There are 12 problems in this assignment. Step-by-step solutions are provided below. Be sure to note all the graphing utilities and websites for checking purpose.

1. $y=\cos x, y=0, x=-\frac{\pi}{2}$, and $x=\frac{\pi}{2}$

Since the cross-sections perpendicular to the x-axis are equilateral triangles, the length of the side of each equilateral triangle is the y-coordinate. Let us review the area of an equilateral triangle.

Area of a triangle
$=\frac{1}{2} b^{2} \sin 60^{\circ}$
$=\frac{1}{2} b^{2} \frac{\sqrt{3}}{2}$
$=\frac{\sqrt{3}}{4} b^{2}$
So, the area of each cross-section of the solid is $\frac{\sqrt{3}}{4} y^{2}$.
thickness $=d x$
limits are from $x=-\pi / 2$ to $x=\pi / 2$

$$
\begin{array}{rlr}
V & =\int_{-\pi / 2}^{\pi / 2} \frac{\sqrt{3}}{4} y^{2} d x \\
& =\int_{-\pi / 2}^{\pi / 2} \frac{\sqrt{3}}{4} \cos ^{2} x d x & \text { Apply the double angle formula: } \cos ^{2} x=\frac{1+\cos 2 x}{2} \\
& =\int_{-\pi / 2}^{\pi / 2} \frac{\sqrt{3}}{4}\left(\frac{1+\cos 2 x}{2}\right) d x & \text { Simplify } \\
& =\frac{\sqrt{3}}{8} \int_{-\pi / 2}^{\pi / 2}(1+\cos 2 x) d x & \text { Integrate } \\
& =\frac{\sqrt{3}}{8}\left[x+\frac{1}{2} \sin 2 x\right]_{-\pi / 2}^{\pi / 2} & \text { Evaluate }
\end{array}
$$

$V=\frac{\sqrt{3}}{8}\left[\frac{\pi}{2}+\frac{1}{2} \sin \pi\right]-\frac{\sqrt{3}}{8}\left[-\frac{\pi}{2}+\frac{1}{2} \sin (-\pi)\right]$
$=\frac{\sqrt{3} \pi}{8} \approx 0.680$
Check using Casio:

目 [4ath [rad [iorm1 [1/a Read	
$\sqrt{3} \div 4 \times \int_{-\pi+2}^{\pi \div 2}$	$(\cos (x))^{2} \mathrm{~d} x$ 0.6801747616
$\sqrt{3} \pi \div 8$	01747
\square	0.6801747616
DEE-LINE DEL-ALI	

2. $y=\tan x, x=0, x=\pi / 3$, and $y=0$; about the x-axis (disk method)

radius of revolution is the distance between the graph and the axis of revolution, x-axis radius of revolution $=y$-coordinate
thickness $=d x$
limits are from $x=0$ to $x=\pi / 3$

$$
\begin{array}{rll}
V & =\int_{0}^{\pi / 3} \pi(\tan x)^{2} d x & \text { Apply the Pythagorean Identity: } 1+\tan ^{2} x=\sec ^{2} x \\
& =\pi \int_{0}^{\pi / 3}\left(\sec ^{2} x-1\right) d x & \text { Integrate } \\
& =\pi[\tan x-x]_{0}^{\pi / 3} \quad \text { Evaluate } \\
& =\pi\left[\tan \frac{\pi}{3}-\frac{\pi}{3}\right]-\pi[\tan 0-0]
\end{array}
$$

$$
V=\pi\left(\sqrt{3}-\frac{\pi}{3}\right) \approx 2.152
$$

Check using Casio:

Note: Wolfram/Alpha has a beta version of widgets for disk/disc method. Click on the link and try: http://www.wolframalpha.com/widgets/view.jsp?id=d2b9c7a8b489db02f0e60d70fcc00f74
3. $y=x^{2}+1, x=0, x=2$, and $y=5$; about the x-axis (washer method)

inner radius of revolution is the distance between the parabola and the axis of revolution, x-axis inner radius of revolution $=y$-coordinate of the parabola
outer radius of revolution is the distance between the horizontal line, $y=5$, and the axis of revolution, x-axis outer radius of revolution $=5$
thickness $=d x$
limits are from $x=0$ to $x=2$

