
Patrick J. Burns

Building a Text Analysis Pipeline
for Classical Languages

Abstract: With large text collections for Ancient Greek and Latin now widely
available, classicists are increasingly interested in extracting information sys-
tematically from these texts. The fields of information retrieval and natural lan-
guage processing offer tools and methods to address this, but classical-
language support can be limited and researchers must often cobble together
separate, sometimes incompatible tools to accomplish basic text analysis tasks.
In this chapter, I review the tools currently available for digital philological
work on Ancient Greek and Latin and introduce the Classical Language Toolkit,
an open-source Python framework that addresses the desideratum of
a complete text analysis pipeline for historical languages.

1 Introduction

With large text collections for Ancient Greek and Latin now widely available,
classicists are increasingly interested in extracting information systematically
from these texts and constructing derivative datasets. Digital philologists have
been able to turn to the fields of information retrieval and natural language
processing (NLP) for tools and methods to accomplish these goals, but classi-
cal-language support can be limited and, as a result, researchers must often
cobble together separate, sometimes incompatible tools to accomplish basic
text analysis tasks and approximate the kinds of integrated solutions available
for work in modern languages.

In the first part of this chapter, I review examples of text analysis frame-
works that are available for work in modern languages (such as Stanford
CoreNLP and the Natural Language Toolkit), highlighting in particular one of
the defining features of these frameworks – the pipeline, a sequential workflow
of transformation and annotation. Each of the frameworks listed above offer
a complete pipeline of text analysis tasks, including tokenization, lemmatiza-
tion, part-of-speech and morphological tagging, and named entity extraction,
among other tasks. Pipelines, considered the “standard approach to realize text

Patrick J. Burns, Quantitative Criticism Lab, University of Texas at Austin

Open Access. ©2019 Patrick J. Burns, published by De Gruyter. This work is licensed under
a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110599572-010 Unauthenticated

Download Date | 8/13/19 3:32 PM

https://doi.org/10.1515/9783110599572-010


analysis processes,”1 are an orderly and efficient way to proceed through
a series of analysis tasks, especially in cases where it is useful or necessary for
the results of certain tasks to be used as the starting point for processing subse-
quent tasks. In the second part of the chapter, I review examples of solutions to
each task along the Greek and Latin text analysis pipeline and discuss briefly
how they could be patched together into a makeshift pipeline if necessary.

By way of conclusion, I introduce the Classical Language Toolkit (CLTK),
an open-source Python framework dedicated to natural language processing
support for historical languages. CLTK has made progress in the past three
years in collecting corpora for a wide variety of historical languages covering
ancient, classical, and medieval Eurasia and building out the basic language
resources to support these languages across the text analysis pipeline. CLTK
shows promise of addressing the desideratum of a complete text analysis pipe-
line for Greek and Latin, as well as a large number of other less-resourced his-
torical languages.2

2 Text analysis pipelines

In text analysis, transformation and annotation tasks are often processed in
such a way that new annotations build on previous transformations and anno-
tations of a given text. This sequence is commonly referred to as a pipeline, as
in this definition from Henning Wachsmuth:

“Text mining deals with tasks that often entail complex text analysis processes, consist-
ing of several interdependent steps that aim to infer sophisticated information types from
collections and streams of natural language input texts. [. . .] Because of the interdepen-
dencies between analyses, the standard way to realize a text analysis process is in the
form of a text analysis pipeline, which sequentially applies each employed text analysis
algorithm to its input.”3

1 (Wachsmuth 2015, 37).
2 This chapter limits its scope to Ancient Greek and Latin, but it is important to point out that
the development of NLP pipelines is an area of ongoing work for several historical languages.
See, for example, Chiarcos et al. (2018) for Sumerian or Zeldes and Schroeder (2016) for Coptic.
3 (Wachsmuth 2015, 4). For a formal definition of text analysis pipelines, see Wachsmuth
(2015, 37). For a clear explanation of the terminology involved in describing pipelines, specifi-
cally the use of the terms “tool” and “component,” see de Castilho and Gurevych (2014, 2). In
this chapter, I use “tool” to refer to a piece of software, a web application, or a web service
that performs a text analysis task; I use “component” to refer to a tool that is included as a
discrete step in a text analysis pipeline.

160 Patrick J. Burns

Unauthenticated
Download Date | 8/13/19 3:32 PM



So, for example, the input sentence

Quo usque tandem abutere, Catilina, patientia nostra?

may be first transformed into a list of words (and punctuation marks) by
a tokenizer to yield

[‘Quo’, ‘usque’, ‘tandem’, ‘abutere’, ‘,’, ‘Catilina’, ‘,’, ‘patientia’, ‘nostra’, ‘?’]

which in turn may be annotated by a part-of-speech (POS) tagger into a parallel
list of POS tags to yield

[‘ADV’, ‘ADV’, ‘ADV’, ‘VERB’, ‘PUNCT’, ‘NOUN’, ‘PUNCT’, ‘NOUN’, ‘ADJ’]4

and so on. In this configuration, the POS tagger depends not directly on the
plaintext that was originally fed into the pipeline, but rather uses as its input
the output of the preceding tokenizer. These kinds of relations between the con-
stituent parts, or components, of a pipeline are illustrated in Figure 1.

Even this system can grow quite complex as the number of components is
increased. An advantage to working with pipelines is that this complexity is
managed by the sequential workflow as well as the storage of annotations in
parallel data structures. Another advantage of using well-defined pipelines in
text analysis work is that this practice promotes shareability and reproducibil-
ity in research workflows.5 Because of these advantages in managing and sup-
porting task analysis processes, pipelines are considered the “standard
approach” for this kind of work.6

4 There are several annotation schemes for POS tagging; this example uses the Universal POS
tagset; cf. https://universaldependencies.org/u/pos/ (last access 2019.01.31).
5 (de Castilho and Gurevych 2014): “It is essential that [. . .] pipelines can easily be shared be-
tween researchers, to reproduce results, to evolve experiments, and to allow for a better under-
standing of the exact details of an experiment.”
6 (Wachsmuth 2015, 37). There are disadvantages in working with pipelines as well. For exam-
ple, they can be inefficient. Assigning each annotation task, for example, its own space in
a pipeline adds certain processing overhead and can introduce redundancies where tasks are
strongly correlated, such as (as we will see in greater detail below) lemmatization and POS
tagging. In addition, pipelines can be subject to error propagation, since errors introduced
early in the execution flow can have downstream consequences. See Marciniak and Strube
(2005) and Clarke et al. (2012, 1–2) for potential areas of improvement in pipeline design.

Building a Text Analysis Pipeline for Classical Languages 161

Unauthenticated
Download Date | 8/13/19 3:32 PM

https://universaldependencies.org/u/pos/


3 Text analysis frameworks

The two most prominent frameworks for building pipelines have been GATE
(General Architecture for Text Engineering) and UIMA (Unstructured
Information Management Architecture), both of which are Java-based and use
XML to define instructions for processing components.7 Both GATE and UIMA
offer robust systems for the sequential processing of unstructured text and
allow for a great deal of flexibility and extensibility in design, either through
rules-based annotations (for example, the JAPE annotation language for GATE)
or through the development of Java annotation scripts.

These frameworks may prove useful for large, production-ready applica-
tions, but for many researchers in digital philology a more “batteries-
included” framework is likely suitable enough. Options abound at present:
OpenNLP, DKPro-Core,8 ClearNLP, LingPipe, spaCy, Argo, Weblicht, to name

Document Sentence
Tokenizer

Word
Tokenizer

Named
Entity

Recognizer

Syllabifier Macronizer Prosody
Tagger

POS Tagger Lemmatizer

Figure 1: Here is a sample text analysis pipeline, proceeding left-to-right from a plaintext Latin
document to a collection of derivative annotations.

7 Gate: (Cunningham 2002); UIMA: (Ferrucci and Lally 2004).
8 Note that OpenNLP and DKPro are implementations of UIMA for which a collection of NLP
components has been included by default.

162 Patrick J. Burns

Unauthenticated
Download Date | 8/13/19 3:32 PM



just a few.9 In the remainder of this section, I would like to concentrate on
two frameworks with widespread adoption and active development that high-
light, as I see it, two different philosophies toward the use of pipelines:
Stanford CoreNLP and the Natural Language Toolkit.

Stanford CoreNLP is a self-described Java “annotation pipeline framework,”
with robust support for common tasks.10 Pipelines in CoreNLP are conceived of
as an “Annotation” object, that is a list of instructions of which components
should be run in which order.11 Text is added to the Annotation and then, as
each component is run, either the transformed text or the annotated text is stored
in the object. While specific components can be called at runtime, by default, the
full pipeline is applied to a given text. The components are pre-defined such that
a specific algorithm is used for each task in order to take advantage of state-of-
the-art speed and accuracy. The presentation of a “core” pipeline with a set of
“core” components is not an accident. As originally conceived, developers valued
ease of use: “Most users benefit greatly from the provision of a set of stable, high
quality linguistic analysis components, which can be easily invoked for common
scenarios.”12 Accordingly, users are presented with a fully functional pipeline
from the outset. It can be customized, but it does not need to be. Given no inter-
vention from the user, a complete pipeline from tokenization to coreference reso-
lution is ready to be run.13

9 OpenNLP: https://opennlp.apache.org/; DKPro-Core: https://dkpro.github.io/dkpro-core/;
ClearNLP: https://github.com/clearnlp; LingPipe: http://alias-i.com/lingpipe/; spaCy: https://
spacy.io/; Argo: http://argo.nactem.ac.uk/; Weblicht: https://weblicht.sfs.uni-tuebingen.de/
weblichtwiki/index.php/Main_Page (last access 2019.01.31). Language-specific options may
prove useful depending on the research project; see, for example, FudanNLP for Chinese text
(https://github.com/FudanNLP/fnlp) or IceNLP for Icelandic text (https://github.com/hrafnl/
icenlp) (last access 2019.01.31). NLP, including its application to classical languages, is
a quickly developing and ever evolving area. For digital philologists, one development worth
watching is the integration of NLP datasets and models with web services, as for example with
META-SHARE (Piperidis 2012) and Language Application Grid (LAPPS) (Verhagen et al. 2016).
10 (Manning et al. 2014); available online at https://stanfordnlp.github.io/CoreNLP/ (last ac-
cess 2019.01.31). Note that since the writing of this chapter, a Python implementation of the
Stanford tools has been released (StanfordNLP, available online at https://stanfordnlp.github.
io/stanfordnlp/) with some out-of-the-box support for Greek and Latin. As it has just been re-
leased, it is too early to evaluate fully its impact of digital classical philology.
11 This process is described in detail at https://stanfordnlp.github.io/CoreNLP/pipelines.html
(last access 2019.01.31).
12 (Manning et al. 2014, 56).
13 It is interesting to note, in the context of this chapter, that the developers of CoreNLP
started the project from a desire to move away from what I have called makeshift pipelines;
(Manning et al. 2014, 55): “Previously, when combining multiple natural language analysis

