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Abstract. We have obtained the equation of energy conversion, an alternative equation to the
equations of motion, from the total time derivative of energy. Using this equation, we solved
some familiar cases, including gravitational rotation, coupled pendula and Lorenz force. In
these familiar cases, we obtained the same results as the Euler-Lagrange equations, except
for the Lorenz force in the time-dependent situation. We also obtained Jefimenko equations
for electric and magnetic field in time-dependent case and we showed that these can not be
obtained from Euler-Lagrange equations. Jefimonko equations describe the electromagnetic
interaction in the time-dependent situation and the general case for electromagnetic interaction
can be obtained by using these equations. So obtaining them in a correct way is important for
the generalization and this work can be a step towards the generalization.

1. Introduction

The equations of motion are required to analyze a physical system, and can be obtained three
different ways. The first method involves writing the equations directly from Newton’s second
law ~F = d~p

dt
. The second way is to derive them from the Lagrangian. The third way is to obtain

them from the Hamiltonian.
To obtain the equations of motion from the Lagrangian, we need the Euler-Lagrange

equations. We can derive these equations in two different ways. In the first method, we
start with Newton’s second law ~F = d~p

dt
and use D’Alembert’s principle to write an equation

corresponding to the derivatives of kinetic energy T and potential energy U . To obtain the
Euler-Lagrange equations, we need the definition of the Lagrangian, L = T − U . At this
point, there is a problem concerning potential energy which should be kept in mind. If
potential energy depends on velocity, then we cannot obtain the Euler-Lagrange equations
from this Lagrangian in general. We only know how to get them from Lagrangian in the time-
independent case for the electromagnetic fields. Therefore, in velocity-dependent systems,
the Lagrangian method can be problematic and in the following sections we will see that it
fails if we consider linear velocity-dependent potential in the time-dependent situation. The
second method of deriving the Euler-Lagrange equations utilizes the defined Lagrangian to
obtain an action integral. Then we take the variation of this action integral. Finally, we obtain
the Euler-Lagrange equations using Hamilton’s principle [1].

The third method for obtaining the equations of motion requires the Hamiltonian and
also uses Hamilton’s equations. Firstly, we define momenta pi = ∂L

∂q̇i
and use Legendre

transformations to obtain the Hamiltonian. Then we write the differentials for the Hamiltonian
and Lagrangian. Lastly, we can obtain Hamilton’s equations by comparing these two
differentials. Therefore, Hamilton’s equations are equivalent to the Euler-Lagrange equations
in momentum space[1].

In this work, we will use a different approach to obtain the equations of motion. This
method employs the result of the total time derivative of energy. Taking the total time
derivative of the energy is common, but it is not used to obtain the equations of the motion. In
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this work, we will use it as such. The energy is one of the most basic quantity in physics and to
obtain a relation derived from its variation can give us a framework that can be consistent with
the conservation of energy, the most basic physical law. Firstly, we will derive an equation
from the total time derivative of energy, and from this equation, we will then derive the
equations of motion. We will also use this equation to analyze some well-known cases.

As mentioned previously, an issue arises in the velocity-dependent potential energy case.
This situation is problematic in Lagrangian formalism because this case is excluded in the
derivation of the Euler-Lagrange equations from D’Alembert’s principle [1, 6, 7, 8]. However
it is still used for velocity-dependent potentials, such as electromagnetism. In this work, we
will also analyze electromagnetism using our technique.

