Mathematica ${ }^{\circledR}$ Tutorial

A. Basic mechanics: Opening, saving and closing Mathematica ${ }^{\circledR}$ notebooks will be demonstrated, as well as the notion of a 'cell' and the different types of writing formats that are available. Note that if you ever have questions about Mathematica ${ }^{\circledR}$, it is typically very efficient to google your question.
B. Mathematica ${ }^{\circledR}$ as a calculator: Type the following and Mathematica ${ }^{\circledR}$ will evaluate the cell when you press 'shift' and 'enter' simultaneously:

```
5+10
Sin[0]
FactorInteger[260]
Max[5,7,2]
```

Note that Mathematica ${ }^{\circledR}$ functions are capitalized and arguments are always enclosed within square brackets.

C. Understanding Mathematica ${ }^{\circledR,}$ s memory for variables.

Type in the following line and evaluate it: k

In a new cell, type in the following line and evaluate it:
$\mathrm{k}=4$
Now go back to the first cell and evaluate that.
There are two ways to clear variables. In a new cell, type:
Clear[k]
(Now re-evaluate the first cell.)
Often, Mathematica ${ }^{\circledR}$ just starts acting strange, and you want to clear all the variables! Then, navigate to kernel and click 'quit'. It is like starting over with a new worksheet, without having to type anything again.

D. Recursive functions

(1) To build a recursive function in Mathematica ${ }^{\circledR}$, first define the initial conditions: $\mathrm{f}[1]=1$

Then define the recursive function using the following syntax:
$\mathrm{f}[\mathrm{n}]$: $=\mathrm{n}$ * $\mathrm{f}[\mathrm{n}-1]$
Your recursive function has now been defined, and you can calculate any term in the sequence: f[5]

What are the $1^{\text {st }} 5$ terms of this sequence? \qquad
(2) This is the Fibonnaci sequence: $\{1,1,2,3,5,8, \ldots\}$. It is built by specifying the initial conditions $F(1)=1$ and $F(2)=1$, and then subsequent terms are the sum of the two previous terms. Build this function in Mathematica ${ }^{\circledR}$. What is the $100^{\text {th }}$ term of the Fibonacci sequence? \qquad

E. One of the more recent features...

Consider a simple function with a parameters, such as $f(x)=b^{x}$.
(1) You can plot the function for a particular value of b :

Plot[0.5^x,\{x,-5,5\}]
(2) You can plot the function for multiple values of b :

Plot[\{0.5^x,1^x,1.5^x\},\{x,-5,5\}]
(3) Or you can build a graphic that manipulates the value of b :

Manipulate[Plot[b^x,\{ $x,-5,5\}],\{b, 0.1,2\}]$

F. Tables and Arrays:

(1) Note that the plot function won't work for negative values of b :
$\operatorname{Plot}\left[\left\{(-0.5)^{\wedge} \mathbf{x}, 1^{\wedge} \mathbf{x}, 1.5^{\wedge} \mathbf{x}\right\},\{x,-5,5\}\right]$
(2) We want to instruct Mathematica ${ }^{\circledR}$ to only consider integer values of x, which can be done within an array or table:
Table[5^x, $\{x,-5,5\}]$
(3) Tables can be plotted with the ListPlot function:

ListPlot[Table[5^x, \{x, -5, 5\}], PlotJoined -> True]
(4) And manipulate can be combined with most any graphic function:

ListPlot[Table[b^x, \{x, -5, 5\}], PlotJoined -> True], $\{b,-5,5\}]$

