
ar
X

iv
:1

80
6.

05
57

9v
1 

 [
q-

fi
n.

C
P]

  1
4 

Ju
n 

20
18

A new approach for American option pricing:

The Dynamic Chebyshev method

Kathrin Glau1,2, Mirco Mahlstedt2,∗, Christian Pötz1,2,∗
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Abstract

We introduce a new method to price American options based on Chebyshev
interpolation. In each step of a dynamic programming time-stepping we ap-
proximate the value function with Chebyshev polynomials. The key advantage
of this approach is that it allows to shift the model-dependent computations
into an offline phase prior to the time-stepping. In the offline part a family
of generalised (conditional) moments is computed by an appropriate numerical
technique such as a Monte Carlo, PDE or Fourier transform based method.
Thanks to this methodological flexibility the approach applies to a large variety
of models. Online, the backward induction is solved on a discrete Chebyshev
grid, and no (conditional) expectations need to be computed. For each time
step the method delivers a closed form approximation of the price function along
with the options’ delta and gamma. Moreover, the same family of (conditional)
moments yield multiple outputs including the option prices for different strikes,
maturities and different payoff profiles. We provide a theoretical error analysis
and find conditions that imply explicit error bounds for a variety of stock price
models. Numerical experiments confirm the fast convergence of prices and sen-
sitivities. An empirical investigation of accuracy and runtime also shows an
efficiency gain compared with the least-square Monte-Carlo method introduced
by Longstaff and Schwartz (2001).

Keywords American Option Pricing, Complexity Reduction, Dynamic Pro-
gramming, Polynomial Interpolation
2010 MSC 91G60, 41A10

1 Introduction

A challenging task for financial institutions is the computation of prices and sensitivi-
ties for large portfolios of derivatives such as equity options. Typically, equity options
have an early exercise feature and can either be exercised at any time until maturity
(American type) or at a set of pre-defined exercise dates (Bermudan type). In lack
of explicit solutions, different numerical methods haven been developed to tackle

∗The authors thank the KPMG Center of Excellence in Risk Management for their support.
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this problem. One of the first algorithms to compute American put option prices
in the Black-Scholes model has been proposed by Brennan and Schwartz (1977). In
this approach, the related partial differential inequality is solved by a finite differ-
ence scheme. A rich literature further developing the PDE approach has accrued
since, including methods for jump models (Levendorskĭı (2004), Hilber et al. (2013)),
extensions to two dimensions (Haentjens and int Hout (2015)) and combinations
with complexity reduction techniques (Haasdonk et al. (2013)). Besides PDE based
methods a variety of other approaches has been introduced, many of which trace
back to the solution of the optimal stopping problem by the dynamic programming
principle, see e.g. Peskir and Shiryaev (2006). For Fourier based solution schemes we
refer to Lord et al. (2008), Fang and Oosterlee (2009). Simulation based approaches
are of fundamental importance, the most prominent representative of this group is
the Least-squares Monte-Carlo (LSM) approach of Longstaff and Schwartz (2001),
we refer to Glasserman (2003) for an overview of different Monte-Carlo methods.
Fourier and PDE methods typically are highly efficient, compared to simulation,
however, they are less flexible towards changes in the model and particularly in the
dimensionality.

In order to reconcile the advantages of the PDE and Fourier approach with the
flexibility of Monte Carlo simulation, we propose a new approach. We consider a
dynamic programming time-stepping. Let Xt be the underlying Markov process and
the value function Vt is given by,

VT (x) = g(x)

Vt(x) = f (g(t, x),E[Vt+1(Xt+1)|Xt = x]) .

with time steps t < t + 1 < . . . < T and payoff function g. The computational
challenge is to compute E[Vt+1(Xt+1)|Xt = x] for for all time steps t and all states
x, where Vt+1 depends on all previous time steps.

In order to tackle this problem, we approximate the value function in each time
step by Chebyshev polynomial interpolation. We thus express the value function as
a finite sum of Chebyshev polynomials

E[Vt+1(Xt+1)|Xt = x] ≈
∑

ct+1
j E[Tj(Xt+1)|Xt = x](1.1)

The choice of Chebyshev polynomials is motivated by the promising properties of
Chebyshev interpolation such as

• The vector of coefficients (ct+1
j )j=0,...,N is explicitly given as a linear combina-

tion of the values Vt(xk) at the Chebyshev grid points xk. For this, equation
(1.1) needs to be solved at the Chebyshev grid points x = xk only.

• Exponential convergence of the interpolation for analytic functions and poly-
nomial convergence of differential functions depending on the order.

• The interpolation can be implemented in a numerically stable way.

The computation of the continuation value at a single time step coincides with
the pricing of a European option. Its interpolation with Chebyshev polynomials is
proposed in Gaß et al. (2018), where the method shows to be highly promising and
exponential convergence is established for a large set of models and option types.
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Moreover, the approximation of the value function with Chebyshev polynomials has
already proven to be beneficial for optimal control problems in economics, see Judd
(1998) and Cai and Judd (2013).

The key advantage of our approach for American option pricing is that it col-
lects all model-dependent computations in the generalized conditional moments
Γj,k = E[Tj(Xt+1)|Xt = xk]. If there is no closed-form solution their calculation can
be shifted into an offline phase prior to the time-stepping. Depending on the under-
lying model a suitable numerical technique such as Monte Carlo, PDE and Fourier
transform methods can be chosen, which reveals the high flexibility of the approach.
Once the generalized conditional moments Γj,k are computed, the backward induc-
tion is solved on a discrete Chebyshev grid. Which avoids any computations of
conditional expectations during the time-stepping. For each time step the method
delivers a closed form approximation of the price function x 7→ ∑

ctjTj(x) along with
the options’ delta and gamma. Since the family of generalized conditional moments
Γj,k are independent of the value function, they can be used to generate multiple
outputs including the option prices for different strikes, maturities and different
payoff profiles. The structure of the method is also beneficial for the calculation of
expected future exposure which is the computational bottleneck in the computation
of CVA, as investigated in Glau et al. (2018).

The offline-online decomposition separates model and payoff yielding a modular
design. We exploit this structure for a thorough error analysis and find conditions
that imply explicit error bounds. They reflect the modularity by decomposing into a
part stemming from the Chebyshev interpolation, from the time-stepping and from
the offline computation. Under smoothness conditions the asymptotic convergence
behaviour is deduced.

We perform numerical experiments using the Black-Scholes model, Merton’s
jump diffusion model and the Constant Elasticity of Variance (CEV) model as a
represenative of a local volatility model. For the computation of the generalized
conditional moments we thus use different techniques, namely numerical integration
based on Fourier transforms and Monte Carlo simulation. Numerical experiments
confirm the fast convergence of option prices along with its delta and gamma. A
comprehensive comparison with the LSM reveals the potential efficiency gain of the
new approach, particularly when several options on the same underlying are priced.

The rest of the article is organized as follows. We introduce the problem setting
and the new method in Section 2 and provide the error analysis in Section 3. Section
4 discusses general traits of the implementation and Section 5 presents the numerical
experiments. Section 6 concludes the article, followed by an appendix with the proof
of the main result.

