

2

Node.js Succinctly

By

Emanuele DelBono

Foreword by Daniel Jebaraj

3

Copyright © 2016 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: Stephen Haunts

Copy Editor: Jacqueline Bieringer, content producer, Syncfusion, Inc.

Acquisitions Coordinator: Morgan Weston, social media marketing manager, Syncfusion, Inc.

Proofreader: Graham High, senior content producer, Syncfusion, Inc.

I

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

4

Table of Contents

The Story behind the Succinctly Series of Books ... 7

About the Author ... 9

About this Book ..10

Chapter 1 An Introduction to Node.js ...11

The history ...11

How to obtain Node ..13

Chapter 2 Hello Node.js ...16

Hello world ...16

Event driven ...17

Single thread ...17

Non-blocking I/O ..18

The event loop..18

The Node.js runtime environment ...21

Event emitters ..23

Callback hell ...25

Summary ..27

Chapter 3 The Node.js Ecosystem ..28

The module system ..28

Summary ..32

Chapter 4 Using the Filesystem and Streams ..33

The fs module ..33

Reading a file ...33

Writing a file ...33

Watching files ...34

5

The path module ..34

Streams ..35

Readable streams ..36

Writable streams ..37

Summary ..37

Chapter 5 Writing Web Applications...38

The http module ...38

Express.js ...39

Jade ...42

Middleware ..44

Chapter 6 Real-Time Apps with WebSocket ...47

WebSocket ...47

Socket.IO ...47

Chapter 7 Accessing the Database ...52

Accessing PostgreSQL ...52

Accessing MongoDB ..56

Chapter 8 Messaging with RabbitMQ ...60

Why is RabbitMQ useful? ...62

Chapter 9 Support Tools: Build and Testing ..63

Mocha and Chai ...63

Gulp ...66

ESLint ..68

Appendix A: Introduction to ES6 ...71

Arrow functions...71

const and let ...72

Template strings ...73

6

Classes ..73

Destructuring assignment ...75

Default parameters ...75

Rest and spread ...76

Summary ..76

7

 The Story behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest
In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series
This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content
Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever
Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

S

8

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

9

About the Author

Emanuele DelBono (@emadb) is a web developer based in Italy. He is one of the founders of
CodicePlastico, a software house that builds web applications for its customers. He architects
and develops web applications in Node.js and .NET.

Emanuele is also a speaker at various conferences about web development and agile practices.
He plays an active role in Italian development communities such as Webdebs.org.

https://twitter.com/emadb

10

About this Book

This book is a quick view on Node.js, this new, astonishing, popular, fresh technology that is
spreading through developers all around the world. This is a good introduction to the platform
that inspects various topics from basic to intermediate. It also provides an overview on the
environment around the platform so that after this book, the readers should have a clear idea
about what they can do with Node and how to start using it. To read and fully understand this
book, you need to know JavaScript. Syncfusion has an e-book titled JavaScript Succinctly that
can be used to build the necessary skills to follow the examples in this book. You can download
the e-book from the Syncfusion website.

http://www.syncfusion.com/resources/techportal/details/ebooks/javascript

11

Chapter 1 An Introduction to Node.js

The history

Node.js is the platform that, in a very short time, has reached such worldwide success that
today it is one of the most interesting platforms for writing web applications and more.

Node.js was born in 2009 from an idea of Ryan Dahl, who was searching for a way to track the
time needed to upload a file from a browser without continuously asking the server “how much
of the file is uploaded?” His idea was to explore what would happen if the requests were non-
blocking, and JavaScript seemed the perfect language for two main reasons: at the time, it
didn’t have an I/O library, and the async pattern, which is very useful for writing non-blocking
applications, was already present in the language.

Figure 1: The Node.js website of 2009

12

So he took the Google Chrome V8 engine and used it as a base for writing a basic event loop
and a low-level I/O API. He presented that embryo of what was to become Node.js at the
European JsConf on November 8, 2008, and suddenly the project received a lot of interest from
the community.

In 2011, the first version of the npm package manager was published and developers started to
publish their own libraries to the npm registry. npm is surely one of the keys for the success of
Node.js. npm makes it very easy for everyone to use and publish libraries and tools.

Figure 2: The first logo

The first releases of Node were not so easy to use. Breaking changes happened quite often
from one version to another, at least until 2012 with the 0.8 version.

An interesting thing about the community is that since the very first 0.something edition, they
started to develop frameworks and tools for writing complex applications. The first version of
Express is from 2010, Socket.IO 2010, Hapi.js 2012. This means the community gave a lot of
trust from the beginning, to the point that in 2012, LinkedIn and Uber started using it in
production.

From 2011 to 2014, Node.js was gaining lot of consensus, and even though Ryan Dahl left the
project in 2012, more and more developers joined the platform, leaving Ruby, Java, Python, and
C# in favor of Node.

At the end of 2014, some of the committers were not happy about the governance of the project
that, until then, had been headed by Joyent, the company for which Ryan Dahl had worked at
the time of creation. They decided to fork the main repository and created IO.js with the intent of
providing faster release cycles and staying more up-to-date with the API and performance
improvements of V8.

Those months were something strange, because a lot of developers didn’t know what would
happen in the future with two codebases that could diverge, making it difficult to choose which
one to use.

13

A few months later, Joyent, with other companies (IBM, Microsoft, PayPal, Fidelity, SAP, and
The Linux Foundation), decided to support the Node.js community with an open governance like
the developers of IO.js wanted. This move made it possible for the two forks of Node.js to
merge under the governance of the Node.js Foundation.

The Node.js Foundation's mission is to enable the adoption and help the development of
Node.js and other related modules through an open governance model that encourages
participation, technical contribution, and a framework for long-term stewardship by an
ecosystem invested in Node.js's success.

With the advent of the Node.js Foundation, the first real, stable version of Node was released:
the new version “1.0” of Node.js, 4.0.0.

A few months later, in late 2015, the Long Term Support (LTS) plan was released with version
4.2.0. This 4.x version will be supported for 30 months. In parallel, other versions will be
released without the LTS (at the time of writing, version 5.10.0 is out). LTS implies that big
companies are more lean to adopt Node.js as a development platform.

So today, Node.js is here to stay and has nothing less than other web platforms. With the
Foundation, its future is surely bright and new improvements will continue to come.

Big companies like Microsoft, which was actively involved in porting Node.js on Windows, IBM,
PayPal, Red Hat, Intel, and its inventor Joyent are betting on and investing a lot in Node.

The community was and still is one of the winning points of Node.js. The Node community is
very inclusive and active, and in a few years they have produced more than 200,000 libraries
and tools to use with Node.js.

Obtaining help and participating in the community is quite easy. The starting point is the GitHub
website where you can find the source code and read about its issues. Committers are used to
discussing the issues with the community. There is also an IRC channel #Node.js on
irc.freeNode.net. If you prefer Slack, there is a channel on Nodejs.slack.com. There is also the
Google group and newsletters, tags on StackOverflow, and more. You can be sure to find what
you need.

 Note: We cannot introduce Node.js without spending some words on Chrome V8.
V8 is the engine that, so far, is behind the execution of Node.js applications. It was
originally developed by Google as the JavaScript engine that runs the Chrome
browser. Since all the code was released open source and since the ideas inside V8
were quite innovative, the Node.js developers find it natural to use V8 as the engine to
run JavaScript code on the server.

How to obtain Node

Node.js is available on its website, nodejs.org. I won’t spend time explaining how to install it on
the various platforms since on the official website, in the download section, there are installers
for every platform, with instructions on how to install it. After the installation is completed, you
have on your computer the Node executable (a note for Windows users: yes, you have to use
the command line!) and the npm (Node Package Manager) that we will see later.

https://github.com/Nodejs/node/
https://github.com/Nodejs/node/
http://nodejs.slack.com/
https://groups.google.com/d/forum/nodejs
http://stackoverflow.com/questions/tagged/node.js
https://nodejs.org/

14

Figure 3: The current Nodejs.org home page

To test that everything is installed correctly, you can type node in the command line to enter the
REPL interface. Once inside, you can try to execute some JavaScript code.

 Note: REPL stands for Read Evaluate Print Loop. It is a quite common tool in
Ruby and Node environments and is often used to learn a library or just to try some
code. It consists of a command line executable (node in this case). You can run it by
typing node in the terminal, which will give you access to the REPL. Here, you type
any valid JavaScript statement and the REPL evaluates it for you immediately.

Figure 4: Using the REPL

15

The Node REPL is a useful tool to test some code or to play with some library. Windows users
are not used to tools like this, but I invite them to play with it to discover how useful it is.

To write a real-world application, you can use the text editor that you prefer, like Vim,
SublimeText, or Atom. If you want something more, Visual Studio Code is one the best
lightweight IDEs for Node.js, and even if it is very similar to Atom (both are built on Electron), VS
Code adds an integrated debugger that is very useful to inspect the application state during the
run phase.

If VS Code is too lightweight, you can use Visual Studio with the Node.js tools installed or
WebStorm, a full IDE suited for web applications.

http://www.vim.org/
http://www.sublimetext.com/
https://atom.io/
https://code.visualstudio.com/
https://www.visualstudio.com/vs/
https://www.jetbrains.com/webstorm/

16

Chapter 2 Hello Node.js

Now that we have installed all the things that we need to start using Node.js, it’s time to write a
small program to investigate what Node is, what its peculiarities and advantages over other
platforms are, and how to use it best to develop applications.

Hello world

The basic hello world application in Node.js is something like this:

Code Listing 1

console.log('Hello world');

It’s not much. It’s just a JavaScript instruction. But if we write that line inside a file named
index.js, we can run it from the command line. We can create a new file called index.js, and
inside it we write the previous statement. We save it and we type this in the same folder:

Code Listing 2

> node index.js

And what you obtain is the “Hello world” string in the terminal. Not so interesting. Let’s try
something more useful.

In a few lines of code, we can create the HTTP version of the hello world:

Code Listing 3

const http = require('http')
const server = http.createServer((request, response) => {
 response.writeHead(200, {'Content-Type': 'text/plain'})
 response.end("Hello World")
})
server.listen(8000)

This is a basic web server that responds “Hello World” to any incoming request. What it does is
require from an external library the http module (we will talk about modules in the next

chapter), create a server using the createServer function, and start the server on the port

8000.

