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Abstract

We show a power 2.5 separation between bounded-error randomized and quantum query
complexity for a total Boolean function, refuting the widely believed conjecture that the best
such separation could only be quadratic (from Grover’s algorithm). We also present a total
function with a power 4 separation between quantum query complexity and approximate poly-
nomial degree, showing severe limitations on the power of the polynomial method. Finally, we
exhibit a total function with a quadratic gap between quantum query complexity and certificate
complexity, which is optimal (up to log factors). These separations are shown using a new,
general technique that we call the cheat sheet technique. The technique is based on a generic
transformation that converts any (possibly partial) function into a new total function with de-
sirable properties for showing separations. The framework also allows many known separations,
including some recent breakthrough results of Ambainis et al., to be shown in a unified manner.
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1 Introduction

Query complexity (or decision tree complexity) is a model of computation that allows us to examine
the strengths and weaknesses of resources such as access to randomness, nondeterminism, quantum
computation and more. As opposed to the Turing machine model where we can only conjecture that
certain resources exponentially speed up computation, in this model such beliefs can be proved. In
particular, the query model is a natural setting to describe several well-known quantum algorithms,
such as Grover’s algorithm [Gro96] and quantum walks [Amb07]; even Shor’s algorithm for integer
factorization [Sho97] is based on a quantum query algorithm.

In the query model we measure a problem’s complexity, called its query complexity, by the
minimum number of input bits that have to be read to solve the problem on any input. For a
function f , we use D(f), R(f), and Q(f) to denote the query complexity of computing f with a
deterministic, bounded-error randomized, and bounded-error quantum algorithm respectively.

For a total Boolean function f : {0, 1}n → {0, 1}, we know that these measures are polynomially
related: in one direction, we have Q(f) ≤ R(f) ≤ D(f) as each model is more powerful than the
next, and in the other direction, we haveD(f) = O(R(f)3) [Nis91] andD(f) = O(Q(f))6 [BBC+01].

Until recently, the best known separation between D(f) and R(f) was the Nand-tree function
[SW86], which satisfiesD(f) = Ω(R(f)1.3267) and evenD(f) = Ω(R0(f)

1.3267), whereR0(f) denotes
zero-error randomized query complexity. The best known separation between D(f) or R(f) versus
Q(f) was only quadratic, achieved by the Or function: D(Or) ≥ R(Or) = Ω(n) and Q(Or) =
Θ(

√
n) [Gro96, BBBV97]. No separation was known between R0(f) and R(f). Furthermore, it

was believed that all of these separations were optimal.
These beliefs were shattered by a recent breakthrough by Ambainis, Balodis, Belovs, Lee, San-

tha, and Smotrovs [ABB+15], who built upon the techniques of Göös, Pitassi, andWatson [GPW15],
and showed the near-optimal separations D(f) = Ω̃(R0(f)

2) and R0(f) = Ω̃(R(f)2). Additionally,
they presented new separations between quantum and classical models, exhibiting functions with
D(f) = Ω̃(Q(f)4) and R0(f) = Ω̃(Q(f)3). However, no super-quadratic separation was shown
between a quantum and classical model when they are both allowed to err in the same way (e.g.,
bounded error, zero error, etc.) For example, no super-quadratic separation was shown between
Q(f) and its classical analogue, R(f).

1.1 Results

Randomized versus quantum query complexity

We present the first super-quadratic separation between quantum and classical query complexity
when both models are allowed bounded error. This is a counterexample to a conjecture that
had been widely believed about the nature of quantum speed-ups: that if the function is total,
so that the inputs are not handpicked to orchestrate a quantum speed-up, then the best quantum
advantage possible is the quadratic speed-up achieved by Grover’s algorithm.

Theorem 1. There exists a total function f such that R(f) = Ω̃(Q(f)2.5).

