Student Learning Advisory Service

Contact us

Please come and see us if you need any academic advice or guidance.

Canterbury

Our offices are next to Santander Bank

Open

Monday to Friday, 09.00-17.00
E: learning@kent.ac.uk
T: 01227824016

Medway

We are based in room G0-09, in the Gillingham Building and in room DB034, in the Drill Hall Library.

Open

Monday to Friday, 09.00-17.00
E: learningmedway@kent.ac.uk
T: 01634888884
The Student Learning Advisory Service (SLAS) is part of the Unit for the Enhancement of Learning and Teaching (UELT)

Acknowledgments

All materials checked by Dr Scott Wildman, Dr Cleopatra Branch, Jerome Durodie and Andrew Lea, Medway School of Pharmacy, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent. ME4 4TB.

This leaflet has been produced in conjunction with sigma Network for Excellence in Mathematics and Statistics Support

sigma Σ
 network for excellence in mathematics and statistics support

kent.slas
@unikentSLAS
www.kent.ac.uk/learning
University of Kent

Student Learning Advisory Service

AT A GLANCE/ PHARMACY CALCULATIONS RATIO STRENGTHS

Calculating the amount of substance in a concentration expressed as a ratio strength

Example 1

How much sodium chloride is contained in 200 mL of a 1 part in $500 \mathrm{w} / \mathrm{v}$ concentration?

Method

Step 1: A part strength is a fraction.

$$
\text { Thus, } 1 \text { part in } 500=\frac{1}{500}
$$

Step 2: By multiplication

$$
\frac{1}{500} \times 200 m L=\mathbf{0 . 4 g} \cdot \sqrt{ } \sqrt{ }
$$

*Remember, this is a w/v concentration.

Example 2

How much glucose is contained in 0.3L of a 1 part in $20 \mathrm{v} / \mathrm{v}$ concentration?

Method
Step 1: By multiplication

$$
\frac{1}{20} \times 300 m L=15 m L
$$

*Remember, this is a v / v concentration.

Example 3

How much chloroform will be needed to make up 150 mL of a 1 part in $400 \mathrm{v} / \mathrm{v}$ concentration?

Method

Step 1: By multiplication

$$
\frac{1}{400} \times 150 m L=0.375 m L
$$

Example 4

How much sulphate is contained in 2.5 L of a 5 ppm concentration?

Method

Step 1: By multiplication

$$
\frac{5}{1,000,000} \times 2500 \mathrm{~mL}=\mathbf{1 2 . 5 m g}
$$

Q1

How much active ingredient is contained in the following?

a)	150 mL of 1 part in $200 \mathrm{v} / \mathrm{v}$
b)	20 mL of 1 part in $10,000 \mathrm{v} / \mathrm{v}$
c)	0.2 g of 1 part in $20 \mathrm{w} / \mathrm{w}$
d)	1.2 L of 5 parts in $100 \mathrm{v} / \mathrm{v}$
e)	0.2 mg of 1 part in $500 \mathrm{w} / \mathrm{w}$
f)	400 mL of $0.5 \mathrm{ppm} \mathrm{w} / \mathrm{v}$
g)	60 mL of $25 \mathrm{ppm} \mathrm{w} / \mathrm{v}$
h)	284 mL of 1 part in $20 \mathrm{v} / \mathrm{v}$
i)	454 g of 1 part in $800 \mathrm{w} / \mathrm{w}$
j)	1500 L of $0.005 \mathrm{ppm} \mathrm{w} / \mathrm{v}$

Q2

How much active ingredient is contained in the following?

a)	125 mL of 1 part in $40 \mathrm{v} / \mathrm{v}$
b)	20 mL of 1 part in $1000 \mathrm{v} / \mathrm{v}$
c)	25 mg of 1 part in $2000 \mathrm{w} / \mathrm{w}$
d)	0.6 L of 15 parts in $1000 \mathrm{v} / \mathrm{v}$
e)	0.65 L of 1 part in $250 \mathrm{w} / \mathrm{v}$
f)	330 mL of 1 part in $25 \mathrm{v} / \mathrm{v}$
g)	1000 mL of $5 \mathrm{ppm} \mathrm{w} / \mathrm{v}$
h)	660 mL of 1 part in $8 \mathrm{v} / \mathrm{v}$
i)	2.5 L of $15 \mathrm{ppm} \mathrm{w} / \mathrm{v}$
j)	1.8 g of 1 part in $15 \mathrm{w} / \mathrm{w}$

Answers

Q1 a) $=0.75 \mathrm{~mL} . \mathrm{b})=2 \mathrm{mcL} . \mathrm{c})=10 \mathrm{mg} . \mathrm{d})=60 \mathrm{~mL}$.
e) $=0.4 \mathrm{mcg} \cdot \mathrm{f})=0.2 \mathrm{mg} \cdot \mathrm{g})=1.5 \mathrm{mg} . \mathrm{h})=14.2 \mathrm{~mL}$.
i) $=567.5 \mathrm{mg} . \mathrm{j})=7.5 \mathrm{mg}$.

Q2 a) $=3.125 \mathrm{~mL} . \mathrm{b})=20 \mathrm{mcL} . \mathrm{c})=12.5 \mathrm{mcg} . \mathrm{d})=9 \mathrm{~mL}$.
e) $=2.6 \mathrm{~g} . \mathrm{f})=13.2 \mathrm{~mL} . \mathrm{g})=5 \mathrm{mg} . \mathrm{h})=82.5 \mathrm{~mL}$. i) $=37.5 \mathrm{mg}$. j) $=120 \mathrm{mg}$.

