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Chapter 1

Angles

Angles measure “turning”. Counterclockwise turns are described by positive angles, and
clockwise turns negative angles.

Angles are described as a rotation taking one ray (called the ‘initial side’) to another ray
(called the ‘terminal side’).

Example 1.1: A positive angle θ.

ini
tia
l s
ide

terminal side

θ

Example 1.2: A negative angle φ.

ini
tia
l s
ide

terminal side

φ

Notice that, though they have the same initial and terminal sides, θ and φ are different
angles.

Definition: An angle is in standard position if its initial side is along the

positive x-axis.

Example 1.3: Below is the angle θ from example 1.1 in standard position.
(Same rotation, different initial and terminal sides.)

initial side

term
in
al

sid
e

θ
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The x and y axes divide the plane into four quadrants. If an angle is in standard
position, then its terminal side determines what quadrant the angle is in. For instance θ
from example 1.3 is in quadrant II.

Quadrant IQuadrant II

Quadrant III Quadrant IV

1.1 Degrees and Radians

There are two main units used to measure angles. In degrees a single, complete, counter-
clockwise rotation is 360◦. In radians it is 2π.

θ = 360◦ = 2π (radians)

Thus a positive one quarter rotation would be: 1
4
360◦ = 90◦ = 1

4
2π = π

2

While a backwards one half rotation would be: −1
2
360◦ = −180◦ = −1

2
2π = −π

90◦ = π
2 −180◦ = −π
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Draw the following angles in standard position.

5π
2 −135◦ 3 (radians)

When changing from degrees to radians or vice versa just remember that degrees/360 is
the same fraction of a circle as radians/2π. So if an angle is x degrees and y radians, then:

x◦

360◦
=

y

2π

Solving we have the formulas:

x◦ =
180◦

π
y and y =

πx◦

180◦

Example 1.4: What is 45◦ in radians?

y =
π45◦

180◦
=

Example 1.5: What is 3π
2
in degrees?

x◦ =

Example 1.6: Approximately what is 1 radian in degrees?

Solution:

x◦ =
180◦

π
1 ≈ 57.3◦
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1.1.1 Co-terminal Angles

Definition: Two angles are said to be co-terminal if, when in standard

position, they have the same terminal side.

Example 1.7: The three angles below are co-terminal.

If measured in degrees then the angles θ and φ are co-terminal if and only if:

θ = φ+ 360◦n for some integer n.

If measured in radians then the angles θ and φ are co-terminal if and only if:

θ = φ+ 2πn for some integer n.

Example 1.8: Write three positive angles and three negative angles co-
terminal to 110◦.
Solution:

110◦+ 0◦ = 110◦

110◦+ 360◦ = 470◦

110◦+ 2 · 360◦ = 830◦

110◦− 360◦ = −250◦

110◦− 2 · 360◦ = −610◦

110◦− 3 · 360◦ = −970◦

8



Example 1.9: Write three positive angles and three negative angles co-
terminal to 7π

6
.

Notice we can also tell if two given angles are co-terminal since we know φ and θ are
co-terminal if and only if φ− θ = 360◦n (or 2πn if in radians).

Example 1.10: Determine which, if any, of the angles below are co-terminal.

220◦, 600◦,−500◦

Solution:

220◦ − 600◦ = −380◦ 6= 360◦n so 220◦ and 600◦ are not co-terminal.

What about the others?
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1.1.2 Practice

Practice Problems (with solutions)

1. Draw the following angles (the turn-
ings, not just the terminal side).

(a) 2π
3

(b) −3π
4

(c) 19π
8

2. Convert the following angles measured
in degrees to angles measured in radi-
ans.

(a) 225◦ (b) −150◦ (c) 630◦

3. Convert the following angles measured
in radians to angles measured in de-
grees.

(a) 3π
4

(b) −7π
6

(c) 8

4. The measure of an angle in standard
position is given. Find two positive and
two negative angles that are co-terminal
to the given angle.

(a) 80◦ (b) −7π
3

5. Determine whether the angles are co-
terminal.

(a) 50◦ and 770◦.

(b) −40◦ and 320◦.

(c) −150◦ and 440◦.

(d) 17π
3

and 29π
3
.

Homework 1.1

1. Draw the following angles (the turn-
ings, not just the terminal side).

(a) 3π
2

(b) 4π
3

(c) 5π
4

(d) 13π
3

(e) −π
8

(f) 3π
8

(g) 13π
8

(h) 23π
8

2. Convert the following angles measured
in degrees to angles measured in radi-
ans.

(a) 135◦ (b) 400◦ (c) −250◦

3. Convert the following angles measured
in radians to angles measured in de-
grees.

(a) 3π
8

(b) 25π
6

(c) −16

4. The measure of an angle in standard
position is given. Find two positive and
two negative angles that are co-terminal
to the given angle.

(a) 50◦ (b) 3π
4

(c) −π
6

5. Determine whether the angles are co-
terminal.

(a) 70◦ and 430◦.

(b) −30◦ and 330◦.

(c) 17π
6

and 5π
6
.

(d) 32π
3

and 11π
3
.

(e) 155◦ and 875◦.
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Practice Solutions:

1. (a) Divide π into thirds.

2π
3

(b) Divide π into quarters

−3π
4

(c) Divide π into eighths.

19π

8
=

16

8
+

3

8

19π
8

2. (a)

225◦ ·
( π

180◦

)

=
225◦π

180◦
=

5π

4

(b)

−150◦·
( π

180◦

)

=
−150◦π

180◦
= −5π

6

(c)

630◦ ·
( π

180◦

)

=
630◦π

180◦
=

7π

2

3. (a)

3π

4
·
(

180◦

π

)

=
540◦π

4π
= 135◦

(b)

−7π

6
·
(

180◦

π

)

= −1260◦π

6π
= −210◦

(c)

8 ·
(

180◦

π

)

=
1440◦

π
≈ 458.4◦

4. (a) Positive:

80◦ + 1 · 360◦ = 440◦

80◦ + 5 · 360◦ = 1880◦

Negative:

80◦ − 1 · 360◦ = −280◦

80◦ − 7 · 360◦ = −2440◦

(b) Positive:

−7π

3
+ 1 · 6π

3
= −π

3
Oops! Still negative.

−7π

3
+ 2 · 6π

3
=

5π

3

−7π

3
+ 14 · 6π

3
=

77π

3
Negative:

−7π

3
+ 1 · 6π

3
= −π

3

−7π

3
− 10 · 6π

3
= −67π

3

5. (a) 50◦ − 770◦ = −720◦ = −2(360◦),
so yes, coterminal

(b) −40◦− 320◦ = −360◦ = −1(360◦),
so yes, coterminal

(c) −150◦ − 440◦ = −590◦ 6= k(360◦),
so no, not coterminal

(d)

17π

3
−·29π

3
= −12π

3
= −4π = −2(2π)

so yes, coterminal
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1.2 Radian Formulas

Degrees are the oldest way to measure angles, but in many ways radians are the better way
to measure angles. Many formulas from calculus assume that all angles are given in radians
(and this is important).

The formulas below also assume angles are given in radians.

1.2.1 Arc-length

In general the arc-length is the distance along a curving path. In this class we only consider
the distance along a circular path.

s

θ r

r

If we consider the fraction of the circle
swept out by the angle θ and recall the cir-
cumference of a circle is 2πr, then we have

θ

2π
=

s

2πr

which we solve to get the
Arc-length Formula.

s = θr (θ in radians)

Example 1.11: Find the length of the arc on a circle of radius 18 cm sub-
tended by the an angle of 100◦.

s =?

100◦

18cm
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Example 1.12: The distance from the Earth to the Sun is approximately
one hundred fifty million kilometers (1.5×108 km). Assuming a circular orbit,
how far does the Earth move in four months?

1.2.2 Angular Speed

Everyone remembers the old formula for speed:

speed =
distance

time

When we talk about circular motion there are two kinds of speed:
linear speed (denoted v) and angular speed (denoted ω).

linear speed = v =
arc length

time

angular speed = ω =
angle

time

If we take the arc-length formula and divide both sides by time,

s = θr ⇒ s

t
=

θ

t
r

we get the Angular Speed Formula

v = ωr (ω in radians
time

)

13



Example 1.13: A merry-go-round is ten meters across and spinning at a
rate of 1.5 rpm (rotations per minute). What is the angular speed (in radi-
ans/minute) of a child on a horse at the edge of the merry-go-round? What is
the linear speed (in kilometers/hour) of the child?

Solution: The angular speed is 1.5 rpm. To put it into the appropriate units:

ω = 1.5
rotations

minute
· 2π radians

rotation
= 3π

radians

minute

The linear speed simply uses the Angular Speed Formula:

v = ωr =
3π

minute
· 5meters = 15π

meters

minute

Note ‘radians’ is a dimensionless unit and so may be dropped. We need only
change linear speed to the appropriate units.

v = 15π
meters

minute
· kilometer

1000meters
· 60minutes

hour
≈ 2.83

kilometers

hour

Example 1.14: What is the linear speed of the Earth (in km/hr)?
(Hint: Use example 1.12)
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1.2.3 Sector Area

As well as discussing the length of an arc subtended by an angle, we may also talk about
the area of the wedge subtended by an angle. This is called the Sector Area (denoted A).

A

θ r

r

If we consider the fraction of the circle
swept out by the angle θ and recall the area
of a circle is πr2, then we have

θ

2π
=

A

πr2

which we solve to get the
Sector Area Formula.

A = 1
2
θr2 (θ in radians)

Example 1.15: A wedge-shaped slice of pizza has an area of 60cm2. The end
of the slice makes an angle of 35◦. What was the diameter of the pizza from
which the slice was taken?

15



1.2.4 Practice

Practice Problems (with solutions)

1. Find the length of the arc s in the fig-
ure.

s

135◦
4 m

2. Find the angle θ in the figure (in de-
grees).

30 cm

θ
8 cm

3. Quito, Ecuador and Libreville, Gabon
both lie on the Earth’s equator. The
longitude of Quito is 78.5◦ West, while
the longitude of Libreville is 9.5◦ East.
(The radius of the Earth is 3960 miles.)
Find the distance between the two
cities.

4. Find the area of the sector shown in the
figure below.

A

120◦

6 ft

5. A fan on “slow” turns at 25 rotations
per minute. The blades extend 18
inches from the center.

(a) What is the angular speed of the
fan in rad/min?

(b) What is the linear speed of the
tips of the blades (in inches per
minute)?

6. Two rollers are connected by a leather
belt which is tight and does not slip.
The right roller is 25 cm in radius and
spinning at 6 rotations per second. The
left roller is 20 cm in radius.

(a) Find the angular speed of the right
roller (in radians per second).

(b) Find the linear speed of the belt
(in cm per second).

(c) Find the angular speed of the left
roller (in radians per second).

20 25
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Homework 1.2

1. Find the length of the arc s in the fig-
ure.

s

140◦

5 m

2. Find the angle θ in the figure (in de-
grees).

10 cm

θ
5 cm

3. Find the radius r of the circle in the
figure.

8 ft

2 rad

r

4. Pittsburgh, PA and Miami, FL lie ap-
proximately on the same meridian (they
have the same longitude). Pittsburgh
has a latitude of 40.5◦ N and Miami
25.5◦ N. (The radius of the Earth is
3960 miles.)
Find the distance between the two
cities.

5. The Greek mathematician Eratos-
thenes (ca. 276-195 B.C.E) measured
the radius of the Earth from the follow-
ing observations. He noticed that on a
certain day at noon the sun shown di-
rectly down a deep well in Syene (mod-
ern Aswan, Egypt). At the same time
500 miles north on the same meridian in
Alexandria the sun’s rays shown at an
angle of 7.2◦ with the zenith (as mea-
sured by the shadow of a vertical stick).
Use this information (and the figure) to
calculate the radius of the Earth.

Syene

Alexandria

S
u
n

500

7.2◦

6. Find the area of the sector shown in the
figure below.

A

80◦
8 m

8 m

7. A ceiling fan with 16 inch blades rotates
at 45 rpm.

(a) What is the angular speed of the
fan (in rad/min)?

(b) What is the linear speed of the tips
of the blades (in inches per sec-
ond)?

17



8. The Earth rotates about its axis once
every 23 hours, 56 minutes, and 4 sec-
onds. The radius of the Earth is 3960
miles.
What is the linear speed of a point on
the Earth’s equator (in miles per hour)?

9. The sprockets and chain of a bicycle
are shown in the figure. The pedal
sprocket has a radius of 5 inches, the
wheel sprocket a radius of 2 inches, and
the wheel a radius of 13 inches. The
cyclist pedals at 40 rpm.

(a) Find the linear speed of the chain
(in inches per minute).

(b) Find the angular speed of the
wheel sprocket (in radians per
minute).

(c) Find the speed of the bicycle (in
miles per hour).

2

13

5

Practice Solutions:

1.

135◦ ·
( π

180◦

)

=
3π

4

s = θr =

(

3π

4

)

4 m = 3π m ≈ 9.4248 m

2.

θ =
30 cm

8 cm
= 3.75 radians

θ = 3.75 ·
(

180◦

π

)

=
675◦

π
≈ 214.9◦

3. Quito is west of the Prime Meridian (0◦

Longitude), while Libreville is east, so
we add the longitudes.

θ = (78.5◦+9.5◦) ·
( π

180◦

)

=
88◦π

180◦

⇒ θ ≈ 1.536 radians

d = θr ≈ (1.536)(3896 mi) ≈ 6082 mi

4.

120◦ ·
( π

180◦

)

=
2π

3

A =
1

2
θr2 =

1

2

(

2π

3

)

(6 ft)2 = 12π ft2

⇒ A ≈ 37.7 ft2

5. (a)

ω =

(

25 rotations

minute

)

·
(

2π radians

rotation

)

⇒ ω = 50π
radians

minute

(b)

v =

(

50π radians

minute

)

· 18 inches

⇒ v = 900π
inches

minute
≈ 2827.4

inches

minute

6. (a)

ωR =

(

6 rotations

second

)

·
(

2π radians

rotation

)

⇒ ωR = 12π
radians

second

18



(b) The linear speed of the belt is the
same as the linear speed of a point
on the right roller.

v =

(

12π radians

second

)

· 25 cm

⇒ v = 300π
cm

sec
≈ 942.5

cm

sec

(c) The linear speed of the belt is also
the same as the linear speed of a
point on the left roller.

ωL =
v

r
=

942.5 cm/sec

20 cm

⇒ ωL ≈ 47.1
rad

sec
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Chapter 2

Trigonometric Functions

Now that we understand about angles we move on to the most important subject in this
class—functions whose domain consists of angles. That is, functions which take an angle
and return a real number. The ones we care about are called the trigonometric functions,
and there are six of them: sine, cosine, tangent, cotangent, secant, and cosecant. In the next
sections we will define these functions and discuss their properties.

2.1 Acute Angles

The trigonometric functions are defined for almost all angles from minus infinity to plus
infinity. However their values are particularly easy to understand when applied to acute
angles (angles between 0◦ and 90◦). Acute angles are characterized by being an interior
angle of a right triangle.

Say θ is an acute angle. Then θ is an interior angle in a right triangle, and we may define
the six trigonometric functions as follows:

θ

adjacent

opposite
hy
po
ten

us
e

sin θ = opposite
hypotenuse

cos θ = adjacent
hypotenuse

tan θ = opposite
adjacent

sec θ = hypotenuse
adjacent

csc θ = hypotenuse
opposite

cot θ = adjacent
opposite

Example 2.1:

θ

4

35
sin θ = 3

5

cos θ = 4
5

tan θ =

sec θ =

csc θ =

cot θ =
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Some people remember the first three definitions with the acronym: SOHCAHTOA
for “Sine is Opposite over Hypotenuse, Cosine is Adjacent over Hypotenuse, and Tangent is
Opposite over Adjacent.

You might fear that this definition of the trigonometric functions will depend on the size
of the triangle. It does not. Below is a triangle similar to the triangle in example 2.1.

Example 2.2:

θ

8

610

Note that still

cos θ =
8

10
=

4

5

tan θ =
6

10
=

3

4
etc.

We now introduce two special right triangles whose angles and sides are known exactly.
The 45◦ − 45◦ − 90◦ Triangle:

1

1

√
2 ⇒

1

1

√
2

π
4

π
4

⇒

1√
2

1√
2

1

π
4

π
4

The 30◦ − 60◦ − 90◦ Triangle:

1

11 √
3
2

⇒ 1

1
2

√
3
2

π
3

π
6

Example 2.3: Evaluate the trig functions:

sin(60◦) =
√
3/2
1

=
√
3
2

tan
(

π
3

)

=

cos
(

π
4

)

=

sec
(

π
6

)

=

22



Using the values of the trigonometric functions for π/6, π/4, and π/3, we may solve for
the sides of any triangle which has one of these angles in it (if one side is known).

Example 2.4: Use the exact values of appropriate trig functions to find the
sides b and h in the triangle below.

h

5

b

π
3

Solution: We want to know b, the
side opposite to π/3, and we already
know that the side adjacent to π/3
is 5, so we use the tangent (opposite
over adjacent). Thus,

tan
(

π
3

)

= b
5

√
3 = b

5

⇒ b = 5
√
3

To find h. . . ?

Example 2.5: A 15 foot long ladder is leaned against a wall so that the ladder
makes a 60◦ angle with the floor. Use a trigonometric function to determine
how high up the wall the ladder reaches. (Be sure to draw a picture.)