The incoming requests are managed by the callback of the createServer function. The

callback receives the request and response objects and writes the header (status code and

content type) and the string Hello World on the response object to send it to the client.

17

We can run this mini HTTP server from the command line. Just save the preceding code inside
a file named server.js and execute it from the command line like we did in the previous example:

Code Listing 4

> node server.js

The server starts. We can prove it by opening a browser and going to http://localhost:8000 to
obtain a white page with Hello World on it.

Figure 5: Hello World in the browser

Apart from the simplicity, the interesting part that emerges from the previous code is the
asynchronicity. The first time the code is executed, the callback is just registered and not
executed. The program runs from top to bottom and waits for incoming requests. The callback is
executed every time a request arrives from the clients.

This is the nature of Node.js. Node.js is an event-driven, single-thread, non-blocking I/O
platform for writing applications.

What does that mean?

Event driven

In the previous example, the callback function is executed when an event is received from the
server (a client asks for a resource). This means that the application flow is determined by
external actions and it waits for incoming requests. In general events, when something
happens, it executes the code responsible for managing that event, and in the meantime it just
waits, leaving the CPU free for other tasks.

Single thread

Node.js is single thread; all your applications run on a single thread and it never spawns on
other threads. From a developer point of view, this is a great simplification. Developers don’t
need to deal with concurrency, cross-thread operations, variable locking, and so on. Developers
are assured that a piece of code is executed at most by one single thread.

But the obvious question to be asked is: how can Node be a highly scalable platform if it runs on
a single thread?

The answer is in the non-blocking I/O.

http://localhost:8000/

18

Non-blocking I/O

The idea that lets Node.js applications scale to big numbers is that every I/O request doesn’t
block the execution of an application. In other words, every time the application accesses an
external resource, for example, to read a file, it doesn’t wait for the file to be completely read. It
registers a callback that will be executed when the file is read and in the meantime leaves the
execution thread for other tasks.

This is the reason why a single thread is sufficient to scale: the application flow is never blocked
by I/O operations. Every time an I/O happens, a callback is registered on a queue and executed
when the I/O is completed.

The event loop

At the heart of the idea of non-blocking I/O is the event loop. Consider the previous example of
a simple web server. What happens when a request arrives before the previous one was
served? Remember that Node.js is single thread, so it cannot open a new thread and start to
execute the code of the two requests in parallel. It has to wait, or better yet, it puts the event
request in a queue and as soon as the previous request is completed it dequeues the next one
(whatever it is).

Actually, the task of the Node engine is to get an event from the queue, execute it as soon as
possible, and get another task. Every task that requires an external resource is asynchronous,
which means that Node puts the callback function on the event queue.

Consider another example, a variation of the basic web server that serves a static file (an
index.html):

Code Listing 5

var http = require('http')
var fs = require('fs')
var server = http.createServer((request, response) => {
 response.writeHead(200, {'Content-Type': 'text/html'});
 fs.readFile('./index.html', (err, file) => {
 response.end(file);
 })
})
server.listen(8000)

In this case, when a request arrives to the server, a file must be read from the filesystem. The
readFile function (like all the async functions) receives a callback with two parameters that will

be called when the file is actually read.

This means that the event “the file is ready to be served” remains in a queue while the execution
continues. So, even if the file is big and needs time to be read, other requests can be served
because the I/O is non-blocking (we will see that this method of reading files is not the best
one).

19

When the file is ready, the callback will be extracted from the queue and the code (in this case
the function response.end(file)) will be executed.

Figure 6: The Node.js event loop

The event loop is the thing that continues to evaluate the queue in search of new events to
execute.

So the fact that Node is single-thread simplifies a lot of the development, and the non-blocking
I/O resolves the performance issues.

The event loop has various implications on how we write our code. The first and most important
is that our code needs to be as fast as possible to free the engine so that other events can be
served quickly.

Consider another example. You should already be familiar with the JavaScript function
setInterval. It executes a callback function every specified number of milliseconds.

Code Listing 6

setInterval(() => console.log('function 1'), 1000)
setInterval(() => console.log('function 2'), 1000)

console.log('starting')

When we run this code, the output will be something like this:

Code Listing 7

starting
function 1
function 2

20

function 1
function 2

What happens inside?

The first line adds in the queue the callback that writes “function 1” to the console after one
second. The second line does the same and the writes “function 2.”

Then it writes “starting” to the console.

After about one second, “function 1” will be printed to the console, and just after “function 2” will
appear. We can be sure that function 1 will be printed before function 2 because it is declared
first, and so it appears first in the queue.

So this program continues to print the two functions to the console.

Now we can try to modify the code:

Code Listing 8

setInterval(() => console.log('function 1'), 1000)
setInterval(() => {
 console.log('function 2')
 while (true) { }
}, 1000)
console.log('starting')

We are simulating a piece of code that is particularly slow…infinitely slow!

What happens when we run this script? When it is its turn, function 2 will be executed and it will
never release the thread, so the program will remain blocked on the while cycle forever.

This is due to the fact that Node is single-thread and if that thread is busy doing something (in
this case cycling for nothing), it never returns to the queue to extract the next event.

This is why it is very important that our code is fast, because as soon as the current block
finishes running, it can extract another task from the queue. This problem is solved quite well
with asynchronous programming.

Suppose that at a certain point we need to read a big file:

Code Listing 9

var fs = require('fs')
var data = fs.readFileSync('path/to/a/big/file')

If the file is very big, it needs time to be read, and since this piece of code is synchronous, the
thread is blocked while waiting. All the data and all the other events in the queue must await the
completion of this task.

21

Fortunately, in Node.js all the I/O is asynchronous and instead of using the readFileSync, we

can use the async version readFile with a callback:

Code Listing 10

var fs = require('fs')
fs.readFile('path/to/a/big/file', (err, data) => {
 // do something with data
})

Using the async function guarantees that the execution continues to the end, and when the file
is eventually read and the data ready, the callback will be called, passing the read data. This
doesn’t block the execution and the event loop can extract other events from the queue while
the file is being read.

 Note: It’s an accepted pattern that the first parameter of a callback function is the
possible error.

The Node.js runtime environment

When we run a script using node index.js, Node loads the index.js code and after compiling

it, Node executes it from top to bottom, registering the callbacks as needed.

The script has access to various global objects that are useful for writing our applications. Some
of them are:

Table 1: Global objects and functions

__dirname The name of the folder that the currently
executing script resides in.

__filename The filename of the script.

console Used to print to standard output.

module A reference to the current module (more on
this later).

require() Function used to import a module.

As already stated, Node comes with a REPL that is accessible by running Node from the
command line.

Inside the REPL we can execute JavaScript code and evaluate the result. It is also possible to
load external modules by calling the required function. It very useful for testing and playing with
new modules to understand how they work and how they have to be used.

22

The Node.js REPL supports a set of command line arguments to customize the experience:

~/$ node --help

Usage: node [options] [-e script | script.js] [arguments]

 node debug script.js [arguments]

Options:

 -v, --version print Node.js version

 -e, --eval script evaluate script

 -p, --print evaluate script and print result

 -c, --check syntax check script without executing

 -i, --interactive always enter the REPL even if stdin

 does not appear to be a terminal

 -r, --require module to preload (option can be repeated)

 --no-deprecation silence deprecation warnings

 --throw-deprecation throw an exception anytime a deprecated function is

used

 --trace-deprecation show stack traces on deprecations

 --trace-sync-io show stack trace when use of sync IO

 is detected after the first tick

 --track-heap-objects track heap object allocations for heap snapshots

 --v8-options print v8 command line options

 --tls-cipher-list=val use an alternative default TLS cipher list

 --icu-data-dir=dir set ICU data load path to dir

 (overrides NODE_ICU_DATA)

23

Environment variables:

NODE_PATH ':'-separated list of directories

 prefixed to the module search path.

NODE_DISABLE_COLORS set to 1 to disable colors in the REPL

NODE_ICU_DATA data path for ICU (Intl object) data

NODE_REPL_HISTORY path to the persistent REPL history file

Documentation can be found at https://nodejs.org/.

Event emitters

To write asynchronous applications, we need the support of tools that enable the callback
pattern. In the Node standard library, there is the EventEmitter module that exposes the

functionality to implement an observer.

Let’s try a first example:

Code Listing 11

const EventEmitter = require('events').EventEmitter
let emitter = new EventEmitter()
emitter.on('newNumber', n => console.log(n * 2))
for (let i = 0; i < 10; i++) {
 emitter.emit('newNumber', i)
}

This small program implements a function that doubles the number from zero to ten using an
observer pattern through the EventEmitter. Even if the program is not very useful, it explains

the use of EventEmitter .

The first line loads the events module and gets the EventEmitter function that is used to

create a new emitter.

The even emitter object has two main methods: emit and on.

on is used to subscribe to a particular event. It receives an arbitrary event name (newNumber in

this case) and a callback function that will be executed when the event occurs.

If we execute the code, we obtain a list of numbers on the terminal. But what is the flow of the
program? EventEmitter is synchronous, and that means the callback is called on every cycle

of the for loop. If we add some console messages to log the execution, we will see that after

emitting newNumber, the callback is executed immediately.

https://nodejs.org/

24

Figure 7: Event emitter

How can we transform this code to be asynchronous?

We can use the setImmediate function that, even if it is called immediate, puts the event in the

queue and continues with the execution.

 Note: There is some confusion around the setImmediate and process.nextTick
functions. They seem similar (and they are) but they have a small, subtle difference.
setImmediate puts the function in the queue, so if there are other functions in the
queue, the setImmediate function will be executed after these other functions.
process.nextTick puts the function at the head of the queue so that it will be
executed exactly at the next tick, bypassing other functions in the queue.

The code is transformed:

Code Listing 12

const EventEmitter = require('events').EventEmitter
let emitter = new EventEmitter()
emitter.on('newNumber', n => setImmediate(() => console.log(n * 2)))
for (let i = 0; i < 10; i++) {
 emitter.emit('newNumber', i)
}

25

Every time the emitter emits an event, the listener calls the setImmediate function with the

callback to execute. That callback is queued and executed after the current piece of code is
complete (at the end of the for loop).

This is a naïve implementation of an async flow, but the important thing is to understand and
become confident with these patterns because as Node developers, we have to know very well
how the event loop works and how we can manage async calls.