2. Equation of energy conversion

Now we will consider energy as a function of position, velocity and time E(qi, q̇i, t). Then we
can write the total differential of energy as

dE =
∂E

∂q̇i
dq̇i +

∂E

∂qi
dqi +

∂E

∂t
dt. (1)

We use Einstein’s summation convention for this equation as well as equations that follow,
i.e. repeated indices are summed up. Hereafter, we will consider that position and velocity
are functions of time only. Then we can write the total time derivative of energy as

dE

dt
=
∂E

∂q̇i

dq̇i
dt

+
∂E

∂qi

dqi
dt

+
∂E

∂t
. (2)

For energy, it can be shown that dE
dt

= ∂E
∂t

[2]. This relation can also be obtained using Poision
brackets. Then from Eq.(2), we can write

∂E

∂q̇i

dq̇i
dt

+
∂E

∂qi

dqi
dt

= 0. (3)

This equation describes how energy changes its form within a system. So hereafter, it is called
the equation of energy conversion. In other words, Eq.(3) tells us that energy can be converted
in a system from one form to another, and that any change in one form of energy can result in
a change to the other forms of energy. So this equation is consistent with energy conservation
and tells us that energy does not appear or disappear; it only changes form. The responsible
agent for this conversion of energy is force, which is given by the equation of motion.

In the following sections, we will see that the equation of energy conversion utilizes
information from the equations of motion. With the help of some examples, we will analyze
how the equation of energy conversion defines the motion of particles, or in general, the
evolution of a system.

3. Comparison of the equation of energy conversion with the Euler-Lagrange equations
and examples

3.1. Comparison with the Euler-Lagrange equations: Velocity independent potential in the
time-independent case

The Lagrangian is defined as

L = T − U (4)
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where T is the kinetic energy and U is the potential energy. The Euler-Lagrange equations
are

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (5)

With this form of the equations, it is hard to show the equivalence of the Euler-Lagrange
equations to the ones that are obtained from the equation of energy conversion. There are
some differences between them and we will consider these in the following sections. For the
sake of simplicity, we will consider the case where T (~̇q) = 1

2
mq̇2i and U(~q); this is the most

common case in classical mechanics. Here, the Euler-Lagrange equations are

mq̈i +
∂U

∂qi
= 0. (6)

Now let us obtain equation of energy conversion in this case. From energy E = T + U
and using Eq.(3), we can obtain the equation of energy conversion as(

mq̈i +
∂U

∂qi

)
q̇i = 0. (7)

In this equation, the term in the parenthesis is equal to zero if this multiplication is linearly-
independent. Hereafter we will consider this linearly-independent case. This is the same result
as the Euler-Lagrange equations, i.e. Eq.(6). Hence, they are equivalent in the considered
case.

3.2. Example 1: Gravitational rotation

For gravitational rotation, we can write energy as

E =
1

2
mṙ2 +

1

2
mr2θ̇2 − GMm

r
. (8)

This equation is independent of θ. Then the corresponding conserved momentum can be
written as pθ = ∂E

∂θ̇
= mr2θ̇. This is similar to pθ = ∂L

∂θ̇
and they are equivalent in this

example. After stating conserved quantity, we can rewrite Eq.(8) as

E =
1

2
mṙ2 +

p2θ
2mr2

− GMm

r
. (9)

Now, we have obtained a 1-dimensional equation, since the only variables are r and ṙ. So we
can write the equation of energy conversion as

mṙr̈ − p2θ
mr3

ṙ +
GMm

r2
ṙ = 0. (10)

Then we have mr̈ =
p2θ
mr3
− GMm

r2
. This is the same equation as the one obtained from the

Euler-Lagrange equations[1].
The solution of the gravitational rotation from the equation of energy conversion is

simpler than obtaining the solution from Lagrangian formalism. Since we used conservation
of energy and equation of energy conversion, two statement, instead of using Lagrangian,
Euler-Lagrange equations and conservation of energy, three statement.
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3.3. Example 2: Coupled pendula

The previous example was reduced to 1-dimensional form using the conserved quantity. Now
we will solve a 2-dimensional example: coupled pendula. Consider two simple twin pendula
of massm and length l which are coupled to each other with a massless spring and have spring
constant k. If we consider small oscillations, we can write energy as

E =
1

2
ml2(θ̇21 + θ̇22) +

mgl

2
(θ21 + θ22) +

kl2

2
(θ1 − θ2)2. (11)

Using the relations β1 = θ1+θ2
2

and β2 = θ1−θ2
2

, we can rewrite Eq.(11) as

E =
1

2
ml2(β̇2

1 + β̇2
2) +

mgl

2
(β2

1 + β2
2) + kl2β2

2 . (12)

In this case, we can write the equation of energy conversion as

β̇1(ml
2β̈1 +mglβ1) + β̇2(ml

2β̈2 +mglβ2 + 2kl2β2) = 0. (13)

The terms in the parenthesis are equal to zero for linearly-independent velocities. So we
obtain

β̈1 = −g
l
β1,

β̈2 = −
(
g
l
+ 2k

m

)
β1.