Building a Text Analysis Pipeline for Classical Languages 163

Unauthenticated
Download Date | 8/13/19 3:32 PM

https://opennlp.apache.org/
https://dkpro.github.io/dkpro-core/
https://github.com/clearnlp
http://alias-i.com/lingpipe/
https://spacy.io/
https://spacy.io/
http://argo.nactem.ac.uk/
https://weblicht.sfs.uni-tuebingen.de/weblichtwiki/index.php/Main_Page
https://weblicht.sfs.uni-tuebingen.de/weblichtwiki/index.php/Main_Page
https://github.com/FudanNLP/fnlp
https://github.com/hrafnl/icenlp
https://github.com/hrafnl/icenlp
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/stanfordnlp/
https://stanfordnlp.github.io/stanfordnlp/
https://stanfordnlp.github.io/CoreNLP/pipelines.html


The Natural Language Toolkit, on the other hand, has a different philosophi-
cal orientation and as such a different approach to text analysis pipelines. NLTK
is an open-source Python NLP framework with origins in a pedagogical approach
to NLP.14 From its inception, it promoted a set of “requirements,” namely consis-
tency, extensibility, documentation, simplicity, and modularity, alongside a set of
“non-requirements,” namely comprehensiveness, efficiency, and cleverness. The
goal was to support a complete pipeline of text analysis tasks, while allowing
users to “augment and replace existing components, learn structured program-
ming by example, and manipulate models.”15 Considering its pedagogical focus, it
is unsurprising that the framework has become so closely associated with what
amounts to a user guide-as-textbook, Natural Language Processing with Python, or
the “NLTK Book.”16 The structure of the book promotes a pipeline-centered take
on text analysis as readers are guided from tokenization to tagging to other ad-
vanced tasks over the course of twelve chapters. Since the focus is on learning
NLP basics and best practices, for each task, users are offered a number of options
and are presented with the advantages and disadvantages of working with various
interfaces, algorithms, and so on. For example, in chapter 5, users are introduced
to several different POS taggers offered by NLTK (including default tagging, regu-
lar expression tagging, n-gram tagging, transformation-based tagging, and so
on).17 By working one’s way through the NLTK book, it becomes possible to write
basic Python scripts that function as pipelines.

These frameworks cover two different approaches to the problem of supporting
end-to-end pipelines. CoreNLP, not unlike Gate or UIMA, works by specifying a set
of instructions for defining the execution flow of different components. NLTK, on
the other hand, at least in its original conception, has a pedagogical focus and so
the creation of a pipeline, that is the decision about which components to use and
how best to connect their inputs and outputs, is left to the user. Again, with respect
to its pedagogical orientation, the focus is on the user understanding the function of
each component and, just as importantly, understanding the relationship between
each component, rather than simply setting a series of instructions inmotion.

components, each with their own ad hoc APIs, we had tied them together with custom code
glue. The initial version of the annotation pipeline was developed in 2006 in order to replace
this jumble with something better.”
14 (Loper and Bird 2002): “NLTK provides a simple, extensible, uniform framework for assign-
ments, projects, and class demonstrations. [. . .] It was deliberately designed as courseware
and gives pedagogical goals primary status.” The project is available online at https://www.
nltk.org (last access 2019.01.31).
15 (Loper and Bird 2002, 1).
16 (Bird et al. 2015).
17 (Bird et al. 2015, Ch. 5.4).

164 Patrick J. Burns

Unauthenticated
Download Date | 8/13/19 3:32 PM

https://www.nltk.org
https://www.nltk.org


With their different philosophical orientations, CoreNLP and NLTK each offer
pros and cons for how we should think about building pipelines for use with
Greek and Latin texts. Before we can do this, however, it is necessary to look first
at what is currently available with respect to “pipelines” for classical languages.

4 “Pipelines” for classical languages

4.1 Coverage of classical languages in text analysis
frameworks

For all of the progress in text analysis frameworks for modern-language re-
search, the fact remains that classical-language support still lags behind. This
is particularly apparent with respect to the development of pipelines. Neither
CoreNLP nor NLTK support Greek and Latin out of the box. As such, digital phi-
lologists working with these languages must forge an alternative path.

In the section that follows, I review the available “components” for classi-
cal languages, that is standalone tools that perform the kinds of transforma-
tions or yield the kinds of annotations we would expect in a fully implemented
pipeline.

4.2 Available “components” for classical languages

This section highlights tools that digital philologists have been able to avail
themselves of in the absence of dedicated, well-resourced frameworks like
CoreNLP or NLTK.18

4.2.1 Tokenization

In most text analysis pipelines, tokenization – whether the division of a text
into paragraphs, sentences, words, or some other meaningful unit – is the first

18 This discussion of specific pipeline tasks in the following sections as well as the selection
of tools and resources mentioned for supporting digital philological work on Greek and Latin
is meant to be representative rather than comprehensive. I work here from the premise, “If
I wanted to emulate a CoreNLP-style pipeline, what standalone tools could I use to get the job
done.”

Building a Text Analysis Pipeline for Classical Languages 165

Unauthenticated
Download Date | 8/13/19 3:32 PM



step. Since the vast majority of Greek and Latin text collections are derived
from modern editions in which sentences are punctuated and words are delim-
ited by spaces, most tokenization tasks for these languages do not require
a customized solution. Accordingly, there tend not to be standalone tools for
tokenization, but rather this step tends to be built into the preprocessing stage
of other components.

