼Dirichlet(1, αH(A1), . . . , αH(AK ))

I The agglomerative/decimative property of Dirichlet implies:

(G′(A1), . . . ,G′(AK ))|θ ∼ Dirichlet(αH(A1), . . . , αH(AK ))

G′ ∼ DP(α,H)



Stick-breaking Construction
I We have:

G ∼ DP(α,H)

G = β1δθ∗1 + (1− β1)G1

G = β1δθ∗1 + (1− β1)(β2δθ∗2 + (1− β2)G2)

...

G =
∞∑

k=1

πkδθ∗k

where

πk = βk
∏k−1

i=1 (1− βi ) βk ∼ Beta(1, α) θ∗k ∼ H

π

(4)π
(5)π

(2)π
(3)π

(6)π

(1)
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Stick-breaking Construction

I We shall assume the following HDP hierarchy:

G0 ∼ DP(γ,H)

Gj |G0 ∼ DP(α,G0) for j = 1, . . . , J

I The stick-breaking construction for the HDP is:

G0 =
∑∞

k=1 π0kδθ∗k θ∗k ∼ H

π0k = β0k
∏k−1

l=1 (1− β0l ) β0k ∼ Beta
(
1, γ
)

Gj =
∑∞

k=1 πjkδθ∗k

πjk = βjk
∏k−1

l=1 (1− βjl ) βjk ∼ Beta
(
αβ0k , α(1−∑k

l=1 β0l )
)



Hierarchical Pòlya Urn Scheme

I Let G ∼ DP(α,H).

I We can visualize the Pòlya urn scheme as follows:

2

1θ θ θ θ θ θ

θ∗θ∗θ∗θ∗θ∗
1θ∗ . . . . .

. . . . .θ2 3 4 5 6 7

6543

where the arrows denote to which θ∗k each θi was assigned and

θ1, θ2, . . . ∼ G i.i.d.
θ∗1 , θ

∗
2 , . . . ∼ H i.i.d.

(but θ1, θ2, . . . are not independent of θ∗1 , θ
∗
2 , . . .).



Hierarchical Pòlya Urn Scheme

I Let G0 ∼ DP(γ,H) and G1,G2|G0 ∼ DP(α,G0).

I The hierarchical Pòlya urn scheme to generate draws from G1,G2:

21θ θ θ θ θ

θ∗θ∗θ∗θ∗θ∗θ∗ . . . . .

. . . . .θ

11 12 13 14 15 16

11 12 13 14 15 θ16 17

θ∗θ∗θ∗θ∗θ∗θ∗ . . . . .21 22 23 24 25 26

θ∗θ∗θ∗θ∗θ∗θ∗ . . . . .01 02 03 0504 06

θ θ θ θ . . . . .θ θ θ272625242322



Chinese Restaurant Franchise

I Let G0 ∼ DP(γ,H) and G1,G2|G0 ∼ DP(α,G0).

I The Chinese restaurant franchise describes the clustering of data items
in the hierarchy:
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Bibliography I
Dirichlet Processes and Beyond in Machine Learning
Dirichlet Processes were first introduced by [Ferguson 1973], while [Antoniak 1974] further developed DPs as well as introduce
the mixture of DPs. [Blackwell and MacQueen 1973] showed that the Pólya urn scheme is exchangeable with the DP being its de
Finetti measure. Further information on the Chinese restaurant process can be obtained at [Aldous 1985, Pitman 2002]. The DP
is also related to Ewens’ Sampling Formula [Ewens 1972]. [Sethuraman 1994] gave a constructive definition of the DP via a
stick-breaking construction. DPs were rediscovered in the machine learning community by [Neal 1992, Rasmussen 2000].

Hierarchical Dirichlet Processes (HDPs) were first developed by [Teh et al. 2006], although an aspect of the model was first
discussed in the context of infinite hidden Markov models [Beal et al. 2002]. HDPs and generalizations have been applied across
a wide variety of fields.
Dependent Dirichlet Processes are sets of coupled distributions over probability measures, each of which is marginally DP
[MacEachern et al. 2001]. A variety of dependent DPs have been proposed in the literature since then
[Srebro and Roweis 2005, Griffin 2007, Caron et al. 2007]. The infinite mixture of Gaussian processes of
[Rasmussen and Ghahramani 2002] can also be interpreted as a dependent DP.
Indian Buffet Processes (IBPs) were first proposed in [Griffiths and Ghahramani 2006], and extended to a two-parameter family
in [Ghahramani et al. 2007]. [Thibaux and Jordan 2007] showed that the de Finetti measure for the IBP is the beta process of
[Hjort 1990], while [Teh et al. 2007] gave a stick-breaking construction and developed efficient slice sampling inference algorithms
for the IBP.
Nonparametric Tree Models are models that use distributions over trees that are consistent and exchangeable. [Blei et al. 2004]
used a nested CRP to define distributions over trees with a finite number of levels. [Neal 2001, Neal 2003] defined Dirichlet
diffusion trees, which are binary trees produced by a fragmentation process. [Teh et al. 2008] used Kingman’s coalescent
[Kingman 1982b, Kingman 1982a] to produce random binary trees using a coalescent process. [Roy et al. 2007] proposed
annotated hierarchies, using tree-consistent partitions first defined in [Heller and Ghahramani 2005] to model both relational and
featural data.

