

Introduction to differentiation

Introduction

Open the podcast that accompanies this leaflet

This leaflet provides a rough and ready introduction to differentiation. This is a technique used to calculate the gradient, or slope, of a graph at different points.

1. The gradient function

Given a function, for example, $y=x^{2}$, it is possible to derive a formula for the gradient of its graph. We can think of this formula as the gradient function, precisely because it tells us the gradient of the graph. For example,

$$
\text { when } y=x^{2} \quad \text { the gradient function is } \quad 2 x
$$

So, the gradient of the graph of $y=x^{2}$ at any point is twice the x value there. To understand how this formula is actually found you would need to refer to a textbook on calculus. The important point is that using this formula we can calculate the gradient of $y=x^{2}$ at different points on the graph. For example,

$$
\text { when } x=3 \text {, the gradient is } 2 \times 3=6 \text {. }
$$

when $x=-2$, the gradient is $2 \times(-2)=-4$.
How do we interpret these numbers ? A gradient of 6 means that values of y are increasing at the rate of 6 units for every 1 unit increase in x. A gradient of -4 means that values of y are decreasing at a rate of 4 units for every 1 unit increase in x.

Note that when $x=0$, the gradient is $2 \times 0=0$.
Below is a graph of the function $y=x^{2}$. Study the graph and you will note that when $x=3$ the graph has a positive gradient. When $x=-2$ the graph has a negative gradient. When $x=0$ the gradient of the graph is zero. Note how these properties of the graph can be predicted from knowledge of the gradient function, $2 x$.

Example

When $y=x^{3}$, its gradient function is $3 x^{2}$. Calculate the gradient of the graph of $y=x^{3}$ when
a) $x=2$,
b) $x=-1$,
c) $x=0$.

Solution

a) when $x=2$ the gradient function is $3(2)^{2}=12$.
b) when $x=-1$ the gradient function is $3(-1)^{2}=3$.
c) when $x=0$ the gradient function is $3(0)^{2}=0$.

2. Notation for the gradient function

You will need to use a notation for the gradient function which is in widespread use.
If y is a function of x, that is $y=f(x)$, we write its gradient function as $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
$\frac{\mathrm{d} y}{\mathrm{~d} x}$, pronounced 'dee y by dee x ', is not a fraction even though it might look like one! This notation can be confusing. Think of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ as the 'symbol' for the gradient function of $y=f(x)$. The process of finding $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is called differentiation with respect to x.

Example

For any value of n, the gradient function of x^{n} is $n x^{n-1}$. We write:

$$
\text { if } \quad y=x^{n}, \quad \text { then } \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=n x^{n-1}
$$

You have seen specific cases of this result earlier on. For example, if $y=x^{3}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}$.

3. More notation and terminology

When $y=f(x)$ alternative ways of writing the gradient function, $\frac{\mathrm{d} y}{\mathrm{~d} x}$, are y^{\prime}, pronounced ' y dash', or $\frac{\mathrm{d} f}{\mathrm{~d} x}$, or f^{\prime}, pronounced ' f dash'. In practice you do not need to remember the formulas for the gradient functions of all the common functions. Engineers usually refer to a table known as a Table of Derivatives. A derivative is another name for a gradient function. Such a table is available on leaflet 8.2. The derivative is also known as the rate of change of a function.

Exercises

1. Given that when $y=x^{2}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x$, find the gradient of $y=x^{2}$ when $x=7$.
2. Given that when $y=x^{n}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=n x^{n-1}$, find the gradient of $y=x^{4}$ when a) $x=2$, b) $x=-1$.
3. Find the rate of change of $y=x^{3}$ when a) $x=-2, \quad$ b) $x=6$.
4. Given that when $y=7 x^{2}+5 x, \frac{\mathrm{~d} y}{\mathrm{~d} x}=14 x+5$, find the gradient of $y=7 x^{2}+5 x$ when $x=2$.

Answers

1. 14.
1. a) 32 ,
b) -4 .
2. a) 12 ,
b) 108 .
3. 33.