4.2.2 Lemmatization

Lemmatization (and the closely related areas of part-of-speech tagging and
morphological tagging) has a long tradition of computational work in Greek
and Latin and continues to be a particularly active area of research.19

Unsurprisingly, then, it is perhaps the pipeline task best supported by stand-
alone tools. There are both command line tools available for Greek and Latin
lemmatization as well as web applications and services, allowing for great flexi-
bility in how these tasks can be performed and how results can be obtained for
use elsewhere in a makeshift pipeline.

Morpheus, developed for use in the Perseus Digital Library, is perhaps the
best known lemmatizer for both languages.20 A rules-based lemmatizer drawing
on data from lexica available in Perseus, Morpheus returns lemmas alongside
POS identifications and morphological parses on the site’s Greek Word Study
Tool and Latin Word Study Tool.21 It can also be compiled locally and run from
the command line. In either case, it is possible for users to extract annotations
for use in a makeshift pipeline by either cutting-and-pasting Word Study Tool
results or – the more direct and efficient method – by capturing the standard
output from running the command-line scripts. This is more or less the pattern
for another popular Latin lemmatizer, Whitaker’s Words, which can also be run
either through a web application or a command-line interface.22 Another option
for extracting lemmas from texts, and a good option for working with blocks of

19 See Bodson and Evrard (1966) for an example of early work in Latin lemmatization. Eger
et al. (2015, 2016) offer two recent reviews and comparisons of lemmatizers.
20 (Crane 1991).
21 The Word Study Tools are available online at http://www.perseus.tufts.edu/hopper/morph
(last access 2019.01.31). Morpheus is also available as web service through the Perseids
Project; the documentation for this project is available online at https://github.com/perseids-
project/perseids_docs/wiki/Morphology-Service-Setup (last access 2019.01.31).
22 (Whitaker 1993); available online at http://www.archives.nd.edu/cgi-bin/words.exe (last
access 2019.01.31). The documentation for command-line operation of Words is available on-
line at http://archives.nd.edu/whitaker/wordsdoc.htm (last access 2019.01.31).

166 Patrick J. Burns

Unauthenticated
Download Date | 8/13/19 3:32 PM

http://www.perseus.tufts.edu/hopper/morph
https://github.com/perseids-project/perseids_docs/wiki/Morphology-Service-Setup
https://github.com/perseids-project/perseids_docs/wiki/Morphology-Service-Setup
http://www.archives.nd.edu/cgi-bin/words.exe
http://archives.nd.edu/whitaker/wordsdoc.htm


text, comes from Biblissima through their Collatinus and Eulexis lemmatizers,
for work in Latin and Greek respectively.23 Lastly, at least with respect for
Latin, tools have emerged to push lemmatization forward in terms of coverage,
speed, and accuracy. Lemlat stands out for having widely expanded the lexical
base for assisting lemmatization; already supporting a large lexicon drawn
from Georges’s Handwörterbuch, Gradenwitz’s Laterculi vocum Latinarum, and
the Oxford Latin Dictionary, Lemlat has also added a large amount of onomastic
data to increase coverage significantly.24 In addition to Lemlat, another lemma-
tizer that has more than held its own in a crowded field is LatMor, which com-
pares favorably to the competition in coverage and accuracy, but with
processing speeds that are up to 1200 times faster.25

Lemmatization is well supported by standalone tools, though perhaps
somewhat better for Latin than for Greek. Digital philologists should have little
trouble building lexical annotations of this sort for text analysis work.
Disambiguation remains a concern (so, for example, correctly tagging the Latin
preposition cum versus the conjunction cum), but advances in computational
approaches to lemmatization combined with advances in related annotation
tasks like POS tagging are helping to solve this problem.

4.2.3 Part-of-speech (and morphological) tagging

All of the lemmatization tools noted in the previous section also provide some
manner of part-of-speech and morphological tagging. This make sense as there
is a close relationship between these tasks. Accordingly, POS and morphologi-
cal annotations from these tools can be captured alongside lexical annotations
and used in a pipeline.

Nonetheless, one tool worth calling attention to is TreeTagger, a probabilistic
POS tagger written by Helmut Schmid in the mid 1990s.26 TreeTagger has exten-
sive language support, including classical languages. Latin is supported by two
parameter files, one based on selected data from PROIEL, Perseus, and the Index

23 (Ouvard 2010). Collatinus is available online at https://outils.biblissima.fr/fr/collatinus/;
Eulexis at https://outils.biblissima.fr/fr/eulexis/ (last access 2019.01.31).
24 (Passarotti et al. 2017); (Budassi and Passarotti 2016); available online at http://www.ilc.
cnr.it/lemlat/ (last access 2019.01.31).
25 (Springmann et al. 2016); available online at http://www.cis.uni-muenchen.de/~schmid/
tools/LatMor/ (last access 2019.01.31).
26 (Schmid 1994); available online at http://www.cis.uni-muenchen.de/~schmid/tools/
TreeTagger/ (last access 2019.01.31).

Building a Text Analysis Pipeline for Classical Languages 167

Unauthenticated
Download Date | 8/13/19 3:32 PM

https://outils.biblissima.fr/fr/collatinus/
https://outils.biblissima.fr/fr/eulexis/
http://www.ilc.cnr.it/lemlat/
http://www.ilc.cnr.it/lemlat/
http://www.cis.uni-muenchen.de/~schmid/tools/LatMor/
http://www.cis.uni-muenchen.de/~schmid/tools/LatMor/
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/


Thomisticus and another much larger file based only on the Index Thomisticus;
Ancient Greek with a parameter file based on PROIEL and Perseus data.27 If one
were designing a text analysis pipeline, one could easily capture its output on
the command line, as with lemmatizers like Lemlat or LatMor. That said, wrap-
pers (or programming interfaces that let you use code from one domain or lan-
guage inside another) have been written so that TreeTagger can be used easily in
Python, R, and JavaScript, among other languages, thus making it even easier to
incorporate in custom-built pipelines.