Markov chain Monte Carlo Inference algorithms are the dominant approaches to inference in DP mixtures. [Neal 2000] is a
good review of algorithms based on Gibbs sampling in the CRP representation. Algorithm 8 in [Neal 2000] is still one of the best
algorithms based on simple local moves. [Ishwaran and James 2001] proposed blocked Gibbs sampling in the stick-breaking
representation instead due to the simplicity in implementation. This has been further explored in [Porteous et al. 2006]. Since
then there has been proposals for better MCMC samplers based on proposing larger moves in a Metropolis-Hastings framework
[Jain and Neal 2004, Liang et al. 2007a], as well as sequential Monte Carlo [Fearnhead 2004, Mansingkha et al. 2007].
Other Approximate Inference Methods have also been proposed for DP mixture models. [Blei and Jordan 2006] is the first
variational Bayesian approximation, and is based on a truncated stick-breaking representation. [Kurihara et al. 2007] proposed an



Bibliography II
Dirichlet Processes and Beyond in Machine Learning

improved VB approximation based on a better truncation technique, and using KD-trees for extremely efficient inference in large
scale applications. [Kurihara et al. 2007] studied improved VB approximations based on integrating out the stick-breaking
weights. [Minka and Ghahramani 2003] derived an expectation propagation based algorithm. [Heller and Ghahramani 2005]
derived tree-based approximation which can be seen as a Bayesian hierarchical clustering algorithm. [Daume III 2007] developed
admissible search heuristics to find MAP clusterings in a DP mixture model.

Computer Vision and Image Processing. HDPs have been used in object tracking
[Fox et al. 2006, Fox et al. 2007b, Fox et al. 2007a]. An extension called the transformed Dirichlet process has been used in
scene analysis [Sudderth et al. 2006b, Sudderth et al. 2006a, Sudderth et al. 2008], a related extension has been used in fMRI
image analysis [Kim and Smyth 2007, Kim 2007]. An extension of the infinite hidden Markov model called the nonparametric
hidden Markov tree has been introduced and applied to image denoising [Kivinen et al. 2007a, Kivinen et al. 2007b].
Natural Language Processing. HDPs are essential ingredients in defining nonparametric context free grammars
[Liang et al. 2007b, Finkel et al. 2007]. [Johnson et al. 2007] defined adaptor grammars, which is a framework generalizing both
probabilistic context free grammars as well as a variety of nonparametric models including DPs and HDPs. DPs and HDPs have
been used in information retrieval [Cowans 2004], word segmentation [Goldwater et al. 2006b], word morphology modelling
[Goldwater et al. 2006a], coreference resolution [Haghighi and Klein 2007], topic modelling
[Blei et al. 2004, Teh et al. 2006, Li et al. 2007]. An extension of the HDP called the hierarchical Pitman-Yor process has been
applied to language modelling [Teh 2006a, Teh 2006b, Goldwater et al. 2006a].[Savova et al. 2007] used annotated hierarchies to
construct syntactic hierarchies. Theses on nonparametric methods in NLP include [Cowans 2006, Goldwater 2006].
Other Applications. Applications of DPs, HDPs and infinite HMMs in bioinformatics include
[Xing et al. 2004, Xing et al. 2007, Xing et al. 2006, Xing and Sohn 2007a, Xing and Sohn 2007b]. DPs have been applied in
relational learning [Shafto et al. 2006, Kemp et al. 2006, Xu et al. 2006], spike sorting [Wood et al. 2006a, Görür 2007]. The HDP
has been used in a cognitive model of categorization [Griffiths et al. 2007]. IBPs have been applied to infer hidden causes
[Wood et al. 2006b], in a choice model [Görür et al. 2006], to modelling dyadic data [Meeds et al. 2007], to overlapping clustering
[Heller and Ghahramani 2007], and to matrix factorization [Wood and Griffiths 2006].
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