For angles other than 30◦, 45◦, or 60◦ we cannot (usually) find an exact value for the
trigonometric functions. However using a calculator, we may approximate the sides of any
right triangle where an angle and one of the sides is known.
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Example 2.6: Use a trig function and your calculator to approximate the
value of the unknown sides.

a

b63

41◦

We want the adjacent, a, and we
know the hypotenuse, 63.

cos(41◦) = a
63

0.7547 ≈ a
63

⇒ a ≈ 63(0.7547) ≈ 47.55

To find b. . . ?

Example 2.7: When the sun is 50◦ above the horizon a tree casts a shadow
that is 20 meters long. Use a trigonometric function and your calculator to
estimate the height of the tree. (Be sure to draw a picture.)
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2.1.1 Practice

Practice Problems (with solutions)

1. For the triangle below, evaluate the
trigonometric functions.
(Do not simply.)

√

2 +
√
2

√

2−
√
2

2

π/8

3π
8

(a) cos(π/8)

(b) tan(3π/8)

(c) csc(π/8)

2. Use a trig function to find the exact
value of the unknown sides.

(a)

8

a

b

π
6

(b)
a

12
h

π
4

3. Use a trig function and your calcula-
tor to approximate the value of the un-
known sides.

(a)

h

a

9

57◦

(b)
a

p50

34◦

4. From the top of a 20 meter high castle
wall, the angle of depression to a knight
in the field is 16◦. The knight rides di-
rectly toward the wall until the angle of
depression is 50◦.
How far did the knight ride?
(Be sure to draw a picture.)
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Homework 2.1

1. Use a trig function to find the exact
value of the unknown sides.

(a)

h

a

10

π
3

(b)
20

ph

π
4

2. Use a trig function and your calcula-
tor to approximate the value of the un-
known sides.

(a)

h

a

12

53◦

(b)
500

ph

38◦

3. From the top of a 100 meter high light-
house the angle of depression to a ship
in the ocean is 28◦.
How far is the ship from the base of the
lighthouse? (Be sure to draw a picture.)

4. A man is lying on the ground, flying a
kite. He holds the end of the kite string
at ground level, and estimates the angle
of elevation to be 40◦.
If the string is 200 meters long, how
high is the kite?

5. A flagpole is 50 meters from a school
building. From a window in the school
the angle of elevation to the top of the
flagpole is 35◦, while the angle of de-
pression to the base of the flagpole is
25◦.
How tall is the flagpole?

6. The method of parallax can be used
to calculate the distance to near-by
stars. A not too distant star will ap-
parently move (slightly) as the Earth
goes around the Sun. For instance over
a six month period the binary star α-
Centauri appears to shift .000422◦ in
the sky.
Given that the Sun is about 1.5 × 108

kilometers from the Earth, how far is
α-Centauri from the Sun?
(See figure)

Earth (Winter)

Earth (Summer)

Sun

α-Centauri

.000422◦
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Practice Solutions:

1. (a)

cos
(π

8

)

=

√

2 +
√
2

2

(b)

tan

(

3π

8

)

=

√

2 +
√
2

√

2 +
√
2

(c)

csc
(π

8

)

=
2

√

2−
√
2

2. (a)

cos
(π

6

)

=
b

8
=

√
3

2

⇒ b = 8

(√
3

2

)

= 4
√
3

sin
(π

6

)

=
a

8
=

1

2

⇒ a = 8

(

1

2

)

= 4

(b)

cos
(π

4

)

=
12

h
=

√
2

2

24 = h
√
2 ⇒ h =

24√
2
= 12

√
2

tan
(π

4

)

=
a

12
= 1

⇒ a = 12

3. (a)

sin(57◦) =
9

h

h sin(57◦) = 9

⇒ h =
9

sin(57◦)
≈ 10.73

tan(57◦) =
9

a

a tan(57◦) = 9

⇒ a =
9

tan(57◦)
≈ 5.84

(b)

sin(34◦) =
p

50

⇒ p = 50 sin(34◦) ≈ 27.96

cos(34◦) =
a

50

⇒ a = 50 cos(34◦) ≈ 41.45

4.

16◦

50◦
20 m

d2 d1

tan(90◦ − 16◦) =
d1
20

⇒ d1 ≈ 69.75 m

tan(90◦ − 50◦) =
d2
20

⇒ d2 ≈ 16.78 m

distance = d1 − d2 ≈ 53.0 m
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2.2 Unit Circle

The definition of the trigonometric functions for general angles (not just acute angles) in-
volves the unit circle. What is the unit circle, you say? It’s the circle, centered at the
origin, with radius one.
Alternatively it’s the set of all points (x, y) which satisfy the equation: x2 + y2 = 1.

x

y

(1, 0)

(1, 1)
(

−
√
3
2
, 1
2

)

12 + 02 = 1

(

−
√
3
2

)2

+
(

1
2

)2
= 1

12 + 12 = 2 6= 1

We now define sine and cosine for any angle. The other four trigonometric functions will
be defined in terms of sine and cosine.

Draw the angle θ in standard position.
Consider the point p where the terminal side
of θ crossed the unit circle.
The x coordinate of p is cos θ.
The y coordinate of p is sin θ.

x

y

θ

p = (cos θ, sin θ)

Example 2.8: Find the cosine and sine of 90◦.

x

y

90◦

(0, 1)

p = (0, 1)

cos(90◦) = 0

sin(90◦) = 1
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Example 2.9: Draw the angle and find the cosine and sine of −180◦.

x

y

p =

cos(−180◦) =

sin(−180◦) =

Example 2.10: Draw the angle and find the cosine and sine of 7π
2
.

x

y

p =

cos
(

7π
2

)

=

sin
(

7π
2

)

=

Now that we basically understand sine and cosine, let’s ask some basic questions.
What is the domain of sine (and cosine)? The definition makes sense for any angle, so

Domain(sin) = Domain(cos) = (−∞,∞)

What is the range of sine (and cosine)?
The output for either function is a big as +1 and as small as −1 with all numbers in

between, so

Range(sin) = Range(cos) = [−1, 1]

Example 2.11: Say θ is an angle in the second quadrant with the properties:
cos θ = −3

5
and sin θ = 4

5
.

What quadrant is θ + π in? What is the cosine and sine of θ + π?

x

y

θ

(

−3
5
, 4
5

)

θ + π

p

θ + π is in quadrant IV.
The two triangles are congruent.
Therefore,

p =
(

3
5
,−4

5

)

cos(θ + π) = 3
5

sin(θ + π) = −4
5
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Example 2.12: Say θ is as in example 2.11. What quadrant is −θ in?
Draw the angle and find the cosine and sine of −θ.

x

y

θ

(

−3
5
, 4
5

)

−θ is in Quad

p =

cos(−θ) =

sin(−θ) =

There are a couple of important things to be learned from examples 2.11 and 2.12.
First, cosine is positive when the x coordinate is positive—that is in quadrants I and IV.
Sine is positive when the y coordinate is positive—in quadrants I and II. Tangent will be
defined to be the sine divided by the cosine. Therefore tangent is positive when both sine
and cosine are positive or both negative—quadrants I and III.
This important information is encapsulated in the following diagram and mnemonic.

All positiveSine positive

Tangent positive Cosine positive

“All Students Take Calculus”

Second, cos(−θ) = cos(θ) while sin(−θ) = − sin(θ). This means cosine is an even
function, while sine is an odd function. We will have more to say about this in the next
section.

We now consider the cosine and sine of certain special angles.

Example 2.13: Use one of the special triangles to find the cosine and sine of
3π
4
.

x

y

3π
4π

4

p

q o

The triangle pqo is 45◦ − 45◦ − 90◦.
Therefore,

p =
(

− 1√
2
, 1√

2

)

cos(3π
4
) = − 1√

2

sin(3π
4
) = 1√

2
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Example 2.14: Find the quadrant and draw the angle −60◦.
Draw the appropriate special triangle and find the cosine and sine of −60◦.

x

y

p =

cos (−60◦) =

sin (−60◦) =

Example 2.15: Find the quadrant and draw the angle 7π
6
.

Draw the appropriate special triangle and find the cosine and sine of 7π
6
.

x

y

p =

cos
(

7π
6

)

=

sin
(

7π
6

)

=

2.2.1 Reference Angle

Definition: The reference angle to an angle, θ in standard position, is the

smallest positive angle between the terminal side of θ and the x-axis.

From example 2.13 we see that reference angle for 3π
4

is π
4
.

From example 2.14 we see that reference angle for −60◦ is +60◦.
From example 2.15 we see that reference angle for 7π

6
is π

6
.

Note the reference angle is always between 0◦ and 90◦.
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Example 2.16: What is the reference
angle for 5π

6
?

x

y

Example 2.17: What is the reference
angle for 17π

3
?

x

y

The reason we care about the reference angle is that the cosine (or sine) of any angle is
plus or minus the cosine (or sine) of its reference angle. You figure out the plus or minus
based on the quadrant.

Example 2.18: Find the cosine and sine of 5π
6
.

Solution: 5π
6

is in quadrant II.
By example 2.16 the reference angle for 5π

6
is π

6
.

Thus,

cos

(

5π

6

)

= ± cos
(π

6

)

= −
√
3

2

(since cosine is negative in quadrant II).

sin

(

5π

6

)

=

Example 2.19: Find the cosine and sine of 17π
3
.

Notice on example 2.19 the very handy fact that, since sine and cosine only depend on
the terminal side, co-terminal angles have the same sine and cosine.

Thus, cos
(

17π
3

)

= cos
(

5π
3

)

since 17π
3

and 5π
3
are co-terminal angles.
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2.2.2 Definition of the Other Trig Functions

The other trigonometric functions are defined in terms of cosine and sine, so once you know
these functions you know all six trig functions.

tan θ = sin θ
cos θ

sec θ = 1
cos θ

cot θ = cos θ
sin θ

csc θ = 1
sin θ

Example 2.20: Find the tangent of 3π
4
.

Solution:

tan

(

3π

4

)

=
sin 3π

4

cos 3π
4

=
1/
√
2

−1/
√
2
= −1

Example 2.21: Find the secant of 5π
6
.

Example 2.22: Find the cotangent of 7π
6
.

2.2.3 Pythagorean Identities

Definition: Identities are equations that are satisfied by any legal value of

the variable.

We’ll discuss identities in-depth in section 3.1, but for now we only consider three im-
portant identities.

33



Recall that the cosine and sine are the x and y coordinates of a point on the unit circle.

x

y

θ

p = (cos θ, sin θ) The equation of the unit circle is

x2 + y2 = 1

Substituting x = cos θ and y = sin θ,

cos2 θ + sin2 θ = 1

This is the first Pythagorean Identity.

Notation: (sin θ)2 is usually written without the parentheses as sin2 θ. This can be done
for any trig function.

The second and third Pythagorean Identities are found by dividing the first by cos2 θ or
sin2 θ.

cos2 θ

cos2 θ
+

sin2 θ

cos2 θ
=

1

cos2 θ

gives 1 + tan2 θ = sec2 θ

cos2 θ

sin2 θ
+

sin2 θ

sin2 θ
=

1

sin2 θ

gives cot2 θ + 1 = csc2 θ

Example 2.23: Say θ is in Quadrant II, and sin θ = 2
3
.

Find the five remaining trig functions of θ.
Solution: We find cos θ by substituting into the first Pythagorean identity.

cos2 θ +
(

2
3

)2
= 1

⇒ cos θ = ±
√

1− 4
9
= −

√
5
3

(Negative since cosine is negative in quadrant II.)
The other four we find by using their definitions:

tan θ =
2/3

−
√
5/3

= − 2√
5

cot θ =
−
√
5/3

2/3
= −

√
5

2

sec θ =
1

−
√
5/3

= − 3√
5

csc θ =
1

2/3
=

3

2
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Example 2.24: Say θ is in Quadrant II, and cos θ = − 5
13
.

Find the five remaining trig functions of θ.

Example 2.25: Say θ is in Quadrant III, and tan θ = 7
5
.

First find sec θ, then find the four remaining trig functions of θ.
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2.2.4 Practice

Practice Problems (with solutions)

1. Determine if the following points are on
the unit circle.

(a) (−8/17, 15/17)

(b) (5/8,−3/8)

2. For each of the following angles:

i. Sketch the angle on the unit circle.

ii. State and sketch the reference an-
gle.

iii. Clearly use the reference angle to
find the cosine and sine of the an-
gle.

(a) 5π
3

(b) −3π
4

For the following angles use the
triangle:

1
4
(1 +

√
5)

1
4

√

10− 2
√
5

1

π/5

3π
10

(c) 4π
5

(d) −π
5

3. Say θ is in Quadrant IV, and cos θ = 3
4
.

Find the sine, secant, tangent, cosecant,
and cotangent of θ.

4. Say θ is in Quadrant III, and tan θ = 7
8
.

Find the sine, cosine, secant, cosecant,
and tangent of θ.

Homework 2.2
(Note: These problems should be done without the use of a calculator.)

1. Say whether or not the following points
are on the unit circle, and show how you
know.

(a)
(

3
5
, 4
5

)

(b)
(

1
2
, 1
2

)

(c)
(

− 5
13
,−12

13

)

(d)
(√

7
3
,−

√
2
3

)

2. Draw the angle on the unit circle and
find the cosine and sine for each of the
angles below. (See homework 1.1 prob-
lem 1)

(a) 3π
2

(b) 4π
3

(c) 5π
4

(d) 13π
3

3. Draw the angle on the unit circle and
use the triangle below to find the cosine
and sine for each of the angles below.
(See homework 1.1 problem 1)

1
2

√

2 +
√
2

1
2

√

2−
√
2

1

π/8

3π
8

(a) −π
8

(b) 3π
8

(c) 13π
8

(d) 23π
8

4. Find the reference angles for the angles
below. (Remember reference angles are
always between 0 and π/2.)

(a) 3π
2

(b) 4π
3

(c) 5π
4

(d) 13π
3

(e) −π
8

(f) 3π
8

(g) 13π
8

(h) 23π
8

5. For θ the angle in the figure below, find
the cosine and sine of the angles below.
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x

y

θ

p =
(

− 5
13
,−12

13

)

(a) θ + π (b) −θ (c) π − θ

6. Find the secant and tangent of the an-
gles below.

(a) 3π
2

(b) 4π
3

(c) 5π
4

(d) 13π
3

7. Find the cosecant and cotangent of the
angles below.

(a) −π
8

(b) 3π
8

(c) 13π
8

(d) 23π
8

8. Say θ is in Quadrant IV, and cos θ = 2
5
.

Find the sine, secant, tangent, cosecant,
and cotangent of θ.

9. Say θ is in Quadrant III, and cot θ = 3
2
.

Find the sine, cosine, secant, cosecant,
and tangent of θ.

Practice Solutions:

1. (a)

(

− 8

17

)2

+

(

15

17

)2

=
64

289
+
225

289
=

289

289
= 1

So, yes it is on the unit circle.

(b)

(

5

8

)2

+

(

−3

8

)2

=
25

64
+

9

64
=

34

64
6= 1

So, no it is not on the unit circle.

2. (a)

x

y

5π
3

ref = π
3

cos

(

5π

3

)

= +cos
(π

3

)

=
1

2

sin

(

5π

3

)

= − sin
(π

3

)

= −
√
3

2

(b)

x

y

−3π
4

ref = π
4

cos

(

−3π

4

)

= − cos
(π

4

)

= −
√
2

2

sin

(

−3π

4

)

= − sin
(π

4

)

= −
√
2

2

(c)

x

y

4π
5ref = π

5

cos

(

4π

5

)

= − cos
(π

5

)

= −1

4
(1+

√
5)

sin

(

4π

5

)

= + sin
(π

5

)

=
1

4

√

10− 2
√
5
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(d)

x

y

−π
5

ref = π
5

cos
(

−π

5

)

= +cos
(π

5

)

= +
1

4
(1+

√
5)

sin
(

−π

5

)

= − sin
(π

5

)

= −1

4

√

10− 2
√
5

3.

sin θ = −
√

1− (cos θ)2 = −

√

1−
(

3

4

)2

= −
√

16

16
− 9

16
= −

√
7

4

sec θ =
4

3
, csc θ = − 4√

7

tan θ = −
√
7

3
, cot θ = − 3√

7

4.

sec θ = −
√

1 + (tan θ)2 = −

√

1 +

(

7

8

)2

= −
√

64

64
+

49

64
= −

√
113

8

cos θ = − 8√
113

sin θ = cos θ tan θ = − 7√
113

cot θ =
8

7
, csc θ = −

√
113

7
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2.3 Graphs of Sine and Cosine

Since we can evaluate sine and cosine, we can now sketch their graphs. First we evaluate
sine and cosine for all the angles between 0◦ and 360◦ that are multiples of 45◦.

θ sin θ cos θ
0 0
π
4

1/
√
2

π
2

1
3π
4

1/
√
2

π 0
5π
4

−1/
√
2

3π
2

−1
7π
4

−1/
√
2

2π 0

x

y

Now we sketch the graph of sine.

−π −π
2

π
2

π 3π
2

2π 5π
2

3π

−2

−1

1

2

≈ 0.7

≈ −0.7

y = sin(θ)

θ

y

Sketch the graph of cosine below.

−π −π
2

π
2

π 3π
2

2π 5π
2

3π

−2

−1

1

2

y = cos(θ)

θ

y
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Definition: A function is even if it satisfies the equation: f(−x) = f(x).
This is equivalent to saying the graph of f is symmetric about the y-axis.