2 The Chebyshev method for Dynamic programming

problems

First, we present the Bellman-Wald equation as a specific form of dynamic program-
ming. Second, we provide the necessary notation for the Chebyshev interpolation.
Then we are in a position to introduce the new approach and its application to
American option pricing.

3



2.1 Optimal stopping and Dynamic Programming

Let X = (Xt)0≤t≤T be a Markov process with state space R
d defined on the filtered

probability space (Ω,F , (Ft)t≥0,P). Let g : [0, T ] × R
d −→ R be a continuous

function with E
[
sup0≤t≤T |g(t,Xt)|

]
< ∞. Then

V (t, x) := sup
t≤τ≤T

E [g(τ,Xτ )|Xt = x] for all (t, x) ∈ [0, T ]× R
d

over all stopping times τ , see (2.2.2′) in Peskir and Shiryaev (2006). In discrete time
the optimal stopping problems can be solved with dynamic programming.

Namely, with time stepping t = t0 < . . . < tn = T the solution of the optimal
stopping problem can be calculated via backward induction

VT (x) = g(T, x)

Vtu(x) = max
(
g(tu, x),E[Vtu+1

(Xtu+1
)|Xtu = x]

)
.

Note that n refers to the number of time steps between t and T . For notational
convenience, we indicate the value function at each time step with subscript tu to
directly refer to the time step tu. For a detailed overview of optimal control problems
in discrete time we refer to Peskir and Shiryaev (2006).

2.2 Chebyshev polynomial interpolation

The univariate Chebyshev polynomial interpolation as described in detail in Trefethen
(2013) has a tensor based extension to the multivariate case, see e.g. Sauter and Schwab
(2010). Usually, the Chebyshev interpolation is defined for a function on a [−1, 1]D

domain. For an arbitrary hyperrectangular X = [x1, x1]×. . .×[xD, xD], we introduce
a linear transformation τX : [−1, 1]D → X componentwise defined by

τX (zi) = xi + 0.5(xi − xi)(1 − zi).(2.1)

Let N := (N1, . . . , ND) with Ni ∈ N0 for i = 1, . . . ,D. We define the index set

J := {j ∈ N
D : 1 ≤ ji ≤ ND for i = 1, . . . , d}.

The Chebyshev polynomials are defined for z ∈ [−1, 1]D and j ∈ J by

Tj(z) =

D∏

i=1

Tji(zi), Tji(zi) = cos(ji · acos(zi)),

and the j-th Chebyshev polynomial on X as pj(x) = Tj(τ
−1
X (x))1X (x). The Cheby-

shev points are given by

zk = (zk1 , . . . , zkD), zki = cos

(
π
ki
Ni

)
for ki = 0, . . . , Ni and i = 1, . . . ,D.

and the transformed Chebyshev points by xk = τX (z
k). The Chebyshev interpolation

of a function f : X → R with
∏D

i=1(Ni + 1) summands can be written as a sum of
Chebyshev polynomials

IN (f)(x) =
∑

j∈J

cjTj(τ
−1
X (x)) =

∑

j∈J

cjpj(x) for x ∈ X(2.2)
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with coefficients cj for j ∈ J

cj =
( D∏

i=1

21{0<ji<Ni}

Ni

) ∑

k∈J

′′
f(xk)Tj(z

k)(2.3)

where
∑ ′′

indicates the summand is multiplied by 1/2 if ki = 0 or ki = Ni.

2.3 The Dynamic Chebyshev method

In this section, we present the new approach to solve a dynamic programming prob-
lem via backward induction using Chebyshev polynomial interpolation.

Definition 2.1. We consider a Dynamic Programming Problem (DPP) with value
function

VT (x) = g(T, x)(2.4)

Vtu(x) = f
(
g(tu, x),E[Vtu+1

(Xtu+1
)|Xtu = x]

)
,(2.5)

where t = t0 < . . . < tn = T and f : R × R → R is Lipschitz continuous with
constant Lf .

At the initial time T = tn, we apply Chebyshev interpolation to the function
g(T, x), i.e. for x ∈ X ,

VT (x) = g(T, x) ≈
∑

j∈J

cj(T )pj(x) =: V̂T (x)

At the first time step tn−1, the derivation of E[g(tn,Xtn)|Xtn−1
= x] is replaced by

E[
∑

j cj(tn)pj(Xtn)|Xtn−1
= x] yielding

Vtn−1
(x) = f

(
g(tn−1, x),E[Vtn (Xtn)|Xtn−1

= x]
)

≈ f
(
g(tn−1, x),E

[∑

j∈J

cj(tn)pj(Xtn)
∣∣∣Xtn−1

= x
])

= f
(
g(tn−1, x),

∑

j∈J

cj(tn)E
[
pj(Xtn)

∣∣∣Xtn−1
= x

])
.

At time step tn−1 the value function Vtn−1
needs only to be evaluated at the specific

Chebyshev nodes. Hence, denoting with xk = (xk1 , . . . , xkD) the Chebyshev nodes,
it suffices to evaluate

Vtn−1
(xk) ≈ f

(
g(tn−1, x

k),
∑

j∈J

cj(tn)E
[
pj(Xtn)

∣∣∣Xtn−1
= xk

])
=: V̂tn−1

(xk).(2.6)

A linear transformation of (V̂tn−1
(xk))k∈J yields the Chebyshev coefficients accord-

ing to (2.3) which determines the Chebyshev interpolation V̂tn−1
=

∑
j cj(tn−1)pj .

We apply this procedure iteratively as described in detail in Algorithm 1.
The stochastic part is gathered in the expectations of the Chebyshev polyno-

mials conditioned on the Chebyshev nodes, i.e. Γj,k(tu) = E[pj(Xtu+1
)|Xtu = xk].
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Moreover, if an equidistant time stepping is applied the computation can be further
simplified. If for the underlying stochastic process

Γj,k(tu) = E[pj(Xtu+1
)|Xtu = xk] = E[pj(Xt1)|Xt0 = xk] =: Γj,k(2.7)

for u = 0, . . . , n−1, then the conditional expectations need to be computed only for
one time step, see Algorithm 2. One can pre-compute these conditional expectations
and thus, the method allows for an offline/online decomposition.

Algorithm 1 Dynamic Chebyshev algorithm

Require: N ∈ N
D, X = [x1, x1]× . . . × [xD, xD], 0 = t0, . . . , tn = T

1: Determine index set J and nodal points xk = (xk1 , . . . , xkD)

2: Pre-computation step:

3: For all j, k ∈ J and all tu, u = 0, . . . , n− 1
4: Compute Γj,k(tu) = E[pj(Xtu+1

)|Xtu = xk]

5: Time T
6: V̂T (x

k) = g(T, xk), k ∈ J , derive
7: cj(T ) = DN (j)

∑
k∈J

′′
V̂T (x

k)Tj(z
k)

8: Obtain Chebyshev interpolation V̂T (x) =
∑

j∈J cj(T )pj(x) of VT (x)

9: Iterative time stepping from tu+1 → tu, u = n− 1, . . . , 1
10: Given Chebyshev interpolation of V̂tu+1

(x) =
∑

j∈J cj(tu+1)pj(x)

11: Derivation of V̂tu(x
k), k ∈ J at the nodal points

12: V̂tu(x
k) = f(g(tu, x

k),
∑

j∈J cj(tu+1)Γj,k(tu))

13: Derive cj(tu) = DN (j)
∑

k∈J
′′
V̂tu(x

k)Tj(z
k)

14: Obtain Chebyshev interpolation V̂tu(x) =
∑

j∈J cj(tu)pj(x) of Vtt(x)

15: Deriving the solution at t = 0
16: V̂0(x) =

∑
j∈J cj(0)pj(x)

Algorithm 2 Simplified Dynamic Chebyshev algrithm

Require: Time steps 0 = t1, . . . , tn = T with ∆t := tu − tu−1

1: Replace in Algorithm 1 Lines 2-4 with:

2: Pre-computation step:

3: Compute Γj,k = E[pj(X∆t)|X0 = xk] for all j, k ∈ J

3 Error Analysis

In this section we analyse the error of Algorithm 1, i.e.

