# A Tutorial on Dirichlet Processes and Hierarchical Dirichlet Processes

#### Yee Whye Teh

Gatsby Computational Neuroscience Unit University College London

Mar 1, 2007 / CUED

Yee Whye Teh (Gatsby)

## Outline



### **Dirichlet Processes**

- Definitions, Existence, and Representations (recap)
- Applications
- Generalizations
- Generalizations

### Hierarchical Dirichlet Processes

- Grouped Clustering Problems
- Hierarchical Dirichlet Processes
- Representations
- Applications
- Extensions and Related Models

• A Dirichlet distribution is a distribution over the *K*-dimensional probability simplex:

$$\Delta_{\mathcal{K}} = \left\{ (\pi_1, \ldots, \pi_{\mathcal{K}}) : \pi_k \ge 0, \sum_k \pi_k = 1 \right\}$$

• We say  $(\pi_1, \ldots, \pi_K)$  is Dirichlet distributed,

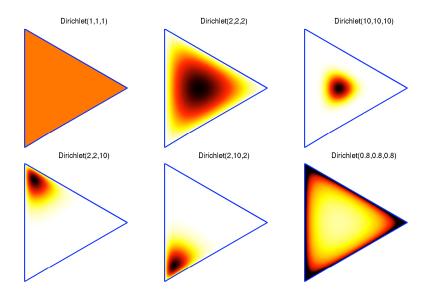
$$(\pi_1,\ldots,\pi_K) \sim \mathsf{Dirichlet}(\alpha_1,\ldots,\alpha_K)$$

with parameters  $(\alpha_1, \ldots, \alpha_K)$ , if

$$p(\pi_1,\ldots,\pi_K) = \frac{\Gamma(\sum_k \alpha_k)}{\prod_k \Gamma(\alpha_k)} \prod_{k=1}^K \pi_k^{\alpha_k-1}$$

## **Dirichlet Processes**

#### Examples of Dirichlet distributions



# Dirichlet Processes

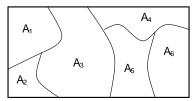
- A Dirichlet Process (DP) is a distribution over probability measures.
- A DP has two parameters:
  - Base distribution *H*, which is like the *mean* of the DP.
  - Strength parameter  $\alpha$ , which is like an *inverse-variance* of the DP.

• We write:

 $\mathbf{G} \sim \mathsf{DP}(\alpha, \mathbf{H})$ 

if for any partition  $(A_1, \ldots, A_n)$  of X:

 $(G(A_1),\ldots,G(A_n)) \sim \text{Dirichlet}(\alpha H(A_1),\ldots,\alpha H(A_n))$ 



Yee Whye Teh (Gatsby)

#### • A DP has two parameters:

- Base distribution *H*, which is like the *mean* of the DP.
- Strength parameter  $\alpha$ , which is like an *inverse-variance* of the DP.
- The first two cumulants of the DP:

Expectation:
$$\mathbb{E}[G(A)] = H(A)$$
Variance: $\mathbb{V}[G(A)] = \frac{H(A)(1 - H(A))}{\alpha + 1}$ 

where A is any measurable subset of X.

- A probability measure is a function from subsets of a space X to [0, 1] satisfying certain properties.
- A DP is a distribution over probability measures such that marginals on finite partitions are Dirichlet distributed.
- How do we know that such an object exists?!?
- Kolmogorov Consistency Theorem: if we can prescribe consistent finite dimensional distributions, then a distribution over functions exist.
- de Finetti's Theorem: if we have an infinite exchangeable sequence of random variables, then a distribution over measures exist making them independent. Pòlya's urn, Chinese restaurant process.
- Stick-breaking Construction: Just construct it.

- A probability measure is a function from subsets of a space X to [0, 1] satisfying certain properties.
- A DP is a distribution over probability measures such that marginals on finite partitions are Dirichlet distributed.
- How do we know that such an object exists?!?
- Kolmogorov Consistency Theorem: if we can prescribe consistent finite dimensional distributions, then a distribution over functions exist.
- de Finetti's Theorem: if we have an infinite exchangeable sequence of random variables, then a distribution over measures exist making them independent. Pòlya's urn, Chinese restaurant process.
- Stick-breaking Construction: Just construct it.

- A probability measure is a function from subsets of a space X to [0, 1] satisfying certain properties.
- A DP is a distribution over probability measures such that marginals on finite partitions are Dirichlet distributed.
- How do we know that such an object exists?!?
- Kolmogorov Consistency Theorem: if we can prescribe consistent finite dimensional distributions, then a distribution over functions exist.
- de Finetti's Theorem: if we have an infinite exchangeable sequence of random variables, then a distribution over measures exist making them independent. Polya's urn, Chinese restaurant process.
- Stick-breaking Construction: Just construct it.

- A probability measure is a function from subsets of a space X to [0, 1] satisfying certain properties.
- A DP is a distribution over probability measures such that marginals on finite partitions are Dirichlet distributed.
- How do we know that such an object exists?!?
- Kolmogorov Consistency Theorem: if we can prescribe consistent finite dimensional distributions, then a distribution over functions exist.
- de Finetti's Theorem: if we have an infinite exchangeable sequence of random variables, then a distribution over measures exist making them independent. Polya's urn, Chinese restaurant process.
- Stick-breaking Construction: Just construct it.

#### Representations

Distribution over probability measures.