4.2.4 Named Entity Recognition

Unlike lemmatization and POS tagging, named entity recognition (NER), or
the systematic tagging of words in texts by category (so, Roma as a “location”
or Σωκράτης as a “person”) is not well-supported by standalone tools. With
respect to Greek and Latin, a lack of annotated texts and robust language
models underlies the problem.28 All is not lost though as there is at least one
(albeit longhand) way to retrieve annotations from Greek and Latin texts.
Recogito is an online platform supporting the annotation of places, persons,
and events through linked data.29 While Recogito can provide automatic NER
tagging (using Stanford CoreNLP), at present this feature is limited to English,
French, German, and Spanish. That said, users can upload texts and annotate
them by hand on the platform, and, with geographic entities in particular, the
linked-data-enhanced advanced search does a good job with validating Greek
and Latin annotations against online gazetteers.30 These annotations can
then be exported in a wide variety of data for integration into a makeshift
pipeline.

27 Latin: (Brandolini n.d.; Passarotti n.d.); Ancient Greek: (Vatri and McGillivray n.d.).
A complete list of parameter files for all supported languages can be found at http://www.cis.
uni-muenchen.de/~schmid/tools/TreeTagger/#parfiles (last access 2019.01.31).
28 Erdmann et al. (2016) review the challenges of named entity recognition on Latin texts and
suggest directions forward.
29 (Simon et al. 2017); available online at https://recogito.pelagios.org/ (last access
2019.01.31).
30 For example, Ὀλύμπια does not match a location entity automatically in the Recogito anno-
tation interface, but the advanced search feature yields matches from the following gazetteers:
GeoNames, the Digital Atlas of the Roman Empire, and Pleiades. Since the writing of this chap-
ter, Recogito has introduced beta support for Latin NER.

168 Patrick J. Burns

Unauthenticated
Download Date | 8/13/19 3:32 PM

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/#parfiles
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/#parfiles
https://recogito.pelagios.org/


4.2.5 Miscellaneous pipeline components

Digital philological work on Greek and Latin text raises the need for compo-
nents that are encountered rarely, if ever, in pipelines for modern languages.
So, for example, macronization and prosody tagging may be useful tasks for an-
alyzing Latin literature and should be considered in the construction of
a pipeline for this domain.31 Accordingly, sites like Pede Certo, which allows
users to upload a block of Latin poetry and return a fully scanned version, or
Macronizer, which will add macrons algorithmically to a Latin text, should also
be considered as potential components depending on the research question at
hand.32

5 Introducing the Classical Language Toolkit

Chaining together a number of incompatible tools may prove useful for some
digital philological work, but it can hardly be considered a permanent, robust
solution for Greek and Latin text analysis. Extensively modifying the source
code and developing resources for one of the existing frameworks is also
a possibility. That said, the degree of customization that would be necessary for
these languages also favors a new solution. This is where the Classical
Language Toolkit (CLTK) fits into the digital philological landscape, addressing
the desideratum of a complete text analysis pipeline for less-resourced histori-
cal languages such as Greek and Latin.33

CLTK is an open-source Python framework founded in 2014 by Kyle
P. Johnson dedicated to NLP support for historical languages.34 CLTK has

31 See Kirby (2016, 21–25) for a recent overview of this work. Prosody tagging is also an area
of interest in Greek text analysis; see Papakitsos (2010).
32 Pede Certo: (Colombi 2011); available online at http://www.pedecerto.eu (last access
2019.01.31). Macronizer: (Winge 2015); available online at http://alatius.com/macronizer/ (last ac-
cess 2019.01.31). Winge (2015) deserves special attention here. In addition to its primary discussion
of vowel length and macronization, his thesis is also noteworthy as a review of available text anal-
ysis components for Latin. In order to complete his thesis work, Winge had to, as I write in the
introduction, “cobble together separate, sometimes incompatible tools.” His methodology section
reveals the substantial challenges he encountered, even if his results demonstrate the excellent
work that can be done, once challenges are overcome, with this sort of makeshift pipeline.
33 On less-resourced historical languages, see Piotrowski (2012, 85–86).
34 (Johnson et al. 2019). I have been a contributor to the project, in particular the Latin tools,
since 2015.

Building a Text Analysis Pipeline for Classical Languages 169

Unauthenticated
Download Date | 8/13/19 3:32 PM

http://www.pedecerto.eu
http://alatius.com/macronizer/


made progress in recent years collecting corpora for a wide variety of histori-
cal languages covering ancient, classical, and medieval Eurasia and building
out the basic resources to support these languages across the entire text anal-
ysis pipeline. Current offerings include all of the components described in
Section 4 with the significant advantage that the components are all available
within the same suite of NLP tools. Accordingly, starting from a plaintext file,
researchers can tokenize, lemmatize, perform part-of-speech tagging and re-
lated morphological analysis, and so on without having to resort to external
tools, web applications, or web services. In this respect, CLTK supports Greek
and Latin in ways similar to how CoreNLP and NLTK support modern
languages.