εtu := max
x∈X

|Vtu(x)− V̂tu(x)|.(3.1)

Two different error sources occur at tu, the classical interpolation error of the Cheby-
shev interpolation and a distortion error at the nodal points. The latter comes from
the fact that the values V̂tu(x

k) are approximations of Vtu(x
k). The behaviour of the

interpolation error depends on the regularity of the value function. Here, we assume
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analyticity of the value function. The concept can be extended to further cases
such as assuming differentiability or piecewise analyticity. The latter is discussed in
preliminary form in Mahlstedt (2017, Section 5.3) and is further investigated in a
follow-up paper. Hence, we need a convergence result for the Chebyshev interpola-
tion which incorporates a distortion error at the nodal points.

First, we introduce the required notation. A Bernstein ellipse B([−1, 1], ̺) with
̺ > 1 is defined as the open region in the complex plane bounded by an ellipse
with foci ±1 and semiminor and semimajor axis lengths summing to ̺. We define a
generalized Bernstein ellipse B(X , ̺) around the hyperrectangle X with parameter
vector ̺ ∈ (1,∞)D as

B(X , ̺) := B([x1, x1], ̺1)× . . .× B([xD, xD], ̺D)

with B([x, x], ̺) := τ[x,x] ◦ B([−1, 1], ̺), where for x ∈ C we have the transform

τ[x,x]
(
ℜ(x)

)
:= x + x−x

2

(
1 − ℜ(x)

)
and τ[x,x]

(
ℑ(x)

)
:= x−x

2 ℑ(x) where the sets
B([−1, 1], ̺i) are Bernstein ellipses for i = 1, . . . ,D.

Proposition 3.1. Let X ∋ x 7→ f(x) be a real-valued function with an ana-
lytic extension to some generalized Bernstein ellipse B(X , ̺) for ̺ ∈ (1,∞)D with
supx∈B(X ,̺) |f(x)| ≤ b. Assume distorted values f ε(xk) = f(xk)+ε(xk) with |ε(xk)| ≤
ε at all nodes xk. Then

max
x∈X

∣∣f(x)− IN (f ε)(x)
∣∣ ≤ εint(̺,N,D,B) + εΛN .

with

εint(̺,N,D,B) := 2
D
2
+1 · B ·

( D∑

i=1

̺−2Ni

i

D∏

j=1

1

1− ̺−2
j

) 1

2

(3.2)

and Lebesgue constant ΛN ≤ ∏D
i=1

(
2
π log(Ni + 1) + 1

)
.

Proof. Using the linearity of the interpolation operator we obtain for the Chebyshev
interpolation of f ε with f ε(xk) = f(xk) + ε(xk) that

IN (f ε)(x) = IN (f)(x) + IN (ε)(x).

The tensor-based multivariate Chebyshev interpolation IN (ε) can be written in La-
grange form

IN (ε)(x) =
∑

j∈J

ε(xj)λj(x) with λj(x) =

D∏

i=1

ℓji(τ
−1
[xi,xi]

(xi))

where ℓji(z) =
∏

k 6=ji
z−zk
zji−zk

is the ji−th Lagrange polynomial. This yields

max
x∈X

|IN (ε)(x)| = max
x∈X

∣∣∣
∑

j∈J

ε(xj)λj(x)
∣∣∣ ≤ εmax

x∈X

∑

j∈J

|λj(x)| =: εΛN .
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The term ΛN is the Lebesgue constant of the (multivariate) Chebyshev nodes which
is given by

ΛN = max
x∈X

∑

j∈J

∣∣λj(x)
∣∣ = max

x∈X

∑

j∈J

D∏

i=1

∣∣ℓji(xi)
∣∣ =

D∏

i=1

max
xi∈[xi,xi]

Ni∑

ji=0

∣∣∣ℓji
(
τ−1
[xi,xi]

(xi)
)∣∣∣.

Since maxxi∈[xi,xi]

∑Ni

ji=0 |ℓji(τ−1
[xi,xi]

(xi))| = maxz∈[−1,1]

∑Ni

ji=0 |ℓji(z)| = ΛNi
, which

is the Lebesgue constant of the univariate Chebyshev interpolation, we have ΛN =∏D
i=1ΛNi

. From Trefethen (2013, Theorem 15.2) we obtain for the univariate Cheby-
shev interpolation ΛN ≤ 2

π log(N + 1) + 1 and hence

ΛN ≤
D∏

i=1

( 2

π
log(Ni + 1) + 1

)
.(3.3)

For the distorted Chebyshev interpolation holds

∣∣f(x)− IN (f ε)(x)
∣∣ ≤ |f(x)− IN (f)(x)

∣∣+ |IN (ε)(x)
∣∣.

Therefore, the proposition follows directly from (3.3) and Sauter and Schwab (2010).

We use this result to investigate the error of the Dynamic Chebyshev method.
First, we introduce the following assumption.

Assumptions 3.2. We assume X ∋ x 7→ Vtu(x) is a real valued function that has
an analytic extension to a generalized Bernstein ellipse B(X , ̺tu) with ̺tu ∈ (1,∞)D

and supx∈B(X ,̺tu )
|Vtu(x)| ≤ Btu for u = 1, . . . , n.

Proposition 3.5 provides conditions on the process X and the functions f and g
that guaranty Assumptions 3.2. Under this assumptions, we can apply Proposition
3.1 to obtain an error bound for the Dynamic Chebyshev method at each time step.
This error bound has a recursive structure, since the values of Vtu depend on the
conditional expectation of Vtu+1

. The interpolation error of the final time step is of
form (3.2). At any other time step tu an additional distortion error by approximating
the function values at the nodal points by

Vtu(x
k) ≈ f

(
g(tu, x

k),
∑

j∈J

cj(tu+1)E[pj(Xtu+1
)|Xtu = xk]

)
= V̂tu(x

k)

comes into play. Proposition 3.1 yields

εtu := max
x∈X

|Vtu(x)− V̂tu(x)| ≤ εint(̺tu , N,D,Btu) + ΛNFtu ,

where Ftu := maxj∈J |Vtu(xj) − V̂tu(xj)|. The term Ftu depends on the function f
and the interpolation error at the previous time step tu+1.

