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Abstract. We propose a new model for digital pathology segmentation,
based on the observation that histopathology images are inherently sym-
metric under rotation and reflection. Utilizing recent findings on rotation
equivariant CNNs, the proposed model leverages these symmetries in a
principled manner. We present a visual analysis showing improved sta-
bility on predictions, and demonstrate that exploiting rotation equivari-
ance significantly improves tumor detection performance on a challeng-
ing lymph node metastases dataset. We further present a novel derived
dataset to enable principled comparison of machine learning models, in
combination with an initial benchmark. Through this dataset, the task of
histopathology diagnosis becomes accessible as a challenging benchmark
for fundamental machine learning research.

1 Introduction

The field of digital pathology is developing rapidly, following recent advance-
ments in microscopic imaging hardware that allow digitizing glass slides into
whole-slide images (WSIs). This digitization has facilitated image analysis al-
gorithms to assist and automate diagnostic tasks. A proven approach is to use
convolutional neural networks (CNNs), a type of deep learning model, trained
on patches extracted from whole-slide images. The aggregate of these patch-
based predictions serves as a slide-level representation used by models to iden-
tify metastases, stage cancer or diagnose complications. This approach has been
shown to outperform pathologists in a variety of tasks[1,2,3].

This performance is achieved using off-the-shelf CNN architectures originally
designed for natural images [2]. The effectiveness of these models can be largely
attributed to the efficient sharing of parameters in convolutional layers. As a
result, local patterns are encoded independently of their spatial location, and
shifting the input leads to a predictable shift in the output. This property, known
as translational equivariance, effectively exploits the translational symmetry in-
herent in natural images leading to strong generalization.

In contrast to natural images, WSIs exhibit not only translational symmetry
but rotation and reflection symmetry as well. CNNs do not exploit these symme-
tries, and as a result are found empirically to spend a large part of their param-
eter budget on multiple rotated and reflected copies of filters [4]. Additionally,
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we find that CNNs trained on histopathology data exhibit erratic fluctuations
in predictions under input rotation and reflection. Enforcing equivariance in the
model under these transformations is expected to reduce such instabilities, and
lower the risk of overfitting by improving parameter sharing.

To encode these symmetries, we leverage recent findings in rotation equivari-
ant CNNs [5,6,7], a current topic of interest in the machine learning community.
These methods show strong generalization under limited dataset size and are
more robust under adversarial perturbations in rotation, translation and local
geometric distortions [8]. We propose a fully-convolutional patch-classification
model that is equivariant to 90◦ rotations and reflection, using the method pro-
posed by [5]. We evaluate the model on the Camelyon16 benchmark [9], showing
significant improvement over a comparable CNN on slide level classification and
tumor localization tasks.

As slide-level metrics potentially obscure the relative performance of patch-
level models, we further validate on a patch-level task. In this regime, there is
currently no benchmark that harbors the high volume, quality and variety of
Camelyon16. Thus, we present PatchCamelyon(PCam), a large-scale patch-level
dataset derived from Camelyon16 data. Through this dataset, we demonstrate
that the proposed model is more accurate and more robust under input rotation
and reflection, compared to an equivalent standard CNN.

The contributions of this work are as follows: (1) we propose a novel deep
learning model that utilizes symmetries inherent to histopathology1, (2) demon-
strate that rotation equivariance improves model reliability and (3) present a
new large-scale histopathology dataset that enables precise model evaluation.

Related Work A common approach to improve orientation robustness is
to train CNNs using extensive data augmentation, perturbing data with ran-
dom transformations [1,2]. Although this may improve generalization, it fails to
capture local symmetries and does not guarantee equivariance at every layer.
As CNNs have to learn rotation equivariance from data, they require a larger
model capacity to hold copies of identical filters. Even if rotation equivariance
is achieved on training data, there is no guarantee that this generalizes to a
test set. Orthogonally, [1,10] propose a test-time augmentation strategy that
averages the predictions of 90◦-rotated and mirrored versions to improve robust-
ness to orientation-induced instability. As a downside, this comes at 8 times the
computational cost and does not provide guarantees on equivariance [11].

Methods that enable equivariance under rotations and other transforma-
tions include Harmonic Networks [6], which constrain the set of filters to cir-
cular harmonics, allowing for full 360◦-equivariance. [7] employs steerable filters
and evenly samples a small number of rotations. In this work, we focus on the
straight-forward G-CNN method from [5] applied on discrete rotation/reflection
groups. Although these groups do not cover the full continuous rotational sym-
metry inherent in WSIs, the empirical evidence gathered so far shows that 90◦

rotation equivariance improves performance significantly[7].