Definition: A function is odd if it satisfies the equation: f(−x) = −f(x).
This is equivalent to saying the graph of f is symmetric about the origin.

Looking at the graphs it’s easy to see that sine is odd while cosine is even.

2.3.1 Amplitude and Period

Before continuing with our discussion of the graphs of functions involving sine and cosine,
we need first discuss the concept of periodic functions in general.

Definition: A function is periodic if there is a number p so that:

f(x+ p) = f(x) for every x ∈ Domain(f).
The smallest positive such number p is called the period of f .

Informally, this means f repeats every p units.

Example 2.26: The following graph is periodic. What is the period?

−2 −1 1 2 3 4 5 6

−4

−3

−2

−1

1

2

3

4

x

y

Example 2.27: The following graph is periodic. What is the period?

−2 −1 1 2 3 4 5 6

−4

−3

−2

−1

1

2

3

4

x

y
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Looking at the graphs of sine and cosine, it is clear that each have a period of 2π.

sin(θ + 2π) = sin(θ) and cos(θ + 2π) = cos(θ)

since θ + 2π and θ are co-terminal angles, have the same terminal side, and thus have the
same sine and cosine.

What is the period of sin(2θ)?

θ sin 2θ
0 sin(2 · 0) = sin(0) = 0
π
4

sin
(

2 · π
4

)

= sin π
2
= 1

π
2

sin
(

2 · π
2

)

= sin π = 0
3π
4

sin
(

2 · 3π
4

)

= sin 3π
2
= −1

π sin (2 · π) = sin 2π = 0
5π
4

sin
(

2 · 5π
4

)

= sin 5π
2
= 1

3π
2

sin
(

2 · 3π
2

)

= sin 3π = 0
7π
4

sin
(

2 · 7π
4

)

= sin 7π
2
= −1

2π sin (2 · 2π) = sin(4π) = 0

−π −π
2

π
2

π 3π
2

2π 5π
2

3π

−2

−1

1

2

y = sin(2θ)

θ

y

It’s easy to see the period of sin 2θ is π. This is sensible since multiplying by 2 on the
inside should squeeze the graph horizontally by a factor of 2. This divides the period
by 2.

If you multiply on the inside by any b > 0, then you will divide the period by b. Hence,

the period of sin(bθ) or cos(bθ) is 2π
b

Example 2.28: What is the period of the function: cos(πθ)?

Solution: period = 2π
π
= 2.

41



Example 2.29: What is the period of the function: sin
(

θ
2

)

?

What about the period of 2 sin θ? How does multiplying by 2 on the outside effect the
period?

θ 2 sin θ
0 2 sin(0) = 2 · 0 = 0
π
4

2 sin
(

π
4

)

= 2 · 1√
2

=
√
2

π
2

2 sin
(

π
2

)

= 2 · 1 = 2
3π
4

2 sin
(

3π
4

)

= 2 · 1√
2

=
√
2

π 2 sin (π) = 2 · 0 = 0
5π
4

2 sin
(

5π
4

)

= 2 ·
(

− 1√
2

)

= −
√
2

3π
2

2 sin
(

3π
2

)

= 2 · −1 = −2
7π
4

2 sin
(

7π
4

)

= 2 ·
(

− 1√
2

)

= −
√
2

2π 2 sin (2π) = 2 · 0 = 0

−π −π
2

π
2

π 3π
2

2π 5π
2

3π

−2

−1

1

2

y = 2 sin(θ)

θ

y

The period is still 2π. So the answer is multiplying by 2 on the outside does not
change the period. This is sensible since the period is a characteristic of the domain,
and multiplying on the outside effects only the range.

Definition: The amplitude of a sine or cosine function is:
1
2
(maximum −minimum).
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Example 2.30: What is the amplitude of sin(2θ)?

amplitude =
1− (−1)

2
= 1

Example 2.31: What is the amplitude of 2 sin(θ)?

amplitude =
2− (−2)

2
= 2

It’s pretty easy to see that the amplitude of a sin(bθ) or a cos(bθ) is |a| .

Example 2.32: What is the period and amplitude of the sinusoidal function
whose graph is given below?

−π −π
2

π
2

π 3π
2

2π 5π
2

3π

−2

−1

1

2 Period =

Amplitude =

θ

y

Recipe for graphing a sin(bθ) or a cos(bθ):

1. Find the period and amplitude.

2. Measure or label the x-axis for a convenient period, and the y-axis for a convenient
amplitude.

3. Divide the period into quarters. Then mark the zeros, maxima, and minima for one
period of the function.
(sine goes: zero-max-zero-min-zero, while cosine goes: max-zero-min-zero-max)

4. Extend the zeros, maxima, and minima, and then draw a nice smooth curve.
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Example 2.33: Sketch the graph of 3 cos(πx).

1. period = 2π
π
= 2. The amplitude is 3.

2. Label axes conveniently.

1

2

3

4

−1

−2

−3

−4

−2 −1 1 2 3 4 5 6
θ

y

3. Mark zeros, maxima, and minima for one period (0 to 2).

1

2

3

4

−1

−2

−3

−4

−2 −1 1 2 3 4 5 6
θ

y

4. Fill in remaining zeros, maxima, and minima. Draw a smooth curve.

1

2

3

4

−1

−2

−3

−4

−2 −1 1 2 3 4 5 6
θ

y
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Example 2.34: Sketch the graph of 10 sin
(

θ
2

)

.

period =

amplitude =

θ

y

2.3.2 Phase Shift and Vertical Shift

We’ve seen that multiplying on the outside produces a vertical stretch (changing the ampli-
tude) while multiplying on the inside produces a horizontal squeeze (changing the period).

What happens if we add rather than multiply? This should produce a horizontal or
vertical shift. Adding on the inside will shift the graph horizontally. This is called a
phase shift. Adding on the outside will shift the graph vertically. This is a vertical
shift.

45



Example 2.35: Sketch the graph of sin
(

θ + π
4

)

.

θ sin
(

θ + π
4

)

0 sin
(

0 + π
4

)

= sin π
4
= 1√

2
π
4

sin
(

π
4
+ π

4

)

= sin π
2
= 1

π
2

sin
(

π
2
+ π

4

)

= sin 3π
4
= 1√

2
3π
4

sin
(

3π
4
+ π

4

)

= sin π = 0
π sin

(

π + π
4

)

= sin 5π
4
= − 1√

2
5π
4

sin
(

5π
4
+ π

4

)

= sin 3π
2
= −1

3π
2

sin
(

3π
2
+ π

4

)

= sin 7π
4
= − 1√

2
7π
4

sin
(

7π
4
+ π

4

)

= sin 2π = 0
2π sin

(

2π + π
4

)

= sin 9π
4
= 1√

2

−π −π
2

π
2

π 3π
2

2π 5π
2

3π

−2

−1

1

2

y = sin
(

θ + π
4

)

θ

y

We added π
4
on the inside. This caused the graph of sin θ to shift left π

4
units. We say

sin
(

θ + π
4

)

has a phase shift of −π
4
.

(Negative because the graph moved in the negative direction, a.k.a left.)

Example 2.36:
Sketch the graph of sin(θ) + 1.

−π −π
2

π
2

π 3π
2

2π 5π
2

3π

−2

−1

1

2

θ

y
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Example 2.37: What is the phase shift of sin
(

2θ + π
4

)

?

Solution: This is more complicated than it seems. First you shift left π
4
, then

you squeeze by a factor of 2. When you’re done the phase shift is half what it
started as. The phase shift is −π

8
.

Another way to see this is to factor the 2 out of the inside of the sine.

sin
(

2θ +
π

4

)

= sin
(

2
(

θ +
π

8

))

Hence the function sin(2θ) is shifted left π
8
.

In general then, the phase shift of a sin(bθ + c) or a cos(bθ + c) is − c
b

Notice, though, that shifting left or right (or up or down) does not change the period or
the amplitude. So, the period of a sin(bθ+ c)+d or a cos(bθ+ c)+d is 2π

b
, and the amplitude

is |a| just as before.

Recipe for graphing a sin(bθ + c) + d or a cos(bθ + c) + d:

1. Find the period, amplitude, phase shift, and vertical shift.

2. Measure or label the x-axis for a convenient period, and the y-axis for a convenient
amplitude.

3. Divide the period into quarters. Then lightly mark the zeros, maxima, and minima for
one period of the unshifted function, a sin(bθ) or a cos(bθ). Extend the zeros, maxima
and minima.

4. Shift these points according to the phase or vertical shift calculated. Then draw a nice
smooth curve connecting the points.

Example 2.38: Sketch the graph of y = sin
(

2θ + π
4

)

Solution: The amplitude is 1, period π, phase shift −π/8, with 0 vertical shift.
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Label axes conveniently.

−π
2

−π
4

π
4

π
2

3π
4 π

5π
4

3π
2

−2

−1

1

2

θ

y

Lightly mark zeros, maxima, and minima for one period (0 to π) of y = sin(2θ).
Extend.

−π
2

−π
4

π
4

π
2

3π
4 π

5π
4

3π
2

−2

−1

1

2

θ

y

Shift each mark left π/8. Draw a smooth curve.

−π
2

−π
4

π
4

π
2

3π
4 π

5π
4

3π
2

−2

−1

1

2

θ

y
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Example 2.39: Sketch the graph of y = 3 cos(πθ + π)

Amplitude =

Period =

Phase Shift =

V. Shift =

θ

y

Example 2.40: Sketch the graph of y = 2 sin
(

2πθ − π
3

)

− 1

Amplitude =

Period =

Phase Shift =

V. Shift =

θ

y

Now let’s try going the other way.
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Example 2.41: Below is the graph of y = a sin(bθ+c)+d. Find the constants
a, b, c, d.

1

2

3

4

−1

−2

−3

−4

−2 −1 1 2 3 4 5 6
θ

y

Solution: The amplitude is 2, so let a = 2. The period is also 2, so:

2π

b
= 2 ⇒ 2π = 2b ⇒ b = π

The phase shift is +1
4
so:

−c

b
=

1

4
⇒ − c

π
=

1

4
⇒ c = −π

4

There is no vertical shift, so the answer is: y = 2 sin
(

πθ − π
4

)

Notice this is not the only possible answer. We might chose a phase shift of
−7

4
or 9

4
(these are both also correct). They would give us a different c’s.

Likewise we could have chosen a = −2. This would produce a phase shift of
−3

4
. (2 sin(πθ) moved left 3

4
and then flipped over the x-axis!)

Usually it’s easiest to chose a > 0 and find c for the smallest possible phase
shift.
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Example 2.42: Below is the graph of y = a sin(bθ+c)+d. Find the constants
a, b, c, d.

1

2

3

4

−1

−2

−3

−4

−1
2

1
2

1 3
2

2
θ

y

Example 2.43: Solve example 2.42 if it were the graph of y = a cos(bθ+c)+d
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Example 2.44: Below is the graph of y = a sin(bθ+c)+d. Find the constants
a, b, c, d.

−π −π
2

π
2

π 3π
2

2π 5π
2

3π

−2

−1

1

2

Period =

Amplitude =

Phase Shift =

V. Shift =

θ

y
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2.3.3 Practice

Practice Problems (with solutions)

1. Give the amplitude and period of
the functions below, then sketch their
graphs.

(a) y = sin(3θ)

(b) y = −5 cos(3πx)

2. Give the phase shift of the functions be-
low, then sketch their graphs.

(a) y = sin
(

3θ − π
2

)

(b) y = −5 cos
(

3πx+ π
4

)

3. The current in an AC circuit is given by
the function:

I(t) = 1.5 sin(377t)

where t is in seconds and I is in amps.

(a) What is the period of the current?

(b) What is the frequency (in cy-
cles/second) of the current?

(c) Sketch two periods of the current.

Homework 2.3

1. Give the amplitude and period of
the functions below, then sketch their
graphs.

(a) y = cos(4x)

(b) y = −2 sin(2πx)

(c) y = 10 cos
(

x
3

)

(d) y = sin(−2x)

2. Give the amplitude, period, phase shift,
and vertical shift of the functions below,
then sketch their graphs.

(a) y = 3 cos
(

x+ π
4

)

(b) y = 2 sin
(

2
3
x− π

6

)

(c) y = 1 + cos(3x)

(d) y = −2 + sin
(

πx− π
3

)

3. R Leonis is a variable star whose bright-
ness is modeled by the function:

b(t) = 7.9− 2.1 cos
( π

156
t
)

where t is days and b is stellar magni-
tude.

(a) Find the period of R Leonis.

(b) Find the maximum and minimum
stellar magnitude.

(c) Graph one period of b verses t.

4. Blood pressure rises and falls with the
beating of the heart. The maximum
blood pressure is called the systolic

pressure, and the minimum is called
the diastolic pressure. Blood pressure
is usually given as systolic/diastolic.
(120/80 is considered normal.)

Say a patient’s blood pressure is mod-
elled by the function:

p(t) = 115 + 25 sin(160πt)

where t is in minutes and p is in mil-
limeters of mercury (mmHG).

(a) Find the period of p.

(b) Find the number of heartbeats this
patient has per minute.

(c) Graph two periods of p verses t.
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5. Find sine functions whose graphs are
the same as those given below.

(a)

1

2

−1

−2

1 2 3 4−1−2
θ

y

(b)

1

2

−1

−2

1 2 3 4−1−2
θ

y

6. Find cosine functions whose graphs are
the same as those given below.

(a)

1

2

−1

−2

1 2 3 4−1−2
θ

y

(b)

1

2

3

−1

−π −π
2 ππ

2 2π3π
2

θ

y

Practice Solutions:

1. (a) Period = 2π
3
, Amplitude = 1.

−π
3 −π

6
π
6

π
3

π
2

2π
3

5π
6

π

−2

−1

1

2

y = sin(3θ)

θ

y

(b) Period = 2
3
, Amplitude = 5 (flipped over x-axis).
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−1
3 −1

6
1
6

1
3

1
2

2
3

5
6

1

−10

−5

5

10

y = −5 cos(3πx)

x

y

2. (a) Period = 2π
377

≈ 0.01667 seconds (for one cycle).

(b) Frequency = 1/Period ≈ 60 cycles/second.

(c)

−0.01 −0.005 0.005 0.01 0.015 0.02 0.025 0.03

−2

−1

1

2
I(t) = 1.5 sin(377t)

t

I
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2.4 Other Trig Graphs

Since the other trigonometric functions are fractions involving sine and cosine let’s review
the properties of functions defined as one function divided by another. In Math 111 we
studied the case where a polynomial was divided by another polynomial. These were called
rational functions.

Say f is a function defined as a “top” function, T (x), divided by a “bottom” function
B(x).

f(x) =
T (x)

B(x)

When T (a) = 0 and B(a) 6= 0 then f(a) = 0.
When B(a) = 0 and T (a) 6= 0 then f(a) is not defined. In fact there is a vertical asymptote
at x = a in this case.
(When both T and B are zero anything can happen. This case is dealt with in Calculus.)

Example 2.45: Let f(x) = x−1
x+1

.

Where is f zero? Where does f have a vertical asymptote?

Solution: f is zero when the top function is zero (and the bottom is not).
Thus, x− 1 = 0 ⇒ x = 1. At x = 1 the bottom function is 2, so f(1) = 0.

f has a vertical asymptote when the
bottom function is zero (and the top
is not). Thus, x + 1 = 0 ⇒ x = −1.
At x = −1 the top function is -2, so f
has a vertical asymptote at x = −1.
Here is the graph of f .

x

y

Now we consider the functions tan θ = sin θ
cos θ

and cot θ = cos θ
sin θ

.

θ tan θ cot θ
0 0

1
= 0

π
4

1/
√
2

1/
√
2
= 1

π
2

1
0
= V.A.

3π
4

1/
√
2

−1/
√
2
= −1

π 0
−1

= 0
5π
4

−1/
√
2

−1/
√
2
= 1

3π
2

−1
0

= V.A.
7π
4

−1/
√
2

1/
√
2

= −1

2π 0
1
= 0
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−π −π
2

π
2

π 3π
2

2π 5π
2

3π

−2

−1

1

2

y = tan θ

θ

y

Sketch the graph of cotangent.

−π −π
2

π
2

π 3π
2

2π 5π
2

3π

−2

−1

1

2

θ

y

What is the period of tangent and cotangent?

By the same reasoning as we used for sine and cosine, for a tan(bθ+c)+d or a cot(bθ+c)+d:

period = π
b

and phase shift = − c
b

Recipe for graphing tangent or cotangent:

1. Calculate period and phase shift.

2. Label the graph conveniently for your period and a.

3. Divide one period into quarters. Lightly mark zeros, vertical asymptotes, and quarter-
points for a tan(bθ) or a cot(bθ).
(Tangent goes: 0, a, VA, -a, 0; Cotangent goes: )

4. Extend and shift marked points.

5. Draw a smooth curve.
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Example 2.46: Sketch the graph of y = 1
2
tan

(

θ
3

)

.

1. period = π
1/3

= 3π
There is no phase shift or vertical shift.

2. Label axes conveniently.

−2π −π π 2π 3π 4π 5π 6π

−2

−1

1

2

θ

y

3. Mark zeros, vertical asymptotes and quarter-points for one period.
(0 to 3π)

−2π −π π 2π 3π 4π 5π 6π

−2

−1

1

2

θ

y

4. Extend.
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5. Draw a smooth curve.

−2π −π π 2π 3π 4π 5π 6π

−2

−1

1

2

y = 1
2
tan

(

θ
3

)

θ

y

Example 2.47: Sketch y = 2 cot(πθ).

