### 12.2 Linear Transformations



A Figure 1: A $90^{\circ}$ counterclockwise rotation.
-




## EXAMPLE 1

Describe the linear transformation of the plane corresponding to the matrix $\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$.
SOLUTION We have

$$
\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{r}
-x \\
y
\end{array}\right]
$$

so this matrix negates the $x$-coordinate of each point of the plane. Geometrically, this corresponds to reflection across the $y$-axis, as shown in Figure 2.

A Figure 2: Reflection across the $y$-axis.

Finding the Matrix
There is a nice trick that can be used to find the matrix for a given transformation.

## Column Trick

If $A$ is a $2 \times 2$ matrix, then

$$
A\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad A\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

are the first and second columns of $A$, respectively.

## For example,

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

The following example shows how to use this trick to find the matrix for a linear transformation.

## EXAMPLE 2



A Figure 3: A $45^{\circ}$ rotation of the plane.

Find the matrix for a $45^{\circ}$ counterclockwise rotation of the plane about the origin.
SOLUTION This transformation is shown in Figure 3. Note that $(1,0)$ maps to $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $(0,1)$ maps to $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. If $A$ is the matrix for this transformation, it follows that

$$
A\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] \quad \text { and } \quad A\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

so these vectors are the columns of $A$. We conclude that

$$
A=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

The previous example is a special case of a more general formula.
$2 \times 2$ Rotation Matrices
The matrix

$$
\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

rotates the plane counterclockwise around the origin by an angle of $\theta$.

The justification for this formula is shown in Figure 4. If $A$ is the matrix for this transformation, then

$$
A\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right] \quad \text { and } \quad A\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
-\sin \theta \\
\cos \theta
\end{array}\right]
$$

so these vectors are the columns of $A$.

## A Closer Look Transformations of $\mathbb{R}^{3}$


$(1,0,0)$

A Figure 5: A $90^{\circ}$ rotation around the $x$-axis.

We can use $3 \times 3$ matrices to describe certain transformations in three dimensions, such as rotation around a line through the origin, or reflection across a plane through the origin. Such a transformation is called a linear transformation of $\mathbb{R}^{3}$.

For example, consider the $90^{\circ}$ rotation of $\mathbb{R}^{3}$ about the $x$-axis shown in Figure 5. How can we find a $3 \times 3$ matrix $A$ for this transformation? Well, it is obvious from the figure that

$$
A\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad A\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad A\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
0 \\
-1 \\
0
\end{array}\right] .
$$

Then these three vectors must be the three columns of $A$. We conclude that

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

## EXERCISES

1-4 ■ Give a geometric description of the linear transformation corresponding to the given matrix.

1. $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$
2. $\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$

3-4 ■ Find the matrix for the reflection of $\mathbb{R}^{2}$ across the given line.
3. the line $y=x$
4. the $x$-axis

5-6 ■ Find the matrix for the given rotation of $\mathbb{R}^{2}$ around the origin.
5. $135^{\circ}$ counterclockwise
6. $30^{\circ}$ clockwise
7. The following figure shows a rectangle in the plane.


Find the new coordinates of the four vertices if this rectangle is rotated $45^{\circ}$ counterclockwise around the origin.