Callback hell

The event loop is a great way to leave our program free to continue while the operating system
completes the operation we need, but at the same time, serializing different tasks using this
pattern becomes tedious and hard to maintain.

Suppose that we have three different async tasks that have to be done in a series. The first task
concatenates two strings, the second uppercases a string, and the third decorates the string
with stars. We assume that these three tasks are asynchronous:

Code Listing 13

function concat(a, b, callback){
 setTimeout(function(){
 var r = a + b
 callback(r)
 }, 0)
}

function upper(a, callback){
 setTimeout(function(){
 var r = a.toUpperCase()
 callback (r)
 }, 0)
}

function decor(a, callback){
 setTimeout(function(){
 var r = '*' + a + '*'
 callback (r)
 }, 0)
}

Since they are asynchronous, the signature of the function receives a callback that has to be
called at the end. To simulate the asynchronicity, we have used the setTimeout function.

To serialize the call to these three functions, we can do this:

26

Code Listing 14

concat('hello', 'world', r1 => {
 upper(r1, r2 => {
 decor(r2, r3 => {
 console.log(result, r3) // *HELLOWORLD*
 })
 })
})

When the code assumes this shape of a Christmas tree, we are in a case of "callback hell." In
this example we have three levels, but sometimes the levels are four, five, or more.

To better understand how the callbacks are called, take a look at the following image:

Figure 8: Callbacks

Every function is called with two parameters: an input variable and a callback, the next function
to call. So each function does something and calls the next one.

To solve this issue, ECMAScript 6 introduced the concept of promises. A promise is a function
that will succeed or fail. I used will because the success or failure is not determined at the time
of execution, since our code is asynchronous.

Let's see how to rewrite the last piece of code using promises. First of all, we need to transform
the three functions into promises:

27

Code Listing 15

function concatP(a, b) {
 return new Promise(resolve => {
 concat(a,b, resolve)
 })
}

function upperP(a) {
 return new Promise(resolve => {
 upper(a, resolve)
 })
}

function decorP(a) {
 return new Promise(resolve => {
 decor(a, resolve)
 })
}

Now we have three functions that return a promise. As already stated, the promise will resolve
sometime in the future. It will be resolved when the function resolve is called.

After this refactoring, we can call the three functions in sequence using this pattern:

Code Listing 16

concatP('hello', 'world')
 .then(upperP.bind(this))
 .then(decorP.bind(this))
 .then(console.log) // *HELLOWORLD*

This code is not nested like in Code Listing 14, and it became more readable.

Summary

In this chapter, we started to touch the basics of the world of Node.js. We learned the tenets of
a Node.js program, the simplicity of the single thread, and the peculiarity of the event loop and
the asynchronous I/O. Now we know how to run a simple script or play with the REPL. In the
next chapters we go deeper, and start to learn how to write bigger programs using modules and
other useful tools.

28

Chapter 3 The Node.js Ecosystem

Node.js is quite young, especially compared to other platforms like PHP, .NET, or Ruby, but
since its usage became so widespread in so few years and lots of developers moved to Node
from other platforms, the community has created tons of libraries, tools, and frameworks. It’s like
the experienced developers from other environments bring to Node the best from these other
worlds.

The module system

In Chapter 2, we wrote some very basic programs and used a couple of external modules to
access the filesystem and use the EventEmitter.

We used the require function to “import” the functionality defined in module fs in our program.

The Node module system is based on the CommonJS specification. The require function

evaluates the code defined in the specified module and returns the module.exports object.

This object can be, and usually is, used to return something to the caller.

To understand how it works, let’s start with a basic module.

Code Listing 17

// file: greeter.js
module.exports = (who) => {
 console.log(`Hello ${who}`)
}

We can use this module:

Code Listing 18

// file: index.js
var greet = require('./greeter')
greet('ema')

In greeter.js we assign to the object module.exports a function with one parameter. That

function simply prints to the console.

module.exports is a global object that is exported to the caller using the require function. The

require function returns an object that references module.exports of that file.

Everything defined inside a module is private and doesn’t pollute the global scope except what
is assigned to module.exports, and when a module is required, it is cached for better

performance. This means the subsequent requires to the same module receive the same
instance (the code inside the module is executed only once).

http://www.commonjs.org/

29

In the first example, we exported a single function. There are no limits to what we can export.
We can export objects, classes, or functions.

Code Listing 19

// file: export_object.js
module.exports = {
 name: 'emanuele',
 surname: 'delbono',
 getFullName: function(){ return `${this.name} ${this.surname}` }
}

In this case, we are exporting a literal object with two properties (name and surname) and a
function getFullName.

To use this module:

Code Listing 20

// file: index.js
var user = require('./export_object')
console.log(user.name); // emanuele
console.log(user.getFullName()); //emanuele delbono

To require a module, we simply need to invoke the require function. In a case where we are

requiring a module that is written by us and is not in the node_module folder, we must use the

relative path (in this case the module and the main program are in the same folder). If we are
requiring a system module or a module downloaded using npm, we simply specify the module

name (in Chapter 2 we required fs by just specifying its name).

As stated before, the required modules are cached for future use. This is primarily for
performance reasons and is generally a good thing. Sometimes we need the content of the
module executed every time it is requested.

One trick is to export a function and call that function. The function implementation is cached,
but every time we execute it we can obtain something new.

For example:

Code Listing 21

// file: export_object.js
module.exports = function(){
 return { executionTime: new Date() }
}

This module exports a function that returns an object. Every time we execute the function, we
obtain a new object, eventually with different properties.

30

How can we start using external modules?

We already talked about npm in Chapter 1. npm is the package manager for Node.js
applications and we use it to install packages that we can use to develop our applications.

npm is also the registry in which the components are stored and indexed. On
http://www.npmjs.com/ we can search for packages and find information about their usage.

Figure 9: npmjs.com home page

To install a package, we must run this command:

> npm install <package name>

This command will install the packages in the node_modules folder of the current directory and

it will be available to other modules in the main directory or in some subfolder of the current
directory.

For example, we can try to install Express.js, a framework for writing web applications:

> npm install express

This command will download the Express package and all its dependencies in the
node_modules folder so that they will be available for the scripts in the current folder or any

nested folders.

http://www.npmjs.com/

31

npm is also useful for creating new projects. Just run:

> npm init

This command will run through a simple wizard and create a file named package.json with the
collected information. Something like:

{
 "name": "sampleApp",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Emanuele DelBono",
 "license": "ISC"

}

This file acts as a sort of project file with some metadata information. Most of the elements are
self-explanatory; others will be discussed later.

This file is primarily used for storing dependency information. For example, if we run npm
install express in the same folder with the --save flag, the dependency information will be

stored in the package.json file:

> npm install express --save

When this command is completed, the package.json file will be updated with this new
information:

"dependencies": {
 "express": "^4.13.4"

 }

That informs us that express 4.13.4 (using semantic versioning) is a dependency of our project.
This is useful because usually the node_modules folder is not added to source control, and so

with package.json we can download all the needed dependencies with correct versions just by
typing npm install.

 Tip: It's generally better to stick to a particular version. Sometimes even minor
version differences break something. I usually remove the ^ in the package.json
dependencies section.

32

The dependencies in the package.json file are usually split into two groups: dependencies and

devDependencies. It is a good practice to put the runtime dependencies inside the

dependencies group and keep the devDependencies section for all the packages that are used

only during development (for example, for testing, linting code, seeding the database, etc.). This
helps the deployment because in the production environment only the dependencies will be
downloaded, leaving the server free of unneeded packages.

In addition to dependency management, the package.json file is useful for other things. It's
becoming quite common to use the package.json file to automate some project tasks using the
script section.

By default, the script section has one entry dedicated to testing and the default implementation
simply echoes a string to the terminal, saying that no test has been configured.

It can be useful to add a run script to start the application. For example, if the entry point is in
the index.js file, we can define a start script like this:

"scripts": {
 "start": "node ./index.js"

 },

When we execute the command:

> npm run start

Node.js will start the index.js file as if we are running directly from the terminal. Some hosting
services use this script to execute custom commands during the deployment of the application.
For example, Heroku runs the post-install script after having installed all the dependencies. It's
useful, for example, to precompile the static assets.

In cases where we are developing a library that will be published on npm, the main attribute is

really important. It tells Node.js which file to include when the library is required.

Summary

npm and package.json are two of the pillars of any Node.js application and it is important to use
them correctly, especially when we are working inside a team, so that everybody will be able to
work at their best.

33

Chapter 4 Using the Filesystem and
Streams

From this chapter we start writing something interesting, using the filesystem, and discovering
the power of the stream.

The fs module

All you need to work with the filesystem is inside the fs module that is part of the core library

that came with Node.js.

The fs module is a sort of wrapper around the standard POSIX functions and exposes a lot of

methods to access and work with the filesystem. Most of them are in two flavors: the default
async version and the sync version. Even if the async version is preferable, sometimes the sync
version is useful for some tasks that don't need extreme performance.

Reading a file

To read a file from the filesystem, we can use the readFile function:

Code Listing 22

const fs = require('fs')
fs.readFile('/path/to/file', (err, data) => {
 // do something with data
})

This is the asynchronous version that calls the callback when the file is read.

The synchronous version is:

Code Listing 23

const fs = require('fs')
const data = fs.readFileSync('/path/to/file')

The asynchronous version is usually preferable, but there are cases in which you need to wait
for the file to be ready before going on.

Writing a file

The counterpart of reading a file is writing it using the writeFile function:

34

Code Listing 24

const fs = require('fs')
fs.writeFile('/path/to/file', data, (err) => {
 // check error
})

The writeFile function has its own synchronous version that works the same called

writeFileSync.

Watching files

Often applications should monitor a folder and do something when a new file arrives or when
something changes. Node.js has a built-in object to watch a folder that emits events when
something happens.

Code Listing 25

const fs = require('fs')
const watcher = fs.watch('/path/to/folder')
watcher.on('change', function(event, filename) {
 console.log(`${event} on file ${filename}`)
})

If we execute this piece of code and try to add a file or change a file in the /path/to/folder

folder, the change event will be executed and the event type and filename will be printed to

the console.

The path module

Another useful module tied to the filesystem is the module path that exposes a set of functions
that operate with file paths. This module is interesting for managing paths without worrying
about separators, concatenation, or file extensions.