$$
\begin{array}{rlr}
V & =\int_{0}^{2} \pi\left(5^{2}-\left(x^{2}+1\right)^{2}\right) d x & \text { Foil the square } \\
& =\int_{0}^{2} \pi\left(25-\left(x^{4}+2 x^{2}+1\right) d x\right. & \text { Distribute and simplify }
\end{array}
$$

$$
\begin{array}{rlr}
V & =\pi \int_{0}^{2}\left(24-x^{4}-2 x^{2}\right) d x & \text { Integrate } \\
& =\pi\left[24 x-\frac{1}{5} x^{5}-\frac{2}{3} x^{3}\right]_{0}^{2} & \text { Evaluate } \\
& =\pi\left[48-\frac{32}{5}-\frac{16}{3}-0\right] & \\
& =\frac{544}{15} \pi \approx 113.935 &
\end{array}
$$

Check using TI:

frint $\pi 5^{2}-\mathrm{Cx}^{2}+1$
23, $\mathrm{x}, \mathrm{0}, 2$
$544 \pi 113.9350936$

- 1134.9356936

4. $y=4-x^{2}, x=0, x=2$, and $y=0$; about the y-axis. (shell method)

radius of revolution is the distance from the parabola to the axis of revolution, y-axis radius of revolution $=x$-coordinate of the parabola
height of the revolution is the distance between the parabola and $y=0$
height of revolution $=y$
thickness $=d x$
limits are from $x=0$ to $x=2$
$V=\int_{0}^{2} 2 \pi x y d x$
$=\int_{0}^{2} 2 \pi x\left(4-x^{2}\right) d x \quad$ Distribute

$$
\begin{array}{rlr}
V & =2 \pi \int_{0}^{2}\left(4 x-x^{3}\right) d x \quad \text { Integrate } \\
& =2 \pi\left[2 x^{2}-\frac{1}{4} x^{4}\right]_{0}^{2} \quad \text { Evaluate } \\
& =2 \pi[8-4-0] \\
& =8 \pi \approx 25.133
\end{array}
$$

Check using TI:

Note: you can always use the following site to check the step-by-step solutions for integration:
http://www.emathhelp.net/calculators/calculus-2/definite-integral-calculator/
5. $x=y^{2 / 3}$ and $x=4$; about $x=4$ (disk method)

radius of revolution is the distance between the parabola and the axis of revolution, $x=4$ radius of revolution $=4-x$-coordinate of the graph thickness $=d y$
limits are from $y=-8$ to $x=8$

$$
\begin{aligned}
V & =\int_{-8}^{8} \pi(4-x)^{2} d y \\
& =2 \pi \int_{0}^{8}\left(4-y^{2 / 3}\right)^{2} d y \\
& =2 \pi \int_{0}^{8}\left(16-8 y^{2 / 3}+y^{4 / 3}\right) d y \quad \text { Symmetr) } \\
& =2 \pi\left[16 y-\frac{24}{5} y^{5 / 3}+\frac{3}{7} y^{7 / 3}\right]_{0}^{8} \quad \text { Evaluate } \\
& =2 \pi\left[16(8)-\frac{24}{5}(8)^{5 / 3}+\frac{3}{7}(8)^{7 / 3}\right]-2 \pi[0] \\
& =2 \pi\left[128-\frac{768}{5}+\frac{384}{7}\right] \\
& =2 \pi\left[\frac{4480-5376+1920}{35}\right] \\
& =\frac{2048 \pi}{35} \approx \frac{183.828}{}
\end{aligned}
$$

Check using Casio:

$\int_{-8}^{8} \pi \times\left(4-x^{2 * 3}\right)^{2} \mathrm{~d} x$	
	183.8280483
$2048 \pi \div 35$	183.8280501
\square	
CEELITPDEEALI	

6. $y=\sin x, x=0$, and $x=\pi$ about $y=-1$ (appropriate method)

inner radius of revolution is the distance between x-axis and $y=-1$ inner radius of revolution $=1$
outer radius of revolution is the distance between the sine graph and $y=-1$
outer radius of revolution $=y-(-1)=\sin x+1$
thickness $=d x$
limits are from $x=0$ to $x=\pi$