Theorem 1 can be boosted to a cubic separation, i.e., R(f) = Ω̃(Q(f)3), in a completely black-
box manner if there exists a partial function (a function defined only on a subset of {0, 1}n) with
Ω̃(n) randomized query complexity but only poly(log(n)) quantum query complexity (the best
possible separation between these measures up to log factors). It is conjectured that a recently
studied partial function called k-fold Forrelation achieves this separation [AA15].
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Quantum query complexity versus polynomial degree

Nisan and Szegedy [NS95] introduced two new measures of a Boolean function f called the degree

and approximate degree, denoted deg(f) and d̃eg(f) respectively. The (approximate) degree of a
function f is the minimum degree of a polynomial over the input variables that (approximately)
equals f(x) at every input x ∈ {0, 1}n. They introduced these measures to lower bound classical

query complexity, showing that deg(f) ≤ D(f) and d̃eg(f) ≤ R(f). It turns out that these
measures also lower bound the corresponding quantum measures, since deg(f) ≤ 2QE(f) and

d̃eg(f) ≤ 2Q(f) [BBC+01], where QE(f) denotes the exact quantum query complexity of f .
Approximate degree has proved to be a fruitful lower bound technique for quantum query

complexity, especially for problems like the collision and element distinctness problems [AS04],
where it is known that the original quantum adversary method of Ambainis, another commonly
used lower bound technique, cannot show nontrivial lower bounds.

For any lower bound technique, it is natural to ask whether there exist functions where the
technique fails to prove a tight lower bound. Answering this question, Ambainis showed that the
approximate degree of a function can be asymptotically smaller than its quantum query complexity
by exhibiting a function with Q(f) = Ω(d̃eg(f)1.3219) [Amb03]. We dramatically strengthen this
separation to obtain nearly a 4th power gap.

Theorem 2. There exists a total function f such that Q(f) ≥ d̃eg(f)4−o(1).

Theorem 2 is optimal assuming the conjecture that D(f) = O(bs(f)2), where bs(f) is block
sensitivity (to be defined in Section 2.2).

The cheat sheet technique

These separations are shown using a new technique for proving separations between query measures,
which we call the cheat sheet technique. Our technique is based on a generic transformation that
takes any (partial or total) function and transforms it into a “cheat sheet version” of the function
that has desirable properties for proving separations.

While the strategy is inspired by the recent breakthrough results [GPW15, ABB+15] (and bears
some similarity to older works [LG06, AdW14]), it represents a more general approach: it provides
a framework for proving separations and allows many separations to be shown in a unified manner.
Thus the task of proving separations is reduced to the simpler task of finding the right function to
plug into this construction. For example, it can be used to convert a partial function separation
between two models into a weaker total function separation.

In this paper we demonstrate the power of the cheat sheet technique by using it to exhibit
several new total function separations in query complexity.

Other separations

On the path to proving Theorem 2, we show several new separations. First, we quadratically
separate quantum query complexity from certificate complexity, which is essentially optimal since
Q(f) ≤ C(f)2.

Theorem 3. There exists a total function f such that Q(f) = Ω̃(C(f)2).

Besides being a stepping stone to proving Theorem 2, the question of Q(f) versus C(f) has been
studied because it is known that the original adversary method of Ambainis (also known as the
positive-weights adversary method) cannot prove a lower bound greater than C(f) [ŠS06, HLŠ07].
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Plugging the function of Theorem 3 into the cheat sheet framework directly yields a function
whose quantum query complexity is quadratically larger than its (exact) degree, improving the
recent result of [GPW15], who exhibited a function with D(f) = Ω̃(deg(f)2).

Theorem 4. There exists a total function f such that Q(f) = Ω̃(deg(f)2).

This theorem works in a very black-box way: any separation between a measure like Q(f) or
R(f) and C(f) can be plugged into the cheat sheet technique to obtain the same separation (up
to log factors) between that measure and exact degree. For example, since the And-Or function
satisfies R(f) = Ω(C(f)2), the cheat sheet version of And-Or satisfies R(f) = Ω̃(deg(f)2).

This result also shows limitations on using deg(f) to lower bound QE(f), since deg(f) can
sometimes be quadratically smaller than QE(f) and can even be quadratically smaller than Q(f).

Summary of results

We summarize our new results in the table below.