CLTK aims to meet the criteria of what Steven Krauwer calls the basic lan-
guage toolkit, or BLARK.35 The BLARK, according to Krauwer, consists of the
“minimal set of language resources that is necessary to do any precompetitive
research and education at all” in a given language. This includes but is not lim-
ited to 1. a collection of corpora, 2. lexical and grammatical resources, and 3.
processing tools. CLTK offers all three:
1. CLTK has Ancient Greek corpora available based on the Perseus Digital

Library, the First 1000 Years of Greek, and Lacus Curtius and Latin corpora
available based on Perseus, The Latin Library, Lacus Curtius, and the
Corpus Grammaticorum Latinorum among others, and has collected related
resources such as treebanks from The Ancient Greek and Latin Dependency
Treebank.36

2. CLTK has developed language models and lexical resources for probabilis-
tic sentence tokenization, part-of-speech tagging, named entity recogni-
tion, and more for both languages.

3. As noted above, CLTK currently supports the following “processing tools”:
sentence tokenization, word tokenization, lemmatization, POS tagging, mor-
phological tagging, basic named entity recognition, prosody tagging, and
macronization. There are also modules available for other text analysis and
NLP tasks such as syllabification, stemming, and phonological transcription,
as well as experimental support for word embeddings using word2vec mod-
els trained on large collections of Greek and Latin text.37

35 (Krauwer 2003). See also, for Latin specifically, Passarotti (2010).
36 CLTK Corpora can be found in the main project GitHub repository at https://github.com/
cltk (last access 2019.01.31). For The Ancient Greek and Latin Dependency Treebank, see
Celano et al. (2014).
37 On word2vec and word embeddings, see Mikolov et al. (2013), and for their application to
Latin-language text, see Bjerva and Praet (2015).

170 Patrick J. Burns

Unauthenticated
Download Date | 8/13/19 3:32 PM

https://github.com/cltk
https://github.com/cltk


Development of the project is active; current offerings are continually being re-
fined and new features are being added regularly.38

By establishing guidelines for a minimal toolkit, Krauwer hoped to “create
better starting conditions for research, education and development in language
[. . .] technology” and “facilitate porting of insights and expertise between lan-
guages, [. . .] ensuring interoperability and interconnectivity,”39 all goals of
CLTK.

One avenue of CLTK development currently under discussion with project
administrators is the implementation of a data structure not unlike
CoreNLP’s “Annotation” object that would instantiate a complete text analy-
sis pipeline for users upon initialization. With respect to the framework phi-
losophies described in Section 3, CLTK has since its beginning more or less
followed the NLTK’s “pedagogical” approach; that is, a variety of potential
components for each text processing task is made available to users and they
learn which is best for their project. But the idea of getting users up and run-
ning quickly with a pre-defined pipeline of tried-and-true components, that
is something closer to the CoreNLP approach, is certainly attractive, espe-
cially for lowering the barrier to entry for digital philological research and
encouraging the adoption of CLTK as a general solution for text analysis on
classical languages.

Another avenue of CLTK future development concerns the development,
where possible, of wrappers for the tools mentioned in Section 4. Wrappers are
a type of programming interface that allows you use code from one domain or
language inside another without exposing the inner workings of the wrapped
code. For example, I can write a Python wrapper for LatMor that uses Python
commands to call this lemmatizer without users having to run LatMor them-
selves. The Python code sends inputs to LatMor (which is not written in
Python), runs it as a background process, and stores the lemmatizer’s output in
a Python data structure for later use in a Python program. In this example, by
including a CLTK wrapper for LatMor, we could enable its use as the lemmatiza-
tion component in an otherwise CLTK-based pipeline. The advantage to users is
clear. There is excellent work being done outside of CLTK in Greek and Latin

38 Krauwer also calls for BLARKs to include a “collection of skills” relating to effective use of
the corpora and tools; CLTK provides extensive documentation and tutorials to support users
in this way.
39 (Krauwer 2003, 1).

Building a Text Analysis Pipeline for Classical Languages 171

Unauthenticated
Download Date | 8/13/19 3:32 PM



digital philology and users should be able to incorporate advances elsewhere
in the field with as little friction as possible. As demonstrated in Section 4,
a pipeline can always be assembled from disparate, incompatible components,
but this is not the optimal situation. Wrappers can provide an intermediate so-
lution through which effective pipelines can be constructed within the CLTK
framework with a productive combination of both CLTK components and exter-
nal components.

5.1 Access to the Classical Language Toolkit

CLTK is freely available and open source, published under the MIT license and
hosted at https://github.com/cltk/cltk. More information about the project can
be found at https://cltk.org/ and more information about the tools themselves,
itemized by language, in the project’s documentation at https://docs.cltk.org/
en/latest/. Figure 2 shows the project’s “pipeline” coverage at the time of
writing.

6 Conclusion

Pipelines are an effective way to manage text analysis transformations and anno-
tations and as such they are a defining feature of many NLP frameworks. Yet pipe-
lines are only as good as the components (and the resources that components are
based on, such as treebanks, lexica, grammars, and so on) that are available for
a given language. At present, leading NLP frameworks like CoreNLP and NLTK
support pipelines for a wide array of modern-language research, but options for
classical-language research remain limited. This may change over time as Greek
and Latin tools are incrementally developed for these frameworks. In the mean-
time, the Classical Language Toolkit fills the need for a comprehensive text analy-
sis pipeline for these languages.