Moreover, two additional error sources can influence the error bound. If there
is no closed-form solution for the generalized moments E[pj(Xtu+1

)|Xtu = xk] a
numerical technique, e.g. numerical quadrature or Monte Carlo methods, introduces
an additional error. The former is typically deterministic and bounded whereas the

8



latter is stochastic. In order to incorporate this error in the following error analysis
we introduce some additional notation. The conditional expectation can be seen
as a linear operator which operates on the vector space of all continuous functions
C(RD) with finite L∞-norm

Γk
tu : C(RD) → R with Γk

tu(f) := E[f(Xtu+1
)|Xtu = xk].

Define the subspace of all D variate polynomials PN (X ) := span{pj , j ∈ J }
equipped with the L∞-norm. We assume the operator Γk

tu is approximated by a

linear operator Γ̂k
tu : PN (X ) → R on PN (X ) which fullfills one of the two following

conditions. For all u = 0, . . . , n the approximation is either deterministic and the
error is bounded by a constant δ,

||Γk
tu − Γ̂k

tu ||op := sup
p∈P

N

||p||=1

∣∣∣Γk
tu(p)− Γ̂k

tu(p)
∣∣∣ ≤ δ ∀k ∈ J(GM)

or the approximation is stochastic and uses M samples of the underlying process
and the polynomials p may have stochastic coefficients. In this case we assume the
error bound

||Γk
tu − Γ̂k

tu ||op := sup
p∈P

N

||p||⋆∞=1

E

[∣∣∣Γk
tu(p)− Γ̂k

tu(p)
∣∣∣
]
≤ δ⋆(M) ∀k ∈ J(GM∗)

with norm ||p||⋆∞ = maxx∈X E[|p(x)|]. In order to incorporate stochasticity of V̂tu(x),
we replace (3.1) by

εtu+1
:= max

x∈X
E

[∣∣∣Vtu(x)− V̂tu(x)
∣∣∣
]
.(3.4)

Note that in the deterministic case (3.1) and (3.4) coincide. Additionally, a trun-
cation error is introduced by restricting to a compact interpolation domain X . We
assume that the conditional expectation of the value function outside this set is
bounded by a constant

E[Vtu+1
(Xtu+1

)1RD\X |Xtu = xk] ≤ εtr.(TR)

The following theorem provides an error bound for the Dynamic Chebyshev
method.

Theorem 3.3. Let the DPP be given as in Definition 2.1. Assume the regularity
Assumptions 3.2 hold and the boundedness of the truncation error (TR). Then we
have

εtu ≤
n∑

j=u

Cj−uεjint + ΛNLf

n∑

j=u+1

Cj−(u+1)(εtr + εgmV j)(3.5)

with with εgm = δ if assumption (GM) holds and εgm = δ⋆(M) if assumption (GM∗)

holds and C = ΛNLf (1+εgm), V j = maxx∈X |Vtj (x)| and εjint = εint(̺tj , N,D,Btj ).

Proof. The proof of the theorem can be found in the appendix.
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The following corollary provides a simplified version of the error bound (3.5) pre-
senting its decomposition into three different error sources (interpolation error εint,
truncation error εtr and the error from the numerical computation of the generalized
moments εgm).

Corollary 3.4. Let the setting be as in Theorem 3.3. Then the error is bounded by

εtu ≤
(
εint(̺,N,D,B) + εtr + εgmV

)
C̃n+1−u(3.6)

with C̃ = max{2, C}, ̺ = min1≤u≤n ̺tu, B = max1≤u≤n Btu, V = maxu≤j≤n V j .
Moreover, if εtr = 0, Lf = 1 and N = Ni, i = 1, . . . ,D the error bound can be

simplified further. Under (GM∗) δ⋆(M) ≤ c/
√
M , c > 0 yields

εtu ≤ c̃1̺
−N log(N)D n + c̃2 log(N)DnM−0.5.

for some constants c̃1, c̃2 > 0. Under (GM) the term M−0.5 is replaced by δ.

Proof. Assuming C > 2 and using the geometric series, the first term in the error
bound (3.5) can be rewritten as

n∑

j=u

Cj−uεjint ≤ εint

n∑

j=u

Cj−u = εint

n−u∑

k=0

Ck = εint

(
1− Cn+1−u

1− C

)
≤ εint C

n+1−u,

where εint = maxj ε
j
int = maxj εint(̺tj , N,D,Btj ) ≤ εint(̺,N,D,B) for ̺ = min1≤u≤n ̺u

and B = max1≤u≤nBtu . For C ≤ 2 the sum is bounded by εint 2
n+1−u. Similar, we

obtain for the second term in the error bound (3.5) with β = (εtr + εgmV j)

ΛNLf

n∑

j=u+1

Cj−(u+1)βj ≤ ΛNLf β

n−(u+1)∑

k=0

Ck ≤ ΛNLf βC
n−u ≤ βCn+1−u

where β = maxj βj . Moreover, we used ΛNLf ≤ ΛNLf (1 + εgm) = C in the last
step. Thus, we obtain the following error bound (3.5)

εtu ≤ (εint + β) C̃n+1−u =
(
εint(̺,N,D,B) + εtr + εgmV

)
C̃n+1−u,

where C̃ = max{2, C} and V = maxj V j , which shows (3.6).

Furthermore, using the definition of the error bound (3.2) and N = Ni, i =
1, . . . ,D we conclude that εint(̺,N,D,B) ≤ c1̺

−N for a constant c1 > 0. For the
Lebesgue constant of the Chebyshev interpolation exists a constant c2 > 0 such that

ΛN ≤
D∏

i=1

( 2
π
log(N + 1) + 1

)
≤

D∏

i=1

( 4
π
+ 1

)
log(N) ≤ c2 log(N)D.

Under (GM∗), δ⋆(M) ≤ c/
√
M , c > 0 yields with εtr = 0, Lf = 1

εtu ≤
(
εint(̺,N,D,B) + εtr + εgmV

) (
ΛNLf (1 + εgm)

)n+1−u

≤
(
c1̺

−N + cV M−0.5
) (

c2 log(N)D(1 + cM−0.5)
)n

≤ c̃1̺
−N log(N)Dn + c̃2 log(N)D nM−0.5

and this converges towards zero for N → ∞ if
√
M > log(N)Dn. If (GM) holds we

have εgm = δ and the term M−0.5 is replaced by δ.
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The following proposition provides conditions under which the value function
has an analytic extension to some generalized Bernstein ellipse and Assumptions 3.2
hold.

Proposition 3.5. Consider a DPP as defined in (2.4) and (2.5) with equidistant
time-stepping and g(t, x) = g(x). Let X = (Xt)0≤t≤T be a Markov process with
stationary increments. Assume e〈η,·〉g(·) ∈ L1(RD) for some η ∈ R

D and g has
an analytic extension to the generalized Bernstein ellipse B(X , ̺g). Furthermore,
assume f : R× R → R has an analytic extension to C

2. If

(i) the characteristic function ϕx of X∆t with X0 = x is in L1(RD) for every
x ∈ X ,

(ii) for every z ∈ R
D the mapping x 7→ ϕx(z − iη) has an analytic extension

to B(X , ̺ϕ) and there are constants α ∈ (1, 2] and c1, c2 > 0 such that
supx∈B(X ,̺ϕ) |ϕx(z)| ≤ c1e

−c2|z|α for all z ∈ R
D,

then the value function x 7→ Vtu(x) of the DPP has an analytic extension to B(X , ̺)
with ̺ = ̺g.