1PCam details and data at https://github.com/basveeling/pcam. Implementa-
tions of equivariant layers available at https://github.com/basveeling/keras_gcnn.

https://github.com/basveeling/pcam
https://github.com/basveeling/keras_gcnn
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Fig. 1: Given a canonical input and a rotated duplicate, we demonstrate how a 2-
layer G-CNN is equivariant in p4. Feature maps of one kernel per layer are shown, and
the dashed blue arrows indicate how (intermediate) representations of the two inputs
correspond. The Z2 → p4 convolution correlates the input with 4 rotated versions of
the same kernel. The p4→ p4 convolution correlates the resulting feature map with the
p4-kernel, cyclically-shifting and rotating the kernel for each orientation. The final layer
demonstrates how average-pooling over the orientations produces a representation that
is locally invariant and globally equivariant to rotation. Global average pooling over p4
would result in a representation globally invariant to both translation and rotation.

2 Methods

2.1 Background

In the mathematical model of CNNs and G-CNNs introduced in [5], input images
and output segmentation masks are considered to be functions f : Z2 → RK ,
where K denotes the number of channels, and f is implicitly assumed to be zero
outside of some rectangular domain.

A standard convolution2 (denoted ∗) of an input f with filter ψ is defined as:

[f ∗ ψ](x) =
∑
y∈Z2

K∑
k=1

fk(y)ψk(x− y). (1)

G-CNNs are a generalization of CNNs that are equivariant under more gen-
eral symmetry groups, such as the group G = p4 of 90◦ rotations, or G = p4m
which additionally includes reflection. In a G-CNN, the feature maps are thought
of as functions on this group. For p4 and p4m, this simply means that feature
channels come in groups of 4 or 8, corresponding to the 4 pure rotations in p4
or the 8 roto-reflections in p4m. In the first layer, these are produced using the
(Z2 → G)-convolution:

[f ∗ ψ](g) =
∑
y∈Z2

K∑
k=1

fk(y)ψk(g−1y), (2)

2Technically, this is a cross-correlation
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Fig. 2: The proposed equivariant DenseNet architecture for the p4 group, consisting
of 5 Dense Blocks (D.B.) alternated with Transition Blocks (T.B.). The final layer of
the model is a p4 → Z2 group pooling layer followed by a sigmoid activation. The
four orientations in p4 are illustrated through primary colors. A Z2 → p4 kernel (left),
p4→ p4 kernel (middle) and p4→ Z2 kernel (right) illustrate how equivariance arises
in the model.

where g = (r, t) is a roto-translation (in caseG = p4) or roto-reflection-translation
(in case G = p4m).

In further layers, both feature maps and filters are functions on G, and these
are combined using the (G→ G)-convolution:

[f ∗ ψ](g) =
∑
h∈G

K∑
k=1

fk(h)ψk(g−1h). (3)

In the final layer, a group-pooling layer is used to ensure that the output is
either invariant (for classification tasks) or equivariant as a function on the plane
(for segmentation tasks, where the output is supposed to transform together with
the input). In Fig. 1 we demonstrate how equivariance is achieved through this
process. Non-linear activations and pooling operations are equivariant in p4m[5],
allowing layers to be freely stacked to enable deep architectures.

2.2 G-CNN DenseNet architecture

The proposed patch-classification model is shown in Fig. 2 for p4 (the p4m-
variant is a trivial extension). The architecture is based on the densely connected
convolutional network (DenseNet) [12], which consist of dense blocks with layers
that use the stack of all previous layers as input, alternated with transition blocks
consisting of a 1×1 convolutional layer and 2×2 strided average pooling. We use
one layer per dense block due to the limited receptive field of the model, with
5 dense-block/transition-block pairs. The model spatially-pools the input by a
factor of 25, the output of which resembles the segmentation resolution used in
[1].

Full-model group equivariance is achieved by replacing all convolution layers
with group-equivariant versions [5]. Batch normalization layers[13] are made



group-equivariant by aggregating moments per group feature map rather than
spatial feature map (as proposed by [5]). Zero-padding is removed to prevent
boundary-effects. The final layer consists of a group-pooling layer followed by a
sigmoid activation, resulting in tumor-probability output on the plane Z2. As
the model is fully convolutional, efficient inference can be achieved at test time
by reusing computation of neighbouring patches, reducing segmentation time of
a full WSI from hours to ∼ 2 minutes on a NVIDIA Titan XP.