θ

y

Secant and cosecant are more straight-forward to graph. sec θ = 1
cos θ

so the zeros of cosine
correspond with the vertical asymptotes of secant. Further, the maximum and minimum of
cosine (y = 1 or − 1) correspond to the local minimum and maximum of secant. Likewise
for cosecant and sine.

Recipe for graphing a sec(bθ + c) or a csc(bθ + c):

1. Lightly sketch the graph of a cos(bθ + c) (for secant) or a sin(bθ + c) (for cosecant).

2. Draw vertical asymptotes through the zeros of the cosine or sine functions.

3. Draw smooth “U’s” following the vertical asymptotes and touching the maxima or
minima of the cosine or sine functions.
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Example 2.48: Sketch the graph of y = 2 sec(θ)

1. Lightly sketch the graph of y = 2 cos(θ).

1

2

3

−1

−2

−3

−π −π
2

π
2

π 3π
2

2π 5π
2

3π
θ

y

2. Draw vertical asymptotes through the zeros of y = 2 cos(θ).

3. Draw “U’s”.

1

2

3

−1

−2

−3

−π −π
2

π
2

π 3π
2

2π 5π
2

3π

y = 2 sec(θ)

θ

y
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Example 2.49: Sketch the graph of y = csc
(

2θ + π
4

)

1. Lightly sketch the graph of y = sin
(

2θ + π
4

)

. (Use example 2.38.)

−π
2

−π
4

π
4

π
2

3π
4 π

5π
4

3π
2

−2

−1

1

2

θ

y

2. Draw vertical asymptotes through the zeros of y = sin
(

2θ + π
4

)

.

3. Draw “U’s”.

−π
2

−π
4

π
4

π
2

3π
4 π

5π
4

3π
2

−2

−1

1

2

y = csc
(

2θ + π
4

)

θ

y
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Example 2.50: Sketch the graph of y = 1
2
sec(πθ)

θ

y
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2.4.1 Practice

Homework 2.4

1. Sketch the graphs of the functions be-
low.

(a)

y =
1

2
tan

(

x− π

4

)

(b)

y = − tan(πx)

(c)

y = cot
(π

2
x+

π

8

)

(d)

y = cot

(

1

2
x

)

+ 1

2. Sketch the graphs of the functions be-
low.

(a)

y = sec(4x)

(b)

y = −2 csc(2πx)

(c)

y = 3 csc

(

2

3
x− π

6

)

(d)

y = sec

(

1

4
x

)

− 1
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2.5 Inverse Trig Functions

2.5.1 Inverse Function Review

Say you have a function, f . The function takes values in its domain and returns values in
its range. That is,

f : Domain(f) → Range(f)

Definition: The inverse function to f , written f−1, takes values in the range

of f and returns values in the domain of f . That is,

f−1 : Range(f) → Domain(f)

according to the rule:

f−1(f(x)) = x and f(f−1)(y) = y

Another way to think of this is the inverse function “un-does” whatever f “does”.

Example 2.51: Let f(x) = 2x+ 1. Thus, for instance, f(1) = 3.
So what is f−1(3) =?

f−1(3) = f−1(f(1)) = 1

f takes 1 to 3, so f−1 takes 3 back to 1.

What is f−1(8)? If f takes x to 8, then f−1(8) = x.

f(x) = 8
2x+ 1 = 8

x = 8−1
2

= 3.5

f(3.5) = 8, so f−1(8) = 3.5.

What, then, is f−1(y)? If f takes x to y, then f−1(y) = x.

f(x) = y
2x+ 1 = y

x = y−1
2

Thus, f−1(y) = y−1
2
.

Notice,

f(f−1(y)) = f

(

y − 1

2

)

= 2

(

y − 1

2

)

+ 1 = y − 1 + 1 = y
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and

f−1(f(x)) =
f(x)− 1

2
=

2x+ 1− 1

2
=

2x

2
= x

just as is supposed to happen.

When does f have an inverse function?

If f(x) = x2 then f(2) = 4 and f(−2) = 4. So what is f−1(4) =?

To satisfy the conditions f−1(4) must be 2 and -2. This is not possible for a function.
Thus f(x) = x2 does not have an inverse function.

f has an inverse if and only if f is one-to-one

Definition: f is one-to-one if for every y ∈ Range(f)
there is exactly one x ∈ Domain(f), so that f(x) = y.

Equivalently, f is one-to-one if any horizontal line crosses the graph of f
no more than once. This is called the Horizontal Line Test.

x

y

y = x2

Not one-to-one.
Two x’s (2 and -2) for one y (4).

x

y

y = 2x+ 1

Is one-to-one.
One x for each y.

Finally, a function which is not one-to-one can be made one-to-one by throwing part of
it away. This is called restricting the domain.
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Let g(x) = x2 (x ≥ 0). The graph of g looks like:

x

y

y = x2 (x ≥ 0)
g is one-to-one.

Hence g has an inverse function.

g−1(y) =
√
y

Notice,

g−1(g(x)) =
√
x2 = |x| = x

2.5.2 Inverse Sine

We want to consider the inverse function for sine. However considering the graph of sine we
see that it is very far from one-to-one. (In fact, it is infinite-to-one; there are infinitely many
x’s for each y between -1 and 1.)

−π −π
2

π
2

π 3π
2

2π 5π
2

3π

−2

−1

1

2

θ

y

Wemust restrict the domain of sine so that it is one-to-one. There are many different ways
to do this, but the most popular (and the one your calculator no doubt uses) is restricting
sine to

[

−π
2
, π
2

]

.

θ

y

−π
2

π
2

1

-1

y = sin θ
(

−π
2
≤ θ ≤ π

2

)

This function is one-to-one, so it has an
inverse.

sin−1 : [−1, 1] →
[

−π

2
,
π

2

]
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Hence, inverse sine takes a number from -1 to 1 and returns an angle between −π/2 and
π/2.

Example 2.52: Find sin−1(1)

Solution: sin
(

π
2

)

= 1 and π
2
is between −π/2 and π/2. Thus,

sin−1(1) =
π

2

Note, sin
(

5π
2

)

= 1 as well, but since 5π
2
> π

2
, sin−1 cannot take the value 5π

2
.

Example 2.53: Find sin−1
(

1√
2

)

Example 2.54: Find sin−1
(

−1
2

)

Example 2.55: Find sin
(

sin−1
(

1
3

))

Solution: sin−1
(

1
3

)

is some anonymous angle (a calculator will tell you ≈ 19.5◦,
but this doesn’t matter). By definition sin and sin−1 cancel each other. Thus,

sin

(

sin−1

(

1

3

))

=
1

3

Example 2.56: Find sin−1
(

sin
(

2π
7

))
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Example 2.57: Find sin−1
(

sin
(

3π
4

))

Solution: The cancellation rule doesn’t work here since 3π
4

is not in the re-
stricted domain of sine. In fact,

sin−1

(

sin

(

3π

4

))

= sin−1

(

1√
2

)

=
π

4

Example 2.58: Find sin
(

sin−1
(

π
2

))

(Watch out for this one!!!)

Example 2.59: Find cos
(

sin−1
(

2
3

))

Solution: sin−1
(

2
3

)

is some angle; call it φ. Then by definition sin φ = 2
3
, and

φ is an acute angle. Hence φ is the angle in the triangle:

2
3

φ

a

By the Pythagorean theorem,

a2+22 = 32 ⇒ a =
√
9− 4 =

√
5

Thus,

cos

(

sin−1

(

2

3

))

= cos(φ) =

√
5

3

Example 2.60: Find cos(sin−1(x)), when x > 0.

φ
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2.5.3 Inverse Cosine

Now we consider the cosine. Like sine it is not one-to-one, so the domain must be restricted.

−π −π
2

π
2

π 3π
2

2π 5π
2

3π

−2

−1

1

2

θ

y

Again there are many possible restrictions, but
[

−π
2
, π
2

]

is not one of them. Cosine is
not one-to-one on this interval. The natural restriction is to the interval [0, π].

θ

y

π

1

-1

y = cos θ (0 ≤ θ ≤ π) This function is one-to-one, so it has an
inverse.

cos−1 : [−1, 1] → [0, π]

Example 2.61: Find cos−1(0).

Solution: cos
(

π
2

)

= 0 and 0 ≤ π
2
≤ π, so

cos−1(0) =
π

2

Note that cos
(

3π
2

)

= 0, but 3π
2
6∈ [0, π] so 3π

2
is not a possible value for inverse

cosine.

Example 2.62: Find cos−1
(

1
2

)

.
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Example 2.63: Find cos−1
(

− 1√
2

)

.

Example 2.64: Find cos−1
(

cos
(

4π
7

))

.

Example 2.65: Find cos−1
(

cos
(

5π
4

))

.

Example 2.66: Find cos (cos−1(2)).

Example 2.67: Find tan
(

cos−1
(

3
5

))

Hint: Let φ be the angle cos−1
(

3
5

)

, and draw a triangle as in example 2.59.

φ
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Example 2.68: What about tan
(

cos−1
(

−3
5

))

?

Hint: In what quadrant is cos−1
(

−3
5

)

?

What about sin
(

cos−1
(

−3
5

))

?

2.5.4 Inverse Tangent

Like sine and cosine (and any other periodic function) tangent is not one-to-one. A glance
at the graph of tangent shows there’s a clear restriction to make it one-to-one:

(

−π
2
, π
2

)

.

θ

y

−π
2

π
2

1

-1
y = tan θ

(

−π
2
< θ < π

2

)

This function is one-to-one, so it has an
inverse.

tan−1 : →

Example 2.69: Find tan−1(1).

Example 2.70: Find tan−1
(

− 1√
3

)

.
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Example 2.71: Find tan (tan−1(2)).

Example 2.72: Find cos (tan−1(2)).

2.5.5 Inverse Applications

Let’s end with a few easy applications of inverse functions.
Given the sides of a right triangle, how would you find the angle, θ?

θ

4

35

By the acute angle definition in section
2.1, sin θ = 3

5
. We’re looking for an angle in

the first quadrant, so there’s no need to be
clever. Using a calculator:

θ = sin−1

(

3

5

)

≈ 36.9◦

Example 2.73: A six foot tall man is standing 50 feet away from a 150 foot
tall building. What is the angle of elevation from the man to the top of the
building?
Solution:

θ

50

144

tan θ =
144

50

θ = tan−1

(

144

50

)

≈
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Example 2.74: A three foot tall child is flying a kite which is 25 feet in
the air. The 45 foot long string connecting the child to the kite is tight and
straight. What is the angle of elevation from the child to the kite?
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2.5.6 Practice

Practice Problems (with solutions)

1. Evaluate the inverse functions.

(a) cos−1
(

1
2

)

(b) sin−1
(

1
2

)

(c) tan−1
(√

3
3

)

(d) sin−1
(

−
√
3
2

)

(e) cos−1
(

−
√
2
2

)

2. Evaluate the composition of functions.

(a) sin
(

sin−1
(

−3
4

))

(b) cos (cos−1 (2.6))

3. Evaluate the composition of functions.

(a) sin−1
(

sin
(

3π
4

))

(b) cos−1
(

cos
(

3π
4

))

(c) sin−1
(

sin
(

4π
3

))

4. Evaluate the composition of functions.

(a) cos
(

sin−1
(

3
5

))

(b) tan
(

cos−1
(

3
8

))

(c) cos
(

sin−1
(

−3
4

))

5. Evaluate the composition of functions
assuming 0 < x < 1.

(a) cos(sin−1(x))

(b) sec(tan−1(x))

Homework 2.5

1. Evaluate the inverse functions.

(a) sin−1
(√

3
2

)

(b) cos−1
(√

2
2

)

(c) tan−1
(√

3
)

(d) sin−1
(

−1
2

)

(e) cos−1
(

−
√
3
2

)

(f) tan−1(−1)

2. Evaluate the composition of functions.

(a) sin
(

sin−1
(

−2
3

))

(b) cos
(

cos−1
(

π
2

))

(c) tan
(

tan−1
(

π
2

))

3. Evaluate the composition of functions.

(a) sin−1
(

sin
(

2π
3

))

(b) cos−1
(

cos
(

2π
3

))

(c) tan−1 (tan (1))

(d) sin−1
(

sin
(

5π
4

))

(e) cos−1
(

cos
(

−π
6

))

(f) tan−1
(

tan
(

4π
3

))

4. Evaluate the composition of functions.

(a) cos
(

sin−1
(

2
3

))

(b) tan
(

cos−1
(

5
8

))

(c) csc
(

tan−1
(

4
3

))

(d) cos
(

sin−1
(

−2
3

))

(e) tan
(

cos−1
(

−5
8

))

(f) csc
(

tan−1
(

−4
3

))
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5. Evaluate the composition of functions
assuming 0 < x < 1.

(a) sin(cos−1(x))

(b) tan(cos−1(x))

(c) csc(tan−1(x))

6. A man is sitting on a 10 foot high pier
holding a short fishing reel. The man
hooks a fish which is two feet below the
surface of the water. If he has 30 feet
of tight line out, what is the angle of
depression from the man to the fish?

Practice Solutions:

1. (a) cos
(

π
3

)

= 1
2
and 0 < π

3
< π,

⇒ cos−1
(

1
2

)

= π
3

(b) sin
(

π
6

)

= 1
2
and −π

2
< π

6
< π

2
,

⇒ sin−1
(

1
2

)

= π
6

(c) tan
(

π
6

)

=
√
3
3

and −π
2
< π

6
< π

2
,

⇒ tan−1
(√

3
3

)

= π
6

(d) sin
(

−π
3

)

= −
√
3
2
, −π

2
< −π

3
< π

2
,

⇒ sin−1
(

−
√
3
2

)

= −π
3

(e) cos
(

3π
4

)

= −
√
2
2

and 0 < 3π
4
< π,

⇒ cos−1
(

1
2

)

= 3π
4

2. (a) −1 ≤ −3
4
≤ 1,

⇒ sin
(

sin−1
(

−3
4

))

= −3
4

(b) 2.6 > 1, so cos−1 (2.6) is not
defined.
⇒ cos (cos−1 (2.6)) is not defined.

3. (a)

sin−1
(

sin
(

3π
4

))

= sin−1
(

+ sin
(

π
4

))

= π
4

since −π
2
< π

4
< π

2

(b)

cos−1
(

cos
(

3π
4

))

= 3π
4

since 0 < 3π
4
< π

(c)

sin−1
(

sin
(

4π
3

))

= sin−1
(

− sin
(

π
3

))

= sin−1
(

−
√
3
2

)

= −π
3

4. (a) Let θ = sin−1
(

3
5

)

.
The corresponding triangle is:

√
52 − 32 = 4

3
5

θ

cos
(

sin−1
(

3
5

))

= cos(θ) = 4
5

(b) Let θ = cos−1
(

3
8

)

.
The corresponding triangle is:

3

√
82 − 32 =

√
55

8

θ

tan
(

cos−1
(

3
8

))

= tan(θ) =
√
55
3

(c) Let θ = sin−1
(

−3
4

)

.
The corresponding triangle is:
√

42 − (−3)2 =
√
7

−3
4

θ

cos
(

sin−1
(

−3
4

))

= cos(θ) =
√
7
4

5. (a) Let θ = sin−1(x).
The corresponding triangle is:

√
1− x2

x
1

θ

cos(sin−1(x)) = cos(θ) =
√
1−x2

1
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(b) Let θ = tan−1(x).
The corresponding triangle is:

1

x
√ 1 +

x
2

θ

sec(tan−1(x)) = sec(θ) =
√
1+x2

1
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2.6 Trigonometric Equations

The values of an inverse function and the solutions to an equations are often confused. The
thing to remember is a function produces exactly one value for each input, while an equation
may have many solutions.

Consider the function
√
x. For each x ≥ 0 this function has one value.

e.g.
√
4 = 2 and

√
25 = 5. People who say

√
4 is ±2 are badly mis-informed.

Contrast this with the solutions to the equation:

x2 = 4

There are two values for x which make this a true statement,

x = 2 and x = −2

hence there are two solutions.
√
4 gives you one solution, but there is another.

2.6.1 Simple Trigonometric Equations

Consider the equation:

cos(x) =
1

2

cos−1
(

1
2

)

= π
3
gives you one solution, but as we can see by looking at the graph, there are

infinitely many others.

−π −π
2

π
2

π 3π
2

2π 5π
2

3π

−2

−1

1

2

−π
3

π
3
= cos−1

(

1
2

)

5π
3

7π
3

y = cos(x)

How do we find them all?
First, notice that all solutions have the same reference angle: π

3
, and the cos−1 gave it to

you.
Second, notice that there are solutions in Quadrants I and IV only. This is sensible as

cosine is positive only in those Quadrants.
Finally, notice that all the other angles in Quadrant I are co-terminal, and all the angles

in Quadrant IV are co-terminal.
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Recipe for solving sin(x) = y or cos(x) = y.

1. Find the reference angle: trig−1|y|.

2. Find the quadrant(s) of the solutions.

3. Find one solution in each quadrant, then list all angles co-terminal to it by writing:
+2πn or +360◦n.

Let’s apply this recipe to the problem just discussed.

Example 2.75: Find all solutions to: cos(x) = 1
2

1. Reference angle = cos−1
∣

∣

1
2

∣

∣ = π
3

2. cos(x) > 0 ⇒ Quadrants I and IV

3.

Quadrant I : x = π
3
+ 2πn

Quadrant IV : x =
(

2π − π
3

)

+ 2πn

= 5π
3
+ 2πn

n can be any integer. So another way to write the answer is:

n = . . . −1 0 1 2 . . .