Proof. At T the value function x 7→ VT (x) is analytic since VT (x) = g(x) and g
has an analytic extension by assumption. Moreover, e〈η,·〉g(·) ∈ L1(RD) for some
η ∈ R

D. We assume e〈η,·〉Vtu+1
(·) ∈ L1(RD) and Vtu+1

has an analytic extension to
B(X , ̺). Then the function

x 7→ Vtu(x) = f
(
g(x),E[Vtu+1

(Xtu+1
)|Xtu = x]

)

is analytic if x 7→ E[Vtu+1
(Xtu+1

)|Xtu = x] = E[Vtu+1
(Xx

∆t)] has an analytic exten-
sion. From Gaß et al. (2018, Conditions 3.1) we obtain conditions (A1)-(A4) under
which a function of the form (p1, p2) 7→ E[fp1(Xp2)] is analytic. In our case we only
have the parameter p2 = x and so Xp2 = Xx

∆t. Condition (A1) is satisfied since

e〈η,·〉Vtu+1
(·) ∈ L1(RD) and for (A2) we have to verify that |V̂tu+1

(−z− iη)| ≤ c1e
c2|z|

for constants c1, c2 > 0.

|V̂tu+1
(−z − iη)| =

∣∣∣
∫

RD

ei〈y,−z−iη〉Vtu+1
dy

∣∣∣

≤
∫

RD

|e−i〈y,z〉|
∣∣∣e〈y,η〉Vtu+1

(y)
∣∣∣ dy

≤ ||e〈η,·〉Vtu+1
(·)||L1

and thus (A2) holds. The remaining conditions (A3)-(A4) are equivalent to our
conditions (i)-(ii) and Gaß et al. (2018, Theorem 3.2) yields the analyticity of x 7→
E[Vtu+1

(Xx
∆t)] on the Bernstein ellipse B(X , ̺ϕ). Hence, x 7→ Vtu(x) is a composi-

tion of analytic functions and therefore analytic on the intersection of the domains
of analyticity B(X , ̺ϕ) ∩ B(X , ̺g) = B(X , ̺) with ̺ = min{̺g, ̺ϕ}.

It remains to prove that e〈η,·〉Vtu(·) ∈ L1(RD). Here the Lipschitz continuity of
f yields

||e〈η,·〉Vtu(·)||L1 ≤ Lf

(
||e〈η,·〉g(·)||L1 + ||e〈η,·〉Vtu+1

(·)||L1

)
< ∞.
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Often, the discrete time problem (2.4) and (2.5) is an approximation of a con-
tinuous time problem and thus, we are interested in the error behaviour for n → ∞.

Remark 3.6. Assume the setup of Corollary 3.4. Moreover, assume that εtr =
εgm = 0. If we let N and n go to infinity, we have to ensure that the error bound
tends to zero. We use that εint(̺,N,D,B) ≤ C1̺

−N for a constant C1 > 0 and
N = mini Ni. The following condition on the relation between n and N ensures
convergence

n <
log(̺)

C1D
· N

log(ΛN ) + log(Lf )
+ 1.

4 Implementational aspects of the Dynamic Chebyshev

method

In this section we discuss several approaches to compute the generalized moments
(2.7) which contain the model dependent part. Moreover, preparing the numerical
experiments we tailor the Dynamic Chebyshev method to the pricing of American
put options.

4.1 Derivation of generalized moments

Naturally, the question arises how the generalized moments (2.7) can be derived.
Here, we present four different ways and illustrate all approaches in the one-dimensional
case X = [x, x]. Similar formulas can be obtained for a multidimensional domain.

Probability density function

For the derivation of E[pj(Xtu+1
)|Xtu = xk], let the density function of the ran-

dom variable Xtu+1
|Xtu = xk be given as fu,k(x). Then, the conditional expectation

can be derived by solving an integral,

E[pj(Xtu+1
)|Xtu = xk] =

∫ x

x
Tj(τ

−1
[x,x](y)) f

u,k(y)dy

using pj(y) = Tj(τ
−1
X (y))1X (y). This approach is rather intuitive and easy to imple-

ment.

Fourier Transformation

Assume the process X has stationary increments and the characteristic function
ϕ of X∆t is explicitly available. We apply Parseval’s identity, see Rudin (1973), and
use Fourier transforms

E[pj(Xtu+1
)|Xtu = xk] =

∫ ∞

−∞
pj(x+ xk)F (dx) =

1

2π

∫ ∞

−∞
p̂xk

j (ξ)ϕ(−ξ)dξ,

where pxk

j (x) = pj(x+ xk). Using the definition of τ[x,x], we can express the Fourier
transform of pxk

j (x) with the help of the Chebyshev polynomial Tj(y). This yield

E[pj(Xtu+1
)|Xtu = xk] =

1

2π
e−iξxk

eiξ(x−
x−x

2
)x− x

2

∫ ∞

−∞
T̂j

(x− x

2
ξ
)
ϕ(−ξ)dξ.

(4.1)
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The Fourier transform of the Chebyshev polynomials T̂j are presented in Dominguez et al.
(2011) and the authors also provide a Matlab implementation.

Truncated moments

In this approach, we use that each one-dimensional Chebyshev polynomial can
be represented as a sum of monomials, i.e.

Tj(x) =

j∑

l=0

alx
l, j ∈ N.

The coefficients al, l = 0, . . . , j, can easily be derived using the chebfun function
poly(), see Driscoll et al. (2014). Then,

E[pj(Xtu+1
)|Xtu = xk] = E[Tj(τ

−1
X (Xtu+1

))1X (Xtu+1
)|Xtu = xk]

=

j∑

l=0

alE[(τ
−1
X (Xtu+1

))l1X (Xtu+1
)|Xtu = xk]

As τX is linear the computation of the generalized moments has thus been reduced
to deriving truncated moments.

Monte-Carlo simulation

Lastly, especially in cases for which neither a probability density function, nor a
characteristic function of the underlying process is given, Monte-Carlo simulation is
a suitable choice. For every nodal point xk one simulates NMC paths Xi

tu+1
of Xtu+1

with starting value Xtu = xk. These simulations can then be used to approximate

Γtu,tu+1
(pj)(x

k) = E[pj(Xtu+1
)|Xtu = xk] ≈

1

NMC

NMC∑

i=1

pj(X
i
tu+1

)

for every j ∈ J . For an overview of Monte-Carlo simulation from SDEs and variance
reduction techniques we refer to Glasserman (2003).

4.2 American Put Option

In the numerical section we use the Dynamic Chebyshev method to price American
put options. Assuming an asset model of the form St = eXt , the DPP becomes

VT (x) = (K − ex)+

Vtu(x) = max
{
(K − ex)+, e−r(tu+1−tu)E[Vtu+1

(Xtu+1
)|Xtu = x]

}
.