172 Patrick J. Burns

Unauthenticated
Download Date | 8/13/19 3:32 PM

https://github.com/cltk/cltk
https://cltk.org/
https://docs.cltk.org/en/latest/
https://docs.cltk.org/en/latest/


Fi
gu

re
2:

Th
is

gr
id

sh
ow

s
th
e
cu

rr
en

t
co

ve
ra
ge

of
th
e
C
la
ss
ic
al

La
ng

ua
ge

To
ol
ki
t’s

ba
si
c
la
ng

ua
ge

re
so

ur
ce

ki
t.
In
cl
ud

ed
he

re
ar
e
al
lo

ft
he

hi
st
or
ic
al

la
ng

ua
ge

s
fo
r
w
hi
ch

C
LT
K
ha

s
co

rp
or
a
av
ai
la
bl
e.

W
it
h
re
sp

ec
t
to

co
ve
ra
ge

fo
r
te
xt

an
al
ys
is

ta
sk

s,
no

te
th
at

G
re
ek

an
d
La
ti
n
ar
e
th
e
be

st
su

pp
or
te
d,

th
ou

gh
th
er
e
is

on
go

in
g,

ac
ti
ve

de
ve
lo
pm

en
t
ac
ro
ss

th
e
fu
ll
ra
ng

e
of

hi
st
or
ic
al

la
ng

ua
ge

s.

Building a Text Analysis Pipeline for Classical Languages 173

Unauthenticated
Download Date | 8/13/19 3:32 PM



Bibliography

Bird, S.; Klein, E.; Loper, E. (2015): Natural Language Processing with Python: Analyzing Text
with the Natural Language Toolkit. https://www.nltk.org/book/ (last access 2019.01.31).

Bjerva, J.; Praet, R. (2015): “Word Embeddings Pointing the Way for Late Antiquity”. In:
Proceedings of the 9th SIGHUM Workshop on Language Technology for Cultural Heritage,
Social Sciences, and Humanities (LaTeCH). Association for Computational Linguistics,
53–57.

Bodson, A.; Evrard, É. (1966): “Le programme d’analyse automatique du latin”. Revue
Informatique et Statistique dans les Sciences Humaines 1966:2, 17–46.

Brandolini, G. (n.d.): Latin Parameter File (TreeTagger). http://www.cis.uni-muenchen.de/
~schmid/tools/TreeTagger/data/latin.par.gz (last access 2019.01.31).

Budassi, M.; Passarotti, M. (2016): “Nomen Omen. Enhancing the Latin Morphological
Analyser Lemlat with an Onomasticon.” In: Proceedings of the 10th SIGHUM Workshop on
Language Technology for Cultural Heritage, Social Sciences, and Humanities (LaTeCH).
Association for Computational Linguistics, 90–94.

Celano, G.G.A.; Crane, G.; Almas, B. (2014): The Ancient Greek and Latin Dependency
Treebank. XML. https://perseusdl.github.io/treebank_data/ (last access 2019.01.31).

Chiarcos, C.; Khait, I.; Pagé-Perron, É.; Schenk, N.; Kandukuri, J.; Fäth, C.; Steuer, J.; McGrath,
W.; Wang, J. (2018): “Annotating a Low-Resource Language with LLOD Technology:
Sumerian Morphology and Syntax”. Information 9:11, 1–16.

Clarke, J.; Srikumar, V.; Sammons, M.; Roth, D. (2012): “An NLP Curator (or: How I Learned to
Stop Worrying and Love NLP Pipelines)”. In: Proceedings of the 8th International
Conference on Language Resources and Evaluation (LREC). European Language
Resources Association, 3276–3283.

Colombi, E. (2011): Pede Certo. http://www.pedecerto.eu (last access 2019.01.31).
Crane, G. (1991): “Generating and Parsing Classical Greek”. Literary and Linguistic Computing

6:4, 243–245.
Cunningham, H. (2002): “GATE, A General Architecture for Text Engineering”. Computers and

the Humanities 36:2, 223–254.
de Castilho, R.E.; Gurevych, I. (2014): “A Broad-coverage Collection of Portable NLP

Components for Building Shareable Analysis Pipelines”. In: Proceedings of the Workshop
on Open Infrastructures and Analysis Frameworks for HLT. Association for Computational
Linguistics and Dublin City University, 1–11.

Eger, S.; Gleim, R.; Mehler, A. (2016): “Lemmatization and Morphological Tagging in German
and Latin: A Comparison and a Survey of the State-of-the-art”. In: Proceedings of the 10th
International Conference on Language Resources and Evaluation (LREC). European
Language Resources Association, 23–28.

Eger, S.; Vor der Brück, T.; Mehler, A. (2015): “Lexicon-assisted Tagging and Lemmatization in
Latin: A Comparison of Six Taggers and Two Lemmatization Methods”. In: Proceedings of
the 9th SIGHUM Workshop on Language Technology for Cultural Heritage, Social
Sciences, and Humanities (LaTeCH). Association for Computational Linguistics, 105–113.

Erdmann, A.; Brown, C.; Joseph, B.; Janse, M.; Ajaka, P.; Elsner, M.; de Marneffe, M.-C. (2016):
“Challenges and Solutions for Latin Named Entity Recognition.” In: Proceedings of the
Workshop on Language Technology Resources and Tools for Digital Humanities (LTD4DH).
The COLING 2016 Organizing Committee, 85–93.

174 Patrick J. Burns

Unauthenticated
Download Date | 8/13/19 3:32 PM

https://www.nltk.org/book/
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/latin.par.gz
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/latin.par.gz
https://perseusdl.github.io/treebank_data/
http://www.pedecerto.eu


Ferrucci, D.; Lally, A. (2004): “UIMA: An Architectural Approach to Unstructured Information
Processing in the Corporate Research Environment”. Natural Language Engineering 10,
327–348.