(14)

These are the same equations as the ones obtained from the Euler-Lagrange equations [3].

3.4. Comparison with the Euler-Lagrange equations: Linear velocity-dependent potential in
the time-independent case

Now we will consider linear velocity dependence in potentials for the time-independent case.
We will separate potential in two parts as U(~q, ~̇q) = U1(~q) + U2(~q, ~̇q). Here we will consider
the linear velocity dependence in a special potential similar to electromagnetic interactions
and then we can write U2(~q, ~̇q) = q̇ifi(~q). Since a potential should be a scalar quantity, fi(~q)
is considered as velocity-independent vectorial components of the velocity-dependent part of
the potential. Now we can write the Lagrangian as L = 1

2
mq̇2i − U1(~q) − qifi(~q). Then we

can obtain equations of motion as

mq̈i + q̇j

(
∂fj(~q)

∂qi
− ∂fi(~q)

∂qj

)
+
∂U1

∂qi
= 0. (15)

Now for comparison we will calculate equation of energy conversion and in this case the
energy is E = 1

2
mq̇2i + U1(~q) + qifi(~q) and we have the equation of energy conversion as

mq̇iq̈i + q̈ifi(~q) + q̇iq̇j
∂fj(~q)

∂qi
+ q̇i

∂U1

∂qi
= 0. (16)

If the velocity-dependent part of the potential energy is conserved we have d
dt
(q̇ifi(~q)) = 0.

Then after taking this total time derivative we can write q̈ifi(~q) = −q̇iq̇j ∂fi(~q)∂qj
. Finally we

obtain

q̇i

[
mq̈i + q̇j

(
∂fj(~q)

∂qi
− ∂fi(~q)

∂qj

)
+
∂U1

∂qi

]
= 0. (17)

While getting this we have used that changing dummy indices does not effect any equation.
The term in the square parenthesis is same with the equations of motion. If we consider
linearly independent velocities we obtain the equations of motion. So we can say that if the
velocity dependent potential is conserved then Euler-Lagrange equations and equation of the
energy conversion gives same result in the considered case.
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3.5. Example 3: Lorentz force from potentials in the time-independent case

First we will consider time-independent potentials for electromagnetic fields. For a particle
with charge q and mass m, we can write the total energy as

E =
1

2
mẋ2i − qẋiAi + qφ (18)

where φ is the electric potential and ~A is the vector potential. In the time-independent case,
they are

φ(~x) =
1

4πε0

∫ ρ(~x′)

|~x− ~x′|
d3x′, (19)

~A(~x) =
µ0

4π

∫ ~J(~x′)

|~x− ~x′|
d3x′. (20)

In this case the equation of energy conversion is

mẍiẋi − qẍiAi − qẋiẋj
∂Ai
∂xj

+ qẋi
∂φ

∂xi
= 0. (21)

Eq.(21) has a unfamiliar term qẍiAi. Before proceeding further with this term, it is better to
first consider the total time derivative of magnetic energy,

d(qẋiAi)

dt
= qẍiAi + qẋiẋj

∂Ai
∂xj

. (22)

If we consider the case that the total time derivative of magnetic energy is equal to zero, we
can write qẍiAi = −qẋiẋj ∂Ai∂xj

. Then

mẍiẋi + qẋiẋj
∂(Ai)

∂xj
− qẋiẋj

∂(Ai)

∂xj
+ qẋi

∂φ

∂xi
= 0. (23)