Separation achieved Known relation Result

R(f) = Ω̃(Q(f)2.5) R(f) = O(Q(f)6) Theorem 1

Q(f) ≥ d̃eg(f)4−o(1) Q(f) = O(d̃eg(f)6) Theorem 2

Q(f) = Ω̃(C(f)2) Q(f) = O(C(f)2) Theorem 3

Q(f) = Ω̃(deg(f)2) Q(f) = O(deg(f)3) Theorem 4

Table 1: New separations shown in this paper

We are also able to use the cheat sheet technique to reprove many of the query separations of
[GPW15, ABB+15, GJPW15]. Some of their results are subsumed by the results in Table 1. We
also prove R0(f) = Ω̃(Q(f)3) (Theorem 23) and R(f) = Ω̃(QE(f)

3/2) (Theorem 24) in Section 6.4.
For more details, see Table 2 in which we summarize our results and the best known separations
and relations between query measures.

It is also worth pointing out what we are unable to reproduce with our framework. The only
separations from these papers that we do not reproduce are those that make essential use of “back
pointers”. Reproducing these separations in the cheat sheet framework is an interesting direction
for future research.

1.2 Overview of techniques

Cheat sheet technique and randomized versus quantum query complexity

While we know large partial function separations between randomized and quantum query complex-
ity, such as Simon’s problem [Sim97] or the Forrelation problem [AA15] that satisfies R(g) = Ω̃(

√
n)

and Q(g) = 1, it is unclear how to make these functions total. We could simply define g to be
0 on inputs not in the domain, but then the quantum algorithm would need to be able to decide
whether an input is in the domain.

To solve this problem, we compose the Forrelation problem g with a total function h = And-Or

on n2 bits, to obtain a partial function f = g ◦ h on n3 bits that inherits the properties of both g
and h. Since And-Or has low certificate complexity, it is easier to certify that an input lies in the
domain of g ◦ h, since we only need to certify the outputs of the n different h gates.
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Table 2: Best known separations between complexity measures

D R0 R C RC bs QE deg Q d̃eg

D
2, 2

[ABB+15]

2*, 3

[ABB+15]

2, 2

∧ ◦ ∨
2*, 3

∧ ◦ ∨
2*, 3

∧ ◦ ∨
2, 3

[ABB+15]

2, 3

[GPW15]

4*, 6

[ABB+15]

4*, 6

[ABB+15]

R0
1, 1

⊕
2, 2

[ABB+15]

2, 2

∧ ◦ ∨
2*, 3

∧ ◦ ∨
2*, 3

∧ ◦ ∨
2, 3

[ABB+15]

2, 3

[GJPW15]

3, 6

[ABB+15]

4*, 6

[ABB+15]

R
1, 1

⊕
1, 1

⊕
2, 2

∧ ◦ ∨
2*, 3

∧ ◦ ∨
2*, 3

∧ ◦ ∨
1.5, 3

[ABB+15]

2, 3

[GJPW15]

2.5, 6

Th. 1

4*, 6

[ABB+15]

C
1, 1

⊕
1, 1

⊕
1, 2

⊕
2, 2

[GSS13]

2, 2

[GSS13]

1.1527, 3

[Amb13]

log3 6, 3

[NW95]

2, 4

∧
2, 4

∧

RC
1, 1

⊕
1, 1

⊕
1, 1

⊕
1, 1

⊕
1.5, 2

[GSS13]

1.1527, 2

[Amb13]

log3 6, 2

[NW95]

2, 2

∧
2, 2

∧

bs
1, 1

⊕
1, 1

⊕
1, 1

⊕
1, 1

⊕
1, 1

⊕
1.1527, 2

[Amb13]

log3 6, 2

[NW95]

2, 2

∧
2, 2

∧

QE
1, 1

⊕
1.3267, 2

∧̄-tree
1.3267, 3

∧̄-tree
2, 2

∧ ◦ ∨
2*, 3

∧ ◦ ∨
2*, 3

∧ ◦ ∨
2, 3

Th. 4

2, 6

∧
4*, 6

Th. 2

deg
1, 1

⊕
1.3267, 2

∧̄-tree
1.3267, 3

∧̄-tree
2, 2

∧ ◦ ∨
2*, 3

∧ ◦ ∨
2*, 3

∧ ◦ ∨
1, 1

⊕
2, 6

∧
2, 6

∧

Q
1, 1

⊕
1, 1

⊕
1, 1

⊕
2, 2

Th. 3

2*, 3

Th. 3

2*, 3

Th. 3

1, 1

⊕
2, 3

Th. 4

4*, 6

Th. 2

d̃eg
1, 1

⊕
1, 1

⊕
1, 1

⊕
7/6, 2

∧ ◦Ed
7/6, 3

∧ ◦ Ed
7/6, 3

∧ ◦ Ed
1, 1

⊕
1, 1

⊕
1, 1

⊕

An entry a, b in the row M1 and column M2 roughlya means M1(f) = Õ(M2(f)
b) for all total f