 $(G(A_1),\ldots,G(A_n)) \sim \text{Dirichlet}(\alpha H(A_1),\ldots,\alpha H(A_n))$ 

## Chinese restaurant process/Pòlya's urn scheme.

 $P(n^{\text{th}} \text{ customer sit at table } k) = rac{n_k}{n-1+\alpha}$  $P(n^{\text{th}} \text{ customer sit at new table}) = rac{lpha}{i-1+lpha}$ 

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k^*} \qquad \pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_k) \qquad \beta_k \sim \text{Beta}(1, \alpha)$$

Distribution over probability measures.

 $(G(A_1),\ldots,G(A_n)) \sim \text{Dirichlet}(\alpha H(A_1),\ldots,\alpha H(A_n))$ 

### • Chinese restaurant process/Pòlya's urn scheme.

 $P(n^{\text{th}} \text{ customer sit at table } k) = \frac{n_k}{n-1+\alpha}$  $P(n^{\text{th}} \text{ customer sit at new table}) = \frac{\alpha}{i-1+\alpha}$ 

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k^*} \qquad \pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_k) \qquad \beta_k \sim \text{Beta}(1, \alpha)$$

Distribution over probability measures.

 $(G(A_1),\ldots,G(A_n)) \sim \text{Dirichlet}(\alpha H(A_1),\ldots,\alpha H(A_n))$ 

• Chinese restaurant process/Pòlya's urn scheme.

 $P(n^{\text{th}} \text{ customer sit at table } k) = \frac{n_k}{n-1+\alpha}$  $P(n^{\text{th}} \text{ customer sit at new table}) = \frac{\alpha}{i-1+\alpha}$ 

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k^*} \qquad \pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_k) \qquad \beta_k \sim \text{Beta}(1, \alpha)$$

Distribution over probability measures.

 $(G(A_1),\ldots,G(A_n)) \sim \text{Dirichlet}(\alpha H(A_1),\ldots,\alpha H(A_n))$ 

• Chinese restaurant process/Pòlya's urn scheme.

 $P(n^{\text{th}} \text{ customer sit at table } k) = \frac{n_k}{n-1+\alpha}$  $P(n^{\text{th}} \text{ customer sit at new table}) = \frac{\alpha}{i-1+\alpha}$ 

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k^*} \qquad \pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_k) \qquad \beta_k \sim \text{Beta}(1, \alpha)$$

- A draw  $G \sim DP(\alpha, H)$  is a random probability measure.
- Treating *G* as a distribution, consider i.i.d. draws from *G*:

## $\theta_i | G \sim G$

Marginalizing out G, marginally each θ<sub>i</sub> ~ H, while the conditional distributions are,

$$\theta_n|\theta_{1:n-1} \sim \frac{\sum_{i=1}^{n-1} \delta_{\theta_i} + \alpha H}{n-1+\alpha}$$

• This is the Pòlya urn scheme.

- A draw  $G \sim DP(\alpha, H)$  is a random probability measure.
- Treating *G* as a distribution, consider i.i.d. draws from *G*:

$$\theta_i | \mathbf{G} \sim \mathbf{G}$$

Marginalizing out G, marginally each θ<sub>i</sub> ~ H, while the conditional distributions are,

$$\theta_n | \theta_{1:n-1} \sim \frac{\sum_{i=1}^{n-1} \delta_{\theta_i} + \alpha H}{n-1+\alpha}$$

• This is the Pòlya urn scheme.

• Pòlya's urn scheme produces a sequence  $\theta_1, \theta_2, \ldots$  with the following conditionals:

$$\theta_n | \theta_{1:n-1} \sim \frac{\sum_{i=1}^{n-1} \delta_{\theta_i} + \alpha H}{n-1+\alpha}$$

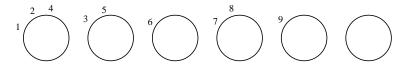
- Imagine picking balls of different colors from an urn:
  - Start with no balls in the urn.
  - with probability ∝ α, draw θ<sub>n</sub> ∼ H, and add a ball of that color into the urn.
  - With probability  $\propto n 1$ , pick a ball at random from the urn, record  $\theta_n$  to be its color, return the ball into the urn and place a second ball of same color into urn.



- Starting with a DP, we constructed Pòlya's urn scheme.
- The reverse is possible using de Finetti's Theorem.
- Since θ<sub>i</sub> are i.i.d. ~ G, their joint distribution is invariant to permutations, thus θ<sub>1</sub>, θ<sub>2</sub>,... are exchangeable.
- Thus a distribution over measures must exist making them i.i.d..
- This is the DP.

- Draw  $\theta_1, \ldots, \theta_n$  from a Pòlya's urn scheme.
- They take on K < n distinct values, say  $\theta_1^*, \ldots, \theta_K^*$ .
- This defines a partition of 1,..., n into K clusters, such that if i is in cluster k, then θ<sub>i</sub> = θ<sup>\*</sup><sub>k</sub>.
- Random draws θ<sub>1</sub>,..., θ<sub>n</sub> from a Pòlya's urn scheme induces a random partition of 1,..., n.
- The induced distribution over partitions is a Chinese restaurant process (CRP).

- Generating from the CRP:
  - First customer sits at the first table.
  - Customer *n* sits at:
    - Table *k* with probability  $\frac{n_k}{\alpha+n-1}$  where  $n_k$  is the number of customers at table *k*.
    - A new table K + 1 with probability  $\frac{\alpha}{\alpha + n 1}$ .
  - Customers  $\Leftrightarrow$  integers, tables  $\Leftrightarrow$  clusters.
- The CRP exhibits the clustering property of the DP.



