Mathematica Assignment E Logarithmic and Exponential Functions

The Mathematica command $\log [\mathbf{x}]$ gives the natural logarithm of $x, \ln (x)$. If you want the logarithm base b of $x, \log _{b}(x)$, use the command $\log [\mathbf{b}, \mathbf{x}]$. Since $\log [\mathbf{1 8}]$, for example, is an exact number, Mathematica leaves it in that form unless you ask for a numerical approximation using the $\mathbf{N}[]$ command.

```
Log[18]
Log[18]
N [%]
2.89037
Log[2, 8]
3
```

The capital letter \mathbf{E} is Mathematica's notation for the number e. It is also an exact number. The symbol for e on the BasicMathInput palette is \boldsymbol{e}.

```
E
e
N [%]
2.71828
E^3
e}\mp@subsup{}{}{3
N [%]
20.0855
```

Mathematica commands using tranditional mathematical symbols can be found on the BasicMathInput palette. Click on the $\sqrt[5]{\square}$ button. Type in 8 , hit the [Tab] key, type in 3 , hit the $[\rightarrow]$ key, then evaluate the resulting command. The output tells you that the cube root of 8 is 2 . In general, the [Tab] key moves you between boxes, while the $[\rightarrow]$ key moves you outside all the boxes.
$\sqrt[3]{8}$
2
$\sqrt[3]{7}$
$7^{1 / 3}$
\mathbf{N} [\%]
1.91293

You can graph exponential and logarithmic functions using the Plot[] command.
$P \operatorname{lot}[\log [x],\{x, 0,5\}]$

$\operatorname{Plot}\left[\mathbb{e}^{x},\{x,-3,3\}\right]$

You can graph more than one curve on the same set of axes as shown in the following example:
$P \operatorname{lot}[\{\log [x], \log [2, x], \log [4, x]\},\{x, 0,5\}]$

Exercises

1. Compute numerical approximations for the following:
a) $\ln (7)$
b) $\ln (1.5)$
c) $\log _{2}(16)$
d) $\log _{3}(81)$
2. Compute numerical approximations for the following:
a) e^{7}
b) e^{-7}
c) e^{e}
d) $\ln \left(e^{2}\right)$
e) $e^{\ln (4)}$
f) $e^{\ln (e)}$
3. Plot the following curves for the given values of x :
a) $y=\ln \left(\frac{1}{x}\right), 0 \leq x \leq 5$
b) $y=\ln (x), 0 \leq x \leq 5$
c) $y=\ln \left(\frac{x}{2}\right), 0 \leq x \leq 5$
d) $y=e^{\frac{x}{2}},-2 \leq x \leq 4$
e) $y=-e^{-x},-2 \leq x \leq 4$
