Numerical Optimization

Finding the best feasible solution

Edward P. Gatzke
Department of Chemical Engineering University of South Carolina

Review: Unconstrained Optimization

- "Objective Function" or "Cost Function"
- May be function of many variables
- Ex: $\min x^{2}+y^{2}$
- 2D problem defines manifold (surface) in 3D space
- $z=x^{2}+y^{2}$
- Must find point where gradient of function $=0$

$$
\nabla f(x, y)=\left[\begin{array}{l}
\frac{\delta f}{\delta x} \\
\frac{\partial f}{\delta y}
\end{array}\right]
$$

Question 1

$$
f(x, y)=x^{3} y^{2}
$$

- Question: What is equivalent to the gradient of the above function evaluated at the point $x=1, y=1$
- $[\mathrm{A}]\left[\begin{array}{l}3 x \\ 2 y\end{array}\right]$
[B] $\left[\begin{array}{l}3 \\ 2\end{array}\right]$
[C] $\left[\begin{array}{c}3 x^{2} y^{2} \\ 2 x^{3} y\end{array}\right]$
- [D] All of the above.
- [E] I have no clue.
- Answer:
- ???

Question 2

$$
f(x, y)=3 x-2 y
$$

- Question: What is the gradient of the above function at $x=1, y=1$
- $[\mathrm{A}]\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$[B]\left[\begin{array}{l}3 \\ 2\end{array}\right]$
$[C]\left[\begin{array}{c}3 \\ -2\end{array}\right]$
- [D] All of the above.
- [E] I have no clue.
- Answer:
- ???

Review: Unconstrained Optimization

- For minimization, $-\nabla f$ points "downhill" in steepest direction
- Trick for maximization problems:

$$
\max _{\underline{x}} f(\underline{x})=\min _{\underline{x}}-f(\underline{x})
$$

- Steepest Descent Method:
- Start at initial guess, \underline{x}_{0}
- Evaluate $-\nabla f$ at current point
- Perform line search in improving direction
- Update current best point and repeat until $-\nabla f$ is "small"

Review: Constrained Optimization

- Standard form with N constraints:

$$
\begin{aligned}
& \min _{\underline{x}} f(\underline{x}) \\
& \text { subject to } g_{1}(\underline{x}) \leq 0 \\
& g_{2}(\underline{x}) \leq 0 \\
& \vdots \\
& g_{N}(\underline{x}) \leq 0
\end{aligned}
$$

- Bounds on variables in standard form:

$$
\begin{array}{r}
1 \leq x \leq 10 \\
1-x \leq 0 \\
x-10 \leq 0
\end{array}
$$

Review: Constrained Optimization

- Standard form with N constraints:

$$
\begin{aligned}
& \min _{\underline{x}} f(\underline{x}) \\
& \text { subject to } g_{1}(\underline{x}) \\
& g_{2}(\underline{x}) \leq 0 \\
& \vdots \\
& g_{N}(\underline{x}) \leq 0
\end{aligned}
$$

- Equality constraints in standard form:

$$
\begin{gathered}
x=y^{2} \\
0 \leq x-y^{2} \leq 0 \\
x-y^{2} \leq 0 \\
-x+y^{2} \leq 0
\end{gathered}
$$

Review: Linear vs. Nonlinear

- Linear examples and general form for sets of linear equality and inequality constraints:

$$
\begin{array}{r}
2 x+3 y=4 \\
x-y \leq 2 \\
\underline{\underline{A}} \underline{x}=\underline{b} \\
\underline{\underline{A}} \underline{x} \leq \underline{b}
\end{array}
$$

- Nonlinear examples and general form for nonlinear constraints:

$$
\begin{aligned}
2 x^{2}+y^{2} & =4 \\
y & =e^{x} \\
g(\underline{x}) & \leq 0 \\
h(\underline{x}) & =0
\end{aligned}
$$

Review: Convex vs. Nonconvex

- Eigenvalues of Hessian must be ≥ 0 to be convex function
- Graphically: In a convex set you may pick any two points and the line between the two points contains only points inside the set.
- Get problem in standard form, check Hessian eigenvalues:

$$
\begin{gathered}
y \geq x^{2} \\
x^{2}-y \leq 0 \\
\nabla f(\underline{x})=\left[\begin{array}{c}
2 x \\
-1
\end{array}\right] H=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial y \partial x} \\
\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
0 & 0
\end{array}\right]
\end{gathered}
$$

Eigenvalues are 2,0 so $y \geq x^{2}$ is a convex constraint.

Review: Convex vs. Nonconvex

- Unconstrained example

$$
\begin{gathered}
\min _{x, y} x^{2}+y^{2} \\
\nabla f(\underline{x})=\left[\begin{array}{l}
2 x \\
2 y
\end{array}\right] H=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial y \partial x} \\
\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
\end{gathered}
$$

Eigenvalues are 2, 0 so $x^{2}+y^{2}$ is a convex constraint.

Question 3

$$
x^{2}+y^{2} \geq 9
$$

- Question: Is the constraint convex?
- [A] Yes
- [B] No
- [C] What?
- [D] All of the above.
- [E] I have no clue.
- Answer:
- ???