• To get back from the CRP to Polya's urn scheme, simply draw

$$\theta_k^* \sim H$$

for  $k = 1, \ldots, K$ , then for  $i = 1, \ldots, n$  set

$$\theta_i = \theta_{k_i}^*$$

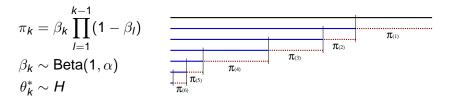
where  $k_i$  is the table that customer *i* sat at.

 The CRP teases apart the clustering property of the DP, from the base distribution.

- But how do draws G ~ DP(α, H) look like?
  - G is discrete with probability one, so:

$$\mathbf{G} = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k^*}$$

The stick-breaking construction shows that G ~ DP(α, H) if:



• We write  $\pi \sim \text{GEM}(\alpha)$  if  $\pi = (\pi_1, \pi_2, ...)$  is distributed as above.

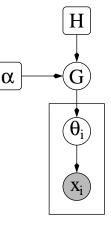
- Mixture Modelling.
- Haplotype Inference.
- Nonparametric relaxation of parametric models.

## **Dirichlet Process Mixture Models**

We model a data set x<sub>1</sub>,..., x<sub>n</sub> using the following model:

$$egin{aligned} & \mathbf{x}_i \sim F( heta_i) & ext{for } i = 1, \dots, n \ & heta_i \sim \mathbf{G} \ & \mathbf{G} \sim \mathsf{DP}(lpha, \mathcal{H}) \end{aligned}$$

- Each θ<sub>i</sub> is a latent parameter modelling x<sub>i</sub>, while G is the unknown distribution over parameters modelled using a DP.
- This is the basic DP mixture model.



## **Dirichlet Process Mixture Models**

Since G is of the form

$$\mathbf{G} = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k^*}$$

we have  $\theta_i = \theta_k^*$  with probability  $\pi_k$ .

- Let k<sub>i</sub> take on value k with probability π<sub>k</sub>. We can equivalently define θ<sub>i</sub> = θ<sup>\*</sup><sub>ki</sub>.
- An equivalent model is:

1

$$x_{i} \sim F(\theta_{k_{i}}^{*}) \qquad \text{for } i = 1, \dots, n$$
  

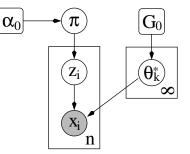
$$p(k_{i} = k) = \pi_{k} \qquad \text{for } k = 1, 2, \dots$$
  

$$\pi_{k} = \beta_{k} \prod_{i=1}^{k-1} (1 - \beta_{i})$$
  

$$\beta_{k} \sim \text{Beta}(1, \alpha)$$
  

$$\theta_{k}^{*} \sim H$$

- So the DP mixture model is a mixture model with an infinite number of clusters.
- But only finitely clusters ever used.
- The DP mixture model can be used for clustering purposes.
  - The number of clusters is not known a priori.
  - Inference in model returns a posterior distribution over number of clusters used to represent data.
  - An alternative to model selection/averaging over finite mixture models.



## Haplotype Inference

- A bioinformatics problem relevant to the study of the evolutionary history of human populations.
- Consider a sequence of *M* markers on a pair of chromosomes.
- Each marker marks the site where there is an observed variation in the DNA in across the human population.
- A sequence of marker states is called a haplotype.
- A genotype is a sequence of unordered pairs of marker states.

| ak. 01 | -   |     | # # |     |    | 68  |
|--------|-----|-----|-----|-----|----|-----|
|        |     |     |     |     |    |     |
| 88     | 15  | ăĂ  | 11  | N K |    | 45  |
|        | ,   | •   | •   |     | *  |     |
| 44     |     | 8.6 |     | 84  |    | 66  |
| u      | 14  | 10  |     |     |    | **  |
|        | 8 8 |     |     |     |    | 1   |
|        | **  |     |     | *   | 22 | 8.7 |
|        |     |     |     |     |    |     |

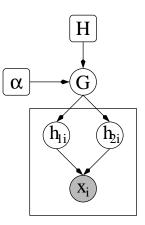
11 10 60



 $\{0,0\}\;\{1,1\}\;\{0,1\}\;\{1,1\}\;\{0,1\}\;\{0,1\}\;\{1,1\}$ 

# Haplotype Inference

- Biological assays allow us to read the genotype of an individual, not the two haplotypes.
- Problem: from the genotypes of a large number of individuals, can we reconstruct the haplotypes accurately?
- Observation: only a very small number of haplotypes are observed in human populations.
- Model the process as a mixture model.
- Because the actual number of haplotypes in the observed population is not known, we use a DP mixture model.



## Nonparametric Relaxation

If G ~ DP(α, H), then G → H as α → ∞, in the sense that for any function f,

$$\int f( heta) {f G}( heta) {f d} heta 
ightarrow \int f( heta) {f H}( heta) {f d} heta$$

- We can use G as a nonparametric relaxation of H.
- Example: generalized linear models.
  - Observed data  $\{x_1, y_1, \dots, x_n, y_n\}$  where , modelled as:

$$\mathbf{x}_i \sim H(f^{-1}(\lambda^{\top} \mathbf{y}_i))$$

where  $H(\eta)$  is an exponential family distribution with parameter  $\eta$  and *f* is the link function.

If we do not believe that H(f<sup>-1</sup>(λ<sup>T</sup>y)) is the true model, then we can relax our strong parametric assumption as:

$$egin{aligned} \mathsf{G}(y_i) &\sim \mathsf{DP}(lpha(w^ op y_i), \mathsf{H}(f^{-1}(\lambda^ op y_i))) \ x_i &\sim \mathsf{G}(y_i) \end{aligned}$$

- Pitman-Yor processes.
- General stick-breaking processes.
- Normalized inversed-Gaussian processes.