For example, if we want to join a path with a file name to get the full path, we can use the join

method:

Code Listing 26

const path = require('path')
const fullPath = path.join('/path/to/folder', 'README.md')

fullPath will be /path/to/folder/README.md.

35

Sometimes it’s useful to get the full path of a file in the current directory. In these cases, we can
use the __dirname global variable to build the full path.

Code Listing 27

const path = require('path')
const fullPath = path.join(__dirname, 'README.md')

This will return the full path of the README.md contained in the current folder.

The path module also has a method for decomposing a full path in parts:

Code Listing 28

const path = require('path')
const parts = path.parse('/path/to/a/file.txt')
console.log(parts)

This will print out the parts of the path in the following format:

Figure 10: Path info

The parse method will read a string and split it into its composing parts.

The path module has other methods that you can read about at nodejs.org/api/path.html.

Streams

In Chapter 2, we wrote a sample HTTP server that serves a file from the filesystem. The code
was:

https://nodejs.org/api/path.html

36

Code Listing 29

const http = require('http')
const fs = require('fs')
const server = http.createServer((request, response) => {
 response.writeHead(200, {'Content-Type': 'text/html'});
 fs.readFile('./index.html', (err, file) => {
 response.end(file);
 })
})
server.listen(8000)

Like we said in Chapter 2, this code is very harmful because it reads all the file content in
memory, and only after having read it all does it respond to the client.

Streams are the perfect solution for these contexts. Streams are similar to UNIX pipes and can
be readable, writable, or both (duplex). The nice thing is that they don’t need to read all the data
before making it available to others. They emit events when a chunk of data is available so that
the consumers can start using it.

Streams are event emitters and, in the case of readable streams, their two main events are
data and end, which are raised when a chunk of data is ready to be used and when the stream

has finished, respectively.

Readable streams

Code Listing 30

const fs = require('fs');
const http = require('http');
const server = http.createServer((request, response) => {
 response.writeHead(200, {'Content-Type': 'text/html'});
 var stream = fs.createReadStream('./index.html');
 stream.pipe(response);
});
server.listen(8000);

This small sample introduces streams for reading a file and serving it to the client. It imports the
fs module and creates a readable stream from the file index.html.

Since the response object is a stream, we can pipe the readable stream to response so that the

server can start serving chunks of index.html as soon as they are available.

This basic sample should clarify how streams work. Essentially, we can pipe a readable stream
inside a writable stream.

37

Writable streams

Writable streams are the counterpart of readable ones. They can be created with the function
createWriteStream and they are streams on which we can pipe something. For example, we

can use a writable stream to copy a file:

Code Listing 31

const fs = require('fs');
var sourceFile = fs.createReadStream('path/to/source.txt');
var destinationFile = fs.createWriteStream('path/to/dest.txt');

sourceFile.on('data', function(chunk) {
 destinationFile.write(chunk);
});

Streams are event emitters and when some data is available inside the streams, they emit the
data event (like in the previous example). The data event receives a chunk of data that can be

used.

When the stream is finished, the emitted event is end and can be used to close the stream or to

do some final operations.

Summary

Streams are very powerful tools to manage big files or images. Most of the time, the libraries
that we use will hide the implementation details, but usually, when dealing with big chunks of
data, streams are widely used.

38

Chapter 5 Writing Web Applications

The most common application type written in Node is web applications. We already saw in
Chapter 2 how to write a simple HTTP server. In this chapter, we will go deeper and use the
Express.js framework to see how to build real web applications.

The http module

In Chapter 2, we saw how to write a really basic web server:

Code Listing 32

const http = require('http')
const server = http.createServer((request, response) => {
 response.writeHead(200, {'Content-Type': 'text/html'})
 response.end('<h1>Hello from Node.js</h1>')
})
server.listen(8000)

This piece of code creates an HTTP server that listens on port 8000. Whatever requests arrive
at the server, the response is always <h1>Hello from Node.js</h1>. We are using the end

method here because we have just one string to send to the client. In general, we could use
response.write several times and only at the end call response.end() to close the

connection.

The request object contains all the information about the request, so we could use it to decide

what kind of response we have to send to the client.

The response object is used to build the response. We are using it to add the status code (200)

and the Content-Type header.

If we would like to build something less trivial, we can inspect the request.url to decide which

content to send to the client.

For example, we can write something like this that sends a different response based on the
requested URL:

Code Listing 33

const http = require('http')
const server = http.createServer((request, response) => {
 response.writeHead(200, {'Content-Type': 'text/html'})
 if (request.url === '/about') {
 response.write('<h1>About Node.js</h1>')
 } else {

http://expressjs.com/

39

 response.write('<h1>Hello from Node.js/h1>')
 }
 response.end();
})
server.listen(8000)

The request object has a lot of other attributes and methods to analyze the request. For

example, the attribute method contains the type of request (GET, POST, PUT, …).

The http module is quite easy to use and, added to the fact that HTTP protocol is also easy,

we can think of writing our own web applications using the http module directly. But, even if it is

easy, the Node community has created a lot of libraries and frameworks that speed up the
development of web applications. One of the first and most famous is Express.js.

Express.js

Express.js is a minimal web framework built on the idea of composing middleware (an idea that
came from the Ruby world with Rack). Even if Express is very minimal, the Node community
has built tons of plugins to add functionality to Express so that we can choose exactly what we
need in our applications.

The minimal Express application is something like this:

Code Listing 34

const express = require('express')
const app = express()

app.get('/', (req, res) => {
 res.send('Hello World!')
});

app.listen(8000, () = > {
 console.log('Example app listening on port 8000!');
});

Before running this code, we need to install Express in our node_modules folder using npm:

Code Listing 35

> npm install express

The code requires the express module, a function that is used to create an application. With the

application instance, we can define the routes and the callbacks to use when the routes have
been called.

40

In the previous example, we have defined a single route that responds to an HTTP GET / (root)
and we respond with the string Hello World!

This example is not very different from the previous one that used the raw http module, but the

structure is a little bit different and more maintainable and extensible.

From here we can add more routes using the HTTP methods get, post, put, etc., and

specifying the pattern that the route must match.

For example, a basic CRUD API could be something like this:

Code Listing 36

const express = require('express')
const app = express()

app.get('/users', (req, res) => {
 // get all users
})

app.get('/users/:id', (req, res) => {
 // get the user with the specified id
})

app.post('/users', (req, res) => {
 // create a new user
})

app.put('/users/:id', (req, res) => {
 // update the user with specified id
})

app.delete('/users/:id', (req, res) => {
 // delete the user with specified id
})

app.listen(8000, () = > {
 console.log('Example app listening on port 8000!');
})

 Note: CRUD stands for Create, Read, Update, and Delete. They are the four basic
operations on a database or, more generally, on a resource.

On an app object, we attach the various routes specifying the method used. This API works on

hypothetical user resources and exposes a set of endpoints to manipulate users. Notice the get

and post that access a single user. In these cases, the URL will contain the id of the user

(something like /users/42), and in the route declaration Express uses the :id (colon id) to

specify that that part is variable. Inside the request we will find the value of id inside

req.params.id.

41

To build the API responses, we can use the res object that is available inside the callback. For

example, to return a list of users, we can simply send the user array to the client using the
method send:

Code Listing 37

const express = require('express')
const app = express()

app.get('/users', (req, res) => {
 const users = [{id: 1, name: 'Emanuele'}, {id: 2, name: 'Tessa'}]
 res.send(users)
})
app.listen(8000, () = > {
 console.log('Example app listening on port 8000!');
})

Express.js treats the users array as an object, serializes it as a JSON array (by default), and

sets all the necessary headers and status codes to compose the correct response.

If we call the API using curl:

Code Listing 38

curl -i http://localhost:8000/users

The response is:

Code Listing 39

HTTP/1.1 200 OK
X-Powered-By: Express
Content-Type: application/json; charset=utf-8
Content-Length: 52
ETag: W/"34-TWdsT6/ZO3egRrB46eWd+w"
Date: Tue, 23 Feb 2016 16:23:37 GMT
Connection: keep-alive

[{"id":1,"name":"emanuele"},{"id":2,"name":"Tessa"}]

 Tip: Even if res.send converts the object in JSON format, response has a JSON
method that explicitly specifies the content type to application/json.

Sometimes we need to configure the response, for example, to specify a particular status code
or a specific header. The res object has a series of methods to do this.

If we need to specify a particular status code, we can use res.status(code) where code is

the actual status code that we want. By default, it’s 200.

42

The send and json methods have an overload to specify the status code:

Code Listing 40

res.json(200, users)
res.send(200, users)

To add a header, we use the method res.set(headerName, headerValue).

For some headers there exists an ad hoc method. For example, it is good practice for an API
that creates a resource to return the URL of the newly created resource in the location

header:

Code Listing 41

app.post('/users', (req, res) => {
 // create a new user
 const user = createUser(req.body)
 res.location(`/users/${user.id}`)
 res.status(201)
})

This example shows a possible implementation of a post to create a new user using the
createUser function. Then we add the location header and we send the status code 201

(created) to the client. In this case, the body is empty.

Until now we have seen how to use Express.js to create a simple API, but Express is not only
about APIs, it permits us to create complete web applications with HTML pages using a
template engine.

Jade

In case we need to render an HTML page using a server-side template engine, Jade is one of
the many options available for Express.js.

To start using Jade, we first need to install it:

Code Listing 42

npm install jade

Then we need to set a couple of options on our application object:

Code Listing 43

app.set('view engine', 'jade')
app.set('views', './views')

http://jade-lang.com/

43

The first set specifies that the view engine we want to use is Jade. The second tells the app

that the view files will be in the ./views folder of the current project.

After these couple of settings, we are ready to create our first template and to define a router
that will render it.

Creating a template is quite easy; Jade has a very minimal syntax and is easy to learn. For
example, we can create a new file hello.jade in the ./views folder:

Code Listing 44

html
 head
 title= title
 body
 h1= messageTitle
 div(class='container')
 = messageText

This is a Jade template that compiles to:

Code Listing 45

<html>
 <head>
 <title>Hey</title>
 </head>
 <body>
 <h1>Hello noders</h1>
 <div class="container">
 lorem ipsum....
 </div>
 </body>
</html>

The compilation process is managed by Express with Jade in response to a call to the selected
route. In our case we can define a route:

Code Listing 46

app.get('/hello', function (req, res) {
 res.render('hello', {
 title: 'Hey',
 messageTitle: 'Hello noders',
 messageText: 'lorem ipsum....'
 })
})

44

This route responds to /hello and it renders a view called hello (that matches the file name).