Typically, the support of the underlying processXt is R and restricting the domain to
X introduces a truncation error. We reduce this error by exploiting the asymptotic
behaviour of the payoff. If Xtu is below the exercise boundary the option is exercised
at the value K − eXtu which we exploit for Xtu < x. The function x 7→ Vtu tends to
zero from above for x → ∞ and thus for x large enough the truncation to zero for
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x > x is justified. Hence, we introduce the following modification of the Dynamic
Chebyshev method:

Vtu+1
(x) = Vtu+1

(x)1{x<x} + Vtu+1
(x)1{x∈X} + Vtu+1

(x)1{x>x}

≈ (K − ex)1{x<x} + V̂tu+1
(x)1{x∈X}

and thus

E[Vtu+1
(Xtu+1

)|Xtu = xk] ≈ E[(K − eXtu+1 )1{Xtu+1
<x}|Xtu = xk]

+

N∑

j=0

cj(tu+1)Γj,k(tu)

for x small and x large enough. One can precompute E[(K−eXtu+1 )1{Xtu+1
<x}|Xtu =

xk]. We emphasize that similar modifications to reduce the truncation error can
be found for other payoff profiles, e.g. for digitals, butterfly options or any other
combination of different put options.

Moreover, we also modify the first time step. Instead of approximating the payoff
with Chebyshev polynomials at tn = T we just use the price of a European option
to compute the continuation value at tn−1. The kink of the payoff is in this case
”smoothed” and convergence is improved.

The option’s sensitivities Delta and Gamma can be computed by tanking the
first or second derivative of

S 7→ V̂0(log(S)) =
∑

j∈J

cj(t0)pj(log(S)).

Thus Delta and Gamma are expressed as the sum of derivatives of Chebyshev poly-
nomials. In particular, their derivation comes without any additional computational
costs.

5 Numerical experiments

In this section, we use the Dynamic Chebyshev method to price American put op-
tions and we numerically investigate the convergence of the method. Moreover, we
compare the method with the Least-squares Monte-Carlo method of Longstaff and Schwartz
(2001).

5.1 Stock price models

For the convergence analysis we use three different stock price models.

The Black-Scholes model:

In the classical model of Black and Scholes (1973) the stock price process is modelled
by the SDE

dSt = rStdt+ σStdWt
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where r is the risk-free interest rate and σ > 0 is the volatility. In this model
the log-returns Xt = log(St) are normally distributed and for the double truncated
moments

E[Xm1[a,b](X)] for X ∼ N (µ, σ2)

explicit formulas are available.Kan and Robotti (2017) present results for the (mul-
tivariate) truncated moments and provide a Matlab implementation.

The Merton jump diffusion model:

The jump diffusion model introduced by Merton (1976) adds jumps to the classical
Black-Scholes model. For St = S0e

Xt the log-returns Xt follow a jump diffusion with
volatility σ and added jumps arriving at rate λ > 0 with normal distributed jump
sizes according to N (α, β2). The characteristic function of Xt is given by

ϕ(z) = exp

(
t

(
ibz − σ2

2
z2 + λ

(
eizα−

β2

2
z2 − 1

)))

with risk-neutral drift b = r − σ2

2 − λ
(
eα+

β2

2 − 1
)
.

The Constant Elasticity of Variance model:

The Constant Elasticity of Variance model (CEV) as stated in Schroder (1989) is a
local volatility model based on the stochastic process

dSt = rStdt+ σS
β/2
t dWt for β > 0.(5.1)

Hence the stock volatility σS
(β−2)/2
t depends on the current level of the stock price.

For the special case β = 2 the model coincides with the Black-Scholes model. How-
ever, from market data one typically observes a β < 2. The CEV-model is one
example of a model which has neither a probability density, nor a characteristic
function in closed-form.

5.2 Convergence analysis

In this section we investigate the convergence of the Dynamic Chebyshev method.
We price American put options along with the options’ Delta and Gamma in the
Black-Scholes and the Merton jump diffusion model, where we can use the COS
method of Fang and Oosterlee (2009) as benchmark. The COS method is based on
the Fourier-cosine expansion of the density function and provides fast and accurate
results for the class of Lévy models.

For the experiments, we use the following parameter sets in the Black-Scholes
model

K = 100, r = 0.03, σ = 0.25, T = 1,

and for the Merton jump diffusion model

K = 100, r = 0.03, α = −0.5, β = 0.4, σ = 0.25, λ = 0.4
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and we use 32 time steps.

For both models the generalized moments are computed by the Fourier approach
as stated in (4.1). We truncate the integral at |ξ| ≤ 250 and use Clenshaw-Curtis
with 500 nodes for the numerical integration. For the Fourier transform of the
Chebyshev polynomials the implementation of Dominguez et al. (2011) is used. We
run the Dynamic Chebyshev method for an increasing number of Chebyshev nodes
N = 50, 100, . . . , 750. Then, option prices and their sensitivities delta and gamma
are calculated on a grid of different values of S0 equally distributed between 60%
and 140% of the strike K. The resulting prices and Greeks are compared using the
COS method as benchmark and the maximum error over the grid is calculated. Here
we use the implementation provided in von Sydow et al. (2015).

Figure 5.1 shows the error decay for the Black-Scholes model (left hand side)
and the Merton model (right hand side). We observe that the method converges
and an error below 10−3 is reached for N = 300 Chebyshev nodes. The experiments
confirm that the method can be used for an American put option.

0 250 500 750
10-6

10-5

10-4

10-3

10-2
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0 250 500 750
10-6

10-5

10-4

10-3

10-2
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Figure 5.1: Error decay prices Dynamic Chebyshev in the BS model (left) and the Merton model
(right). The conditional expectation of the Chebyshev polynomials are calculated with the Fourier
transformation.

5.3 Dynamic Chebyshev with Monte-Carlo

So far we empirically investigated the error decay of the method for option price and
their derivatives. In this section we compare the Dynamic Chebyshev method with
the Least Square Monte-Carlo approach of Longstaff and Schwartz (2001) in terms
of accuracy and runtime.

5.3.1 The Black-Scholes model

As a first benchmark, we use the Black-Scholes model with an interest rate of r =
0.03 and volatility σ = 0.25. Here, we look at a whole option price surface with
varying maturities and strikes. We choose 12 different maturities between one month
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and four years given by

T ∈ {1/12, 2/12, 3/12, 6/12, 9/12, 1, 15/12, 18/12, 2, 30/12, 3, 4}

and strikes equally distributed between 80% and 120% of the current stock price
S0 = 100 in steps of 5%. We fix n = 504 time steps (i.e. exercise rights) per year.

We compare the Dynamic Chebyshev method to the Least Squares Monte-Carlo
approach. We run both methods for an increasing number of Monte-Carlo paths
according to

M ∈ {2500, 5000, 10000, 20000, 40000, 80000} .(5.2)

The convergence of the DC method depends on both, the number of nodes N and
the number of Monte-Carlo paths M . For an optimal convergence behaviour one
needs to find a reasonable relationship between these factors. For the following
experiments, we fix the number of Chebyshev nodes as N =

√
2
√
M .

Figure 5.2 shows the price surface and the error surface for N = 400 and
M = 80000. The error was estimated by using the COS method as benchmark.
We reach a maximal error below 4 ∗ 10−2 on the whole option surface.