Quadrant I : x = . . . −5π
3

π
3

7π
3

13π
3

. . .

Quadrant IV : x = . . . −π
3

5π
3

11π
3

17π
3

. . .

Example 2.76: Find all solutions to: sin(x) = − 1√
2

1. Reference angle =

2. sin(x) 0 ⇒ Quadrants =

3. Quadrant : x =

Quadrant : x =
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The recipe can be used even if the reference angle is not one of our special angles.

Example 2.77: Approximate the solutions to cos(x) = −0.6

1. Reference angle ≈

2. cos(x) 0 ⇒ Quadrants =

3. Quadrant : x ≈

Quadrant : x ≈

The recipe can be used to solve tan(x) = y as well, but since the period of tangent is π
there is an easier method. We show both methods.

Example 2.78: Find all solutions to: tan(x) = −1

1. Reference angle = tan−1 | − 1| = tan−1(1) = π
4

2. tan(x) < 0 ⇒ Quadrants II and IV

3.

Quadrant II : x =
(

π − π
4

)

+ 2πn

= 3π
4
+ 2πn

Quadrant IV : x =
(

2π − π
4

)

+ 2πn

= 7π
4
+ 2πn

But notice how this set of solutions:

n = . . . −1 0 1 2 . . .

Quadrant II : x = . . . −5π
4

3π
4

11π
4

19π
4

. . .

Quadrant IV : x = . . . −π
4

7π
4

15π
4

23π
4

. . .

Is the same as this set:

n = . . . −1 0 1 2 3 4 . . .

−π
4
+ πn : x = . . . −5π

4
−π

4
3π
4

7π
4

11π
4

15π
4

. . .
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In fact, the solution to tan(x) = y can always be written as just:

x = tan−1(y) + πn

2.6.2 More Complicated Trig Equations

More complicated trig equations should be first reduced to simple equations of the type we
solved in the previous section.

Example 2.79: Find all solutions to: 2 cos2(x)− 7 cos(x) + 3 = 0

Solution:

The left hand side of the equation is a quadratic polynomial in cosine—which
factors! Sometimes this is easier to see if we make a simple substitution, letting
y = cos(x). Then,

2 cos2(x)− 7 cos(x) + 3 = 0

2y2 − 7y + 3 = 0

(2y − 1)(y − 3) = 0

⇒ 2y − 1 = 0 or y − 3 = 0

⇒ y = 1
2

or y = 3

Substituting back in for y,

cos(x) = 1
2

or cos(x) = 3

x = π
3
+ 2πn (no solution)

x = 5π
3
+ 2πn

(we used our solution to example 2.75)
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Example 2.80: Find all solutions to: 1 + sin(x) = 2 cos2(x).
Hint: Re-write cos2(x) as something with sin2(x).

Again, we can approximate the solutions to a quadratic trig equation even if the quadratic
does not factor. We just have to use the Quadratic Formula:

ax2 + bx+ c = 0 ⇒ x =
−b±

√
b2 − 4ac

2a

Example 2.81: Approximate the solutions to:

cos2(x) + 2 cos(x)− 2 = 0

Solution:

The quadratic does not factor, so we appeal to the Quadratic Formula.

cos(x) =
−(2)±

√

(2)2 − 4(1)(−2)

2
=

−2±
√
12

2
= −1±

√
3

Thus,

cos(x) = −1 +
√
3 ≈ 0.732 or cos(x) = −1−

√
3 ≈ −2.732

For the first equation the reference angle ≈ cos−1(0.732) ≈ 42.9◦, and the
solutions are in Quadrants I and IV. Hence,

x ≈ 42.9◦ + 360◦n and x ≈ 317.1◦ + 360◦n

The second equation has no solutions.
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A second type of equation also relies on solving a simpler trig equation.

Example 2.82: Find all solutions between 0 and 2π to the equation:

sin(2x) =
1

2

Solution: First let θ = 2x and solve:

sin(θ) =
1

2

The reference angle = sin−1
(

1
2

)

= π
6
, and the solutions are in Quadrants I and

II, so

θ = π
6
+ 2πn

θ = 5π
6
+ 2πn

Substituting back in for θ we have,

2x = π
6
+ 2πn ⇒ x = π

12
+ πn

2x = 5π
6
+ 2πn ⇒ x = 5π

12
+ πn

We get solutions between 0 and 2π for n = 0 or 1, thus

x =
π

12
,
5π

12
,
13π

12
,
17π

12

Example 2.83: Find all solutions between 0 and 2π to the equation:

sin(3x) = − 1√
2

(Hint: Refer to example 2.76)
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And, of course, we can approximate the solutions to such an equation even if it doesn’t
involve one of our special angles.

Example 2.84: Approximate all solutions between 0◦ and 360◦ to the equa-
tion:

cos(2x) = −2

3
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2.6.3 Practice

Practice Problems (with solutions)

1. Find all solutions to the equation. Give
exact answers in radians.

2 cos(x) + 1 = 0

2. Find all solutions to the equation using
the triangle below. Give exact answers
in radians.

1
4
(1 +

√
5)

1
4

√

10− 2
√
5

1

π/5

3π
10

sin(x) =
1 +

√
5

4

3. Use your calculator to approximate all
solutions to the equation:

cos(x) = 0.75

4. Find all solutions to the equation be-
low. Give exact answers in radians.

4 sin2(x)− 3 = 0

5. Use your calculator and the quadratic
formula to approximate all solutions to
the equation:

cos2(x)− 4 cos(x)− 1 = 0

6. Find all solutions between 0 and 2π to
the equation below. Give exact answers
in radians.

cos(3x) = −1

2

7. Use your calculator to approximate all
solutions between 0◦ and 360◦ to the
equation:

cos(2x) = 0.75

Homework 2.6

1. Find all solutions of the equations be-
low. Give exact answers in radians.

(a) 2 sin(x) + 1 = 0

(b) 2 cos(x) +
√
3 = 0

(c) tan(x) =
√
3

2. Use the triangle below to find all solu-
tions of the equations below. Give ex-
act answers in radians.

1
2

√

2 +
√
2

1
2

√

2−
√
2

1

π/8

3π
8

(a)

sin(x) =
1

2

√

2 +
√
2

(b)

cos(x) = −1

2

√

2 +
√
2

(c)

tan(x) = −
√

2 +
√
2

√

2−
√
2

3. Use your calculator to approximate all
solutions of the equations below. Give
answers to one decimal place in degrees.

(a) sin(x) = 0.3
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(b) cos(x) = −0.7

(c) tan(x) = −
√
2

4. Find all solutions of the equations be-
low. Give exact answers in radians.

(a) 4 cos2(x)− 1 = 0

(b) 2 sin2(x) = 1 + sin(x)

(c) sec2(x) = 1 + tan(x)

(d) tan4(x)− 9 = 0

5. Use your calculator to approximate all
solutions of the equations below. Give
answers to one decimal place in degrees.

(a) 3 sin2(x)− 7 sin(x) + 2 = 0

(b) cos2(x) + 4 cos(x) + 1 = 0

6. Find all solutions of the equations be-
low between 0 and 2π. Give exact an-
swers in radians.

(a)

sin(4x) =
1√
2

(b)

cos(3x) = −
√
3

2

7. Use your calculator to approximate all
solutions of the equations below be-
tween 0◦ and 360◦. Give answers to one
decimal place in degrees.

(a) sin(3x) = 0.3

(b) cos(2x) = −0.7

Practice Solutions:

1. Solving gives:

cos(x) = −1

2

Reference angle:

cos−1

(

+
1

2

)

=
π

3

cos(x) < 0 implies quadrants II and III.

QII : x = 2π
3
+ 2πn

QIII : x = 4π
3
+ 2πn

2. Reference angle (from triangle):

sin−1

(

1 +
√
5

4

)

=
3π

10

sin(x) > 0 implies quadrants I and II.

QI : x = 3π
10

+ 2πn

QII : x = 7π
10

+ 2πn

3. Reference angle:

cos−1(0.75) ≈ 41.4◦

cos(x) > 0 implies quadrants I and IV.

QI : x ≈ 41.4◦ + 360◦n

QIV : x ≈ 318.6◦ + 360◦n

4. Solving for sin(x):

sin(x) = ±
√

3

4
= ±

√
3

2

Reference angle for both equations is:

sin−1

(

+
√
3

2

)

=
π

3

85



Sine both positive and negative gives
solutions in all four quadrants:

QI : x = π
3
+ 2πn

QII : x = 2π
3
+ 2πn

QIII : x = 4π
3
+ 2πn

QIV : x = 5π
3
+ 2πn

5. Letting y = cos(x), gives the equation:

y2 − 4y − 1 = 0

The Quadratic Formula gives:

y =
−(−4)±

√

(−4)2 − 4(1)(−1)

2(1)

⇒ y = 2±
√
5

cos(x) = 2 +
√
5 > 1

⇒ No Solution

cos(x) = 2−
√
5 ≈ −0.2361

Reference angle

x ≈ cos−1(+0.2361) ≈ 76.3◦

cos(x) < 0 implies quadrants II and III.

QII : x ≈ 103.7◦ + 360◦n

QIII : x ≈ 256.3◦ + 360◦n

6. From problem 1, we have:

3x = 2π
3
+ 2πn

3x = 4π
3
+ 2πn

Dividing,

x = 2π
9
+ 2πn

3
= 2π

9
, 8π

9
, 14π

9

x = 4π
9
+ 2πn

3
= 4π

9
, 10π

9
, 16π

9

7. From problem 3, we have:

2x ≈ 41.4◦ + 360◦n

2x ≈ 318.6◦ + 360◦n

Dividing,

x ≈ 20.7◦ + 180◦n = 20.7◦, 200.7◦

x ≈ 159.3◦ + 180◦n = 159.3◦, 339.3◦

86



Chapter 3

Formulas

3.1 Identities

An equation is just a mathematical statement. It may be always true, always false, or
true only for certain values of the variables. If an equation is true only for some values of
the variables, we call it a conditional equation, and the values which make it true the
solutions to the equation. Of course such equations are very important, and you’ve been
trained to solve them since you were small. But there are the other kinds of equations.

An equation that is always false is called a contradiction.

An equation that is always true is called an identity.

2x− 1 = 5 is a conditional equation since it is a true statement only if x = 3.

x+ 4 = x is a contradiction since it is not true for any value of x.

x− 1
x
= (x+1)(x−1)

x
appears to be an identity since it is true for various values of x.

x = 2 ⇒ 2− 1
2
= 3

2
= (2+1)(2−1)

2

x = 1 ⇒ 1− 1
1
= 0 = (1+1)(1−1)

1

x = 10 ⇒ 10− 1
10

= 9.9 = (10+1)(10−1)
10

But this just shows it’s true for those three x’s. How do we show it’s true for all x’s?

You cannot just treat it like a conditional equation. To begin, choose one side of the
equation: the Left Hand Side of the equation (LHS) or the Right Hand Side (RHS). Then
you do algebra to that expression until it looks like the other side.
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Example 3.1: Prove the following is an identity.

x− 1

x
=

(x+ 1)(x− 1)

x

Solution: We’ll start with the Left Hand Side.

LHS = x− 1
x

= x2

x
− 1

x

= x2−1
x

= (x+1)(x−1)
x

= RHS

Notice we did not do anything like “solve” the equation. We did not “multiply both sides
by x” as there are no “both sides”. There’s one side (the starting point) and the other side
(the destination).

Remember, too, that we already have several identities, and that they can be used to
prove new identities. The most important identity we have is sin2 x+ cos2 x = 1.

Example 3.2: Prove the following is an identity.

sec(x) = tan(x) +
cos(x)

1 + sin(x)

Solution: It usually easier to start with the more complicated side and simplify.
Let’s start with the Right Hand Side.

RHS = tan(x) + cos(x)
1+sin(x)

= sin(x)
cos(x)

+ cos(x)
1+sin(x)

= sin(x)
cos(x)

(

1+sin(x)
1+sin(x)

)

+ cos(x)
1+sin(x)

(

cos(x)
cos(x)

)

= sin(x)+sin2(x)+cos2(x)
cos(x)(1+sin(x))

= sin(x)+1
cos(x)(1+sin(x))

= 1
cos(x)

= sec(x) = LHS
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Example 3.3: Prove the following is an identity.

sec2(x)− 1

sec2(x)
= sin2(x)

Example 3.4: Prove the following is an identity.

cos(−x) + sin(−x)

cos(x)
= 1− tan(x)
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One trick that often works when you have a 1± sin(x) or 1± cos(x) is to multiply by the
“conjugate” 1∓ sin(x) or 1∓ cos(x).

Example 3.5: Prove the following is an identity.

cos(x)

1− sin(x)
= sec(x) + tan(x)

Solution:

LHS = cos(x)
1−sin(x)

= cos(x)
1−sin(x)

(

1+sin(x)
1+sin(x)

)
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3.1.1 Practice

Homework 3.1

Prove the identities.

1. (cos(x) + sin(x))2 = 1 + 2 cos(x) sin(x)

2. cos2(θ)(1 + tan2(θ)) = 1

3. csc(x)− sin(x) = cos(x) cot(x)

4. cos(t) + tan(t) sin(t) = sec(t)

5. cot(−x) cos(−x) + sin(−x) = − csc(x)

6. 1−cos(α)
sin(α)

= sin(α)
1+cos(α)

7. tan2(t)− sin2(t) = tan2(t) sin2(t)

8. 1
sec(t)+tan(t)

+ 1
sec(t)−tan(t)

= 2 sec(t)
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3.2 Sum and Difference Formulas

Most functions do not “distribute” over a sum. That is, for most functions f , and most
numbers, x and y,

f(x+ y) 6= f(x) + f(y)

Certainly,

(x+ y)2 6= x2 + y2

and

ln(x+ y) 6= ln(x) + ln(y)

Likewise, for most angles α and β,

cos(α + β) 6= cos(α) + cos(β) and sin(α + β) 6= sin(α) + sin(β)

For instance,

cos
(π

4
+

π

4

)

= cos
(π

2

)

= 0

but

cos
(π

4

)

+ cos
(π

4

)

=
1√
2
+

1√
2
=

√
2 6= 0

There is, however, a way to write cos(α+ β) in terms of the sine and cosine of α and β. It’s
more complicated than just “distributing”, but it has the advantage of being true.

x

y

β

(cos β, sin β)

α
(cosα, sinα)

D

x

y

α − β

(cos(α− β), sin(α− β))

(1, 0)

D

The Distance Formula for the distance between two points, (x1, y1) and (x2, y2), is:

D =
√

(x1 − x2)2 + (y1 − y2)2

The square of the distance in the left picture is:

D2 = (cosα− cos β)2 + (sinα− sin β)2

= cos2 α− 2 cosα cos β + cos2 β + sin2 α− 2 sinα sin β + sin2 β
= (cos2 α+ sin2 α) + (cos2 β + sin2 β)− 2(cosα cos β + sinα sin β)
= 2− 2(cosα cos β + sinα sin β)
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The square of the distance in the right picture is:

D2 = (cos(α− β)− 1)2 + (sin(α− β)− 0)2

= cos2(α− β)− 2 cos(α− β) + 1 + sin2(α− β)
= 2− 2 cos(α− β)

Setting the two expressions for D2 equal:

2− 2 cos(α− β) = 2− 2(cosα cos β + sinα sin β)
cos(α− β) = cosα cos β + sinα sin β

This expression can be used to derive other expressions for the sine or cosine of the sum or
difference of angles.

cos(α± β) = cosα cos β ∓ sinα sin β

sin(α± β) = sinα cos β ± cosα sin β

Example 3.6: Find the exact value of cos
(

π
12

)

.

Solution: First notice that π
12

= π
3
− π

4
.

Then,

cos
(

π
12

)

= cos
(

π
3
− π

4

)

= cos
(

π
3

)

cos
(

π
4

)

+ sin
(

π
3

)

sin
(

π
4

)

= 1
2

√
2
2
+

√
3
2

√
2
2

=
√
2+

√
6

4

Example 3.7: Find the exact value of sin
(

17π
12

)

.

Hint: 17π
12

= 8π
12

+ 9π
12
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Example 3.8: Find the exact value of: cos 20◦ cos 50◦ + sin 20◦ sin 50◦.

Example 3.9: Simplify the expression: cos
(

x+ π
2

)

.

Solution:

cos
(

x+ π
2

)

= cos(x) cos π
2
− sin(x) sin π

2

= cos(x) · 0− sin(x) · 1

= − sin(x)

Example 3.10: Simplify the expression: sin(x− π).

We can use the sum and difference rules for sine and cosine to construct similar rules for
tangent.

tan(α± β) = sin(α±β)
cos(α±β)

= sinα cos β±cosα sinβ
cosα cos β∓sinα sinβ

= sinα cos β±cosα sinβ
cosα cos β∓sinα sinβ

(

1

cosα cos β
1

cosα cos β

)

tan(α± β) = tanα±tan β
1∓tanα tanβ
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Example 3.11: Find the exact value of tan
(

5π
12

)

.

3.2.1 Writing a Sum as a Single Function

One very useful application of the sum and difference rules is to write a sum of a sine and a
cosine as a single trig function, say a sine.

Example 3.12: Write − sin(x) +
√
3 cos(x) in the form: k sin(x+ φ).

Solution: We want to find k and φ so that

k sin(x+ φ) = − sin(x) +
√
3 cos(x)

We begin by letting k =
√

(−1)2 + (
√
3)2 = 2.