The render method receives the object that we want to pass to the view. This object is

composed of three properties: title, messageTitle, and messageText.

So calling the route /hello from the browser will render an HTML page like this:

Figure 11: Hello world in Express

Jade is a full template language that supports all the semantics needed to build an HTML page.
We can use conditionals, server-side code, and variables. The nice thing is that you don't need
to close the tags, so the Jade files are quite compact.

Middleware

As stated previously, Express is a minimal framework and is based on the idea of middleware.
Middleware is a stack of functions which an object’s request and response pass through. Each
middleware can do whatever it needs to the request and response and pass it to the next
middleware. It is a sort of chain of responsibility.

 Note: Chain of responsibility is a design pattern that aims to create a series of
operations on an object. Each element of the chain does something to the input
object and passes the result to the next element of the chain.

With this powerful idea, we can compose the stack with the exact middleware that we need. For
example, if we need to manage a cookie to identify the user, we can use a middleware that
checks the cookie, and if it is not valid, then we can break the chain with a short circuit that
returns an HTTP 401 status to the client.

Writing middleware is very easy; it is just a function with three parameters: the request, the
response, and the next middleware to call:

Code Listing 47

function myMiddleware(req, res, next) {
 // do what you need and if everything is ok
 next()

45

}
app.use(myMiddleware)

What can we do with middleware?

Middleware functions can execute some code, or make changes to the request or response
objects. At the end, they can end the request-response cycle or call the next function to
continue the chain of middleware.

With middleware we can, for example, write a logger:

Code Listing 48

function requestLogger(req, res, next) {
 console.log(`${req.method} ${req.originalUrl}`)
 next()
}
app.use(requestLogger)

This simple middleware function logs to the console the method and the URL requested.

The idea of function middleware is very powerful and its ease of use is one of the reasons for
the success of Express.js.

Most Express.js plugins are implemented as plugins and we can find a lot of middleware for
every application need, from security to logging, on npmjs.com.

Middleware can be set for the entire application using the app.use function, or per route

passing the function directly on the route definition:

Code Listing 49

function checkPermissionMiddleware(req, res, next){
 // verify permissions. If ok call next()
 if (ok){
 next()
 } else {
 res.status(401)
 }
}

app.post('/users', checkPermissionMiddleware, (req, res) => {
 // create a new user
 const user = createUser(req.body)
 res.location(`/users/${user.id}`)
 res.status(201)
})

https://www.npmjs.com/

46

With this configuration, the checkPermissionMiddleware function will be called before every

post request to the route /users. It can check to see if the correct authorization headers are in

the req object to manage continuing the request. If they are present, it will call the next

middleware (actually the function defined on the /users route), otherwise it will return a 401

without even calling the subsequent middleware.

The ease of modularity of middleware gives us a lot of flexibility with strengthened security and
without impacting the performance. In this last example, if the user does not have permission to
access the resource, the dangerous code is not even executed.

47

Chapter 6 Real-Time Apps with WebSocket

Web applications have evolved quickly in recent years, powered by the client-side frameworks
that have helped to create real responsive and reactive user interfaces that are indistinguishable
from old GUI applications.

If the clients are ready for fast reactivity from the user, we need reactive servers to build a real
reactive application too, and that's where WebSocket comes in.

WebSocket

The protocol at the base of every web application is HTTP, and in general HTTP works on a
request/response paradigm: the client issues a request to the server and waits for a response.
The server never chooses to call the clients. It is passive and just waits for requests.

WebSocket breaks this rule by giving the server the ability to call the clients. It is a standard
(IETF as RFC 6455) and is supported by all modern browsers (starting from IE10).

What WebSocket does is open a full-duplex connection over a TCP connection using port 80,
and after a quick handshake between the client and the server, the server keeps the connection
open.

Various libraries are available for implementing a WebSocket server. One of the most used is
Socket.IO.

Socket.IO

Socket.IO is one of the libraries that implements the WebSocket protocol for Node.js. It is
composed of two parts: the client side that runs in the browser and the server side that runs on
the server.

The server side is the one that opens a listener for the incoming connections and waits for calls
from the clients.

A typical basic setup for Socket.IO in the context of an Express.js application is:

Code Listing 50

const app = require('express')()
const http = require('http').server(app)
const io = require('socket.io')(http)

io.on('connection', socket => {
 console.log('a new user is connected');

https://tools.ietf.org/html/rfc6455

48

});

http.listen(3000, function(){
 console.log('listening on *:3000');
});

To run this code, we should install the Socket.IO package using npm.

This simple snippet creates an instance of Socket.IO based on the http module of Node.js.

This instance is then attached to the connection event and every time a user initializes a new

connection, the message a new user is connected will be printed to the console.

To test this program, we must have a client-side script that initializes the connection. The
easiest way to do this is to create an HTML page served by Express.js and put the JavaScript
code there.

To do this, we can modify our server-side code:

Code Listing 51

const app = require('express')()
const http = require('http').server(app)
const io = require('socket.io')(http)

io.on('connection', socket => {
 console.log('a new user is connected');
});

app.get('/', (req, res) => {
 res.sendfile('index.html');
});

http.listen(3000, () => {
 console.log('listening on *:3000');
});

We added a get route that serves a static file, index.html. Here, for the sake of simplicity, we

are not using a template engine but a plain HTML file. In more complex cases, we can use the
Jade engine, as we saw in the previous chapter.

The HTML will be something like this:

Code Listing 52

<!DOCTYPE html>
<html>
 <head>

49

 <meta charset="utf-8">
 <script src="/socket.io/socket.io.js"></script>
 </head>
 <body>
 <script>
 var socket = io.connect('http://localhost:3000');
 </script>
 </body>
</html>

In the HTML page, we require the socket.io.js client library that creates a global io function.

Calling that function and passing the server URL, we establish a new connection with the
server.

Now the client and server are connected and one can call the other. For example, if the client
needs to send a message to the server, it just has to call the emit function:

Code Listing 53

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <script src="/socket.io/socket.io.js"></script>
 </head>
 <body>
 <script>
 var socket = io.connect('http://localhost:3000')
 socket.emit('hello-message', {myData: 'hello from client'})
 </script>
 </body>
</html>

The emit function takes two parameters, the event name that is a sort of key identifier of the

event, and the object that will be passed to the server.

To receive the event, the server must listen for that:

Code Listing 54

const app = require('express')()
const http = require('http').Server(app)
const io = require('socket.io')(http)

io.on('connection', socket => {
 socket.on('hello-message', data => console.log(data))
});

50

app.get('/', (req, res) => {
 res.sendfile('index.html');
});

http.listen(3000, () => {
 console.log('listening on *:3000');
});

After the connection has been established, we can add a handler for the hello-message event

and every time it arrives from the client, it will print the data to the console.

But the nice thing about WebSocket is that the connection is bidirectional and the server can
call the client. To do this, we use the same pattern we just used for the communication from
client to server. The server will emit an event and every connected client will receive it:

Code Listing 55

const app = require('express')()
const http = require('http').server(app)
const io = require('socket.io')(http)

io.on('connection', (socket) => {
 socket.on('hello-message', data => console.log(data))
 socket.emit('hello-server', {message: 'hello clients'})
});

app.get('/', (req, res) => {
 res.sendfile('index.html');
});

http.listen(3000, () => {
 console.log('listening on *:3000');
});

And the client:

Code Listing 56

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <script src="/socket.io/socket.io.js"></script>
 </head>
 <body>
 <script>
 var socket = io.connect('http://localhost:3000')

51

 socket.emit('hello-message', {myData: 'hello from client'})
 socket.on('hello-server', function(data) { console.log(data) })
 </script>
 </body>
</html>

52

Chapter 7 Accessing the Database

Every application sooner or later needs storage to persist its data. Node.js has several
packages to communicate with almost every database. In this chapter, we will see some basic
operations with PostgreSQL and MongoDB, two of the most used databases in their own
categories.

Accessing PostgreSQL

PostgreSQL is a relational open source database used in virtually every context. To use
PostgreSQL with Node.js, there are several packages available, but the most used is pg, the

basic driver.

After installing the driver using npm, we can connect to a database using this code:

Code Listing 57

const pg = require('pg')
const conString = "postgres://usr:pwd@serverName/databaseName"

pg.connect(conString, (err, client) => {
 // Do something with client here
})

The syntax is very simple and easy to understand. Now that we have an instance of the client
connection to the database, we can issue a query to extract some data.

For the following examples, we will consider a table like this:

Table 2: Sample data

Sample Table: movies

id title year

1 Her 2013

2 I, Robot 2004

3 A.I. Artificial Intelligence 2001

4 2001: A Space Odyssey 1968

5 Blade Runner 1982

http://www.postgresql.org/
https://www.mongodb.com/

53

Code Listing 58

const pg = require('pg')
const conString = "postgres://usr:pwd@serverName/databaseName"

pg.connect(conString, (err, client) => {
 client.query("SELECT * FROM movies", (err, res) => {
 // res.rows contains the record array
 })
})

This code runs a query on movies that extracts all the records inside the table. The records are
available inside the rows property of the result object and it is an array that we can use to

access the data.

If we need to specify a particular parameter, we can run a parameterized query. For example,
suppose that we need to extract all the movies that were released in 1982. We just add a where

clause with a parameter:

Code Listing 59

const pg = require('pg')
const conString = "postgres://usr:pwd@serverName/databaseName"
const year = 1982

pg.connect(conString, (err, client) => {
 client.query({text:"SELECT * FROM movies WHERE year = $1", values:
[year]}}, (err, res) => {
 // do something with data
 })
})

In this case, we pass to query an object with a text property (the query text) where the

placeholder $1 marks the position of the first parameter. The values of the parameters are in the

values array (ordered) and the driver will check for dirty strings to avoid SQL injection.

The node-pg driver supports an event-based API for consuming the result of a SELECT

statement. The client object has two events: row and end. The row event is raised on every

new row extracted from the database while the end event arrives when no more rows are

available:

Code Listing 60

const pg = require('pg')
const conString = "postgres://usr:pwd@serverName/databaseName"
const movies = []
const query = client.query('select title, year from movies')
query.on('row', function(row, result) {
 movies.push(row)

54

});
query.on('end', function(result) {
 console.log(movies.length + ' movies were load');
});

The use of the query object is a little bit different here: with the client.query function we

obtain an object to which we can attach some events. The query object is basically an event

emitter.