and there exists a total f with M1(f) = Ω̃(M2(f)
a). Each cell contains a citation or a description

of a separating function, where ⊕ = Parity, ∧ = And, ∧ ◦ ∨ = And-Or, ∧̄-tree is the balanced
Nand-tree function [SW86, San95], and ∧ ◦ Ed is the And function composed with Element
Distinctness.b Entries followed by a star (e.g., 2*) correspond to separations that are optimal if
D(f) = O(bs(f)2). Separations colored red are new to this work. Separations colored gray are
separations from recent papers that we reprove in this work.

aMore precisely it means a ≤ crit(M1,M2) ≤ b, where we define crit(·, ·) in Section 2.
bThe Element Distinctness function accepts a list of n numbers in [n] as input and asks if any two of them are

equal. The certificate complexity of the Andn composed with element distinctness on n bits is Õ(n), by composing

certificates for the two functions. However, its approximate degree is Ω̃(n7/6), which follows from noting that its
(negative) one-sided approximate degree is Ω(n2/3) [BT15] and that composition with the Andn function raises its
approximate degree by a factor of

√
n [BT15, She13]. (We thank Mark Bun for outlining this proof.)
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Since R(And-Orn2) = Ω(n2), it can be shown that R(f) = R(g ◦ h) = Ω(n2.5). However,
since Q(And-Orn2) = O(n), we have Q(f) = O(n). Now f is still a partial function, but there is
a small certificate for the input being in the domain. If we could ensure that only the quantum
algorithm had access to this certificate, but the randomized algorithm did not, we would have our
power 2.5 separation.

To achieve this, we hide a “cheat sheet” in the input that contains all the information the
quantum algorithm needs. We store it in a vast array of size n10 of potential cheat sheets, which
cannot be searched quickly by brute force by any algorithm, classical or quantum. Thus, we must
provide the quantum algorithm the address of the correct cheat sheet. But what information do
we have that is known only to the quantum algorithm? The value of f on the input! While one
bit does not help much, we can use 10 log n copies of f acting on 10 log n different inputs. The
outputs to these 10 log n problems can index into an array of size n10, and can be determined by
the quantum algorithm using only O(n log n) queries. At this index we will store the cheat sheet,
which contains certificates for all 10 log n instances of f , convincing us that all the inputs lie in the
domain. Our cheat sheet function now evaluates to 1 if and only if all 10 log n instances of f lie
in the domain, and the cell in the array pointed to by the outputs of these 10 log n instances of f
contains a cheat sheet certifying that these inputs lie in the domain.

Quantum query complexity versus certificate complexity

Consider the k-sum problem, in which we are given n numbers and have to decide if any k of them
sum to 0 (mod M) for some M . For large k, the quantum query complexity of k-sum is nearly
linear in n [BŠ13]. While it is easy to certify 1-inputs by showing any k elements that sum to 0,
the 0-inputs are difficult to certify and hence the certificate complexity is also linear in n.

Building on k-sum, we define a new function that we call Block k-sum, whose quantum query
complexity and certificate complexity are both linear in n. However, Block k-sum has a curious
property: for both 1-inputs and 0-inputs, the certificates themselves consist almost exclusively
of input bits set to 1. This means that if we compose this function with k-sum, the composed
function on n2 bits has certificates of size Õ(n) because any certificate of Block k-sum consists
almost entirely of 1s, which correspond to k-sum instances that output 1, which are easy to certify.
On the other hand, the quantum query complexity of the composed function, which we call BKK for
Block k-sum of k-sum, is the product of the quantum query complexities of individual functions.
Thus the certificate complexity of BKK is Õ(n), but its quantum query complexity is Ω̃(n2).