Dividing both sides of the above equation by k gives,

sin(x+ φ) = −1

2
sin(x) +

√
3

2
cos(x)

Now applying the addition rule for sine,

cosφ sin(x) + sinφ cos(x) = −1

2
sin(x) +

√
3

2
cos(x)

We need to chose a φ so that,

cosφ = −1

2
and sinφ =

√
3

2

Cosine is negative while sine is positive, so φ is in quadrant II. The reference
angle for φ is clearly π/3, hence φ = 2π/3.

− sin(x) +
√
3 cos(x) = 2 sin

(

x+
2π

3

)
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In general, to write A sin(x) +B cos(x) as k sin(x+ φ),

1. Let k =
√
A2 +B2.

2. Find φ so that:

cosφ =
A

k
and sinφ =

B

k

by finding the quadrant and reference angle for φ.

Example 3.13: Write sin(x)− cos(x) in the form: k sin(x+ φ).

Example 3.14: Find k and approximate φ so that:

3 sin(x) + 4 cos(x) = k sin(x+ φ)
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3.2.2 Practice

Homework 3.2

1. Use the addition and subtraction for-
mulas to find the exact value of the ex-
pression.

(a) cos(15◦)

(b) sin
(

19π
12

)

(c) tan
(

17π
12

)

2. Use the addition and subtraction for-
mulas to find the exact value of the ex-
pression.

(a) sin(18◦) cos(27◦)+cos(18◦) sin(27◦)

(b) cos(10◦) cos(80◦)−sin(10◦) sin(80◦)

(c)

tan
(

π
18

)

+ tan
(

π
9

)

1− tan
(

π
18

)

tan
(

π
9

)

3. Use the addition and subtraction for-
mulas to simplify the expression.

(a) sin
(

x− π
2

)

(b) cos
(

x+ 3π
2

)

(c) tan
(

π
2
− x
)

(d) sin
(

cos−1
(

1
3

)

+ cos−1
(

3
5

))

4. Prove the identities.

(a)

cos
(

x+
π

6

)

+sin
(

x− π

3

)

= 0

(b)

cos (x+ y)+cos (x− y) = 2 cos(x) cos(y)

5. Write the expression exactly as
k sin(x+ φ).

(a) sin(x) + cos(x)

(b) −5 sin(πx)− 5 cos(πx)

(c) 3 sin(x)− 3
√
3 cos(x)

6. Approximate the expression as
k sin(x+ φ).

(a) 5 sin(x) + 12 cos(x)

(b) −4 sin(x) + 3 cos(x)

(c) −8 sin(x)− 7 cos(x)
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3.3 More Trig Formulas

3.3.1 Product-to-sum and Sum-to-product Formulas

We can also use the sum and difference formulas to write the product of two trig functions
as a sum.

sin(α− β) = sinα cos β − cosα sin β
+ sin(α + β) = sinα cos β + cosα sin β

sin(α− β) + sin(α + β) = 2 sinα cos β

Dividing both sides by 2 we have a formula for sinα cos β.
Similarly we may derive formulas for the other products:

sinα cos β = 1
2
(sin(α− β) + sin(α+ β))

sinα sin β = 1
2
(cos(α− β)− cos(α + β))

cosα cos β = 1
2
(cos(α− β) + cos(α + β))

Example 3.15: Write sin(2x) cos(3x) as a sum of two trig functions.

Solution: According to our first product-to-sum formula:

sin(2x) cos(3x) = 1
2
(sin(2x− 3x) + sin(2x+ 3x))

= 1
2
(sin(−x) + sin(5x))

= 1
2
(− sin(x) + sin(5x))

= 1
2
(sin(5x)− sin(x))

Example 3.16: Write sin(7x) sin(3x) as a sum of two trig functions.
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Using a simple substitution we can go from a product back to a sum.

Let
u = α− β
v = α+ β

⇒ α =
u+ v

2
, β =

−u+ v

2
= −u− v

2

Hence our formulas become:

sin(u) + sin(v) = 2 sin
(

u+v
2

)

cos
(

u−v
2

)

sin(u)− sin(v) = 2 cos
(

u+v
2

)

sin
(

u−v
2

)

cos(u)− cos(v) = −2 sin
(

u+v
2

)

sin
(

u−v
2

)

cos(u) + cos(v) = 2 cos
(

u+v
2

)

cos
(

u−v
2

)

Example 3.17: Write cos(4a)− cos(6a) as a product of trig functions.

Example 3.18: Find the exact value of: sin
(

5π
12

)

+ sin
(

π
12

)

.
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3.3.2 Double Angle Formulas

Just as functions don’t, in general, “distribute” over sums; you also cannot, in general,
“factor out” a number from inside a function.

e2x 6= 2ex and
√
2x 6= 2

√
x

Likewise for the trig functions. As we saw in section 2.3,

sin(2x) 6= 2 sin(x) and cos(2x) 6= 2 cos(x)

We can easily use the sum and difference formulas to give us formulas for the sine or cosine
of twice an angle.

sin(x+ x) = sin(x) cos(x) + cos(x) sin(x)

Thus,

sin(2x) = 2 sin(x) cos(x)

Likewise for cosine,

cos(x+ x) = cos(x) cos(x)− sin(x) sin(x) = cos2(x)− sin2(x)

Using the formula, cos2(x) + sin2(x) = 1 we can form three different expressions for the
cosine of double an angle.

cos(2x) = cos2(x)− sin2(x)
= 2 cos2(x)− 1
= 1− 2 sin2(x)

Example 3.19: Use a double angle formula to evaluate: sin
(

2π
3

)

.

Solution:

sin
(

2π
3

)

= 2 sin
(

π
3

)

cos
(

π
3

)

= 2 ·
√
3
2

· 1
2

=
√
3
2

Which we know is correct by the methods of section 2.2.
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Example 3.20: Use a double angle formula to evaluate: cos
(

2π
3

)

.

Example 3.21: Prove the identity:

cos(2θ)

sin(2θ)
=

1

2
(cot θ − tan θ)

Example 3.22: Simplify the expression: sin
(

2 sin−1
(

2
3

))

Solution:

sin
(

2 sin−1
(

2
3

))

= 2 sin
(

sin−1
(

2
3

))

cos
(

sin−1
(

2
3

))

= 2
(

2
3

)

(√
5
3

)

= 4
√
5

9

(Using example 2.67.)
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Example 3.23: Say θ is an angle in quadrant IV, and cos θ = 1
4
. Find sin(2θ).

Solution: To find sin(2θ) we need both the cosine and sine of θ.

sin2 θ + cos2 θ = 1

⇒ sin θ = ±
√
1− cos2 θ

sin θ = −
√

1−
(

1
4

)2

= −
√
15
4

(Negative since θ is in quadrant IV where sine is negative.)
Thus,

sin(2θ) = 2 sin(θ) cos(θ)

= 2 · −
√
15
4

· 1
4

= −
√
15
8

Example 3.24: Say θ is an angle in quadrant IV, and cos θ = 1
4
.

Find cos(2θ). In what quadrant is the angle 2θ?

We may also use the double angle formulas to help us solve an equation.
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Example 3.25: Solve the equation.

sin(2x) = cos(x)

Solution:

Using the double angle formula for sine we have

2 sin(x) cos(x) = cos(x)

2 sin(x) cos(x)− cos(x) = 0

cos(x)(2 sin(x)− 1) = 0

⇒ cos(x) = 0 or sin(x) = 1
2

⇒ x = π
2
+ πn, x = π

6
+ 2πn, or x = 5π

6
+ 2πn

3.3.3 Half Angle Formulas

To reverse this process, going from the sine or cosine of an angle to the sine or cosine of half
the angle, we make a simple substitution: u = 2x.

cos(2x) = 2 cos2(x)− 1

cos(u) = 2 cos2
(

u
2

)

− 1

Solving for the cosine of half u gives:

cos
(

u
2

)

= ±
√

1+cos(u)
2

Likewise,

cos(2x) = 1− 2 sin2(x)

cos(u) = 1− 2 sin2
(

u
2

)

sin
(

u
2

)

= ±
√

1−cos(u)
2

In both cases the ± is determined by the quadrant of u/2 (not u).
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Example 3.26: Use a half angle formula to find the exact value of sin π
8
.

Solution:

sin π
8
= sin

(

π/4
2

)

= +

√

1−cos π
4

2

=

√

1−
√

2

2

2
·
(

2
2

)

=
√

2−
√
2

4
= 1

2

√

2−
√
2

The + comes from the fact that π/8 is in quadrant I (where sine is positive).

Example 3.27: Use a half angle formula to find the exact value of sin 7π
12
.

(Hint: Watch out for the signs!)
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Example 3.28: Say θ satisfies π ≤ θ ≤ 2π and cos θ = 2
3
.

Find cos θ
2
and sin θ

2
.

Solution: First find the quadrant that θ/2 is in. Dividing through by 2,

π ≤ θ ≤ 2π ⇒ π

2
≤ θ

2
≤ π

Thus θ/2 is in Quadrant II. Cosine will be negative, and sine positive.

cos
θ

2
= −

√

1 + cos θ

2
= −

√

1 + 2
3

2

(

3

3

)

= −
√

5

6

sin
θ

2
=

Notice we didn’t need sin θ; the half-angle formulas only use cosine.

Also there was no “cos 2
3
”! 2/3 is not an angle! (At least not in this problem.)

Example 3.29: Say instead θ satisfies −π ≤ θ ≤ 0 and cos θ = 2
3
.

Now what are cos θ
2
and sin θ

2
?

There are also double and half angle formulas for tangent.

tan(x+ x) =
tan(x) + tan(x)

1− tan(x) tan(x)

Gives,

tan(2x) = 2 tan(x)
1−tan2(x)

Using the half angle formulas for sine and cosine we have,

tan
(u

2

)

=
sin u

2

cos u
2

=
±
√

1−cos(u)
2

±
√

1+cos(u)
2

= ±
√

1− cos(u)

1 + cos(u)
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Multiplying by the conjugate of the bottom gives

tan
(u

2

)

= ±
√

1− cos(u)

1 + cos(u)

(

1− cos(u)

1− cos(u)

)

= ±
√

(1− cos(u))2

1− cos2(u)
= ±

∣

∣

∣

∣

1− cos(u)

sin(u)

∣

∣

∣

∣

Miraculously, the absolute values and the ± cancel with each other.
You get a similar formula if you multiply by the conjugate of the top.

tan
(

u
2

)

= 1−cos(u)
sin(u)

= sin(u)
1+cos(u)

Example 3.30: Use the half angle formula to find the exact value of tan π
8
.

Solution:

tan π
8

= tan
(

1
2
· π
4

)

=
1−cos π

4

sin π
4

=
1−

√
2

2√
2

2

=
(

1−
√
2
2

)

2√
2
= 2√

2
− 1 =

√
2− 1
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3.3.4 Practice

Homework 3.3

1. Use a half-angle formula to find the ex-
act value of the expression.

(a) cos(15◦)

(b) sin
(

3π
8

)

(c) tan (75◦)

2. Use a double angle formula to simplify
the expression.

(a) 2 sin(3θ) cos(3θ)

(b) 1− 2 sin2(5x)

(c) 2 tan(7t)
1−tan2(7t)

3. Prove the identities.

(a)

sin (8x) = 2 sin(4x) cos(4x)

(b)

1 + sin(2x)

sin(2x)
= 1+

1

2
csc(x) sec(x)

(c)

sin(4x)

sin(x)
= 4 cos(x) cos(2x)

4. Simplify the expressions.

(a) cos
(

2 cos−1
(

3
5

))

(b) tan
(

2 sin−1
(

3
5

))

5. Find sin(x/2) and cos(x/2) from the
given information.

(a) cos(x) = 3
5
, 0◦ < x < 90◦

(b) sin(x) = − 5
13
, 180◦ < x < 270◦

(c) csc(x) = 3, 90◦ < x < 180◦

6. Write the sum as a product.

(a) sin(5x) + sin(3x)

(b) cos(4x)− cos(6x)

(c) sin(x)− sin(4x)

7. Write the product as a sum.

(a) sin(2x) cos(3x)

(b) cos(5x) cos(3x)

(c) 8 sin(x) sin(5x)

8. Solve the equations.

(a)

cos(2x) = sin(x)

(b)

tan
(x

2

)

= sin(x)
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3.4 Complex Numbers

Complex numbers are a surprisingly useful mathematical idea that turns up in many applied
disciplines. A number of the important concepts in complex numbers are similar to those
that come up when dealing with vectors (a subject we will study in the next chapter), and
involve a lot of trigonometry.

You’ll recall that complex numbers have the form: a+ bi where a and b are real numbers,
and i is the so called “imaginary number”,

√
−1.

Complex numbers can be added, subtracted, multiplied and divided just like regular
numbers. One just has to remember that i2 = −1.

Example 3.31: Let z = 3 + 4i and w = 1 + 7i.
Find z + w, z − w, zw, and z

w
.

Solution:

z + w = 3 + 4i+ 1 + 7i = 4 + 11i

z − w = 3 + 4i− 1− 7i = 2− 3i

zw = (3 + 4i) · (1 + 7i) = 3 + 21i+ 4i+ 28i2

= 3 + 21i+ 4i− 28 = −25 + 25i

z
w

= 3+4i
1+7i

·
(

1−7i
1−7i

)

= 3−21i+4i−28i2

1−49i2

= 31−17i
1+49

= 31
50

− 17
50
i

A very useful way to think about complex numbers is as points in the plane.

For a complex number z = a + bi, the
real part of the complex number (a) provides
the x-coordinate while the imaginary part (b)
provides the y-coordinate.

The complex number z = 3 + 2i corre-
sponds to the point in the plane (3, 2).

Im

Re

z = 3 + 2i

3.4.1 Trigonometric Form

A complex number written as z = a+ bi is said to be in standard form. However, a point
in the plane can also be described with a distance from the origin and an angle with the
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positive x-axis. These two quantities can be combined to make the “trigonometric form” of
a complex number.

Im

Re

z = 3 + 2i
r
θ

The distance from the origin, r, is called
the complex modulus, denoted |z|.

r = |z| =
√
32 + 22 =

√
13

The angle from the positive x-axis, θ, is called
the argument, denoted Arg(z).

θ = Arg(z) = sin−1

(

2√
13

)

≈ 33.7◦

Definition: The complex modulus of a complex number z = a+ bi is:

|z| =
√
a2 + b2

The argument of z is the angle so that:

cos(Arg(z)) =
a

|z| and sin(Arg(z)) =
b

|z|

Definition: The trigonometric form of a complex number z with complex

modulus r and argument θ is:

z = r cos(θ) + r sin(θ) i

Example 3.32: Approximate the trigonometric form of z = 3 + 2i.

Solution: We’ve already seen that |z| =
√
13 and Arg(z) ≈ 33.7◦, thus

z ≈
√
13 cos(33.7◦) +

√
13 sin(33.7◦) i

Example 3.33: Find the trigonometric form of z = −1 +
√
3 i.

Solution: |z| =
√

(−1)2 + (
√
3)2 = 2.

cos (Arg(z)) =
−1

2
and sin (Arg(z)) =

√
3

2

The reference angle is π/3, and the quadrant is II, so Arg(z) = 2π
3
. Thus,

z = 2 cos

(

2π

3

)

+ 2 sin

(

2π

3

)

i
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Notice that you can check your answer if you evaluate the cosine and sine of 2π/3,

2 cos

(

2π

3

)

+ 2 sin

(

2π

3

)

i = 2

(

−1

2

)

+ 2

(√
3

2

)

i = −1 +
√
3 i = z X

Example 3.34: Find the trigonometric form of z = 1− i.

Example 3.35: Find the trigonometric form of z = −3.

Example 3.36: Approximate the trigonometric form of z = −12− 5i.
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The trigonometric form is so useful that there are two types of notation signifying it.

Euler’s Formula: eiθ = cos θ + sin θ i and cis(θ) = cos θ + sin θ i

Thus from example 3.33,

−1 +
√
3i = 2e

2π
3
i

and from example 3.32,

3 + 2i ≈
√
13 cis(33.7◦)

3.4.2 Product, Quotient, and Power

The standard form is best when adding or subtracting complex numbers, but the trigono-
metric form is a little better when multiplying them, and vastly better when raising them
to a power. When multiplying two complex numbers you multiply the moduli, but add the
arguments.

Say you have two complex numbers in their trigonometric forms:

z1 = r1 cos θ1 + r1 sin θ1 i and z2 = r2 cos θ2 + r2 sin θ2 i

Then, using the sum and difference formulas,

z1 · z2 = (r1 cos θ1 + r1 sin θ1 i) · (r2 cos θ2 + r2 sin θ2 i)

= r1r2(cos θ1 cos θ2 − sin θ1 sin θ2) + r1r2(sin θ1 cos θ2 + sin θ1 cos θ2)i

= r1r2(cos(θ1 + θ2)) + r1r2(sin(θ1 + θ2))i

Or in other words,

r1cis(θ1) · r2cis(θ2) = r1r2cis(θ1 + θ2)

It is as if the arguments, θ1 and θ2, behave like the exponents in the formula:

xa · xb = xa+b

This is one reason why Euler chose his notation; so that eiθ1 · eiθ2 = ei(θ1+θ2)

The other complex number formulas we will study show the same similarity to exponents.

Example 3.37: Find the trig form of (−1 +
√
3 i) · (

√
3 + i).

Solution: First we need the trig form of z =
√
3 + i. |z| =

√

(
√
3)2 + 12 = 2.