On the row event, we simply collect the row into an array, and on the end event, we print the

message to the console.

Which API we should use depends on the context in which we need to use the data. The first is
more suitable in cases where you need all the data before going on to something else. The
latter is based on events and is preferable where you can return partial results and start using
them as soon as they arrive.

So querying the database is quite easy. But what about other CRUD operations?

The pattern is the same: we need to create a query (INSERT, UPDATE, or DELETE) and pass
the parameters with correct values.

For example, suppose that we want to add a new movie to our list:

Code Listing 61

const pg = require('pg')
const conString = "postgres://usr:pwd@serverName/databaseName"
const year = 1982

pg.connect(conString, (err, client) => {
 client.query({text:"INSERT INTO movies(title, year) VALUES($1, $2)",
values: ['The Matrix','1999']}}, (err, res) => {
 // check err to see if everything is ok.
 })
})

For delete and update, the syntax is exactly the same.

These are some uses of the Postgres driver; more advanced use cases are available on the
driver’s GitHub page.

In cases where we need more than just a thin driver over the database for Postgres, there are a
bunch of other options available as plugins of this driver or as alternatives.

One different approach is to use a real Object Relation Mapper (ORM) to map our own objects
to the tables.

https://github.com/brianc/node-postgres

55

The most used ORM in Node is Sequelize. Sequelize is not only for Postgres; it supports
different databases like MySQL, MariaDB, and SQLite too.

With Sequelize, we can define an object that will be stored inside a table:

Code Listing 62

var Sequelize = require('sequelize');
var sequelize = new Sequelize('databaseName', usr, 'pwd');

var Movie = sequelize.define('movie', {
 title: Sequelize.STRING,
 year: Sequelize.INTEGER
})

Movie
 .findAll({where: ['year = ?, 1982]})
 .success(movies => {
 // do something with movie
 })

These few lines of code create a Movie schema and query the database for all the movies of

1982. As you can see, the query is written using a domain-specific language (DSL) and not
SQL. The mapping (which table and which fields) is defined in the schema using
sequelize.define.

The Movie object can also be used for storing new movies to the database:

Code Listing 63

const Sequelize = require('sequelize')
const sequelize = new Sequelize('databaseName', usr, 'pwd')

const Movie = sequelize.define('movie', {
 title: Sequelize.STRING,
 year: Sequelize.INTEGER
})

const movie = Movie.build({title: 'The Matrix',year: 1999})
movie.save()

The build method creates a new movie in memory that can be persisted using the Save

method. As in the findAll example, we don’t need to specify the table and the fields in which

we store the object properties. All of that is done automatically thanks to the mapping.

The ORM simplifies a lot of the basic operations, but as with every dependency in our projects,
it creates a sort of friction. Sequelize supports a lot of features, such as relations that permit you
to load related tables starting from one object, but in some ways we lose control of the access to
the database, which, in big applications, can lead to performance problems.

http://docs.sequelizejs.com/

56

Accessing MongoDB

MongoDB is a different type of database, classified as a NoSQL database, and is more of a
document database since the minimal granularity of information that you can store is a
document.

 Note: NoSQL stands for “Not Only SQL” and represents a database that uses a
different mechanism besides relational to store data. There are many options.
MongoDB stores records as JSON documents, but others use different storage
techniques. Wikipedia provides a good explanation of various database types at
en.wikipedia.org/wiki/NoSQL.

A document in MongoDB is JSON (specifically BSON, binary JSON) that we can save inside a
collection (a sort of table).

As with Postgres, there are various packages available to access the database, but the
MongoDB team has released an official driver called mongodb.

The basic template to start using the MongoDB database is:

Code Listing 64

const client = require('mongodb').MongoClient

const url = 'mongodb://localhost:27017/mydatabase'
client.connect(url, (err, db) => {
 // do something here
 db.close()
});

This code is very similar to what we wrote to connect to a Postgres database. We use a
connection string to identify the database server and we call the connect function to connect.

Querying a collection to read the documents is also very similar:

Code Listing 65

const client = require('mongodb').MongoClient

const url = 'mongodb://localhost:27017/mydatabase'
client.connect(url, function(err, db) {
 const collection = db.collection('movies')
 collection.find({year: 1982}).toArray((err, movies) => {
 // do something with movies array
 })
 db.close();
});

https://www.mongodb.com/
https://en.wikipedia.org/wiki/NoSQL

57

Even if this code is very similar to the Postgres code, here we have an additional step to
transform the result into a JavaScript array. By default, the mongodb driver returns a cursor that

we can use to cycle through the elements, or like in the previous example, transform the cursor
into a standard array to use the data.

The query language used by MongoDB to extract data is a sort of query by example. In the
example, we are asking to extract all the documents that have the property year equal to 1982.

To extract all the documents, without any clause, we can pass to find an empty object:

Code Listing 66

// ...
collection.find({}).toArray((err, movies) => {
 // do something with movies array
})

To better grasp the peculiarities of the MongoDB query syntax, the official documentation is the
best resource.

The other CRUD operations are very easy. Remember that in MongoDB you always operate on
a document, so we can insert a document, modify a document, and delete a document.

Code Listing 67

const client = require('mongodb').MongoClient
const movie = {title: 'The Matrix', year: 1999}
const url = 'mongodb://localhost:27017/mydatabase'
client.connect(url, function(err, db) {
 const collection = db.collection('movies')
 collection.insertOne(movie, (err, r) => {
 // do something with movies array
 })
 db.close();
});

The nice thing about using MongoDB with Node is that they speak the same language. We can
transparently pass plain JavaScript objects to the driver and it will persist them without needing
to transform them. MongoDB uses JSON as its storage format, and Node understands JSON!

The insertOne command persists the object inside MongoDB. Inside the callback, the object r

is an insertOneWriteOpResult, a sort of result of the insert operation. It contains two

interesting attributes: insertedCount, which should be equal to one since we have inserted just

one document, and insertedId, the identifier that MongoDB has assigned to our document.

If we don't specify an _id attribute, MongoDB assigns a value of type ObjectId (a sort of UUID

generated by MongoDB). This is the id of the document and we can use it to query the

document.

https://docs.mongodb.org/manual/tutorial/query-documents/

58

The mongodb driver is very low level and the API is sometimes tedious to use. One of the most

interesting packages that works with MongoDB is Mongoose.js, an object data mapper (ODM)
for MongoDB.

Mongoose.js provides some facilities to work with MongoDB. It permits us to define a schema
for our collection and work with objects in an active record style, providing validation, pipeline
interception, and a query language.

Mongoose.js needs a couple of things to work: a schema and an instance of the model. To
create a schema, we have to define an object using the Mongoose syntax. For example, for our
movie database:

Code Listing 68

// movieSchema.js
const mongoose = require('mongoose')
const movie = mongoose.Schema({
 title: String,
 year: Number
})
module.exports = mongoose.model('Movie', movie)

Using the function Schema, we define a schema for our collection, in this case a couple of

properties with their own type.

Note: Even if MongoDB is a schemaless database, it's very rare to store in a
collection objects with different schemata. In cases like this, you can use a plugin
called mongoose-schema-extend.

At the end of the module, we create a model based on that schema. Now we can use this model
to query the database:

Code Listing 69

const mongoose = require('mongoose')
const Movie = require('./movieSchema')

Movie.find({year: 1989}, (err, movies) => {
 // do something with movies array
})

By requiring the Movie model, we can use it to query the database. The query syntax is like the

previous one with the default driver, but in this case we don't have to transform the cursor into
an array since what we have from Mongoose is already an array of documents.

The real power of Mongoose is in the other operations. For example, creating a new movie and
saving it to the database is very easy:

http://mongoosejs.com/

59

Code Listing 70

const mongoose = require('mongoose')
const Movie = require('./movieSchema')

const movie = new Movie({title:'The Matrix', year: 1999})
movie.save()

In this example, we have created a new instance of a movie specifying the title and year. Having
a Mongoose model, we can just call save to persist it to the database. The save function

receives an optional callback with the error, so the preceding example is a simplified version
that does not check for errors.

Mongoose manages many other things that are beyond the scope of this book. The project's
website is well documented and full of useful examples to follow.

So persisting data with Node.js is not so different from other platforms. MongoDB is the
database with less friction since it works with JSON data, but not all applications need a
document database, and sometimes the good old SQL database is the safer choice.

http://mongoosejs.com/
http://mongoosejs.com/

60

Chapter 8 Messaging with RabbitMQ

Until now we have seen monolithic applications, but sometimes, as we will see in the next
chapter, splitting our application into multiple parts can be a good way to make them more
maintainable. But as soon as we have two different applications that share some responsibility,
they need to communicate.

RabbitMQ is a message broker that implements the Advanced Message Queuing Protocol
(AMQP). In practice, RabbitMQ is a queue system that manages the queueing and delivery of
messages.

The basic concepts of RabbitMQ to know before starting are the producers, consumers,
exchanges, and queues.

 Producers create new messages and send them to a RabbitMQ server.

 Consumers wait for messages and, when one is ready, they receive them.

 Exchanges receive messages from the producers and push them to one or more
queues.

 Queues are where messages are stored before a consumer consumes them. It is a sort
of mailbox that contains messages delivered from exchanges.

The exchanges know which queue a message must be sent to because of the binding between
the exchange and the queue.

So with RabbitMQ, one of our applications can publish a message on a queue, while another
application can listen for messages and dequeue them from the queue.

As for databases, there are several packages to interact with RabbitMQ. The most used in this
context is amqpjs, so to start using RabbitMQ, we must install this package.

 Note: RabbitMQ must be installed on your computer. Instructions can be found
on the official website and differ depending on your operating system.

RabbitMQ is big and complex. It supports a lot of patterns and messaging architectures. In this
chapter we will see the classic publish–subscribe pattern.

The amqpjs library is very low level, but its advantage is that it permits us to greatly customize
the interaction between our application and RabbitMQ.