Quantum query complexity versus polynomial degree

We show that plugging any function that achieves Q(f) = Ω̃(n2) and C(f) = Õ(n) into the cheat
sheet framework yields a function with Q(f) = Ω̃(n2) and deg(f) = Õ(n). The quantum lower
bound uses the hybrid method [BBBV97] and the recent strong direct product theorem for quantum
query complexity [LR13]. The degree upper bound holds because for every potential cheat sheet
location, there exists a degree Õ(n) polynomial that checks if this location is the one pointed to
by the given input. And since the input can point to at most one cheat sheet, the sum of these
polynomials equals the function f .

To achieve a fourth power separation between Q(f) and d̃eg(f), we need to check whether a
cheat sheet is valid using a polynomial of degree Õ(

√
C(f)). Some certificates can be checked by

Grover’s algorithm in time Õ(
√

C(f)), which would yield an approximating polynomial of similar
degree, but this is not true for all functions f . To remedy this, we construct a new function based
on composing BKK with itself recursively log n times, to obtain a new function we call RecBKK,
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and show that certificates for RecBKK can be checked quickly by a quantum algorithm.

2 Preliminaries

For any positive integer n, let [n] := {1, . . . , n}. We use f(n) = Õ(g(n)) to mean there exists a
constant k such that f(n) = O(g(n) logk n). For example, f(n) = Õ(1) means f(n) = O(logk n)
for some constant k. Similarly, f(n) = Ω̃(g(n)) denotes f(n) = Ω(g(n)/ logk n) for some constant
k. Finally, f(n) = Θ̃(g(n)) means f(n) = Õ(g(n)) and f(n) = Ω̃(g(n)).

2.1 Boolean functions

Let f be function from a domain D ⊆ Σn to {0, 1}, where Σ is some finite set. Usually Σ = {0, 1},
and we assume this for simplicity below, although most complexity measures are easily generalized
to larger input alphabets. A function f is called a total function if D = Σn. Otherwise, we say f
is a partial function or a promise problem and refer to D as the promised set or the promise.

g

h

znm· · ·z(n−1)m+1

· · ·

· · ·· · ·

h

zm· · ·z1

Figure 1: Composed function g ◦ h.

For any two (possibly partial) Boolean func-
tions g : G → {0, 1}, where G ⊆ {0, 1}n, and
h : H → {0, 1}, where H ⊆ {0, 1}m, we can de-
fine the composed function g ◦ h : D → {0, 1},
where D ⊆ {0, 1}nm, as follows. For an input
(z1, z2, . . . , znm) ∈ {0, 1}nm, we define g ◦ h as fol-
lows (as depicted in Figure 1):

g ◦ h(z) := g(h(z1, . . . , zm), h(zm+1, . . . , z2m), . . . , h(z(n−1)m+1, . . . , znm)), (1)

where the function g ◦ h is only defined on z where the inputs to the h gates lie in the domain H
and the n-bit input to g, (h(z1, . . . , zm), h(zm+1, . . . , z2m), . . . , h(z(n−1)m+1, . . . , znm)), lies in G.

Some Boolean functions that we use in this paper areAndn andOrn, theAnd andOr functions
respectively on n bits, and And-Orn2 : {0, 1}n2 → {0, 1}, defined as Andn ◦Orn.

2.2 Complexity measures

Formal definitions of most measures introduced here may be found in the survey on query com-
plexity by Buhrman and de Wolf [BdW02] and in the recent paper of Ambainis et al. [ABB+15].

In the model of query complexity, algorithms may only access the input by asking queries to
an oracle that knows the input x ∈ D. The queries are of the form “what is xi?” for some i ∈ [n]
and the oracle responds with the value of xi ∈ Σ. The goal is to minimize the number of queries
made to compute f .

We use D(f) to denote the deterministic query complexity of computing f , the minimum
number of queries that have to be made by a deterministic algorithm that outputs f(x) on every
input x. We useR(f) to denote bounded-error randomized query complexity, the minimum number
of queries made by a randomized algorithm that outputs f(x) on input x with probability at least
2/3. We use R0(f) to denote zero-error randomized query complexity, the minimum number of
queries made by a randomized algorithm that must output either the correct answer, f(x), on input
x or output ∗, indicating that it does not know the answer. However, the probability (over the
internal randomness of the algorithm) that it outputs ∗ should be at most 1/2 on any x ∈ D.