In Figure 5.3 the log10-error is shown as a function of the log10-runtime for both
methods. The left figure compares the total runtimes and the right figure compares
the offline runtime. For the Dynamic Chebyshev method the total runtime includes
the offline-phase and the online phase. The offline-phase consists of the simulation of
one time step of the underlying asset process X∆t for N +1 starting values X0 = xk
and of the computation of the conditional expectations E[pj(X∆t)|X0 = xk] for
j, k = 0, . . . , N . The online phase is the actual pricing of the American option for all
strikes and maturities. Similar, the total runtime of the Least-Square Monte-Carlo
method includes the simulation of the Monte-Carlo paths (offline-phase) and the
pricing of the option via backward induction (online-phase).

We observe that the Dynamic Chebyshev method reaches the same accuracy in
a much lower runtime. For example, a maximum error of 0.1 is reached in a total
runtime of 0.5s with the Dynamic Chebyshev method whereas the LSM approach
needs 98s. This means the Dynamic Chebyshev method is nearly 200 times faster
for the same accuracy. For the actual pricing in the online phase, the gain in effi-
ciency is even higher. We observe that the Dynamic Chebyshev method outperforms
the Least-Square Monte-Carlo method in terms of the total runtime and the pure
online runtime. Moreover, we observe that the performance gain from splitting the
computation into an offline and an online phase is much higher for the Dynamic
Chebyshev method. For instance, in the example above the online runtime of the
Dynamic Chebyshev method is 0.05s whereas the LSM takes 95s, a factor of 1900
times more.

The main advantage of the Dynamic Chebyshev method is that once the con-
ditional expectations are calculated, they can be used to price the whole option
surface. The pure pricing, i.e. the online phase, is highly efficient. Furthermore, one
only needs to simulate one time step ∆t of the underlying stochastic process instead
of the complete path. We investigate this efficiency gain by varying the number of

17



0
4

5

10

3 120

15

20

1102

25

30

100
1 90

0 80

-0.01
4

-0.005

0

3 120

0.005

110

0.01

2

0.015

100
1 90

0 80

Figure 5.2: Price surface and corresponding error of the Dynamic Chebyshev method in the Black-
Scholes model. The conditional expectations are calculated with Monte-Carlo.
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Figure 5.3: Log-Log plot of the total/online runtime vs. accuracy. Comparison of the Dynamic
Chebyshev method with the Least-Square Monte-Carlo algorithm.
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options and the number of time steps (exercise rights). Figure 5.4 compares the
total runtime of the DC method with the total runtime of the LSM method for an
increasing number of options and for an increasing number time steps. As expected,
we can empirically confirm that the efficiency gain by the Dynamic Chebyshev meth-
ods increases with number of options and the number of exercise rights. In both
cases, the runtime of the DC method stays nearly constant whereas the runtime of
the LSM method increases approximately linearly.
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Figure 5.4: Total runtime of the DC and the LSM method for an increasing number of options (left)
and an increasing number of timesteps (right).

5.3.2 The CEV model

Next, we use the constant elasticity of variance (CEV) model for the underlying
stock price process. We perform the same experiments as in the last section. The
parameters in the CEV model, as in (5.1) are the following

σ = 0.25, r = 0.03, β = 1.5.

Similarly, we compare the Dynamic Chebyshev and the LSM method by comput-
ing the prices of an option price surface. We use the same parameter specifications
for K, T and n. We run both methods for an increasing number of Monte-Carlo
simulations M and fix N =

√
2
√
M . Figure 5.5 shows the price surface and the

error surface for N = 400 and M = 80000. The error is calculated using a binomial
tree implementation of the CEV model based on Nelson and Ramaswamy (1990).
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Figure 5.5: Price surface and corresponding error of the Dynamic Chebyshev method in the CEV
model. The conditional expectations are calculated with Monte-Carlo.

In Figure 5.6 the log10-error is shown as a function of the log10-runtime for both
methods. The left figure compares the total runtimes and the right figure compares
the offline runtimes. Again, we observe that the Dynamic Chebyshev method is
faster for the same accuracy and it profits more from an offline-online decomposition.
For example, the total runtime of the DC method to reach an accuracy below 0.03
is 3.5s whereas LSM takes 136s. For the online runtimes this out-performance is 1s
to 122s.
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Figure 5.6: Log-Log plot of the total/online runtime vs. accuracy. Comparison of the Dynamic
Chebyshev method with the Least-Square Monte-Carlo algorithm.

Investigating this efficiency gain further, we look at the performance for different
numbers of options and time steps (exercise rights). Similarly to the last section,
Figure 5.7 compares the total runtime of the DC method with the total runtime of
the LSM method for an increasing number of options and time steps. In both cases,
the runtime of the DC method stays nearly constant whereas the runtime of the
LSM method increases approximately linearly. This observation is consistent with
the findings for the Black-Scholes model in the previous section.
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Figure 5.7: Total runtime of the DC and the LSM method for an increasing number of options (left)
and an increasing number of timesteps (right).

6 Conclusion and Outlook

We have introduced a new approach to price American options via backward induc-
tion by approximating the value function with Chebyshev polynomials. Thereby,
the computation of the conditional expectation of the value function in each time
step is reduced to the computation of conditional expectations of polynomials. The
proposed method separates the pricing of an option into a part which is model-
dependent (the computation of the conditional expectations) and the pure pricing
of a given payoff which becomes independent of the underlying model. The first
step, the computation of the conditional expectation of the Chebyshev polynomials,
is the so-called offline phase of the method. The design of the method admits several
qualitative advantageous:

• If the conditional expectations are set-up once, we can use them for the pricing
of many different options. Thus, the actual pricing in the online step becomes
very simple and fast.

• In the pre-computation step one can combine the method with different tech-
niques, such as Fourier approaches and Monte-Carlo simulation. Hence the
method can be applied in a variety of models.

• The proposed approach is very general and flexible and thus not restricted to
the pricing of American options. It can be used to solve a large class of optimal
stopping problems.

• We obtain a closed-form approximation of the option price as a function of the
stock price at every time step. This approximation can be used to compute
the option’s sensitivities Delta and Gamma at no additional costs. This holds
for all models and payoff profiles, even if Monte-Carlo is required in the offline
phase.

• The method is easy to implement and to maintain. The pre-computation step
is well-suited for parallelization to speed-up the method.
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We have investigated the theoretical error behaviour of the method and introduced
explicit error bounds. We put particular emphasis on the combination of the method
with Monte-Carlo simulation. Numerical experiments confirm that the method per-
forms well for the pricing of American options. A detailed comparison of the method
with the Least-Square Monte-Carlo approach proposed by Longstaff and Schwartz
(2001) confirmed a high efficiency gain. Especially, when a high number of options is
priced, for example a whole option price surface. In this case, the Dynamic Cheby-
shev method highly profits from the offline-online decomposition. Once the condi-
tional expectations are computed they can be used to price options with different
maturities and strikes. Besides the efficiency gain, the closed-form approximation
of the price function is a significant advantage because it allows us to calculate the
sensitivities. Since Longstaff and Schwartz (2001) introduced their method different
modifications have been introduced. Either to increase efficiency or to tackle the
sensitivities. For example the simulation algorithm of Jain and Oosterlee (2015) is
comparable to LSM in terms of efficiency but is able to compute the Greeks at no
additional costs. Moreover dual approaches were developed to obtain upper bounds
for the option price, see Rogers (2002) and more recently Belomestny et al. (2018).