The classic publisher is something like this:

https://www.rabbitmq.com/
NodeJS_files
https://www.rabbitmq.com/download.html

61

Code Listing 71

const amqp = require('amqplib/callback_api')

amqp.connect('amqp://localhost', (err, conn) => {
 conn.createChannel((err, ch) => {
 ch.assertExchange('myExchange', 'fanout', {durable: true})
 ch.publish('myExchange', '', new Buffer('A message'))
 })
})

This snippet creates a new connection to an instance of RabbitMQ server and on this
connection it creates a channel for communication. With the channel, we assert that the
exchange merchant exists, and if not, we create it. After that, we simply publish a message to
the exchange myExchange. A message must be passed as a Buffer, so in this example we

convert the string A message to a buffer using the native Node Buffer object. That's all for

publishing.

Receiving a message follows the same pattern:

Code Listing 72

const amqp = require('amqplib/callback_api')

amqp.connect('amqp://localhost', (err, conn) => {
 conn.createChannel((err, ch) => {
 ch.assertExchange('myExchange', 'fanout', {durable: true})
 ch.assertQueue('myQueue, {durable: true}, (err, q) => {
 ch.bindQueue(q.queue, ex, '')
 ch.consume(q.queue, function(msg) {
 console.log(msg.content.toString())
 })
 })
 })
})

This code is a little bit more complicated. After creating the connection and the channel, we
assert the existence of the exchange. This is necessary in both the publisher and the consumer
because we don't know which one arrives first. In any case, we assure the existence of the
exchange. After having created the exchange, we must create the queue using the method
assertQueue. The assertQueue receives the name of the queue and some options (in this

case we only make the queue persistent so that if the server restarts, the queue is still there).
With the instance of the queue, we connect it to the exchange, creating a binding between
myQueue and myExchange. Finally, we attach the consumer function with the consume function.

This function receives a callback that will be called once a message arrives in the queue and it
will simply print the message content to the console.

62

Why is RabbitMQ useful?

RabbitMQ is useful because it permits us to create a scalable application that can span multiple
machines. Consider, for example, a consumer that has some operations to do, and to complete
these operations, it needs about one second. If the publish rate is over one message per
second, the only consumer will not be able to keep up with the publisher.

But thanks to the architecture, we can run a second instance of the consumer to double the
processing rate.

Figure 12: The publisher–subscriber pattern

With this architectural pattern, we keep the doors open to future scalability at an initial cost to
setup, and configure an application that is based on messaging.

The publisher–subscriber pattern is just one of the various topologies that we can create with
RabbitMQ. RabbitMQ has a concept of exchange that is a piece of the architecture acting as
glue between the publisher and the destination queue. Using an exchange, the publisher does
not know which queue the message must be sent to; it’s the exchange that it is in charge of
doing this.

In the publisher–subscriber pattern, the exchange is of type fanout: one message is delivered to
different queues. Other exchange types use a routing key to deliver the message to the
matching queue. The routing key is a string that identifies or characterizes the message.

The possible exchange types are listed in Table 3.

Table 3: RabbitMQ Exchange Types

Exchange Type Description

Direct One message delivered to exactly one queue.

Fanout One message delivered to different queues (pub–sub pattern).

Topic Messages are delivered to queues based on content of the routing
key (a sort of tag of the message).

Header Like topic exchange but based on the header content.

Domain-driven design, event sourcing, and CQRS are architectures often used in C# and Java,
but not so well known in the Node.js world. But the tools are readily available, and it’s time to
start thinking big in Node.js, too.

63

Chapter 9 Support Tools: Build and Testing

Until now we have seen practices and packages that we need to build our applications. But the
Node community is also very strong on the side activities of a project, by which I mean testing,
building, and everything else that is part of a project.

Mocha and Chai

Testing is one of the most important parts of an application and practices like TDD are
widespread in the Node community.

One of the tools that we can use to define and run tests is Mocha. Mocha is a JavaScript test
framework that defines a set of functions we can use to write our tests. It comes with a runner
and support for asynchronous tests.

Let's say that we have one module like this:

Code Listing 73

// simpleMath.js
module.exports = {
 add: (a, b) => a + b,
 sub: (a, b) => a - b,
 multiply: (a, b) => a * b
}

Ignore the inutility of this module, it's just something that we can test focusing on the syntax of
Mocha.

Let’s now write some tests on this module:

Code Listing 74

const simpleMath = require('./simpleMath')
const assert = require('chai').assert

describe('Math module', () => {
 it('should add 3 and 4 and return 7', () => {
 const result = simpleMath.add(3, 4)
 assert.equal(7, result);
 });
 it('should subtract 3 from 12 and return 9', () => {
 const result = simpleMath.sub(12, 3)
 assert.equal(9, result);
 });

https://mochajs.org/

64

});

The code is very readable; that is one characteristic of Mocha. It describes the functionality of a
module and states that if we add 3 and 4, we must obtain 7 (that is quite obvious).
describe and it are two functions of Mocha. We don't need to require Mocha because the

tests will be executed by Mocha and that will provide the correct context.

To run the tests from the command line:

Code Listing 75

$ mocha ./tests/simpleMath_test.js

Figure 13: Test result

Mocha doesn't come with an assert library and leaves developers free to choose what they
prefer. In the previous example, we used Chai, which is just an assert library.

But we know that in Node, most code is asynchronous and Mocha supports it out of the box
using a done callback. Suppose you have this code to test:

Code Listing 76

// customerApi.js
module.exports = {
 getCustomers: (callback) => {
 return someApi.get('/customers', (err, res) => {

http://chaijs.com/

65

 callback(res.body)
 })
 }
}

We can think of this as a sort of call to an API that gets a list of customers back. We don’t need
to go into details. We just need to understand that the final callback will be called when the get

method returns.

How do we test this?

Since it is asynchronous, we can't just call the getCustomers and assert on the callback

because the test will end before the callback is called. As mentioned previously, Mocha has
support for this context and the solution is to pass a done function to the tests and call this

function when the test is completed:

Code Listing 77

const customerApi = require('./customerApi)
const assert = require('chai').assert

describe('Customer API module', () => {
 it('should return a list of customers', (done) => {
 customerApi.getCustomers(customers => {
 assert.isTrue(customers.length > 0)
 done()
 })
 });
});

As we can see, it is very easy to wait for the callback to complete. We assert that the customers
are available in the response and after that we call the done function to tell Mocha that this test

has completed and it can go on to the next one.

Mocha has a default timeout of two seconds. This means that if after two seconds the done

callback is not called, the test fails.

The last thing to say concerning Mocha is about the support for test hooks. Mocha has some
special functions we can implement that can be executed before or after our tests:

Code Listing 78

const customerApi = require('./customerApi)
const assert = require('chai').assert

describe('Customer API module', () => {
 before(() => { /* this run once before all tests of this module*/ })
 beforeEach(() => { /* this run before every test of this module*/ })

66

 it('should run a test', () => {})
 afterEach(() => { /* this run after every test of this module*/ })
 after(() => { /* this run once after all tests of this module*/ })
});

The four methods before, beforeEach, after, and afterEach are useful for setup objects and

connections, and teardown at the end of the tests.

To run the tests, we must install the mocha-cli module as global and run Mocha from the

command line, passing the path of the files that contain tests.

Otherwise we can use Gulp to integrate the tests in our build process.

Gulp

If you come from a compiled programming language, builds for JavaScript may sound a bit
weird since JavaScript is not compiled as C# or Java are, but the term build has a wider
meaning and Gulp is one of the tools we can use to "build" our application.

Gulp is a sort of task runner: it executes a series of tasks as configured. Every task has one
objective to complete.

Generally in a Node application, there aren’t many tasks to execute and most of them can be
done using the scripts section of the package.json file. Gulp (and Grunt or similar tools) is

used in the front-end world, where the JavaScript must be combined into a single file and
minimized.

But Gulp is still an interesting tool, especially in the dev environment, for automating most tasks.

To start with Gulp, we have to install two packages: the gulp-cli (with the global option) and

Gulp:

Code Listing 79

$ npm install gulp-cli -g
$ npm install gulp --save-dev

The gulp-cli package creates the symlink to run Gulp from the terminal.

With these two packages installed, we must create a gulpfile.js that will contain our tasks. We
can start with something like this:

Code Listing 80

const gulp = require('gulp')

http://gulpjs.com/

67

gulp.task('default', () => {
 console.log('gulp! It works')
})

From the command line, we can run Gulp and obtain something like this:

Code Listing 81

$ gulp
[18:02:27] Using gulpfile ~/dev/nodejs_book/gulpfile.js
[18:02:27] Starting 'default'...
gulp! It works
[18:02:27] Finished 'default' after 140 μs

As we can see, (apart from the log) it just prints the gulp! It works.

The idea behind Gulp is to build a series of tasks that we can run alone or in series using the
concepts of streams and pipes. Every task can be an input for the next one to build more
complex tasks.

Gulp comes with lots of plugins to help the composition of a useful build pipeline. For example, if
we want Gulp to run our Mocha tests, we can install the gulp-mocha plugin and configure our

gulpfile.js like this one:

Code Listing 82

const gulp = require('gulp')
const mocha = require('gulp-mocha')

gulp.task('mocha-tests', () => {
 return gulp.src('tests/**/*_test.js')
 .pipe(mocha({reporter: 'spec', bail: true}))
 .once('error', (err) => { console.log(err); process.exit(1) })
 .once('end', () => { process.exit() })
});

gulp.task('default', ['mocha-tests'])

This gulpfile defines a new task named mocha-tests that reads all the files that match the

pattern and pipes the result (the file list) to the mocha function that runs the tests. In the case of

an error, it prints the error to the console and the process will stop.

Another practical usage of Gulp is to run an application during the development phase and,
even more useful, to restart it when something changes.

During the development phase, we usually try the application in the browser, and when we
modify some code, we need to restart the application to view the changes.

68

With Gulp, we can automate this process:

Code Listing 83

const gulp = require('gulp')
const nodemon = require('gulp-nodemon')

gulp.task('dev-mode', () => {
 nodemon({script: './app/index.js'})
});

gulp.task('default', ['dev-mode'])

We are requiring a new module called gulp-nodemon, a Gulp plugin, to enable nodemon. The

dev-mode task starts nodemon with an object parameter that specifies the entry point of the

application. nodemon simply watches the filesystem for changes and when a file changes, it
restarts the application. This script is a time-saver during development.

Gulp can automate much more than this and you can find a list on its website. Even if you need
time to find the perfect workflow with Gulp, I can say that it is a good investment. Every minute
spent in setup will be minutes earned later.