Similarly, we study quantum analogues of these measures. The quantum analogue of D(f)
is exact quantum query complexity, denoted QE(f), the minimum number of queries made by a
quantum algorithm that outputs f(x) on every input x ∈ D with probability 1. The quantum
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analogue of R(f) is bounded-error quantum query complexity, denoted Q(f), where the algorithm
is only required to be correct with probability at least 2/3.

We also study some measures related to the complexity of certifying the output. For a function
f , let C1(f) denote the minimum number of bits of a 1-input, i.e., an input with f(x) = 1, that
have to be revealed to convince a verifier that f(x) = 1. Alternately, imagine the verifier is
allowed to interact with an untrustworthy prover who claims that f(x) = 1, and is allowed to
provide an arbitrarily long witness for this. After receiving the witness, the verifier makes at most
C1(f) queries to the input and decides whether to accept that f(x) = 1 or not. We require that
if f(x) = 1, then there is some witness that makes the verifier accept and if f(x) = 0 then no
witness makes the verifier accept. Similarly we define C0(f) as the analogous notion for 0-inputs.
Finally the certificate complexity of f , or C(f), is defined as max{C0(f), C1(f)}. Similarly, if
the verifier is randomized and only needs to accept valid proofs and reject invalid proofs with
probability greater than 2/3, we get the bounded-error randomized analogues RC0(f), RC1(f),
and RC(f) := max{RC0(f),RC1(f)} [Aar06].

We also study a combinatorial measure of a function called block sensitivity, denoted bs(f).
For a function f and input x, a block of bits B ⊆ [n] is said to be sensitive for x if the input
obtained by complementing all the bits xi for i ∈ B yields an input y ∈ D with f(x) 6= f(y). The
block sensitivity of f on input x is the maximum number of disjoint blocks sensitive for x. The
block sensitivity of f is the maximum block sensitivity over all inputs x ∈ D.

Lastly we study measures related to representing a function with a polynomial with real coeffi-
cients. The (exact) degree of f , denoted deg(f), is the minimum degree of a real polynomial p over
the variables x1, x2, . . . , xn, such that p(x1, x2, . . . , xn) = f(x) for all x ∈ D. Similarly, the approx-

imate degree of f , denoted d̃eg(f), is the minimum degree of a polynomial that approximates the
value of f(x) on every input x ∈ D, i.e., for all x ∈ D the polynomial satisfies |p(x)− f(x)| ≤ 1/3.

All the measures introduced in this section lie between 0 and n. For most measures this follows
because the algorithm may simply query all n input variables and compute f(x). Also, any Boolean
function f can be exactly represented by a real polynomial of degree at most n.

2.3 Known relations and separations

We now summarize the best known relations between the complexity measures studied in this paper.
Figure 2 depicts all known relations of the type M1(f) = O(M2(f)) for complexity measures M1(f)
andM2(f). An upward line fromM1 toM2 in Figure 2 indicates M1(f) = O(M2(f)) for all (partial
or total) Boolean functions f . Most of these relations follow straightforwardly from definitions.
For example R0(f) ≤ D(f) because any deterministic algorithm is also a zero-error randomized
algorithm. The relationships that do not follow from such observations are bs(f) = O(RC(f))

[Aar06], deg(f) = O(QE(f)) [BBC
+01], and d̃eg(f) = O(Q(f)) [BBC+01].

D

R0 QE

C R

RC

bs

deg

Q

d̃eg

Figure 2: Relations between
complexity measures.