In Eq.(23), the second and third terms cancel each other out. These two terms are related
with the magnetic energy and the change in the forms of the energy is described by Eq.(23).
This means that there is not any change in the form of the magnetic energy due to these two
magnetic interaction terms, which is the expected result and this is known as that the magnetic
energy does no work. Now, in the third term, let us replace the indices i and j with one another
to obtain the Lorenz force. Since they are dummy indices, this does not change equivalence.
From Eq.(23) we then obtain

ẋj

[
mẍj + qẋi

(
∂Ai
∂xj
− ∂Aj
∂xi

)
+ q

∂φ

∂xj

]
= 0. (24)

By eliminating ẋj and using the double cross product property, we can write the equation

m~̈x = −q∇φ+ q~̇x× (∇× ~A). (25)

If we look at the definitions of the electric and the magnetic field in terms of the potentials
~E = −∇φ and ~B = ∇× ~A, we see that the terms on the right hand side are equal to Lorentz
force, i.e., ~F = q ~E + q~̇x× ~B.
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3.6. Comparison with the Euler-Lagrange equations: Linear velocity-dependent potential in
the time-dependent case

Now linear velocity-dependent potential in the time-dependent case will be considered. We
will follow nearly same steps with the Section 3.4. A particle interacts with a potential via
carriers of a interaction. Then we will consider retarded time since it is required by the carriers
of the potential interactions to travel from the source of the fields to the particle. In this case
the potential can be separated in two parts as U(~q, ~̇q, tr) = U1(~q, tr) +U2(~q, ~̇q, tr) and we can
write U2(~q, ~̇q, tr) = q̇ifi(~q, tr). So the Lagrangian is L = 1

2
mq̇2i − U1(~q, tr) − q̇ifi(~q, tr) and

then we can obtain equations of motion as

mq̈i + q̇j

(
∂fj(~q, tr)

∂qi
− ∂fi(~q, tr)

∂qj

)
− q̇j

∂tr
∂xj

∂fi(~q, tr)

∂tr
− ∂tr

∂t

∂fi(~q, tr)

∂tr
+
∂U1

∂qi
= 0. (26)

Now we will obtain the equation of energy conversion. In this case the energy is
E = 1

2
mq̇2i + U1(~q, tr) + qifi(~q, tr). This case is different than the previous examples and

due to presence of tr, we have an extra term in the equation of energy conversion. We write it
as

∂E

∂q̇j

dq̇j
dt

+
∂E

∂qj

dqj
dt

+
∂E

∂tr

∂tr
∂qj

dqj
dt

= 0. (27)

While obtaining Eq.(27) we used ∂E
∂tr

∂tr
∂t

= ∂E
∂t

and dE
dt

= ∂E
∂t

. Then the equation of energy
conversion can be obtained as

mq̇iq̈i+q̈ifi(~q, tr)+q̇iq̇j
∂fj(~q, tr)

∂qi
+q̇iq̇j

∂tr
∂qj

∂fi(~q, tr)

∂tr
+q̇i

∂U1(~q, tr)

∂qi
+q̇i

∂tr
∂qi

∂U1(~q, tr)

∂tr
= 0.(28)

If the velocity dependent part of the potential energy is conserved we can write
d
dt
(q̇ifi(~q, tr)) = 0. So we have q̈ifi(~q, tr) = −q̇iq̇j ∂fi(~q,tr)∂qj

− q̇iq̇j ∂tr∂qj

∂fi(~q,tr)
∂tr

− q̇i ∂tr∂t
∂fi(~q,tr)
∂tr

.
Using this in Eq.(28) we obtain

q̇i

[
mq̈i + q̇j

(
∂fj(~q,tr)

∂qi
− ∂fi(~q,tr)

∂qj

)
+ q̇j

(
∂tr
∂qi

∂fj(~q,tr)

∂tr
− ∂tr

∂qj

∂fi(~q,tr)
∂tr

)
− ∂tr

∂t
∂fi(~q,tr)
∂tr

+ ∂U1(~q,tr)
∂qi

+ ∂tr
∂qi

∂U1(~q,tr)
∂tr

]
= 0.