$$
\begin{array}{rlr}
V & =\int_{0}^{\pi} \pi\left[(1+\sin x)^{2}-1^{2}\right] d x & \text { Foil } \\
& =\pi \int_{0}^{\pi}\left[\left(1+2 \sin x+\sin ^{2} x\right)-1\right] d x & \text { Apply the double angle formula } \\
& =\pi \int_{0}^{\pi}\left[2 \sin x+\frac{1-\cos 2 x}{2}\right] d x & \text { Simplify } \\
& =\pi \int_{0}^{\pi}\left(2 \sin x+\frac{1}{2}-\frac{1}{2} \cos 2 x\right) d x & \text { Integrate } \\
& =\pi\left[-2 \cos x+\frac{1}{2} x-\frac{1}{4} \sin 2 x\right]_{0}^{\pi} & \text { Evaluate } \\
& =\pi\left[-2 \cos \pi+\frac{1}{2} \pi-\frac{1}{4} \sin 2 \pi\right]-\pi\left[-2 \cos 0+\frac{1}{2} 0-\frac{1}{4} \sin 0\right] \\
& =\pi\left(2+\frac{\pi}{2}+2\right) \\
& \left.=\pi\left(4+\frac{\pi}{2}\right)\right] \approx 17.501 &
\end{array}
$$

Check using Casio:

具	
$\int_{0}^{\pi} \pi\left((1+\sin (x))^{2}-1\right) \mathrm{d} x$	
	17.50117281
$\pi(4+\pi \div 2)$	17.50117281
\square	
Udx\| 8 (\square

7. $y=x^{2}+1, x=-2, x=2$, and $y=5$; about $y=5$ (disk method)

radius of revolution is the distance from the parabola to $y=5$
radius of revolution $=5-y=5-\left(x^{2}+1\right)=4-x^{2}$
thickness $=d x$
limits are from $x=-2$ to $x=2$

$$
\begin{aligned}
V & =\int_{-2}^{2} \pi\left(4-x^{2}\right)^{2} d x \quad \text { Foil } \\
& =2 \pi \int_{0}^{2}\left(16-8 x^{2}+x^{4}\right) d x \quad \text { Symmetry and Integrate } \\
& =2 \pi\left[16 x-\frac{8}{3} x^{3}+\frac{1}{5} x^{5}\right]_{0}^{2} \quad \text { Evaluate } \\
& =2 \pi\left[32-\frac{64}{3}+\frac{32}{5}\right]-2 \pi[0] \\
& =\pi\left(\frac{480-320+96}{15}\right) \\
& =\frac{512 \pi}{15} \approx 107.233
\end{aligned}
$$

Check using TI:

8. $y=\frac{1}{6} x^{3}+\frac{1}{2 x}$, from $x=1$ to $x=2$

Find $\frac{d y}{d x}$ and $1+\left(\frac{d y}{d x}\right)^{2}$ first.

$$
\begin{array}{rlr}
\frac{d y}{d x} & =\frac{1}{6}\left(3 x^{2}\right)-\frac{1}{2} x^{-2} & \\
& =\frac{1}{2} x^{2}-\frac{1}{2 x^{2}} & \\
1+\left(\frac{d y}{d x}\right)^{2} & =1+\left(\frac{1}{2} x^{2}-\frac{1}{2 x^{2}}\right)^{2} & \text { Foil } \\
& =1+\frac{1}{4} x^{4}-\frac{1}{2}+\frac{1}{4 x^{4}} & \text { Simplify } \\
& =\frac{1}{4} x^{4}+\frac{1}{2}+\frac{1}{4 x^{4}} & \text { Factor } \\
& =\left(\frac{1}{2} x^{2}+\frac{1}{2 x^{2}}\right)^{2} &
\end{array}
$$

$$
\begin{array}{rlr}
S & =\int_{1}^{2} \sqrt{\left(\frac{1}{2} x^{2}+\frac{1}{2 x^{2}}\right)^{2}} d x \\
& =\int_{1}^{2}\left(\frac{1}{2} x^{2}+\frac{1}{2} x^{-2}\right) d x & \text { Integrate } \\
& =\left[\frac{1}{2} \frac{x^{3}}{3}-\frac{1}{2 x}\right]_{1}^{2} & \text { Evaluate } \\
S & =\left[\frac{8}{6}-\frac{1}{4}\right]-\left[\frac{1}{6}-\frac{1}{2}\right] & \\
& =\frac{17}{12} \approx 1.417 &
\end{array}
$$

Check using Casio:

Note: There is a web-based tool to calculate the arc-length and show step-by-step at:
http://www.emathhelp.net/calculators/calculus-2/arc-length-calculus-calculator/
9. $x=\frac{4}{3} y^{3 / 2}$, from $y=0$ to $y=2$

Find $\frac{d y}{d x}$ and $1+\left(\frac{d y}{d x}\right)^{2}$ first.

$$
\begin{aligned}
& \frac{d x}{d y}=\frac{4}{3}\left(\frac{3}{2} y^{1 / 2}\right)=2 \sqrt{y} \\
& 1+\left(\frac{d x}{d y}\right)^{2}=1+(2 \sqrt{y})^{2}=1+4 y \\
& S=\int_{0}^{2} \sqrt{1+4 y} d y \quad \text { Apply Substitution Method } \\
& u=1+4 y, d u=4 d x, d x=\frac{d u}{4} \\
& y=2, u=9 \\
& y=0, u=1 \\
& S=\int_{1}^{9} \sqrt{u} u \frac{d u}{4} \quad \text { Rewrite } \\
&=\frac{1}{4} \int_{1}^{9} u^{1 / 2} d u \quad \text { Integrate }
\end{aligned}
$$

$$
\begin{aligned}
S & =\frac{1}{4}\left[\frac{2}{3} u^{3 / 2}\right]_{1}^{9} \quad \text { Evaluate } \\
& =\frac{1}{4}\left[\frac{2}{3}(9)^{3 / 2}\right]-\frac{1}{4}\left[\frac{2}{3}(1)^{3 / 2}\right] \\
& =\left[\frac{27}{6}-\frac{1}{6}\right] \\
& =\frac{13}{3} \approx 4.333
\end{aligned}
$$

Check using TI:

$\operatorname{fnInt}(\sqrt{(1+4 X)}, x,$
4.3s3s3s3s3
${ }^{13 / 3} 4.353533533$

Note: There is a web-based tool to calculate the arc-length and show step-by-step at: http://www.emathhelp.net/calculators/calculus-2/arc-length-calculus-calculator/
10. $y=\sqrt{x}, \frac{3}{4} \leq x \leq \frac{15}{4} ; x$-axis

Radius of revolution is the distance between the function and the axis of revolution, x-axis radius of revolution $=y$-coordinate of the parabola
thickness $=d x$
limits are from $x=3 / 4$ to $x=15 / 4$
Find $\frac{d y}{d x}$ and $1+\left(\frac{d y}{d x}\right)^{2}$ first.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{2} x^{-1 / 2} \\
1+\left(\frac{d y}{d x}\right)^{2} & =1+\left(\frac{1}{2} x^{-1 / 2}\right)^{2} \\
& =1+\frac{1}{4} x^{-1} \\
& =1+\frac{1}{4 x}
\end{aligned}
$$

$$
\begin{aligned}
& A=\int_{3 / 4}^{15 / 4} 2 \pi y \sqrt{1+\frac{1}{4 x}} d x \\
&=2 \pi \int_{3 / 4}^{15 / 4} \sqrt{x} \frac{\sqrt{4 x+1}}{\sqrt{4 x}} d x \\
& A=\pi \int_{3 / 4}^{15 / 4} \sqrt{4 x+1} d x \quad \text { Apply Substitution method } \\
& u=4 x+1, d u=4 d x \\
& d x=\frac{d u}{4} \\
& x=\frac{15}{4}, u=16 \\
& x=\frac{3}{4}, u=4 \\
& A=\pi \int_{4}^{16} u^{1 / 2} \frac{d u}{4} \\
&=\frac{\pi}{4}\left[\frac{2}{3} u^{3 / 2}\right]_{4}^{16} \\
&=\frac{\pi}{4}\left[\frac{2}{3}(16)^{3 / 2}\right]-\frac{\pi}{4}\left[\frac{2}{3}(4)^{3 / 2}\right] \\
&=\frac{\pi}{2}\left(\frac{128}{3}-\frac{16}{3}\right) \\
&=\frac{28}{3} \pi \approx \approx 29.322 \\
&
\end{aligned}
$$

Check using TI:

Note: There is a web-based tool to calculate the surface of revolution and show step-by-step at: http://www.emathhelp.net/calculators/calculus-2/area-of-surface-of-revolution-calculator/
11. $x=\frac{1}{3} y^{3}, 0 \leq y \leq 1 ; y$-axis

radius of revolution is the distance between the cubic function and the axis of revolution, y-axis radius of revolution $=x$-coordinate of the cubic function thickness $=d y$
limits are from $y=0$ to $y=1$
Find $\frac{d x}{d y}$ and $1+\left(\frac{d x}{d y}\right)^{2}$ first.
$\frac{d x}{d y}=\frac{1}{3}\left(3 y^{2}\right)=y^{2}$
$1+\left(\frac{d x}{d y}\right)^{2}=1+\left(y^{2}\right)^{2}=1+y^{4}$
$A=\int_{0}^{1} 2 \pi x \sqrt{1+y^{4}} d y$
$=2 \pi \int_{0}^{1} \frac{1}{3} y^{3} \sqrt{1+y^{4}} d y \quad$ Apply Substitution Method
$u=1+y^{4}, d u=4 y^{3} d y$

$$
d y=\frac{d u}{4 y^{3}}
$$

$$
x=1, u=2
$$

$$
x=0, u=1
$$

$$
A=\frac{2}{3} \pi \int_{1}^{2} y^{3} \sqrt{u} \frac{d u}{4 y^{3}}
$$

$$
=\frac{\pi}{6} \int_{1}^{2} u^{1 / 2} d u
$$

$$
=\frac{\pi}{6}\left[\frac{2}{3} u^{3 / 2}\right]_{1}^{2}
$$

$$
=\frac{\pi}{9}\left[2^{3 / 2}-1\right]
$$

$$
=\frac{\pi}{9}(2 \sqrt{2}-1) \approx 0.638
$$

Check using TI:

Note: There is a web-based tool to calculate the area of surface of revolution and show step-by-step at:
http://www.emathhelp.net/calculators/calculus-2/area-of-surface-of-revolution-calculator/
12. $y=\frac{1}{6} x^{3}+\frac{1}{2 x}, 1 \leq x \leq 2$; x-axis

radius of revolution is the distance between the function and the axis of revolution, x-axis radius of revolution $=y$-coordinate of the function
thickness $=d x$
limits are from $x=1$ to $x=2$
Find $\frac{d y}{d x}$ and $1+\left(\frac{d y}{d x}\right)^{2}$ first.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{2} x^{2}-\frac{1}{2} x^{-2} \\
1+\left(\frac{d y}{d x}\right)^{2} & =1+\left(\frac{1}{2} x^{2}-\frac{1}{2 x^{2}}\right)^{2} \\
& =1+\frac{1}{4} x^{4}-\frac{1}{2}+\frac{1}{4 x^{4}} \\
& =\frac{1}{4} x^{4}+\frac{1}{2}+\frac{1}{4 x^{4}} \\
& =\left(\frac{1}{2} x^{2}+\frac{1}{2 x^{2}}\right)^{2}
\end{aligned}
$$

$$
\begin{array}{rlr}
A & =\int_{1}^{2} 2 \pi y \sqrt{\left(\frac{1}{2} x^{2}+\frac{1}{2 x^{2}}\right)^{2}} d y & \text { Foil } \\
& =2 \pi \int_{1}^{2}\left(\frac{1}{6} x^{3}+\frac{1}{2 x}\right)\left(\frac{1}{2} x^{2}+\frac{1}{2 x^{2}}\right) d x & \text { Simplify } \\
& =2 \pi \int_{1}^{2}\left(\frac{1}{12} x^{5}+\frac{1}{4} x+\frac{1}{12} x+\frac{1}{4 x^{3}}\right) d x & \text { Integrate } \\
& =2 \pi \int_{1}^{2}\left(\frac{1}{12} x^{5}+\frac{1}{3} x+\frac{1}{4} x^{-3}\right) d x & \text { Evaluate } \\
& =2 \pi\left[\frac{1}{72} x^{6}+\frac{1}{6} x^{2}-\frac{1}{8} x^{-2}\right]_{1}^{2} & \\
& =2 \pi\left[\frac{64}{72}+\frac{4}{6}-\frac{1}{32}\right]-2 \pi\left[\frac{1}{72}+\frac{1}{6}-\frac{1}{8}\right] & \\
& =\frac{47 \pi}{16} \approx \approx 9.228 &
\end{array}
$$

Check using TI:

Note: There is a web-based tool to calculate the area of surface of revolution and show step-by-step at: http://www.emathhelp.net/calculators/calculus-2/area-of-surface-of-revolution-calculator/