All other known relationships between these measures follow by
combining the relationships in Figure 2 with the following relation-
ships that hold for all total Boolean functions:

• C(f) ≤ bs(f)2 [Nis91]
• D(f) ≤ C(f) bs(f) [BBC+01]
• D(f) ≤ deg(f)3 [Mid04, Tal13]

• RC(f) = O(d̃eg(f)2) [KT13]
• R0(f) = O(R(f)2 logR(f)) [KT13]

We now turn to the best known separations between these mea-
sures. To conveniently express these results, we use a notion called
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the critical exponent, as defined by [GSS13]. The the critical exponent for a measure M1 rel-
ative to a measure M2, denoted crit(M1,M2), is the infimum over all r such that the relation
M1(f) = O(M2(f)

r) holds for all total functions f . For example, because D(f) ≤ C(f)2 for all
total f , we have crit(D,C) ≤ 2. Furthermore, since we also know that the And-Or function on
k2 bits satisfies D(f) = k2 and C(f) = k, we have crit(D,C) = 2. Note that the critical expo-
nent between M1 and M2 is 2 even if we have M1(f) = O(M2(f)

2 logM2(f)), or more generally if
M1(f) ≤ M2(f)

2+o(1).
Table 2 lists the best known separations between these measures. A cell in the table has the

form a, b, where a ≤ b are the best known lower and upper bounds on the critical exponent for the
row measure relative to the column measure. The cell also contains a citation for the function
that provides the lower bound. For example, in the cell corresponding to row D and column deg,
we have the entry 2, 3, which means 2 ≤ crit(D,deg) ≤ 3, and a function achieving the separation
appears in [GPW15].

3 Randomized versus quantum query complexity

In this section we show a power 2.5 separation between bounded-error randomized query complexity,
R(f), and bounded-error quantum query complexity, Q(f). In Section 3.1 we motivate the cheat
sheet framework and provide a sketch of the separation. In Section 3.2 we formally prove the
separation.

3.1 Intuition

We begin with the best known separation between randomized and quantum query complexity for
partial functions, which is currently Ω̃(

√
n) versus 1 provided by the Forrelation problem [AA15].

(Note that Simon’s problem also provides a similar separation up to log factors [Sim97].) Let g be
the Forrelation function on D ⊆ {0, 1}n with R(g) = Ω̃(

√
n) and Q(g) = 1, although any function

with these query complexities (up to log factors) would do.
One way to make g total would be to define it to be 0 on the rest of the domain {0, 1}n \D.

But then it is unclear if the new function g has low quantum query complexity, since the quantum
algorithm would have to test whether the input lies in the promised set D. In general since
partial function separations often require a stringent promise on the input, we may expect that it
is necessary to examine most input bits to ascertain that x ∈ D.

Indeed, it is not even clear how to certify that x ∈ D for our function g. On the other hand,
the domain certification problem is trivial for total functions. So we can compose g with a total
function h to obtain some of the desirable properties of both. We can certify that an input to g ◦h
lies in its domain by certifying the outputs of all instances of h. This means we want h to have
low certificate complexity, and since we will use g ◦ h to separate randomized and quantum query
complexity, we would also like h to have Q(h) smaller than R(h). A function that fits the bill
perfectly is the And-Orm2 function that satisfies R(h) = Ω(m2), C(h) = m, and Q(h) = O(m).

We can now compute the various complexities of f := g ◦ h. First we have Q(f) = Õ(m), by
composing algorithms for g and h. There also exists a certificate of size Õ(nm) that proves that
the input satisfies the promise, since we can certify the outputs of the n different h gates using
certificates of size C(h) = m. Also, given query access to this certificate of size Õ(nm), a quantum
algorithm can check the certificate’s validity using Grover search in Õ(

√
nm) queries. Hence a

quantum algorithm with access to a certificate can solve the problem with Õ(m +
√
nm) queries.

On the other hand, it can be shown that R(f) = R(g ◦ h) = Ω(R(g)R(h)) = Ω̃(
√
nm2).

9



Now if we set m = n, then we see that Q(f) = Õ(n) and R(f) = Ω̃(n2.5), but f is still a partial
function. However, f has the desirable property that a quantum algorithm given query access to
a certificate can decide whether the input satisfies the promise using Õ(n) queries. But we cannot
simply append the certificate to the input as we do not want the randomized algorithm to be able
to use it. It is, however, acceptable if the randomized algorithm finds the certificate after it spends
R(f) queries, since that is the lower bound we want to prove.