3 Experimental results

3.1 Datasets and Evaluation

To evaluate the proposed model, we use Camelyon16 [9] and PCam. Additional
testing is performed on BreakHis [14]. (1) The Camelyon16 dataset contains
400 H&E stained WSIs of sentinel lymph node sections split into 270 slides with
pixel-level annotations for training and 130 unlabeled slides for testing. The
slides were acquired and digitized at 2 different centers using a 40× objective
(resultant pixel resolution of 0.243 microns). In the Camelyon16 challenge, model
performance is evaluated using the FROC curve for tumor localization. (2) The
PCam dataset contains 327,680 patches extracted from Camelyon16 at a size of
96 × 96 pixels @ 10× magnification, with a 75/12.5/12.5% train/validate/test
split, selected using a hard-negative mining regime1. (3) The BreakHis dataset
contains 7909 H&E stained microscopy images at a size of 700 × 460 pixels.
The task is to classify the images into benign or malignant cases for multiple
magnification factors. We limit our evaluation to the images at 4×magnification,
for which previous approaches [14,15] have reported the highest accuracy.

For the evaluation on the WSI-level Camelyon16 benchmarks, we largely fol-
low the pipeline proposed in [1], uniformly sampling WSIs and drawing tumor/non-
tumor patches with equal probability. To prevent overrepresentation of back-
ground and non-tissue patches, slides are converted to HSV, blurred, and re-
jected if the max. pixel saturation lies below 0.07 (range [0,1]) and value above
0.1. This was empirically verified to not drop tissue patches. For computing the
FROC score, tumor location candidates are selected with an efficient square non-
maximum suppression window rather than radial. The window-size is tuned per
model on the validation set. FROC score confidence bounds are computed using
2000 bootstrap samples [1]. Train and validation splits are created by dividing
the available WSIs randomly, maintaining equal tumor/normal ratio. We focus
on the WSI data at 10× magnification (4 times smaller than the original dataset,
at 0.972 microns per pixel) to fit the compute budget available for this work.
Following [1], we focus on the more-granular tumor-detection FROC metric in
favor of slide-level AUC.

Training Details: Models are optimized using Adam[16] with batch size
64 and initial learning rate 1e−3 (halved after 20 epochs of no improvement in
validation loss). Epochs consists of 312 batches with a batch size of 64. Validation
loss is computed using 40.000 sampled patches. Weights with lowest validation
loss are selected for test evaluation.



Fig. 3: (a) shows a large input region spanning multiple patches, with the tumor
ground truth overlayed in green. The region is predicted under 32 evenly spaced sub-
90◦ rotations, and prediction maps rotated back to original orientation. (b) shows the
mean prediction and (c) shows the standard deviation of the predictions across all
rotations, using DenseNet (left) and P4M-DenseNet (right). Both networks are trained
on the 12.5% data regime.

3.2 Model reliability

We evaluate stability of predictions under rotation of the input. We present a
visual analysis in Fig. 3. For a comparable baseline we use an equivalent model
with standard convolutions. For a fair model comparison, we keep the number
of parameters consistent by multiplying the growth rate of the baseline model
by the square root of the group size [5]. Bar the expected fluctuation around
the tumor boundary (that arises due to the sub-sampled segmentation), the
p4m-model is more robust to transformations even outside the group (sub-90◦

rotations). In addition, we observe a higher confidence for predictions inside the
tumor regions for P4M-DenseNet as compared to the baseline.

3.3 P4M-DenseNet Performance

Table 1: Performance on
PCam, measured by negative
log-likelihood, accuracy and AUC.
Experiments with additional data
augmentation with 90◦ rotations
and reflections are marked by +.
M indicates matching number of
Z2 maps, #W number of weights,
K number of Z2 maps per layer.

Network K #W NLL Acc AUC

P4M-DenseNet 64 119K 0.260 89.8 96.3
P4M-DenseNet M 24 19K 0.273 89.3 95.8
P4-DenseNet 48 125K 0.329 89.0 94.5
DenseNet+ 24 128K 0.306 88.1 95.1
DenseNet+ M 64 902K 0.365 87.2 94.6
DenseNet 24 128K 0.315 87.6 95.5

PatchCamelyon (PCam) We assess the performance of our main contribu-
tion, the P4M-DenseNet architecture, on the PCam dataset. Table 1 reports the
performance. P4M-DenseNet outperforms other models, closely followed by the
P4-DenseNet, indicating that both rotation and reflection are useful inductive
biases, that can not be learned by data augmentation alone. Keeping the number
of Z2 maps fixed in the baseline degrades performance further, demonstrating
the sample-efficiency of the P4M model.