Since cos θ =
√
3
2

and sin θ = 1
2
the argument is π/6. Thus z = 2 cis

(

π
6

)

From example 3.33 we have the trig form of −1 +
√
3 i is 2 cis

(

2π
3

)

. Thus,

(−1+
√
3 i)·(

√
3+i) = 2 cis

(π

6

)

·2 cis
(

2π

3

)

= 4 cis

(

π

6
+

2π

3

)

= 4 cis

(

5π

6

)
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We can easily check this result by “foiling out” the product.

(−1 +
√
3 i) · (

√
3 + i) = −

√
3− i+ (

√
3)2i+

√
3 i2 = −2

√
3 + 2i

while

4 cis

(

5π

6

)

= 4 cos

(

5π

6

)

+ 4 sin

(

5π

6

)

i = 4

(

−
√
3

2

)

+ 4

(

1

2

)

i = −2
√
3 + 2i

Quotients of complex numbers behave similarly. Since

xa

xb = xa−b we have: r1cis(θ1)
r2cis(θ2)

= r1
r2
cis(θ1 − θ2)

Example 3.38: Find the trig form of −1+
√
3 i√

3+i
. Check by doing the division.

But where the trig form really begins to pay off is with powers. Once again following the
example of exponents, since

(xa)n = xna we have D’Moivre’s Theorem: (rcis(θ))n = rncis(nθ)

Example 3.39: Use example 3.33 and D’Moivre’s Theorem to simplify:
(−1 +

√
3 i)3

Solution: From example 3.33 we know the trig form of −1+
√
3 i is 2 cis

(

2π
3

)

.
Thus,

(−1 +
√
3 i)3 = (2 cis

(

2π
3

)

)3 = 23cis
(

32π
3

)

= 8cis(2π)

= 8(cos(2π) + sin(2π)i) = 8(1 + 0i) = 8
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Is it really just 8?! We can check without too much difficulty.

(−1 +
√
3i)2 = (−1 +

√
3i) · (−1 +

√
3i) = 1−

√
3i−

√
3i− 3 = −2− 2

√
3i

So,

(−1 +
√
3i)3 = (−1 +

√
3i)2 · (−1 +

√
3i)

= (−2− 2
√
3i) · (−1 +

√
3i) = 2− 2

√
3i+ 2

√
3i+ 6 = 8

Well how about that. . .Math works.

Example 3.40: Use example 3.34 and D’Moivre’s Theorem to simplify:

(1− i)4

3.4.3 Roots

Using the trig form and D’Moivre’s Theorem is the best way to take a complex number to
some whole number power. However it is the only way to take a complex number to a
factional power—that is to say, a root.

Everyone remembers how to solve the following equation:

x2 = 9 ⇒ x = ±
√
9 ⇒ x = +3 or x = −3

But what if you want to solve an equation like:

z2 = i ⇒ z = ±
√
i ⇒ ???

What does
√
i even mean? It should be a number which, when squared, gives i. But how to

find such a number?

Try D’Moivre’s Theorem even though the power is a fraction, 1
2
. Of course first you have

to write i in the trig form: i = 1 cis(π/2). So,

(

1 cis
(π

2

))
1

2

= 1
1

2 cis

(

1

2
· π
2

)

= cis
(π

4

)

= cos
(π

4

)

+ sin
(π

4

)

i =

√
2

2
+

√
2

2
i
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And you can check easily enough that

(√
2

2
+

√
2

2
i

)2

=
1

2
+ 2

1

2
i− 1

2
= i X

So apparently
√
i =

√
2
2
+

√
2
2
i

There is a subtlety here, though. π
2
and π

2
+ 2π = 5π

2
are co-terminal angles. They have

the same sine and cosine, so:

i = cis
(π

2

)

= cis

(

5π

2

)

But look what happens if you “square root” the second trig form:

(

1 cis

(

5π

2

))
1

2

= 1
1

2 cis

(

1

2
· 5π
2

)

= cis

(

5π

4

)

= cos

(

5π

4

)

+sin

(

5π

4

)

i = −
√
2

2
−

√
2

2
i

It’s different! Oh, but wait—it’s just −
√
i.

So there are two solutions to z2 = i, and they are: z = ±
(√

2
2
+

√
2
2
i
)

Visually,

Im

Re

π
2

5π
2

0 + 1i
Im

Re
π/4

√
2
2
+

√
2
2
i

5π
4

−
√
2
2
−

√
2
2
i

In general zn = w has n solutions, each found by looking at angles co-terminal to the
argument of w, and spread evenly around the circle of radius n

√

|w|.

zn = r cis(θ) has solutions:

z = n
√
r cis

(

θ+2πk
n

)

for k = 0, 1 . . . n− 1.
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Example 3.41: Find the three solutions to: z3 = 8

Solution: 8 = 8 cis(0), so

z1 = (8 cis(0))
1

3 = 8
1

3 cis

(

0

3

)

= 2 cis(0) = 2

That one we all could have gotten without complex numbers, but the others. . .

8 = 8 cis(2π), so

z2 = (8 cis(2π))
1

3 = 8
1

3 cis
(

2π
3

)

= 2
(

cos
(

2π
3

)

+ sin
(

2π
3

)

i
)

= 2
(

−1
2
+

√
3
2
i
)

= −1 +
√
3 i

This is the solution we found in example 3.39.

For the third solution 8 = 8 cis( )

z3 =

What would have happened if I’d looked for a fourth solution? 8 = 8 cis(6π)

z4 = (8 cis(6π))
1

3 = 8
1

3 cis

(

6π

3

)

= 2 cis(2π) = 2

So we just start over again at z1.

115



Visually,
Im

Re

8 + 0i

Im

Re
2 + 0i

2π
3

−1
2
+

√
3
2
i

4π
3

−1
2
−

√
3
2
i

Example 3.42: Find all four solutions to: z4 = 1 + i
(Leave them in the trig form.)
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3.4.4 Practice

Homework 3.4

1. Write the following complex numbers
exactly in the trigonometric form.

(a) −1 + i

(b) 3− 3
√
3i

(c) −5 − 5i

(d) −8

2. Use your calculator to approximate
the trigonometric form of the following
complex numbers.

(a) 5 + 12i

(b) 3− 2i

(c) −3 − 4i

(d) −8 + 7i

3. Convert the following complex numbers
into the standard form. (Use your cal-
culator if necessary.)

(a) 4e
iπ
3

(b) 2e
i7π
6

(c) 5cis(123◦)

(d) 3cis(331◦)

4. Let z = 4cis(97◦) and w = 2cis(31◦).
Find the trigonometric form of the re-
sults of the following operations.

(a) zw (b) z
w

(c) z3 (d) 1
w4

5. Find the standard form of all solutions
to the following equations.

(a) z2 = −i

(b) z3 = −8

(c) z4 = 81

117



118



Chapter 4

Trigonometric Geometry

We now turn our attention to using trigonometry to solve geometric problems. Many of
these are applied problems which mostly involve finding the angles and lengths of a triangle.
Usually the triangle is not a right triangle.

We have two main tools for dealing with general triangles: The Law of Sines and the
Law of Cosines.

4.1 Law of Sines

Consider a general triangle with interior angles A,B,C and sides opposite of lengths a, b, c,
respectively. There are some relationships between the sides and the angles.

A B

C

c

b
a

h

sinA =
h

b
sinB =

h

a

⇒ b sinA = h = a sinB

⇒ sinA

a
=

sinB

b

Similar arguments can be given to show this relationship works for C and c as well.

Law of Sines:
sinA
a = sinB

b = sinC
c
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Example 4.1: Find the angle A and the sides a and b for the triangle below.

A 37◦

86◦

6 cm

b
a

A = 180◦ − 37◦ − 86◦ = 57◦

sin 37◦

b
= sin 86◦

6

⇒ b = 6 sin 37◦

sin 86◦

b ≈ 3.62 cm

Example 4.2: A tower sits at the top of a hill which has a 58◦ slope. A guy
wire secures the top of the tower to an anchor 100 meters down the hill. The
wire has an angle of elevation of 70◦.
How long should the wire be?

70◦

58◦

10
0
m

x

10
0
m

x

120



Example 4.3: A helicopter is flying over a section of straight road. In one
direction along the road, at an angle of declination of 28◦, is a Wal-Mart. In
the other direction, at an angle of declination of 36◦ is a Home Depot. The
pilot knows from having driven the road that the Wal-Mart is 5 miles from
the Home Depot.
How high is the helicopter flying? (Be sure to draw a picture first!)

4.1.1 Ambiguous Case

The cases we’ve dealt with so far involve triangles where two angles and one side opposite
one of the angles are known (SAA). The Law of Sines can be used to find the one triangle
with those angles and that side. The Law of Sines can also be used to find triangles if two
sides and an angle opposite one of the sides is known, but there is a complication. There
may be two triangles, one, or no triangles at all that satisfy the information given.

Consider a triangle with an angle of 30◦, a side opposite it of length a, and another side
of length 10. There are four possibilities depending on the length of the side a.

1. a < 5 ⇒ No possible triangle.

b = 10

30◦

a a
sin 30◦

a
=

sinB

10

⇒ sinB =
10 sin 30◦

a
=

5

a
> 1

No possible angle B.
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2. a = 5 ⇒ One right triangle.

b = 10

30◦

a
⇒ sinB =

10 sin 30◦

a
=

5

a
= 1

Only possible angle B = 90◦.

3. 5 < a < 10 ⇒ Two possible triangles.

b = 10

30◦

a a ⇒ sinB =
10 sin 30◦

a
=

5

a
< 1

Two possible angles: B = sin−1
(

5
a

)

or
B = 180◦ − sin−1

(

5
a

)

.

4. 10 < a ⇒ One possible triangle.

b = 10

30◦

a

Example 4.4: Find all triangles with a = 14 cm, b = 19 cm, and A = 42◦.

Solution:

sin 42◦

14
= sinB

19

⇒ sinB = 19 sin 42◦

14
≈ 0.9081

⇒ B ≈ sin−1(.9081) ≈ 65.2◦

or
B ≈ 180◦ − 65.2◦ = 114.8◦
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Case 1: B = 65.2◦

⇒ C ≈ 180◦ − 42◦ − 65.2◦ = 72.8◦

sin 72.8◦

c
= sin 42◦

14

⇒ c = 14 sin 72.8◦

sin 42◦
≈ 20.0 cm

19 cm
14 cm

20.0 cm

42◦ 65.2◦

72.8◦

Case 2: B = 114.8◦

⇒ C ≈ 180◦ − 42◦ − 114.8◦ = 23.2◦

sin 23.2◦

c
= sin 42◦

14

⇒ c = 14 sin 23.2◦

sin 42◦
≈ 8.2cm

19 cm
14 cm

8.2 cm

42◦
114.8◦

23.2◦

Example 4.5: Find all triangles with a = 13 cm, b = 10 cm, and A = 32◦.
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Example 4.6: Find all triangles with a = 5 cm,
b = 13 cm, and A = 21◦. Sketch the corresponding triangle(s).
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4.1.2 Practice

Homework 4.1

1. Use the Law of Sines to find all possi-
ble triangles satisfying the given condi-
tions.

(a) a = 28, b = 15, A = 110◦

(b) a = 25, b = 30, A = 25◦

(c) a = 20, b = 45, A = 125◦

(d) a = 42, b = 45, A = 38◦

2. A tree on a hillside casts a shadow 215
ft down the hill. If the angle of inclina-
tion of the hillside is 22◦, and the angle
of elevation of the sun is 52◦, find the
height of the tree.

3. A hiker is approaching a mountain. The
top of the mountain is at an angle of el-

evation of 25◦. After the hiker crosses
800 ft of level ground directly towards
the mountain, the angle of elevation be-
comes 29◦.

Find the height of the mountain.

4. To find the distance across a river a sur-
veyor chooses points A and B, which are
200 feet apart on one side of the river.
She then chooses a reference point C
on the opposite side of the river and
finds that the angles ∠BAC = 82◦ and
∠ABC = 52◦.

Approximate the distance across the
river.
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4.2 Law of Cosines

The Law of Sines allows us to solve triangles where a side and the angle opposite are known
if you know one other side or angle. Thus we can solve SSA or SAA triangles. But what
about triangles where two sides and the angle between them are known? (SAS) Or where
all three sides are known, but no angles? (SSS) For these we need the Law of Cosines.

Consider first the triangle where the angle A and the sides b and c are known. We want
to find the side a. We draw a line from the top vertex perpendicular to the base, forming
two right triangles.

A
s c

b
a

h

sinA = h
b

cosA = s
b

⇒ h = b sinA, s = b cosA

a2 = h2 + (c− s)2

= h2 + c2 − 2sc+ s2

= b2 sin2A + c2 − 2bc cosA+ b2 cos2A
= b2 + c2 − 2bc cosA

This is the Law of Cosines: a2 = b2 + c2 − 2bc cosA

If one knows the three sides and wants to find the angle, then solve for the angle A:

A = cos−1
(

b2+c2−a2

2bc

)

Example 4.7: Solve the triangle with sides 11 cm and 8 cm, and an angle
between the sides of 24◦.

Solution:

a2 = 112+82−2·11·8·cos 24◦ ≈ 24.22

a ≈
√
24.22 ≈ 4.92 cm

B ≈ cos−1

(

4.922 + 82 − 112

2 · 4.92 · 8

)

≈ 114.6◦

C ≈ 180◦ − 24◦ − 114.6◦ = 41.4◦

11 cm
4.92 cm

8 cm

24◦
114.6◦

41.4◦

A common error on these problems is to use the Law of Sines to find the angle B. The
problem here is that the Law of Sines produces two possible angles, only one of which is
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correct. (There are no ambiguous cases for SAS or SSS triangles.) Say you tried to use the
Law of Sines for example 4.7.

sin 24◦

4.92
=

sinB

11
⇒ sinB =

11 sin 24◦

4.92
≈ 0.9093

⇒ B = sin−1 0.9093 ≈ 65.4◦

OR

B ≈ 180◦ − 65.4◦ = 114.6◦

Most students forget the second possibility—which in this case is the only correct one.

The moral of this story is that when you are looking for an angle, the Law of Sines can
let you down. The Law of Cosines never will.

Example 4.8: Solve the triangle with sides 9 cm and 8 cm, and an angle
between the sides of 54◦.

Many of our applications will use the idea of a heading.
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Definition: A heading is a direction described by north or south, an acute

angle, and east or west. It is the direction of the acute angle measured from

north or south toward east or west.

N30◦E

W

S

E

N
30

◦

S 80◦W

W

S

E

N

80
◦

N50◦W

W

S

E

N
50

◦
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Example 4.9: A pilot flies one hour in the direction N20◦E at 200 miles per
hour. Then she changes direction to N40◦E, flies for half an hour at the same
speed, and lands.

a) How far is she from her point of departure?

b) In what direction should she fly to return to her point of departure?

Solution: For these types of problems you should always draw a picture.

W

S

E

N
20

◦

2
0
0

W

S

E

N
40

◦

1
0
0

d

2
0
0

1
0
0

T

D

A

d

W

S

E

N

a) We want to know the distance d. To use the Law of Cosines we need to
find the angle T (at the turning point).

T = 20◦ + 90◦ + 50◦ = 160◦

d2 = 2002 + 1002 − 2 · 200 · 100 · cos(160◦) ≈ 87587.7

⇒ d ≈ 296 miles

b) Clearly she needs to go southwest. To find the exact direction we first need
the angle in the triangle at her arrival point, A.

A ≈ cos−1

(

1002 + 2962 − 2002

2 · 100 · 296

)

≈ 13◦

40◦ − 13◦ = 27◦ so the direction back is: S 27◦W.
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Example 4.10: Airport B is 300 miles from airport A at a heading of N50◦E.
A pilot flies due east from A for 100 miles.

a) What is the pilot’s distance to airport B?

b) In what direction should she fly to get to airport B?

Example 4.11: In your stationary submarine you sight a ship 3 miles away
in the direction S 20◦W. Five minutes later the ship is only 1 mile away in the
direction S 35◦E.

a) What is the speed of the ship?

b) In what direction is the ship moving?
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4.2.1 Triangle Area

There are two formulas for finding the area of a general triangle. One applies to SAS triangles,
but can be used for SSS triangles. The other only applies to SSS triangles.

A

c

b
a

h

area = 1
2
base · height

sinA = h
b

⇒ height = b sinA

base = c

⇒ area = 1
2
cb sinA

The formula triangle area = 1
2
bc sinA can be used to find the area of SSS triangles by

first using the Law of Cosines to find the angle A.

Example 4.12: Find the area of the triangle with sides 6 cm, 4 cm, and 7 cm.

Solution:

A = cos−1

(

62 + 72 − 42

2 · 6 · 7

)

≈ 34.8◦

area =
1

2
6 · 7 · sin 34.8◦ ≈ 12 cm2

6 cm

7 cm

4 cm

A

A second method for find the area of a triangle with sides of length a, b, c, is known as
Heron’s Formula.

Let s be the ‘semi-perimeter’. s = 1
2
(a + b+ c) . Then,

Area =
√

s · (s− a) · (s− b) · (s− c)

Example 4.13: Use Heron’s Formula to find the area of the triangle in
example 4.12.

Solution:

s =
1

2
(6 + 7 + 4) = 8.5

area =
√
8.5 · 2.5 · 1.5 · 4.5 ≈ 12 cm2
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4.2.2 Practice

Homework 4.2

1. Use the Law of Cosines to find the re-
maining side, a.

(a) b = 15, c = 18, A = 108◦.