The presented error analysis of the method under an analyticity assumption is
the starting point for further theoretical investigations in the case of piecewise an-
alyticity and (piecewise) differentiability. The former allows to cover rigorously the
American option pricing problem and a preliminary version is presented in Mahlstedt
(2017). The qualitative merits of the method can be exploited in a variety of ap-
plications. Glau et al. (2018) take advantage of the closed-form approximation to
efficiently compute the expected exposure of early-exercise options as a step in CVA
calculation. Moreover, the method can be used to price different options such as
Barrier options, Swing options or multivariate American options.

A Proof of Theorem 3.3

Proof. Consider a DPP as defined in Definition 2.1, i.e. we have a Lipschitz contin-
uous function

|f(x1, y1)− f(x2, y2)| ≤ Lf (|x1 − x2|+ |y1 − y2|).

Assume that the regularity Assumption 3.2 and the assumption on the truncation
error (TR) hold. Then we have to distinguish between the deterministic case (GM)
and the stochastic case (GM∗). In the first case, the expectation in the error bound
can simply be ignored. First, we apply Proposition 3.1. At time point T there is no
random part and no distortion error. Thus,

max
x∈X

E

[
|VT (x)− V̂T (x)|

]
= max

x∈X
|VT (x)− V̂T (x)| ≤ εint(̺tn , N,D,Mtn).

For the ease of notation we will from know on write εjint = εint(̺tj , N,D,Mtj ). We
obtain for the error at tu

max
x∈X

E

[
|Vtu(x)− V̂tu(x)|

]
≤ εuint + ΛNF (f, tu)(A.1)
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with maximal distortion error F (f, tu) = maxk∈J E

[
|Vtu(x

k)− V̂tu(x
k)|

]
. Note that

whether (GM) or (GM∗) hold an approximation error of the conditional expectation
of V̂tu+1

is made, i.e. E[V̂tu+1
(Xtu+1

)|Xtu = xk] = Γk
tu(V̂tu+1

) ≈ Γ̂k
tu(V̂tu+1

). The
Lipschitz continuity of f yields

∣∣∣Vtu(x
k)− V̂tu(x

k)
∣∣∣ =

∣∣∣f
(
g(tu, x

k),Γk
tu(Vtu+1

)
)

− f
(
g(tu, x

k), Γ̂k
tu(V̂tu+1

)
)∣∣∣

≤ Lf

(∣∣∣g(tu, xk)− g(tu, x
k)
∣∣∣ +

∣∣∣Γk
tu(Vtu+1

)− Γ̂k
tu(V̂tu+1

)
∣∣∣
)

= Lf

(∣∣∣Γk
tu(Vtu+1

)− Γ̂k
tu(V̂tu+1

)
∣∣∣
)

≤ Lf

(∣∣∣Γk
tu(Vtu+1

1X )− Γk
tu(V̂tu+1

)
∣∣∣+

∣∣∣Γk
tu(Vtu+1

1RD\X )
∣∣∣

+
∣∣∣Γk

tu(V̂tu+1
)− Γ̂k

tu(V̂tu+1
)
∣∣∣
)
.

Next, we consider the expectation for each of the three error terms. For the first
term we obtain

E

[∣∣∣Γk
tu(Vtu+1

1X )− Γk
tu(V̂tu+1

)
∣∣∣
]
= E

[∣∣∣E[Vtu+1
(Xtu+1

)1X − V̂tu+1
(Xtu+1

)|Xtu = xk]
∣∣∣
]

≤ max
x∈X

E

[
|Vtu+1

(x)− V̂tu+1
(x)|

]
= εtu+1

and for the second term we have

E

[∣∣∣Γk
tu(Vtu+1

1RD\X )
∣∣∣
]
≤ E [εtr] = εtr.

For the last term we have to distinguish two cases. If we assume (GM) holds, the
operator norm yields

∣∣∣Γk
tu(V̂tu+1

)− Γ̂k
tu(V̂tu+1

)
∣∣∣ =

∣∣∣
(
Γk
tu − Γ̂k

tu

)(
V̂tu+1

)∣∣∣

≤
∣∣∣
∣∣∣Γk

tu − Γ̂k
tu

∣∣∣
∣∣∣
op

∣∣∣
∣∣∣V̂tu+1

∣∣∣
∣∣∣
∞

≤ δ
∣∣∣
∣∣∣V̂tu+1

∣∣∣
∣∣∣
∞
.

Next, we consider the second case and assume that (GM∗) holds. Then we have

E

[∣∣∣Γk
tu(V̂tu+1

)− Γ̂k
tu(V̂tu+1

)
∣∣∣
]
≤

∣∣∣
∣∣∣Γk

tu − Γ̂k
tu

∣∣∣
∣∣∣
op

∣∣∣
∣∣∣V̂tu+1

∣∣∣
∣∣∣
⋆

∞
≤ δ⋆(M)

∣∣∣
∣∣∣V̂tu+1

∣∣∣
∣∣∣
⋆

∞
.

Hence in either case the following bound holds

E

[∣∣∣Γk
tu(V̂tu+1

)− Γ̂k
tu(V̂tu+1

)
∣∣∣
]
≤ εgmmax

x∈X
E

[
|V̂tu+1

(x)|
]

with εgm = δ if assumption (GM) holds and εgm = δ⋆(M) if assumption (GM∗)
holds. We need an upper bound for the maximum of the Chebyshev approximation

max
x∈X

E

[
|V̂tu+1

(x)|
]
≤ max

x∈X
E

[
|V̂tu+1

(x)− Vtu+1
(x)|

]
+max

x∈X
|Vtu+1

(x)| ≤ εtu+1
+ V u+1

with V u+1 := maxx∈X |Vtu+1
(x)|. Hence, the error bound (A.1) becomes

εtu ≤ εuint + ΛNLf

(
(1 + εgm)εtu+1

+ εtr + εgmV u+1

)
.
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By induction, we now show (3.5). For u = n we have εtn ≤ εnint and therefore (3.5)
holds for u=n. We assume that for n, . . . , u + 1 equation (3.5) holds. For the error
εtu we obtain

εtu ≤ εuint + ΛNLf

(
(1 + εgm)εtu+1

+ εtr + εgmV u+1

)

≤ εuint + ΛNLf

(
(1 + εgm)

( n∑

j=u+1

Cj−(u+1)εjint + ΛNLf

n∑

j=u+2

Cj−(u+2)(εtr + εgmV j)
)

+ εtr + εgmV u+1

)

= εuint + C

n∑

j=u+1

Cj−(u+1)εjint + ΛNLf

(
C

n∑

j=u+2

Cj−(u+2)(εtr + εgmV j)

+ εtr + εgmV u+1

)

= εuint +
n∑

j=u+1

Cj−uεjint +ΛNLf

( n∑

j=u+2

Cj−(u+1)(εtr + εgmV j) + εtr + εgmV u+1

)

=

n∑

j=u

Cj−uεjint +ΛNLf

n∑

j=u+1

Cj−(u+1)(εtr + εgmV j)

which was our claim.
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