## **Pitman-Yor Processes**

- Pitman-Yor Processes are also known as Two-parameter Poisson-Dirichlet Processes.
- Chinese restaurant representation:

 $P(n^{\text{th}} \text{ customer sit at table } k, 1 \le k \le K) = \frac{n_k - d}{n - 1 + \alpha}$  $P(n^{\text{th}} \text{ customer sit at new table}) = \frac{\alpha + dK}{i - 1 + \alpha}$ 

where  $0 \le d < 1$  and  $\alpha > -d$ .

- When d = 0 the Pitman-Yor process reduces to the DP.
- When  $\alpha = 0$  the Pitman-Yor process reduces to a stable process.
- When  $\alpha = 0$  and  $d = \frac{1}{2}$  the stable process is a normalized inverse-gamma process.
- There is a stick-breaking construction for Pitman-Yor processes (later), but no known analytic expressions for its finite dimensional marginals, except for d = 0 and  $d = \frac{1}{2}$ .

## **Pitman-Yor Processes**

- Pitman-Yor Processes are also known as Two-parameter Poisson-Dirichlet Processes.
- Chinese restaurant representation:

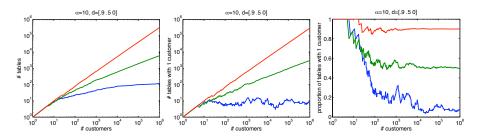
 $P(n^{\text{th}} \text{ customer sit at table } k, 1 \le k \le K) = \frac{n_k - d}{n - 1 + \alpha}$  $P(n^{\text{th}} \text{ customer sit at new table}) = \frac{\alpha + dK}{i - 1 + \alpha}$ 

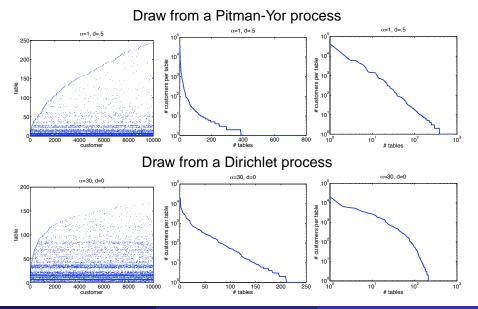
where  $0 \le d < 1$  and  $\alpha > -d$ .

- When d = 0 the Pitman-Yor process reduces to the DP.
- When  $\alpha = 0$  the Pitman-Yor process reduces to a stable process.
- When  $\alpha = 0$  and  $d = \frac{1}{2}$  the stable process is a normalized inverse-gamma process.
- There is a stick-breaking construction for Pitman-Yor processes (later), but no known analytic expressions for its finite dimensional marginals, except for d = 0 and  $d = \frac{1}{2}$ .

## **Pitman-Yor Processes**

- Two salient features of the Pitman-Yor process:
  - With more occupied tables, the chance of even more tables becomes higher.
  - Tables with smaller occupancy numbers tend to have lower chance of getting new customers.
- The above means that Pitman-Yor processes produce Zipf's Law type behaviour.





Yee Whye Teh (Gatsby)

**DP and HDP Tutorial** 

• We can relax the priors on  $\beta_k$  in the stick-breaking construction:

- We get the DP if  $a_k = 1$ ,  $b_k = \alpha$ .
- We get the Pitman-Yor process if  $a_k = 1 d$ ,  $b_k = \alpha + kd$ .
- To ensure that  $\sum_{k=1}^{\infty} \pi_k = 1$ , we need  $\beta_k$  to not go to 0 too quickly:

$$\sum_{k=1}^{\infty} \pi_k = 1$$
 almost surely iff  $\sum_{k=1}^{\infty} \log(1 + a_k/b_k) = \infty$ 

## Normalized Inverse-Gaussian Processes

• The inverse-Gaussian distribution with parameter  $\alpha$  has density:

$$p(\nu) = \frac{\alpha}{\sqrt{2\pi}} \nu^{-3/2} \exp\left(-\frac{1}{2}\left(\frac{\alpha^2}{\nu} + \nu\right) + \alpha\right) \quad \nu \ge 0$$

 Additive property of inverse-Gaussian variables: if ν<sub>1</sub> ~ IG(α<sub>1</sub>) and ν<sub>2</sub> ~ IG(α<sub>2</sub>) then ν<sub>1</sub> + ν<sub>2</sub> ~ IG(α<sub>1</sub> + α<sub>2</sub>).

### Normalized Inverse-Gaussian Processes

 The normalized inverse-Gaussian is a distribution over the m-simplex obtained by normalizing m inverse-Gaussian variables, and has density:

$$P(w_{1},...,w_{m}|\alpha_{1},...,\alpha_{m}) = \frac{e^{\sum_{i=1}^{m} \alpha_{i} + \log \alpha_{i}}}{2^{m/2 - 1}\pi^{m/2}} K_{-m/2} \left(\sqrt{\sum_{i=1}^{m} \frac{\alpha_{i}^{2}}{w_{i}}}\right) \left(\sum_{i=1}^{m} \frac{\alpha_{i}^{2}}{w_{i}}\right)^{-m/4} \prod_{i=1}^{m} w_{i}^{-3/2}$$

• Agglomerative property: if  $\{J_1, \ldots, J_{m'}\}$  is a partition of  $\{1, \ldots, m\}$ ,

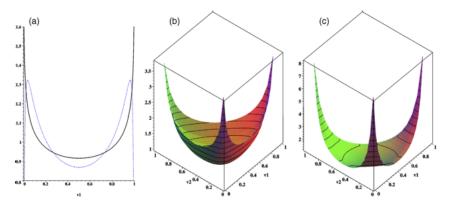
$$\left(\sum_{i\in J_1} w_i, \dots, \sum_{i\in J_{m'}} w_i\right) \sim \mathsf{NIG}\left(\sum_{i\in J_1} \alpha_i, \dots, \sum_{i\in J_{m'}} \alpha_i\right)$$

 We can now define a normalized inverse-Gaussian process (NIGP) analogously to a Dirichlet process. G ~ NIGP(α, H) if for all partitions (A<sub>1</sub>,..., A<sub>m</sub>) of X:

$$(G(A_1),\ldots,G(A_m)) \sim \mathsf{NIG}(\alpha H(A_1),\ldots,\alpha H(A_m))$$

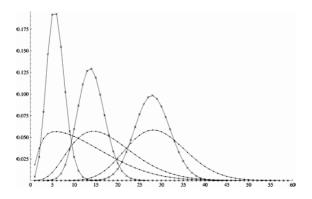
### Normalized Inverse-Gaussian Processes

- There is a tractable Polya urn scheme corresponding to the NIGP.
- The DP, the Pitman-Yor with  $d = \frac{1}{2}$ , and the NIG process are the only known normalized random measure with analytic finite dimensional marginals.
- The NIGP have wider support around its modes than does the DP:



### Normalized Inverse-Gaussian Processes

- There is a tractable Polya urn scheme corresponding to the NIGP.
- The DP, the Pitman-Yor with  $d = \frac{1}{2}$ , and the NIG process are the only known normalized random measure with analytic finite dimensional marginals.
- The NIGP have wider support around its modes than does the DP:



- Grouped Clustering Problems.
- Hierarchical Dirichlet Processes.
- Representations of Hierarchical Dirichlet Processes.
- Applications in Grouped Clustering.
- Extensions and Related Models.

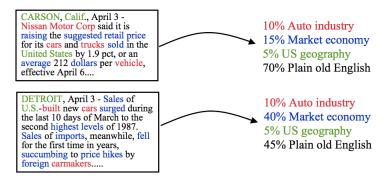
- Information retrieval: finding useful information from large collections of documents.
- Example: Google, CiteSeer, Amazon...
- Model documents as "bags of words".



### **Grouped Clustering Problems**

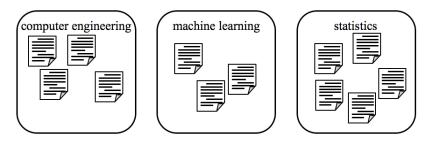
Example: document topic modelling

- We model documents as coming from an underlying set of topics.
  - Summarize documents.
  - Document/query comparisons.
  - Do not know the number of topics a priori—use DP mixtures somehow.
  - But: topics have to be shared across documents...



Example: document topic modelling

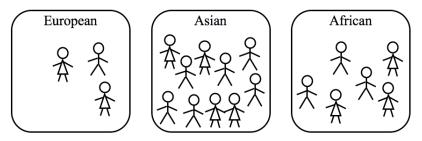
- Share topics across documents in a collection, and across different collections.
- More sharing within collections than across.
- Use DP mixture models as we do not know the number of topics a priori.



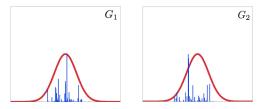
### **Grouped Clustering Problems**

Example: haplotype inference

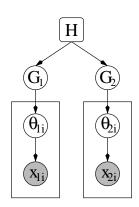
- Individuals inherit both ancient haplotypes dispersed across multiple populations, as well as more recent population-specific haplotypes.
- Sharing of haplotypes among individuals in a population, and across different populations.
- More sharing within populations than across.
- Use DP mixture models as we do not know the number of haplotypes.



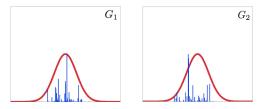
• Use a DP mixture for each group.



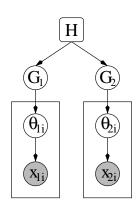
- Unfortunately there is no sharing of clusters across different groups because *H* is smooth.
- Solution: make the base distribution *H* discrete.
- Put a DP prior on the common base distribution.



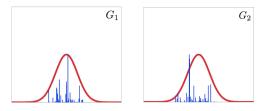
• Use a DP mixture for each group.



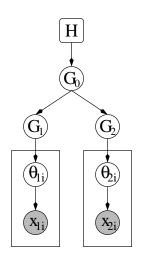
- Unfortunately there is no sharing of clusters across different groups because *H* is smooth.
- Solution: make the base distribution *H* discrete.
- Put a DP prior on the common base distribution.



• Use a DP mixture for each group.



- Unfortunately there is no sharing of clusters across different groups because *H* is smooth.
- Solution: make the base distribution *H* discrete.
- Put a DP prior on the common base distribution.



• A hierarchical Dirichlet process:

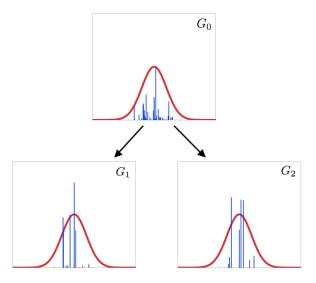
 $egin{aligned} \mathbf{G_0} \sim \mathsf{DP}(lpha_0, \mathbf{\textit{H}}) \ \mathbf{G_1}, \mathbf{G_2} | \mathbf{G_0} \sim \mathsf{DP}(lpha, \mathbf{G_0}) \end{aligned}$ 

• Extension to deeper hierarchies is straightforward.