Model Data FROC

P4M-DenseNet
123k params

100% 84.0 (75.5, 91.5)
50% 81.5 (72.2, 89.3)
25% 72.6 (58.7, 84.6)
12.5% 60.7 (46.0, 74.1)

DenseNet
126k params

100% 81.7 (72.1, 90.3)
50% 80.0 (69.3, 89.1)
25% 71.0 (57.7, 82.0)
12.5% 55.4 (42.6, 68.5)

Liu et al. [1] 10× 100% 79.3 (74.2, 84.1)
Wang et al. [17] 100% 80.7*
Pathologist [9] – 73.3 12.5% 25% 50% 100%
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Fig. 4 & Table 2: Performance on the Camelyon16 test set. The confidence bounds
are obtained using a 2000-fold bootstrap regime. *Challenge winner [17] uses 40×
resolution and is not directly comparable.

Camelyon16 We evaluate our patch-based model on the slide-level tumor lo-
calization task of the Camelyon16 challenge. Fig. 4 reports the performance on
the FROC score, next to those of a pathologist [9] and the state-of-the-art ap-
proaches reported on this dataset, including [1,17]. For the baseline DenseNet,
the training data is augmented with 90◦ rotations and reflection. We experiment
with multiple data regimes, where the number of WSIs in the training set is
incrementally reduced by a factor of two.

The results indicate that the proposed method performs consistently better
than all compared methods in terms of the FROC metric. Comparing to the base-
line DenseNet results, we see that the superiority of our proposed architecture is
predominantly due to the increased parameter sharing by the p4m-equivariance,
which frees up model capacity and reduces the redundancy of detecting the same
histological patterns in different orientations.

We also observe that the performance gap between our model and the base-
line increases when we limit the dataset size by removing WSIs. This seems
to indicate that the performance in the small-data regime benefits significantly
from the sample efficiency of P4M-DenseNet, with diminishing returns when the
amount of data is sufficient for the baseline network to achieve (approximate)
rotation equivariance. This performance gap remains for the full data set.

BreakHis As an additional evaluation method, we assess the performance of
the proposed model on the binary classification task of BreakHis as described in
Section 3.1. As training the model from scratch is impractical given the small
dataset, we pre-train on Camelyon16 at a similar pixel resolution. Similar to
[14], we predict the malignancy of a test image by using the maximum activation
of 1000 random crops. We obtain an accuracy of 96.1 ± 3.2 and 93.5 ± 4.7 for



P4M-Densenet and the baseline respectively, outperforming previous approaches
[14][15].

4 Conclusion

We present a novel histopathology patch-classification model that outperforms
a competitive traditional CNN by enforcing rotation and reflection equivariance.
A derived patch-level dataset is presented, allowing straightforward and precise
evaluation on a challenging histopathology task. We demonstrate that rotation
equivariance improves reliability of the model, motivating the application and
further research of rotation equivariant models in the medical image analysis
domain.
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10. Cireşan, D.C., et al.: Mitosis detection in breast cancer histology images with deep
neural networks. MICCAI 16(Pt 2) (2013) 411–418

11. Lenc, K., et al.: Understanding image representations by measuring their equiv-
ariance and equivalence. In: 2015 IEEE CVPR. (2015) 991–999

12. Huang, G., et al.: Densely connected convolutional networks. (2016)
13. Ioffe, S., et al.: Batch normalization: Accelerating deep network training by reduc-

ing internal covariate shift. In: ICML. (2015) 448–456
14. Spanhol, F.A., et al.: A dataset for breast cancer histopathological image classifi-

cation. IEEE Trans. Biomed. Eng. 63(7) (2016) 1455–1462
15. Song, Y., et al.: Supervised intra-embedding of fisher vectors for histopathology

image classification. In: MICCAI 2017, Cham (2017) 99–106
16. Kingma, D.P., et al.: Adam: A method for stochastic optimization. (2014)
17. Wang, D., et al.: Deep learning for identifying metastatic breast cancer. (2016)


	Rotation Equivariant CNNs for Digital Pathology

