12.2 Linear Transformations

▲ **Figure 1:** A 90° counterclockwise rotation.

As we have seen, we can rotate any point in the plane 90° counterclockwise around the origin by switching the two coordinates and negating the first one:

$$(5,2) \longmapsto (-2,5).$$

This transformation is shown in Figure 1.

This transformation is equivalent to multiplying by the matrix

۸ <u> </u>	0	1]
4 =	1	0

For example,

0	1]	[5]		[-2]
1	0	2	=	5

and more generally

0	1]	$\begin{bmatrix} x \end{bmatrix}$		$\begin{bmatrix} -y \end{bmatrix}$
1	0	y J	-	x

This is a simple example of a linear transformation.

Linear Transformations

A transformation of the plane is called a **linear transformation** if it corresponds to multiplying each point (x, y) by some 2×2 matrix A, i.e.

$$\begin{bmatrix} x \\ y \end{bmatrix} \longmapsto A \begin{bmatrix} x \\ y \end{bmatrix}.$$

It turns out that many geometric transformations of the plane are linear transformations, including:

- 1. Rotation of the plane by any angle around the origin.
- 2. Reflection of the plane across any line that goes through the origin.

EXAMPLE 1

Describe the linear transformation of the plane corresponding to the matrix $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.

SOLUTION We have

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x \\ y \end{bmatrix}$$

so this matrix negates the *x*-coordinate of each point of the plane. Geometrically, this corresponds to reflection across the *y*-axis, as shown in Figure 2.

Figure 2: Reflection across the y-axis.

Finding the Matrix

There is a nice trick that can be used to find the matrix for a given transformation.

Column Trick

If *A* is a 2×2 matrix, then

$$A\begin{bmatrix}1\\0\end{bmatrix} \quad \text{and} \quad A\begin{bmatrix}0\\1\end{bmatrix}$$

are the first and second columns of A, respectively.

1

For example,

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

The following example shows how to use this trick to find the matrix for a linear transformation.

EXAMPLE 2

Find the matrix for a 45° counterclockwise rotation of the plane about the origin.

SOLUTION This transformation is shown in Figure 3. Note that (1,0) maps to $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and (0, 1) maps to $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. If *A* is the matrix for this transformation, it follows that

$$A\begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{bmatrix} \quad \text{and} \quad A\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}-\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{bmatrix}$$

so these vectors are the columns of A. We conclude that

$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

The previous example is a special case of a more general formula.

Figure 4: A rotation of the plane by an angle of θ .

2×2 Botation Matrices
The matrix
$\begin{bmatrix} \cos \theta & -\sin \theta \end{bmatrix}$
$\sin\theta$ $\cos\theta$
rotates the plane counterclockwise around the origin by an angle of θ .

The justification for this formula is shown in Figure 4. If A is the matrix for this transformation, then

$$A\begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix} \quad \text{and} \quad A\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}-\sin\theta\\\cos\theta\end{bmatrix}$$

so these vectors are the columns of *A*.

Figure 5: A 90° rotation around the x-axis.

A Closer Look **Transformations of** \mathbb{R}^3

We can use 3×3 matrices to describe certain transformations in three dimensions, such as rotation around a line through the origin, or reflection across a plane through the origin. Such a transformation is called a **linear transformation of** \mathbb{R}^3 .

For example, consider the 90° rotation of \mathbb{R}^3 about the *x*-axis shown in Figure 5. How can we find a 3 × 3 matrix *A* for this transformation? Well, it is obvious from the figure that

	[1]		[1]		0		0		0		0	
A	0	=	0	Α	1	=	0	Α	0	=	-1	.
	0		0		0		1		1		0	

Then these three vectors must be the three columns of *A*. We conclude that

	1	0	0
A =	0	0	-1
	0	1	0

EXERCISES

1–4 ■ Give a geometric description of the linear transformation corresponding to the given matrix.

1.
$$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
 2. $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

3–4 Find the matrix for the reflection of \mathbb{R}^2 across the given line.

3. the line y = x **4.** the *x*-axis

5–6 Find the matrix for the given rotation of \mathbb{R}^2 around the origin.

- **5.** 135° counterclockwise
- **7.** The following figure shows a rectangle in the plane.

6. 30° clockwise

Find the new coordinates of the four vertices if this rectangle is rotated 45° counterclockwise around the origin.