(29)

If we compare Eq.(26) with the terms inside the square parenthesis of Eq.(29) we see
that there are two more terms in the equation of motion which is obtained from equation
of energy conversion. So it is obvious that Euler-Lagrange equations and equation of the
energy conversion do not give same result for the linear velocity-dependent potential in the
time-dependent case.

3.7. Example 4: Lorentz force from potentials in the time-dependent case

Now we will consider electromagnetic interaction in the time-dependent case. Eq.(18) is still
valid for energy in the time-dependent case. However, this time the definitions of scalar and
vector potential are different and can be written as [4]

φ(~r, t) =
1

4πε0

∫ ρ(~r′, tr)

|~r − ~r′|
d3x′, (30)

~A(~r, t) =
µ0

4π

∫ ~J(~r′, tr)

|~r − ~r′|
d3x′ (31)
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where

tr = t− |~r −
~r′|

c
(32)

and tr refers to retarded time. Retarded time is present here because electromagnetic
fields need time tr to reach the interaction point from the source. One can obtain detailed
information from books, e.g., [4]. Due to the position dependence of tr we will use Eq.(27)
and we have

ẍi(mẋi−qAi)−qẋj
∂(ẋiAi)

∂xj
+qẋj

xj − x′j
|~r − ~r′|c

∂(ẋiAi)

∂tr
+qẋi

∂φ

∂xi
−qẋi

xi − x′i
|~r − ~r′|c

∂φ

∂tr
= 0.(33)

Then after taking the derivatives we obtain

mẍiẋi − qẍiAi + qẋiẋj
µ0
4π

∫ Ji(~r′,tr)

|~r−~r′|3
(xj − x′j)d3x′ + qẋiẋj

µ0
4π

∫ J̇i(~r′,tr)

|~r−~r′|2c
(xj − x′j)d3x′

−qẋi 1
4πε0

∫ ρ(~r′,tr)

|~r−~r′|3
(xi − x′i)d3x′ − qẋi 1

4πε0

∫ ρ̇(~r′,tr)

|~r−~r′|2c
(xi − x′i)d3x′ = 0.

(34)

Again we will consider the relation
d(qẋiAi)

dt
= qẍjAj + qẋi

∂Ai
∂xj

∂xj
∂t

+ qẋi
∂Ai
∂tr

∂tr
∂xj

∂xj
∂t

+ qẋi
∂Ai
∂tr

∂tr
∂t

= qẍjAj − qẋiẋj µ04π
∫ [Ji(~r′,tr)

|~r−~r′|3
(xj − x′j) +

J̇i(~r′,tr)

|~r−~r′|2c
(xj − x′j)

]
d3x′

+qẋi
µ0
4π

∫ J̇i(~r′,tr)

|~r−~r′|
d3x′.

(35)

If we consider the case d(qẋiAi)
dt

= 0 we have

qẍiAi = qẋiẋj
µ0
4π

∫ [Ji(~r′,tr)
|~r−~r′|3

(xj − x′j) +
J̇i(~r′,tr)

|~r−~r′|2c
(xj − x′j)

]
d3x′

−qẋi µ04π
∫ J̇i(~r′,tr)

|~r−~r′|
d3x′.

(36)

Using this relation in the Eq.(33), we obtain

ẋi

{
mẍi − qẋjµ0

4π

∫ [Ji(~r′,tr)
|~r−~r′|3

(xj − x′j)−
Jj(~r′,tr)

|~r−~r′|3
(xi − x′i)

+ J̇i(~r′,tr)

|~r−~r′|2c
(xj − x′j)−

J̇j(~r′,tr)

|~r−~r′|2c
(xi − x′i)

]
d3x′

− q
4πε0

∫ [ρ(~r′,tr)
|~r−~r′|3

(xi − x′i) +
ρ̇(~r′,tr)

|~r−~r′|2c
(xi − x′i)−

J̇i(~r′,tr)

|~r−~r′|c2

]
d3x′

}
= 0.

