Mathematica® Tutorial

- A. **Basic mechanics:** Opening, saving and closing *Mathematica*[®] notebooks will be demonstrated, as well as the notion of a 'cell' and the different types of writing formats that are available. Note that if you ever have questions about *Mathematica*[®], it is typically very efficient to google your question.
- B. *Mathematica*® as a calculator: Type the following and *Mathematica*® will evaluate the cell when you press 'shift' and 'enter' simultaneously:

```
5+10
Sin[0]
FactorInteger[260]
Max[5,7,2]
```

Note that *Mathematica*® functions are capitalized and arguments are always enclosed within square brackets.

C. Understanding *Mathematica*®, s memory for variables.

Type in the following line and evaluate it:

k

In a new cell, type in the following line and evaluate it:

k=4

Now go back to the first cell and evaluate that.

There are two ways to clear variables. In a new cell, type:

Clear[k]

(Now re-evaluate the first cell.)

Often, *Mathematica*[®] just starts acting strange, and you want to clear all the variables! Then, navigate to kernel and click 'quit'. It is like starting over with a new worksheet, without having to type anything again.

D. Recursive functions

(1) To build a recursive function in *Mathematica*®, first define the initial conditions:

$$f[1] = 1$$

Then define the recursive function using the following syntax:

Your recursive function has now been defined, and you can calculate any term in the sequence: **f[5]**

What are the 1st 5 terms of this sequence?

(2) This is the Fibonnaci sequence: $\{1, 1, 2, 3, 5, 8, ...\}$. It is built by specifying the initial conditions F(1)=1 and F(2)=1, and then subsequent terms are the sum of the two previous terms. Build this function in *Mathematica*[®]. What is the 100^{th} term of the Fibonacci sequence?_____

E. One of the more recent features...

Consider a simple function with a parameters, such as $f(x) = b^x$.

(1) You can plot the function for a particular value of b:

(2) You can plot the function for multiple values of *b*:

(3) Or you can build a graphic that manipulates the value of b:

Manipulate[Plot[
$$b^x, \{x,-5,5\}$$
], $\{b,0.1,2\}$]

F. Tables and Arrays:

(1) Note that the plot function won't work for negative values of b:

(2) We want to instruct $Mathematica^{\otimes}$ to only consider integer values of x, which can be done within an array or table:

(3) Tables can be plotted with the ListPlot function:

(4) And manipulate can be combined with most any graphic function: