Law of Sines, Law of Cosines, and Area Formulas

Law of Sines

If ABC is a triangle with sides, a, b, and c, then
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.

A is acute

A is obtuse

The Law of Sines can be used when you know:
AAS
ASA
SSA

Law of Cosines

Standard Form
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$b^{2}=a^{2}+c^{2}-2 a c \cos B$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

The Law of Cosines can be used when you know:
SSS
SAS

Alternative Form
$\cos a=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
$\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$

Area Formulas

Area of an Oblique Triangle - used when you know two sides and their included angle
Area $=\frac{1}{2} b c \sin A=\frac{1}{2} a b \sin C=\frac{1}{2} a c \sin B$

Heron's Area Formula - used when you know the lengths of all three sides
Area $=\sqrt{s(s-a)(s-b)(s-c)}$
Where $s=\frac{a+b+c}{2}$ (this is half the perimeter)