ESLint

We know that JavaScript is not a compiled language and its dynamic nature, even if it is very
powerful, is also dangerous if certain rules are not followed.

That's why linters exist.

Linters are tools that analyze the source code and verify that a set of rules are satisfied and, if
some rules are broken, they break the build process.

As with everything in Node.js, there are various linters, but lately one of the most used is ESLint
which supports the new ES6 syntax out of the box.

ESLint is an npm package that comes with a binary, but since we’ve already seen Gulp, we will
use it inside Gulp so that linting becomes part of the build process.

So let’s start with the gulpfile:

Code Listing 84

const gulp = require('gulp')
const eslint = require('gulp-eslint');

gulp.task('eslint', () => {
 return gulp.src(['app/**/*.js', 'tests/**/*.js'])
 .pipe(eslint('eslint.config.json'))

http://gulpjs.com/plugins/
http://eslint.org/

69

 .pipe(eslint.format())
 .pipe(eslint.failAfterError());
});

gulp.task('default', ['eslint'])

The structure of the file is the usual of every gulpfile. The task eslint is the task that lints our

files. It takes a list of files (every .js file in the app folder and in the test folder) and passes it to
the ESLint plugin.

The rules to apply are specified in the eslint.config.json file that we will see in a minute.

After linting the source code, it generates a report on the terminal and if there are errors, it stops
the build.

The rule file is a JSON file with the set of rules that we want to enable. ESLint comes with tons
of rules, but we are not obliged to use them all. In fact, every team must find the set of rules that
fits their conventions:

Code Listing 85

{
 "rules": {
 "no-shadow": 2,
 "no-undef-init": 0,
 "no-undef": 2,
 "no-undefined": 0,
 "no-unused-vars": [2, { "vars": "local", "args": "after-used" }],
 "no-use-before-define": 0,
 "arrow-body-style": [0, "as-needed"],
 "arrow-parens": 0,
 "arrow-spacing": [2, { "before": true, "after": true }],
 "comma-dangle": [0, "always-multiline"],
 "constructor-super": 0
 }
}

This is part of an example ESLint config file. Every rule has a name and a value:

 0 if we want to disable the rule.

 1 if we want the rule to generate a warning.

 2 if we want the rule to generate an error.

Some rules need some additional options, like arrow-spacing that specifies if we want a space
around the arrow of the function in ES6 syntax. We can specify if we want the space before the
arrow or after it.

70

We can find the full list of rules on the ESLint website and they are all documented with
examples.

How do you start with ESLint? Which rules apply? Airbnb has a repository on GitHub dedicated
to JavaScript convention and code style and it contains a good ESLint file that we can use as a
starting point. From there we can add, remove, or simply disable rules that are too restrictive or
loose.

http://eslint.org/docs/rules/
https://github.com/airbnb/javascript

71

Appendix A: Introduction to ES6

The JavaScript user community is getting bigger year by year, even if the language is
supposedly not one of the better designed or the one with strict rules and solid implementation.

Fortunately, in recent years the ECMA association has been working on improving the language
with new constructs and better standardization.

ECMA standardized ES5 in 2009 and in 2015 they standardized ES6, also known as
ECMAScript 2015. The feature list of the language is quite long, and in this book we used some
of it. In this Appendix, we will briefly go through them to understand what they are.

Node, starting from version 4.4.1, has come to add support for the ES6 features. Today, with
version 6.0.0, more than 90% of the ES6 features are implemented in the language.

This means that we can use them actively in our projects.

 Note: If you are already familiar with ES6, you can skip this chapter.

Arrow functions

Arrow functions are one of the most used features of ES6 for two main reasons: they simplify
the code by shortening the function declaration and they automatically bind the parent this to

the function.

In ES5 we usually write code like this:

Code Listing 86

myFunction(42, function(result) {
 // do something with result
})

With ES6:

Code Listing 87

myFunction(42, result => {
 // do something with result
})

The keyword function is no longer necessary. We can use the fat arrow operator to indicate

that there is a function with one parameter.

http://www.ecma-international.org/ecma-262/6.0/

72

Actually, the two forms are not exactly the same. There is subtle (but useful) difference.
Consider these two examples:

Code Listing 88

const obj = {
 items: [1,2,3,4],
 offset: 10,
 double: function(){
 return this.items.map(function(i) { return this.offset + (i * 2)
}.bind(this))
 },
 triple: function() {
 return this.items.map(i => this.offset + (i * 3))
 }
}

As you can see, the this is managed differently from one case to another.

In the double function, we are forced to bind this to the map callback, otherwise this.offset

would be undefined and the result of the map function would have been an array of NaN.

In the triple function, we don't need to explicitly set this to the map function because it uses

the parent this (obj).

Most of the time, the fat arrow implementation is more useful, but not always, so don’t forget
this!

const and let

Up until now, we’ve been used to using var to declare a variable, and we know that var-scoped

variables are based on the function. Now, with let, JavaScript acquires block-scoped variables:

Code Listing 89

function myFunction(x) {
 if (x === 42){
 let foo = "I'm a scoped variable"
 // foo is available here
 }
 // foo is not available here
}

const is the construct to declare real constants that cannot change value:

73

Code Listing 90

const x = 9
x = 7 // TypeError: Assignment to constant variable.

Template strings

This functionality provides some syntactic sugar to concatenate strings and variables without
opening and closing the quotes.

So, for example, a function like this:

Code Listing 91

function greet(name){
 return 'hello' + name
}

Becomes:

Code Listing 92

function greet(name){
 return `hello ${name}`
}

It uses the backtick character and ${ } to express the evaluable part of the string.

Classes

We know that JavaScript is not a class-based language like Java or C#. Inheritance in
JavaScript is obtained using the prototype chain. But the ECMAScript committee has decided
that class is a worthwhile keyword to use even in JavaScript. So, even if there aren't any real

classes, we can use the keyword to mimic the creation of an object.

Without classes, we used to do something like this:

Code Listing 93

function Person(name, surname){
 this.name = name
 this.surname = surname
}

Person.prototype.getFullName = function(){

74

 return this.name + ' ' + this.surname
}

Having defined this construction function, we can create instances of Person using the new

operator:

Code Listing 94

var tess = new Person('Tessa', 'Smith')
tess.getFullName() // 'Tessa Smith'

With the new keyword, the class definition became something like this:

Code Listing 95

class Person {
 constructor(name, surname){
 this.name = name
 this.surname = surname
 }
 getFullName() {
 return this.name + ' ' + this.surname
 }
}

For a Java developer, this syntax is surely more clear, but in my opinion, it is misleading since
what we are defining is not a real class.

The class keyword also supports single inheritance using the extends construct:

Code Listing 96

class Developer extends Person {
 constructor(name, surname, language){
 super(name, surname)
 this.language = language
 }
 getPreferredLanguage() {
 return language
 }
}

Again, the syntax is familiar, but it's not classic inheritance. It is prototypal inheritance, namely a
prototype chain.

75

Destructuring assignment

Destructuring is a new feature of JavaScript that simplifies assignment. It works with arrays and
objects in this way:

Code Listing 97

var [a,b] = [1,2] // a=1, b=2
var [a,,b] = [1,2,3] // a=1, b=3
var [a,b] = [1,2,3,4,5] // a=1, b=2

In the examples, we can see how easy it is to extract values from an array. But destructuring
also works with objects:

Code Listing 98

var obj = {foo: 42, bar: 'hello}
var {foo, bar} = obj // foo=42, bar='hello'

Here, the name destructuring is quite clear. This construct extracts fields from an object into
free-standing variables.

Destructuring is useful with modules that export an object:

Code Listing 99

// myModule.js
module.exports = {value:1, fun: function() {...}}

// app.js
var {fun} = require('./mymodule') // fun is the function

Default parameters

Until now, function parameters could not have default values. This is the new feature:

Code Listing 100

function myFunc(foo, bar = 42){ console.log(foo, bar) }

myFun(10) // 10, 42
myFun(10, 50) // 10, 50

76

Rest and spread

The rest operator is used to collect a set of parameters of a function inside an array. Before
ES6, we used to access the arguments variable to read the array of parameters, but now we
can do it like this:

Code Listing 101

function myFunc(foo, ...bar) {
 console.log(foo, bar)
}

myFunc(1) // 1, []
myFunc(1, 3) // 1, [3]
myFunc(1,3,5) // 1, [3,5]

The spread operator is the inverse:

Code Listing 101

function myFunc(foo, bar) {
 console.log(foo, bar)
}

var args = [1,2]
myFunc(...args) // 1, 2

Summary

In this Appendix, we examined some of the new constructs and syntax that ECMAScript 2015
brought to JavaScript developers. We focused on the parts that we have used in this book, but
there are many more that you can find by reading the specification or a book dedicated to the
new version of JavaScript, such as Syncfusion’s ECMAScript 6 Succinctly.

http://www.ecma-international.org/ecma-262/6.0/
https://www.syncfusion.com/resources/techportal/details/ebooks/ECMAScript_6_Succinctly

	Table of Contents
	The Story behind the Succinctly Series of Books
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	About this Book
	Chapter 1 An Introduction to Node.js
	The history
	How to obtain Node

	Chapter 2 Hello Node.js
	Hello world
	Event driven
	Single thread
	Non-blocking I/O

	The event loop
	The Node.js runtime environment
	Event emitters
	Callback hell
	Summary

	Chapter 3 The Node.js Ecosystem
	The module system
	Summary

	Chapter 4 Using the Filesystem and Streams
	The fs module
	Reading a file
	Writing a file

	Watching files
	The path module
	Streams
	Readable streams
	Writable streams

	Summary

	Chapter 5 Writing Web Applications
	The http module
	Express.js
	Jade
	Middleware

	Chapter 6 Real-Time Apps with WebSocket
	WebSocket
	Socket.IO

	Chapter 7 Accessing the Database
	Accessing PostgreSQL
	Accessing MongoDB

	Chapter 8 Messaging with RabbitMQ
	Why is RabbitMQ useful?

	Chapter 9 Support Tools: Build and Testing
	Mocha and Chai
	Gulp
	ESLint

	Appendix A: Introduction to ES6
	Arrow functions
	const and let
	Template strings
	Classes
	Destructuring assignment
	Default parameters
	Rest and spread
	Summary