### **Hierarchical Dirichlet Processes**

• Making G<sub>0</sub> discrete forces shared cluster between G<sub>1</sub> and G<sub>2</sub>



Stick-breaking construction

• We shall assume the following HDP hierarchy:

$$egin{aligned} & \mathsf{G}_0 \sim \mathsf{DP}(\gamma, \mathcal{H}) \ & \mathsf{G}_j | \mathsf{G}_0 \sim \mathsf{DP}(lpha, \mathsf{G}_0) \quad ext{for } j = 1, \dots, J \end{aligned}$$

• The stick-breaking construction for the HDP is:

 $\begin{aligned} \mathbf{G}_{0} &= \sum_{k=1}^{\infty} \pi_{0k} \delta_{\theta_{k}^{*}} & \theta_{k}^{*} \sim \mathbf{H} \\ \pi_{0k} &= \beta_{0k} \prod_{l=1}^{k-1} (1 - \beta_{0l}) & \beta_{0k} \sim \text{Beta} (1, \gamma) \\ \mathbf{G}_{j} &= \sum_{k=1}^{\infty} \pi_{jk} \delta_{\theta_{k}^{*}} \\ \pi_{jk} &= \beta_{jk} \prod_{l=1}^{k-1} (1 - \beta_{jl}) & \beta_{jk} \sim \text{Beta} (\alpha \beta_{0k}, \alpha (1 - \sum_{l=1}^{k} \beta_{0l})) \end{aligned}$ 

Stick-breaking construction

• We shall assume the following HDP hierarchy:

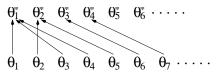
$$egin{aligned} \mathsf{G}_0 &\sim \mathsf{DP}(\gamma, \mathcal{H}) \ \mathsf{G}_j | \mathsf{G}_0 &\sim \mathsf{DP}(lpha, \mathsf{G}_0) \quad ext{for } j = 1, \dots, J \end{aligned}$$

• The stick-breaking construction for the HDP is:

$$\begin{aligned} \mathbf{G}_{0} &= \sum_{k=1}^{\infty} \pi_{0k} \delta_{\theta_{k}^{*}} & \theta_{k}^{*} \sim \mathbf{H} \\ \pi_{0k} &= \beta_{0k} \prod_{l=1}^{k-1} (1 - \beta_{0l}) & \beta_{0k} \sim \text{Beta} \left(1, \gamma\right) \\ \mathbf{G}_{j} &= \sum_{k=1}^{\infty} \pi_{jk} \delta_{\theta_{k}^{*}} \\ \pi_{jk} &= \beta_{jk} \prod_{l=1}^{k-1} (1 - \beta_{jl}) & \beta_{jk} \sim \text{Beta} \left(\alpha \beta_{0k}, \alpha (1 - \sum_{l=1}^{k} \beta_{0l})\right) \end{aligned}$$

Hierarchical Pòlya urn scheme

- Let  $G \sim \mathsf{DP}(\alpha, H)$ .
- We can visualize the Pòlya urn scheme as follows:



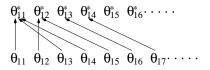
where the arrows denote to which  $\theta_k^*$  each  $\theta_i$  was assigned and

$$\theta_1, \theta_2, \ldots \sim G$$
 i.i.d.  
 $\theta_1^*, \theta_2^*, \ldots \sim H$  i.i.d.

(but  $\theta_1, \theta_2, \ldots$  are not independent of  $\theta_1^*, \theta_2^*, \ldots$ ).

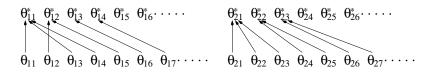
Hierarchical Pòlya urn scheme

- Let  $G_0 \sim \mathsf{DP}(\gamma, H)$  and  $G_1, G_2 | G_0 \sim \mathsf{DP}(\alpha, G_0)$ .
- The hierarchical Pòlya urn scheme to generate draws from G<sub>1</sub>, G<sub>2</sub>:



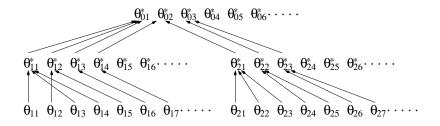
#### Representations of Hierarchical Dirichlet Processes Hierarchical Polya urn scheme

- Let  $G_0 \sim \mathsf{DP}(\gamma, H)$  and  $G_1, G_2 | G_0 \sim \mathsf{DP}(\alpha, G_0)$ .
- The hierarchical Pòlya urn scheme to generate draws from G<sub>1</sub>, G<sub>2</sub>:



#### Representations of Hierarchical Dirichlet Processes Hierarchical Polya urn scheme

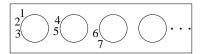
- Let  $G_0 \sim DP(\gamma, H)$  and  $G_1, G_2|G_0 \sim DP(\alpha, G_0)$ .
- The hierarchical Pòlya urn scheme to generate draws from G<sub>1</sub>, G<sub>2</sub>:



Chinese restaurant franchise

- Let  $G_0 \sim DP(\gamma, H)$  and  $G_1, G_2|G_0 \sim DP(\alpha, G_0)$ .
- The Chinese restaurant franchise describes the clustering of data items in the hierarchy:

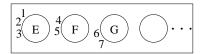




Chinese restaurant franchise

- Let  $G_0 \sim DP(\gamma, H)$  and  $G_1, G_2|G_0 \sim DP(\alpha, G_0)$ .
- The Chinese restaurant franchise describes the clustering of data items in the hierarchy:

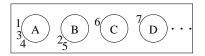


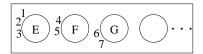


Chinese restaurant franchise

- Let  $G_0 \sim DP(\gamma, H)$  and  $G_1, G_2|G_0 \sim DP(\alpha, G_0)$ .
- The Chinese restaurant franchise describes the clustering of data items in the hierarchy:

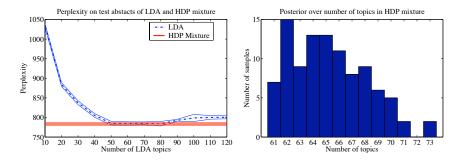






### Application: Document Topic Modelling

 Compared against latent Dirichlet allocation, a parametric version of the HDP mixture for topic modelling.