Johnson, K.P.; Hollis, L.; Burns, PJ.; CLTK Development Community (2019): CLTK: The Classical
Language Toolkit. Python. https://cltk.org (last access 2019.01.31).

Kirby, T. (2016): A Computational Method for Comparative Greek and Latin Prosimetrics.
Thesis. Sarasota, FL: New College of Florida.

Krauwer, S. (2003): “The Basic Language Resource Kit (BLARK) as the First Milestone for the
Language Resources Roadmap”. In Proceedings of International Conference on Speech
and Computer (SPECOM 2003). Moscow State Linguistic University, 8–15.

Loper, E.; Bird, S. (2002): “NLTK: The Natural Language Toolkit”. In: Proceedings of the ACL-02
Workshop on Effective Tools and Methodologies for Teaching Natural Language
Processing and Computational Linguistics, Volume 1. Stroudsburg, PA: Association for
Computational Linguistics, 63–70.

Manning, C.; Surdeanu, M.; Bauer, J.; Finkel, J.; Bethard, S.; McClosky, D. (2014): “The
Stanford CoreNLP Natural Language Processing Toolkit”. In: Proceedings of 52nd Annual
Meeting of the Association for Computational Linguistics: System Demonstrations.
Association for Computational Linguistics, 55–60.

Marciniak, T.; Strube, M. (2005): “Beyond the Pipeline: Discrete Optimization in NLP”. In:
Proceedings of the Ninth Conference on Computational Natural Language Learning.
Stroudsburg, PA: Association for Computational Linguistics, 136–143.

Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. (2013): “Efficient Estimation of Word
Representations in Vector Space”. arXiv preprint arXiv:1301.3781.

Ouvrard, Y. (2010): “Collatinus, lemmatiseur et analyseur morphologique de la langue latine.”
Études de linguistique appliquée 158:2, 223–230.

Papakitsos, E.C. (2010): “Computerized Scansion of Ancient Greek Hexameter”. Literary and
Linguistic Computing 26:1, 57–69.

Passarotti, M. (n.d.): Latin IT Parameter File (TreeTagger). http://www.cis.uni-muenchen.de/
~schmid/tools/TreeTagger/data/latinIT.par.gz (last access 2019.01.31).

Passarotti, M. (2010): “Leaving Behind the Less-Resourced Status. The Case of Latin through
the Experience of the Index Thomisticus Treebank”. In: 7th SaLTMiL Workshop on
Creation and Use of Basic Lexical Resources for Less-Resourced Languages (LREC).
European Language Resources Association, 27–32.

Passarotti, M.; Litta, E.; Budassi, M.; Ruffolo, P. (2017): “The Lemlat 3.0 Package for
Morphological Analysis of Latin”. In: Proceedings of the NoDaLiDa 2017 Workshop on
Processing Historical Language. Linköping University Electronic Press, 24–31.

Piotrowski, M. (2012): Natural Language Processing for Historical Texts. San Rafael, CA:
Morgan and Claypool.

Piperidis, S. (2012): “The META-SHARE Language Resources Sharing Infrastructure: Principles,
Challenges, Solutions”. In: Proceedings of the 8th International Conference on Language
Resources and Evaluation. European Languages Resources Association (ELRA), 36–42.

Schmid, H. (1994): “Probabilistic Part-of-Speech Tagging Using Decision Trees”. In:
International Conference on New Methods in Language Processing. Stroudsburg, PA:
Association for Computational Linguistics, 44–49.

Simon, R.; Barker, E.; Isaksen, L.; de Soto Cañamares, P. (2017): “Linked Data Annotation
Without the Pointy Brackets: Introducing Recogito 2”. Journal of Map & Geography
Libraries 13:1, 111–132.

Building a Text Analysis Pipeline for Classical Languages 175

Unauthenticated
Download Date | 8/13/19 3:32 PM

https://cltk.org
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/latinIT.par.gz
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/latinIT.par.gz


Springmann, U.; Schmid, H.; Najock, D. (2016): “LatMor: A Latin Finite-State Morphology
Encoding Vowel Quantity”. Open Linguistics 2:1.

Vatri, A.; McGillivray, B. (n.d.): Ancient Greek Parameter File (TreeTagger). http://www.cis.
uni-muenchen.de/~schmid/tools/TreeTagger/data/ancient-greek.par.gz (last access
2019.01.31).

Verhagen, M.; Suderman, K.; Wang, D.; Ide, N.; Shi, C.; Wright, J.; Pustejovsky, J. (2016): “The
LAPPS Interchange Format”. In: Revised Selected Papers of the Second International
Workshop on Worldwide Language Service Infrastructure. Cham: Springer, 33–47.

Wachsmuth, H. (2015): Text Analysis Pipelines: Towards Ad-hoc Large-Scale Text Mining.
New York: Springer.

Whitaker, W. (1993): Words. http://archives.nd.edu/whitaker/wordsdoc.htm (last access
2019.01.31).

Winge, J. (2015): Automatic Annotation of Latin Vowel Length. Bachelor’s Thesis in Language
Technology. Uppsala University: Department of Linguistics and Philology.

Zeldes, A.; Schroeder, C.T. (2016): “An NLP Pipeline for Coptic”. In: Proceedings of the 10th
SIGHUM Workshop on Language Technology for Cultural Heritage, Social Sciences, and
Humanities. Association for Computational Linguistics, 146–155.

176 Patrick J. Burns

Unauthenticated
Download Date | 8/13/19 3:32 PM

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/ancient-greek.par.gz
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/data/ancient-greek.par.gz
http://archives.nd.edu/whitaker/wordsdoc.htm