(37)

Similar arguments in the Section 3.5 on dummy indices are still valid in this case and using(
~̇r × ~J × (~r − ~r′)

)
i
= ẋjJi(xj − x′j)− ẋjJj(xi − x′i), we can write this equation in vectorial

form as

m~̈r = qµ0
4π
~̇r ×

∫ [ ~J(~r′,tr)
|~r−~r′|3

× (~r − ~r′) +
~̇J(~r′,tr)

|~r−~r′|2c
× (~r − ~r′)

]
d3x′

+ q
4πε0

∫ [ρ(~r′,tr)
|~r−~r′|3

(~r − ~r′) + ρ̇(~r′,tr)

|~r−~r′|2c
(~r − ~r′)−

~̇J(~r′,tr)

|~r−~r′|c2

]
d3x′.

(38)

The terms in the parenthesis corresponds to ~E and ~B, respectively and they are

~B(~r, t) =
µ0

4π

∫  ~J(~r′, tr)
|~r − ~r′|3

+
~̇J(~r′, tr)

|~r − ~r′|2c

× (~r − ~r′)d3x′, (39)

~E(~r, t) =
1

4πε0

∫  ρ(~r′, tr)
|~r − ~r′|3

(~r − ~r′) + ρ̇(~r′, tr)

|~r − ~r′|2c
(~r − ~r′)−

~̇J(~r′, tr)

|~r − ~r′|c2

 d3x′. (40)
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These are known as Jefimenko equations. These equations describe electric field ~E(~r, t)

and magnetic field ~B(~r, t) in the time-dependent scalar potential φ(~r, t) and vector potential
~A(~r, t). Then in terms of these time-dependent electric and magnetic field, from Eq.(38) we
have the Lorentz force ~F = q ~E(~r, t) + q~̇r × ~B(~r, t).

If the sources of the electromagnetic field, charge density ρ and current density ~J , depend
on time their density and position can change with time. These variations affect on the strength
of the electromagnetic field and the distance between source and interaction point. These
electromagnetic fields are carried by photons and photon intensity and travel distance change
with time and these changes are represented by ρ(~r′, tr) and ~J(~r′, tr). The differentiations of
the sources with respect to retarded time tr,

∂ρ(~r′,tr)
∂tr

and ∂ ~J(~r′,tr)
∂tr

, represent the variations on the
sources and they are the reasons of the difference between our derivation and the derivations
from Lagrangian formalism. In the derivation from Lagrangian formalism ∂ρ(~r′,tr)

∂tr
and one of

the terms related with ∂ ~J(~r′,tr)
∂tr

are missing and one can not achieve Jefimenko equations. On
the other hand these are present in derivations from our formalism and we obtained Jefimenko
equations correctly. These means that effects on the force due to the mentioned variations on
the density and distance can not be reached from Lagrangian formalism.

4. Conclusion and discussion

In this work, we used a new technique to analyze changes in systems. By taking the total
time derivative of energy and using the relation dE

dt
= ∂E

∂t
, we obtained an equation in units

of power, i.e., the equation of energy conversion. Except for the linear velocity-independent
potential in the time-dependent case, we reached the same results as other formalisms. From
the equation of energy conversion, we obtained solutions for two well-known examples,
gravitational rotation and coupled pendula, and Lorentz force for time-independent and time-
dependent potentials. Using these derivations, we will compare our technique to others in the
following paragraphs.

Firstly, we will describe our problem-solving technique for a physical system having
energyE. The first relation that we should consider is dE

dt
= ∂E

∂t
. If ∂E

∂t
is not equal to zero, then

we can say that energy is changing with time and this change is explicitly given by it. If it is
zero, we can say that energy is conserved and we can apply the equation of energy conversion.
As a second step, we should calculate conserved momenta if there are symmetric coordinates
and we should eliminate corresponding velocities from the energy equation. In the third step,
we can write the equation of energy conversion using the derivatives of energy with respect
to positions and corresponding velocities. Here, by eliminating common velocity multiplier
from all terms we can obtain equations of motion for the linearly-independent velocities. In
general, however, we do not need the equation of motion; we can use equation of energy
conversion directly. This is the technique that we used to analyze evolutions of a system.
Importantly, it applies nearly the same steps as other formalisms.