(b) b = 60, c = 30, A = 70◦.

2. Use the Law of Cosines to find the in-
dicated angle.

(a) a = 10, b = 12, c = 16; A =?

(b) a = 25, b = 20, c = 22; C =?

3. Find the areas of the triangles with
sides and angles given below.

(a) b = 15, c = 18, A = 108◦.

(b) b = 60, c = 30, A = 70◦.

4. Use Heron’s Formula to find the areas
of the triangles given below.

(a) a = 10, b = 12, c = 16

(b) a = 25, b = 20, c = 22

5. Two boats leave the same port at the
same time. One travels at a speed of 30
mi/hr in the direction N50◦E, while the
other travels at a speed of 26 mi/hr in
the direction S70◦E.

(a) How far apart are the two boats
after one hour?

(b) In what direction is the second
(southern) boat from the first
(northern) boat?

6. A fisherman leaves his home port and
heads in the direction N70◦W. He trav-
els 30 miles to reach an island. The
next day he sails N10◦E for 50 miles,
reaching another island.

(a) How far is the fisherman from his
home port?

(b) In what direction should he sail to
return to his home port?

7. A plane flying at an altitude of 1150
feet sees a submarine and a ship on the
surface of the ocean. The submarine is
at an angle of depression of 28◦, and the
ship an angle of depression of 36◦. The
angle between the line-of-sight from the
plane to the submarine and the line-of-
sight from the plane to the ship is 43◦.

How far is the submarine from the ship?

Plane

Sub Ship

28◦ 36◦
43◦

D =?

8. A four-sided (but not rectangular) field
has sides of lengths 50, 60, 70, and 80
meters. The angle of the corner be-
tween the shortest two sides is 100◦.

What is the area of the field?
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4.3 Vectors

Vectors are mathematical objects that have both magnitude and direction. ‘75 miles per
hour’ is not a vector as it has no direction. ‘North’ is not a vector as it has no magnitude.
However, ‘North at 75 miles per hour’ can be considered a vector (velocity).

Examples of vectors in physics are velocity, force, displacement, and spin.

We say two vectors are the same if they
have the same magnitude and direction. If
a vector is represented by an arrow from a
“tail” to a “head” (as is customary) then
this means you can “move the vector around”
without changing it.

All the vectors to right are equal, since
they all have the same magnitude (length)
and direction.

x

y

There are two operations that can be performed on vectors to produce a new vector.

1. Scalar multiplication (multiplying by a number).

2· = or (−1)· =

2. Addition (adding two vectors to get a third). Place the two vectors tail to head. The
“resultant” vector starts at the tail of the first and goes to the head of the second.

+ =
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Example 4.14: Let

~v = and ~w =

a) Sketch ~v + 2~w b) Sketch 2~v − ~w

Definition: A vector ~v is written in components 〈vx, vy〉 if, when the tail

of ~v is placed at the origin, the head points to the point (vx, vy).

Example 4.15: Write the displacement vector, ~v going from the point (−3, 1)
to the point (1, 3) in components.

Solution: We’ll sketch the vector even though it’s not strictly necessary.

To move the vector so its tail is at the
origin, we move it right 3 and down
1. Now the vector points at the point
(4, 2). Hence,

~v = 〈4, 2〉
Note you can also find this by sub-
tracting the “tail” from the “head”.

~v = 〈1−−3, 3− 1〉 = 〈4, 2〉

x

y

~v
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Scalar multiplication and vector addition are very simple when the vectors are written
in components.

If ~v = 〈vx, vy〉 and ~w = 〈wx, wy〉 then

1. c · ~v = 〈cvx, cvy〉

2. ~v + ~w = 〈vx + wx, vy + wy〉

Example 4.16: Let ~v = 〈2, 2〉 and ~w = 〈1, 0〉.
a) Find ~v + 2~w b) Find 2~v − ~w

Solution: a)

~v + 2~w = 〈2, 2〉+ 2 · 〈1, 0〉
= 〈2, 2〉+ 〈2 · 1, 2 · 0〉
= 〈2 + 2, 2 + 0〉
= 〈4, 2〉

Definition: A unit vector is a vector of length 1.

There are two unit vectors that are particularly important.

~i = 〈1, 0〉 and ~j = 〈0, 1〉

These vectors provide an alternative way of writing a vector in components.
For example:

4~i+ 2~j = 4〈1, 0〉+ 2〈0, 1〉 = 〈4, 0〉+ 〈0, 2〉 = 〈4, 2〉

And, in general

vx~i+ vy~j = 〈vx, vy〉

4.3.1 Trigonometric Form

The trigonometric form of a vector is very similar to the trigonometric form of a complex
number (See section 3.4). The length of the vector, written ‖~v‖, is called the magnitude
of ~v. (This is almost the same as the complex modulus of a complex number.) The
direction angle of a vector ~v is the angle the vector makes with the positive x-axis when
its tail is placed at the origin. (This is almost the same as the argument of a complex
number.)
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Definition: The magnitude of a vector ~v = 〈vx, vy〉 is:

‖~v‖ =
√

v2x + v2y

The direction angle of ~v is the angle θ so that

cos θ =
vx
‖~v‖ and sin θ =

vy
‖~v‖

Definition: The trigonometric form of ~v is:

~v = 〈r cos θ, r sin θ〉

where r = ‖~v‖ and θ is the direction angle of ~v.

Example 4.17: Write the vector ~v = 〈4, 2〉 in the trigonometric form.

Solution: The operations here are exactly the same as if you were finding the
trigonometric form of the complex number 4 + 2i. (See examples 3.32, 3.33,
and 3.34.)

‖~v‖ =
√
42 + 22 =

√
20 = 2

√
5

The direction angle will satisfy:

cos θ =
4

2
√
5
=

2√
5

and sin θ =
2

2
√
5
=

1√
5

You are in quadrant I (since both cosine and sine are positive),

θ = cos−1
(

2√
5

)

≈ 26.6◦. So,

~v ≈ 〈2
√
5 cos 26.6◦, 2

√
5 sin 26.6◦〉

Example 4.18: Find the trigonometric form of the vector ~u = 〈−3, 4〉.
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Example 4.19: Write the vector ~w with magnitude 14 and direction angle
210◦ in components.

Solution: r = 14 and θ = 210◦, so

~w = 〈14 cos 210◦, 14 sin 210◦〉 = 〈−7
√
3,−7〉

The trigonometric form of a vector does not allow you to multiply or take roots of the
vector (as it does for complex numbers). The trigonometric form is still important because
vectors are very often presented in this form.

Example 4.20: A plane is flying due north at 300 miles per hour when it is
struck by a 40 mile per hour tail-wind in the direction N30◦W. What is the
true speed and direction of the plane (with respect to the ground)?

Solution: The true velocity of the plane will be the vector sum of the plane’s
velocity in still air (300mph north) with the velocity of the wind (40mph
N30◦W).

~p

~w

~w
~w~w

~w

~w
~p

~w

~v

We must turn the two velocities into components, add them, then turn the
result back into the trig form (speed and direction).

~p = 〈300 cos 90◦, 300 sin 90◦〉 = 〈0, 300〉
+~w = 〈40 cos 120◦, 40 sin 120◦〉 ≈ 〈−20, 34.64〉

⇒ ~v ≈ 〈−20, 334.64〉

‖~v‖ ≈
√

(−20)2 + (334.64)2 ≈ 335.2mph

The reference angle for the direction angle is cos−1
(

20
335.2

)

≈ 86.6◦.
Cosine negative, sine positive is quadrant II, so

θ ≈ 180◦ − 86.6◦ = 93.4◦

So the true direction of the plane is N3.4◦W. (The wind is pushing the plane
3.4◦ off-course to the west as well as adding ≈ 35mph to its speed.)
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Example 4.21: A river flows due east at 3 miles per hour. A boat is crossing
the river diagonally with its prow pointed in the direction S30◦W. In still water
the boat moves at 10 miles per hour.
What is the true velocity of the boat?

Example 4.22: Two tugboats are pulling a barge. The first pulls in the
direction S60◦E with a force of magnitude 3200 pounds. The second pulls
with a force of magnitude 4000 pounds.
If the barge is to go straight east, in what direction is the second tug pulling?

~T2

~T1

60◦

θ
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4.3.2 Static Equilibrium

The state of static equilibrium occurs when all the forces on an object balance out so
that the object remains stationary. Static equilibrium problems give us some interesting
applications of both vectors and trigonometric geometry.

Example 4.23: A 40 pound child is sitting on a swing. The child’s mother
is pulling horizontally on the child so that the swing is stationary, making an
angle of 35◦ with the vertical. What is the magnitude of the force the mother
is exerting? What is the magnitude of the tension in the swing?

Solution: There are three forces on the child: the weight of the child (40 pounds
downward), the pull of the mother (? pounds backward), and the tension in
the swing (? pounds upward at an angle of 35◦). They cancel exactly since
the child is stationary — thus static equilibrium.

35◦

~W

~T

~M

Putting vectors head-to-tail
(thus adding them):

~W ~T

~M

35
◦

tan 35◦ = ‖ ~M‖
‖ ~W‖ = ‖ ~M‖

40
cos 35◦ = ‖ ~W‖

‖~T‖ = 40

‖~T ‖

⇒ ‖ ~M‖ = 40 tan 35◦ ≈ 28 lbs ⇒ ‖~T‖ = 40
cos 35◦

≈ 48.8 lbs

Example 4.23 can also be solved using the techniques of the previous section (though it’s
harder). Writing the three vectors in components and adding:

~M = 〈‖ ~M‖, 0〉
~W = 〈0, −40〉

+~T = 〈‖~T‖ cos 125◦, ‖~T‖ sin 125◦〉
〈‖~T‖ cos 125◦ + ‖ ~M‖, ‖~T‖ sin 125◦ − 40〉 = 〈0, 0〉

Thus,

‖~T‖ sin 125◦ − 40 = 0 ⇒ ‖~T‖ =
40

sin 125◦
≈ 48.8 lbs
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and

‖~T‖ cos 125◦ + ‖ ~M‖ = 0 ⇒ ‖ ~M‖ = −‖~T‖ cos 125◦ ≈ 28 lbs

Example 4.24: A 2 pound Christmas ornament hangs on a wire, pulling it
downward. The wire makes a 42◦ angle with the horizontal to the left, and a
22◦ angle with the horizontal to the right.
What are the tensions on the wires to the left and right?
(Hint: Make a triangle with the vectors and use the Law of Sines.)

42◦ 22◦

~W

~T1
~T2
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4.3.3 Practice

Homework 4.3

1. Sketch the vectors below.

~v = ~w =

(a) ~v + ~w

(b) ~v + 2~w

(c) ~v − ~w

(d) 3~w − 2~v

2. Calculate the vectors in components.

~v = 〈3, 1〉 ~w = 〈1,−1〉

(a) ~v + ~w

(b) ~v + 2~w

(c) ~v − ~w

(d) 3~w − 2~v

3. A cruise ship is moving due north at 10
miles/hour. A child on the deck of the
ship runs S50◦E at 5 miles/hour. What
is the true velocity of the child?

4. A plane is flying S25◦W at 200
miles/hour when it runs into a head
wind blowing N51◦E at 35 miles/hour.
What is the true velocity of the plane?

5. A barge is floating in a harbor in still
water. Two tugboats hook onto the
barge. The first tugboat applies a force
of magnitude 2000 pounds in the direc-
tion N25◦W. The second tugboat ap-
plies a force in the direction N15◦E.

(a) Say the second tugboat applies of
force of magnitude 1800 pounds.
In what direction will the barge
move?

(b) What magnitude of force must the
second tugboat apply to make the
barge move due north?

6. A 10 pound lamp is attached to the ceil-
ing and one wall with cords. The cord
to the wall is horizonal while the cord
to the ceiling makes a 25◦ angle with
the vertical. What are the tensions on
the two cords?

~T1

~T2

~W

25
◦

7. A barge is floating in a river. The cur-
rent is applying a force of magnitude
1000 pounds due west. Two tugboats
are attached to the barge and holding
it stationary in the river. One tugboat
is pulling in the direction N70◦E; the
other S65◦E.

What are the magnitudes of the forces
applied by the two tugboats?
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4.4 Dot Product

As we mentioned earlier, vectors, despite having a trigonometric form, cannot be multiplied
together to form a new vector as complex numbers are. (An exception is the cross product
which only works in three dimensions, and will not be dealt with in this text.) Vectors can,
however, be multiplied together to give a number called the dot product.

Definition: The dot product of two vectors ~v = 〈vx, vy〉 and ~w = 〈wx, wy〉
is:

~v · ~w = vxwx + vywy

Example 4.25: Find the dot product of the vectors:
~v = 〈1, 3〉 and ~w = 〈−2, 4〉.

Solution:

~v · ~w = (1)(−2) + (3)(4) = 10

Note that the answer, 10, is a number, not a vector.

The following properties of the dot product may be easily verified.

Theorem 4.1:

1. ~v · ~w = ~w · ~v

2. ~u · (~v + ~w) = ~u · ~v + ~u · ~w

3. ~v · ~v = ‖~v‖2

It’s fair, tho, to ask, so what? Why do we care about this dot product number? What does
it mean? To see that, we need only take the dot product of two vectors in the trigonometric
form. Let ~v = 〈‖v‖ cos(θv), ‖v‖ sin(θv)〉 and ~w = 〈‖w‖ cos(θw), ‖w‖ sin(θw)〉. Then,

~v · ~w = ‖v‖ cos(θv) ‖w‖ cos(θw) + ‖v‖ sin(θv) ‖w‖ sin(θw)
= ‖v‖‖w‖

(

cos(θv) cos(θw) + sin(θv) sin(θw)
)

= ‖v‖‖w‖ cos(θv − θw)

where we are using the difference formula for cosine on the last line. If we interpret θv − θw
as the angle between ~v and ~w, then the dot product is simply the product of the lengths
of the two vectors multiplied by the cosine of the angle between them.

~v · ~w = ‖~v‖‖~w‖ cos(θvw)
where θvw is the angle between ~v and ~w.
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Example 4.26: Find the angle between the vectors:
~v = 〈1, 3〉 and ~w = 〈−2, 4〉.

Solution:

‖~v‖ =
√
12 + 32 =

√
10

‖~w‖ =
√

(−2)2 + 42 =
√
20 = 2

√
5

Then,

cos(θvw) =
~v · ~w

‖~v‖‖~w‖ =
10

(
√
10)(2

√
5)

=
1√
2

Thus,

θvw = cos−1

(

1√
2

)

= 45◦

Example 4.27: Find the angle between the vectors:
~v = 〈−3, 1〉 and ~w = 〈4, 1〉.

Solution:

~v · ~w = (−3)(4) + (1)(1) = −11

‖~v‖ =
√

(−3)2 + 12 =
√
10

‖~w‖ =
√
42 + 12 =

√
17

Then,

cos(θvw) =
~v · ~w

‖~v‖‖~w‖ =
−11

(
√
10)(

√
17)

Thus,

θvw = cos−1

( −11

(
√
10)(

√
17)

)

≈ 147.5◦
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If two vectors are perpendicular (or orthogonal) then the angle between them is 90◦.
So,

~v · ~w = ‖~v‖‖~w‖ cos(90◦) = 0

The dot product thus provides a very quick, effective test of whether or not two vectors are
perpendicular.

Example 4.28: Show that the vectors:
~v = 〈3, 4〉 and ~w = 〈−8, 6〉 are perpendicular.

Solution:

~v · ~w = (3)(−8) + (4)(6) = 0

So ~v and ~w are perpendicular.

Example 4.29: Find the constant c so that the vectors:
~u = 〈−5, 3〉 and ~v = 〈c, 7〉 are perpendicular.

Solution:

~u · ~v = (−5)(c) + (3)(7) = 0 ⇒ c =
−21

−5
= 4.2

Finally, the dot product may be used to define the projection of a vector onto another
vector.

Definition: The projection of a vector ~v onto another vector ~u is

proju(~v) =

(

~v · ~u
~u · ~u

)

~u

The projection may be interpreted as the portion of ~v in the same direction as ~u.

Example 4.30: Find the projection of ~v = 〈1, 4〉 onto ~u = 〈1, 1〉.

Solution:

proju(~v) =

(

1 · 1 + 4 · 1
1 · 1 + 1 · 1

)

〈1, 1〉 =
〈

5

2
,
5

2

〉

We should also note that if the angle between ~v and ~u is greater than 90◦, then the projection
will be in exactly the opposite direction as ~u.

Example 4.31: Find the projection of ~v = 〈1, −4〉 onto ~u = 〈1, 1〉.

Solution:

proju(~v) =

(

1 · 1 + (−4) · 1
1 · 1 + 1 · 1

)

〈1, 1〉 =
〈

−3

2
, −3

2

〉
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4.4.1 Practice

1. Find the angle between ~v and ~w for the vectors below.

(a) ~v = 〈 5, 7〉, ~w = 〈−3, 8〉
(b) ~v = 〈−2, −5〉, ~w = 〈 3, 1〉

2. Find the constant c so that the following vectors are perpendicular.

(a) ~v = 〈 4, 7〉, ~w = 〈 c, 8〉
(b) ~v = 〈 c, −3〉, ~w = 〈 6, 16〉

3. Find the projection of ~v onto ~u for the vectors below.

(a) ~v = 〈 5, 7〉, ~u = 〈 2, −1〉
(b) ~v = 〈 8, 5〉, ~u = 〈−1, 3〉
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