### Application: Document Topic Modelling

- Topics learned on the NIPS corpus.
  - Documents are separated into 9 subsections.
  - Model this with a 3 layer HDP mixture model.
- Shown are the topics shared between Vision Sciences and each other subsections.

| Cognitive Science |                | Neuroscience |             | Algorithms &<br>Architecture |                 | Signal Processing |            |
|-------------------|----------------|--------------|-------------|------------------------------|-----------------|-------------------|------------|
| task              | examples       | cells        | visual      | algorithms                   | distance        | visual            | signals    |
| representation    | concept        | cell         | cells       | test                         | tangent         | images            | separation |
| pattern           | similarity     | activity     | cortical    | approach                     | image           | video             | signal     |
| processing        | Bayesian       | response     | orientation | methods                      | images          | language          | sources    |
| trained           | hypotheses     | neuron       | receptive   | based                        | transformation  | image             | source     |
| representations   | generalization | visual       | contrast    | point                        | transformations | pixel             | matrix     |
| three             | numbers        | patterns     | spatial     | problems                     | pattern         | acoustic          | blind      |
| process           | positive       | pattern      | cortex      | form                         | vectors         | delta             | mixing     |
| unit              | classes        | single       | stimulus    | large                        | convolution     | lowpass           | gradient   |
| patterns          | hypothesis     | fig          | tuning      | paper                        | simard          | flow              | eq         |

 A hidden Markov model consists of a discrete latent state sequence v<sub>1:T</sub> and an observation sequence x<sub>1:T</sub>.

Xэ



X

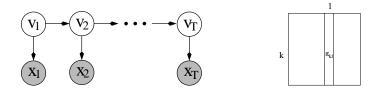
$$P(v_t = k | v_{t-1} = l) = \pi_{kl}$$
$$p(x_t | v_t = k) = f(x_t | \theta_k^*)$$



Хт

In finite HMMs, we can place priors on the parameters easily:

$$(\pi_{1l}, \dots, \pi_{Kl}) \sim \text{Dirichlet}(\alpha/K, \dots, /alpha/K)$$
  
 $\theta_k^* \sim H$ 



$$P(v_t = k | v_{t-1} = I) = \pi_{kl}$$
  
(\pi\_1, \ldots, \pi\_{Kl}) \simeq \text{Dirichlet}(\alpha/K, \ldots, \alpha/K)

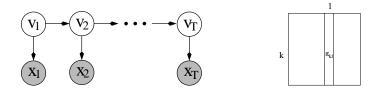
#### • Can we take $K \to \infty$ ?

Probability of transitioning to a previously unseen state always 1...
Say v<sub>t1</sub> = I and this is first time we are in state I. Then

$$P(v_t = k | v_{t-1} = l) = 1/K \to 0$$

for all *k*.

Yee Whye Teh (Gatsby)



$$P(v_t = k | v_{t-1} = I) = \pi_{kl}$$
  
(\pi\_1, \ldots, \pi\_{Kl}) \simeq \text{Dirichlet}(\alpha/K, \ldots, \alpha/K)

- Can we take  $K \to \infty$ ? Not just like that!
- Probability of transitioning to a previously unseen state always 1...
- Say  $v_{t_1} = I$  and this is first time we are in state *I*. Then

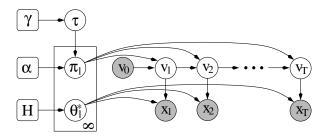
$$P(v_t = k | v_{t-1} = I) = 1/K \rightarrow 0$$

for all k.

Yee Whye Teh (Gatsby)

- Previous issue is that there is no sharing of possible next states across different current states.
- Implement sharing of next states using a HDP:

$$( au_1, au_2, \ldots) \sim \mathsf{GEM}(\gamma)$$
  
 $(\pi_{1l}, \pi_{2l}, \ldots) | au \sim \mathsf{DP}(lpha, au)$ 



 A variety of trajectory characteristics can be modelled using different parameter regimes.

(modified to treat self-transitions specially)



**explorative:** a = 0.1, b = 1000, c = 100



self-transitioning: a = 2, b = 2, c = 20

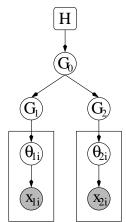
**repetitive:** a = 0, b = 0.1, c = 100

jutin Materia Mana Maria A

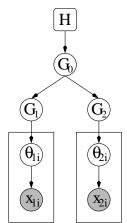


ramping: a = 1, b = 1, c = 10000

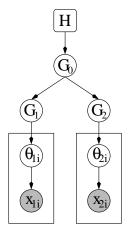
- The HDP assumes that data group structure is observed.
- The group structure may not be known in practice, even if there is prior belief in some group structure.
- Even if known, we may still believe that some groups are more similar to each other than to other groups.
- We can cluster groups using a second level of mixture models.
- Using a second DP mixture to model this leads to the nested Dirichlet process.



- The HDP assumes that data group structure is observed.
- The group structure may not be known in practice, even if there is prior belief in some group structure.
- Even if known, we may still believe that some groups are more similar to each other than to other groups.
- We can cluster groups using a second level of mixture models.
- Using a second DP mixture to model this leads to the nested Dirichlet process.