There are differences between our formalism and the others. The first difference is
related to specific definitions. The Lagrangian does not have any physical definitions, since
it is not a physical quantity. Also, from the historical point of view, it was developed to
derive the equation of motion. In books, it is defined only as a function and there is no
other definition[1, 6, 7, 8]. The Hamiltonian is another function which is derived from the
Lagrangian, and in some cases it is the same as the energy. But in general, it is not equal to
the energy. Hence, we can say that, in general, both the Lagrangian and the Hamiltonian are
not physical quantities. On the other hand, our paradigm uses energy, which is a measurable
physical quantity.
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The second difference is in our understanding way of physical situations. Typically, we
understand physical situations with the equations of motion. On one side of the equation
of motion, there is a force or a similar quantity and on the other side, relevant acceleration.
This equation of motion tells us that if there is a force, it results in acceleration. This is
the basis of the Lagrangian formalism; the force together with the acceleration is the basic
physical quantity. However, the subtraction of kinetic and potential energy from one another
in the definition of the Lagrangian means that the Lagrangian is itself not a physical quantity.
So in the Lagrangian formalism we obtain physical quantities from a unphysical quantity,
Lagrangian. In our case, we employ the equation of energy conversion. This equation
describes how energy changes its form within a system and the agent of this change is the
force. Also, knowledge of the equations of motion is involved in our technique and we
obtain relevant force from it. As it is clear, we derive all these information from energy.
The basic quantity for our formalism is energy and it forms the foundation upon which we
have constructed our formalism. So in our technique force and change in energy are obtained
from a physical quantity, energy.

The third difference between our formalism and others is its relative simplicity. If one
compares our derivations and calculations with the other techniques, the algebraic simplicity
is apparent. This difference also extends to logical simplicity. In our case, we have energy and
the equation of energy conversion from the differentiation of energy. In other cases, we have
the Lagrangian or Hamiltonian and the Euler-Lagrange or Hamilton’s equations. However,
these formalisms need energy relation and its conservation to be able to solve a problem in
most cases, whereas these energy-related terms are naturally present in our case. Thus, we
have two statements, while the other formalisms require three and this is expressed in the
solution of gravitational rotation. This means that our formalism is logically simpler.

There is another important issue that we should point out. In the velocity-independent
potential cases, we obtained the same results as the other formalisms, and shown their
equivalence. However, there are some problems related with linear velocity-dependent
potential only in the time-dependent case and we observed these in the derivation of Lorentz
force. This type of potential is problematic for the Lagrangian formalism, since Lagrangian is
defined only by considering velocity-independent potentials[1, 6, 7, 8]. Despite this definition,
some books use the Lagrangian for a velocity-dependent potential case to calculate Lorentz
force [1, 3]. They even use time-dependent ~A and time-independent φ, which is an erroneous
mixture of two cases. More importantly, they take the total time derivative of ~A in the
wrong manner. Their derivations are incorrect because they ignore a crucial property of
electromagnetism. That is, the electromagnetic fields need some time to travel from the source
to interaction point. If one considers a time-dependent situation due to the abovementioned
property of electromagnetic fields, one has to use retarded potentials and take the derivative
in a similar manner applied in the Section 3.7. We considered velocity-dependent potentials
in the Sections 3.5 and 3.7 and reached force correctly. We obtained Lorentz force for the
time-independent case, and the Lorentz force together with the Jefimenko equations for the
time-dependent case.

To sum up, we used the energy relation and from its variation we obtained the equation
of energy conversion. The equation of energy conversion is successful in obtaining equations
of motion in a correct way even for time-dependent linear velocity-dependent potential case.
These show that it can be a promising framework for some other situations.
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