Review: Convex vs. Nonconvex

- General form for constrained optimization:

$$
\begin{aligned}
\min _{\underline{x}} f(\underline{x}) & \\
\text { subject to } g_{1}(\underline{x}) & \leq 0 \\
g_{2}(\underline{x}) & \leq 0 \\
h_{1}(\underline{x}) & =0 \\
h_{2}(\underline{x}) & =0
\end{aligned}
$$

- Rules. Nonconvex problem if any of following are true:
- $f(\underline{x})$ is a nonconvex function in the domain of \underline{x}
- Any $g_{i}(\underline{x})$ inequality constraint is a nonconvex function in the domain of \underline{x}
- Any $h_{i}(\underline{x})$ equality constraint is nonlinear
- Convex problems have a single solution

Question 4

$$
\begin{aligned}
& \min _{x, y}-2 x+y \\
& x^{2}+y^{2} \leq 9
\end{aligned}
$$

- Question: Is the problem convex?
- [A] Yes
- [B] No
- [C] What?
- [D] All of the above.
- [E] I have no clue.
- Answer:
- ???

Review: KKT Conditions

- Check to see if a point \underline{x}^{*} is optimal in constrained optimization
- Put problem in standard form with only inequality constraints
- Find any active constraints, $g_{i}\left(\underline{x}^{*}\right)=0$
- Solve for Lagrange multipliers

$$
\begin{aligned}
-\nabla f\left(\underline{x}^{*}\right) & =\sum \lambda_{i} g_{i}\left(\underline{x}^{*}\right) \\
\lambda_{i} & \geq 0
\end{aligned}
$$

- Lagrange multipliers represent how "hard" the problem "pushes" against the constraints
- Lagrange multipliers must all be positive for the point to be a KKT point

Review: KKT Conditions

Question 5

$$
\begin{aligned}
& \min _{x, y} x \\
& \quad x^{2}+y^{2} \leq 9
\end{aligned}
$$

- Question: Is the point $x=-3, y=0$ a KKT point?
- [A] Yes
- [B] No
- [C] What?
- [D] All of the above.
- [E] I have no clue.
- Answer:
- ???

Question 6

- Question: Why do we care about optimization?
- [A] Gatzke told me to
- [B] Model Predictive Control (MPC)
- [C] Parameter estimation
- [D] It is a useful tool for many problems
- [E] All of the above
- Answer:
- ???

Motivation: Process Design

- Objective function: Maximize profits, minimize cost
- Decision variables:
- Number and size of components
- Flow rates, temperatures, pressures

- Constraints

- Mass and energy balances / design equations
- Environmental limits, product limits

Motivation: Process Modeling

- Objective function: minimize the error between data and model
- Decision variables:
- Model parameters (kinetic parameters)
- Constraints:
- Model equations
- Assumed limits on parameters
- Physical limits on variables (concentrations positive)

Motivation: Process Scheduling

- Objective function: minimize the cost for your process
- Decision variables:
- When to make products
- What equipment to use
- Constraints:
- Limits on batch sizes
- Limits on storage
- Order fulfillment requirements

Motivation: Process Control

- Objective function: minimize future deviation from setpoint
- Decision variables:
- Future process input values
- Constraints:
- Dynamic model equations for prediction
- Limits on the inputs
- Process variable limits

Problems: Linear Programming (LP)

Space for Notes Below

Problems: Quadratic Programming (QP)

Space for Notes Below

Problems: Mixed-Integer Linear Programming (MILP)

Space for Notes Below

Problems: Mixed-Integer Nonlinear Programming (MINLP)

Space for Notes Below

Question 7

$$
\begin{aligned}
\min _{x, y} & -x \\
& x^{2}+y^{2} \leq 9
\end{aligned}
$$

- Question: What kind of problem is this?
- [A] LP
- [B] QP
- [C] Convex NLP
- [D] Nonconvex NLP
- [E] MILP
- Answer:
- ???

Question 8

$$
\begin{aligned}
& \min _{x, y}-x \\
& x+y \leq 9 \\
& y-x=7
\end{aligned}
$$

- Question: What kind of problem is this?
- [A] LP
- [B] QP
- [C] Convex NLP
- [D] Nonconvex NLP
- [E] MILP
- Answer:
- ???

Question 9

$$
\begin{aligned}
\min _{x, y} & x^{2}+y^{2} \\
& x+2 y \leq 9
\end{aligned}
$$

- Question: What kind of problem is this?
- [A] LP
- [B] QP
- [C] Convex NLP
- [D] Nonconvex NLP
- [E] MILP
- Answer:
- ???

LP / NLP / QP Solution Strategies

- Active set (simplex)
- Pick set of active constraints
- Solve problem in form $A x=b$
- Check to see if KKT holds
- Interior point
- Put constraints into objective function
- Find improving direction
- Polynomial time algorithm

NLP / MILP / MINLP Stochastic Solution Strategies

- Genetic Algorithms
- Make a "population" of random points,evaluate $\left[\begin{array}{lllll}0 & 1 & 1 & 0 & 0\end{array} 1\right]$
- "Breed" based on resulting objective function values
- "Mutate" some points randomly
- Simulated Annealing
- Start at some initial guess
- Search randomly nearby
- As system "cools" limit search area
- Particle Swarm
- Start with a random group of points
- Get group information to move in better direction

Question 10

- What is the most confusing optimization topic?
- [A] Convexity of functions / constraints
- [B] KKT conditions
- [C] Problem classification
- [D] Solution strategies
- [E] Other
- Answer:
- ???