- The HDP assumes that data group structure is observed.
- The group structure may not be known in practice, even if there is prior belief in some group structure.
- Even if known, we may still believe that some groups are more similar to each other than to other groups.
- We can cluster groups using a second level of mixture models.
- Using a second DP mixture to model this leads to the nested Dirichlet process.



Start with:

 $\mathbf{x}_{ji} \sim \mathbf{F}(\theta_{ji}) \qquad \qquad heta_{ji} \sim \mathbf{G}_{ji}$ 

Cluster groups. Each group *j* belongs to cluster k<sub>j</sub>:

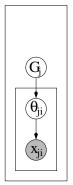
$$k_j \sim \pi$$
  $\pi \sim \text{GEM}(\alpha)$ 

• Group *j* inherits the DP from cluster *k<sub>j</sub>*:

$$G_j = G_{k_j}^*$$

• Place a HDP prior on  $\{G_k^*\}$ :

 $G_k^* \sim \mathsf{DP}(eta, G_0^*) \qquad G_0^* \sim \mathsf{DP}(\gamma, H)$ 



Start with:

$$\mathbf{x}_{ji} \sim F(\theta_{ji}) \qquad \qquad heta_{ji} \sim \mathbf{G}_{ji}$$

 Cluster groups. Each group j belongs to cluster k<sub>j</sub>:

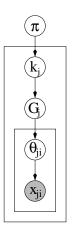
$$k_j \sim \pi$$
  $\pi \sim \text{GEM}(\alpha)$ 

• Group *j* inherits the DP from cluster *k<sub>j</sub>*:

$$G_j = G_{k_j}^*$$

• Place a HDP prior on  $\{G_k^*\}$ :

 $G_k^* \sim \mathsf{DP}(\beta, G_0^*)$   $G_0^* \sim \mathsf{DP}(\gamma, H)$ 



Start with:

$$\mathbf{x}_{ji} \sim F(\theta_{ji}) \qquad \qquad heta_{ji} \sim \mathbf{G}_{ji}$$

 Cluster groups. Each group j belongs to cluster k<sub>j</sub>:

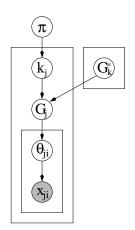
$$k_j \sim \pi$$
  $\pi \sim \text{GEM}(\alpha)$ 

• Group *j* inherits the DP from cluster *k<sub>j</sub>*:

$$G_j = G_{k_j}^*$$

• Place a HDP prior on  $\{G_k^*\}$ :

 $G_k^* \sim \mathsf{DP}(eta, G_0^*)$   $G_0^* \sim \mathsf{DP}(\gamma, H)$ 



Start with:

$$\mathbf{x}_{ji} \sim F( heta_{ji}) \qquad \qquad heta_{ji} \sim \mathbf{G}_{ji}$$

Cluster groups. Each group *j* belongs to cluster k<sub>j</sub>:

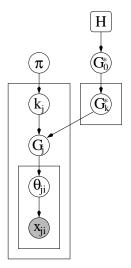
$$k_j \sim \pi$$
  $\pi \sim \text{GEM}(\alpha)$ 

• Group *j* inherits the DP from cluster *k<sub>j</sub>*:

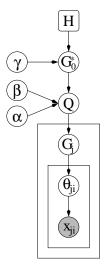
$$G_j = G_{k_j}^*$$

• Place a HDP prior on  $\{G_k^*\}$ :

$$\mathbf{G}_{\mathbf{k}}^{*} \sim \mathsf{DP}(eta, \mathbf{G}_{0}^{*}) \qquad \mathbf{G}_{0}^{*} \sim \mathsf{DP}(\gamma, \mathbf{H})$$



$$egin{aligned} & \mathbf{G}_0^* \sim \mathsf{DP}(\gamma, \mathcal{H}) \ & \mathbf{Q} \sim \mathsf{DP}(lpha, \mathsf{DP}(eta, \mathbf{G}_0^*)) \ & \mathbf{G}_j \sim \mathbf{Q} \ & heta_{ji} \sim \mathbf{G}_j \ & \mathbf{x}_{ji} \sim F( heta_{ji}) \end{aligned}$$



### **Dependent Dirichlet Processes**

- The HDP induces a straightforward dependency among groups.
- What if the data is smoothly varying across some spatial or temporal domain?
  - Topic modelling: topic popularity and composition can both change slowly as time passes.
  - Haplotype inference: haplotype occurrence can change smoothly as function of geography.
- a dependent Dirichlet process is a stochastic process {G<sub>t</sub>} indexed by t (space or time), such that each G<sub>t</sub> ~ DP(α, H) and if t, t' are neighbouring points, G<sub>t</sub> and G<sub>t'</sub> should be "similar" to each other.
- Simple example:

$$\pi \sim \text{GEM}(\alpha)$$
  $(\theta_{tk}^*) \sim \text{GP}(\mu, \Sigma)$  for each  $k$   
 $G_t = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_{tk}^*}$ 

- Dirichlet processes and hierarchical Dirichlet processes.
- Described different representations: distribution over distributions; Chinese restaurant process; Pòlya urn scheme; Stick-breaking construction.
- Described generalizations and extensions: Pitman-Yor processes; General stick-breaking processes; Normalized inverse-Gaussian processes; nested Dirichlet processes; Dependent Dirichlet processes.
- Described some applications: Document mixture models; Topic modelling; Haplotype inference; Infinite hidden Markov models.
- I have not described inference schemes.
- A rich and growing area, and much to be discovered and tried.