What we would like is to hide the certificate somewhere in the input where only the quantum
algorithm can find it. What information do we have that is only known to the quantum algorithm
and remains unknown to the randomized algorithm unless it spends R(f) queries? Clearly the
value of f on the input has this property.

While one bit does not help much, we can obtain additional bits of this kind by using (say)
10 log n copies of f . Now the answer string to these problems can address an array of size n10,
much larger than can be brute-force searched by a randomized algorithm in a reasonable amount of
time. Furthermore, this address can be found by a quantum algorithm using only Õ(Q(f)) queries.
At this location we will store a cheat sheet: a collection of certificates for all 10 log n instances of
f .

Now the new function, which we call fCS (shown in Figure 3), evaluates to 1 if and only if the
10 log n inputs are in the domain of f , and the outputs of the 10 log n copies of f point to a valid
cheat sheet, i.e., a set of valid certificates for the 10 log n copies of f . This construction ensures
that the quantum algorithm can find the cheat sheet using Õ(Q(f)) = Õ(n) queries, and then
verify it using Õ(n) queries, which gives Q(fCS) = Õ(n). On the other hand, we intuitively expect
that the randomized algorithm cannot even find the cheat sheet unless it computes f by spending
at least R(f) = Ω̃(n2.5) queries, which gives us the desired separation.

3.2 Implementation

In this section we prove Theorem 1, restated for convenience:

Theorem 1. There exists a total function f such that R(f) = Ω̃(Q(f)2.5).

Let g be the Forrelation function on D ⊆ {0, 1}n with R(g) = Ω̃(
√
n) and Q(g) = O(1). Let

h : {0, 1}m2 → {0, 1} be the And-Orm2 function, defined as Andm ◦Orm. This function satisfies
R(h) = Ω(m2), which can be shown using a variety of methods: it follows from the partition bound
[JK10, Theorem 4] and also from our more general Theorem 5. We also have C(h) = m, since
one 1 from each Or gate is a valid 1-certificate and an Or gate with all zero inputs is a valid
0-certificate. Lastly, Q(h) = Õ(m) follows from simply composing quantum algorithms for And

and Or, and indeed Q(h) = O(m) [HMdW03].
Let f = g ◦ h be a partial function on nm2 bits. We have Q(f) = O(m) by composition, since

quantum algorithms can be composed in general without losing a log factor due to error reduction
[Rei11, LMR+11]. There also exists a certificate of size Õ(nm) that proves that the input satisfies
the promise, since we can certify the outputs of the n different h gates using C(h) = m pointers
to the relevant input bits. Since each pointer uses O(log n) bits, the certificate is of size Õ(nm).
Also note that a quantum algorithm with query access to this certificate can check its validity using
Grover search in Õ(

√
nm) queries.

Lastly, we claim that R(f) = R(g ◦ h) = Ω(R(g)R(h)) = Ω̃(
√
nm2). While a general compo-

sition theorem for bounded-error or zero-error randomized query complexity is unknown, we can
show such a result when the inner function is the Or function.

10



Theorem 5. Let f : D → {0, 1} be a partial function, where D ⊆ {0, 1}n. Then R(f ◦ Orm) =
Ω(mR(f)) and R0(f ◦ Orm) = Ω(mR0(f)). Therefore R(f ◦ Andm ◦ Orm) = Ω(m2R(f)) and
R0(f ◦Andm ◦Orm) = Ω(m2R0(f)).

Proof. We prove this for bounded-error algorithms; the argument for zero-error algorithms will be
almost identical. Let A be the best randomized algorithm for f ◦Orm. We convert A into an
algorithm B for f , as follows.

Given input x to f , B generates n random inputs to Orm, denoted by Y1, Y2, . . . , Yn, in the
following way. First, each Yi is set to 0m, the all-zero string. Next, a random entry of Yi is chosen
and replaced with a ∗ symbol. Finally, for each index i, the ∗ in Yi will be replaced by the bit xi.
This causes Orm(Yi) = xi to be true for all i.

To evaluate f(x), the algorithm B can simply run A on the string Y1Y2 . . . Yn. Since

f ◦Orm(Y1Y2 . . . Yn) = f(Orm(Y1)Orm(Y2) . . .Orm(Yn)) = f(x1x2 . . . xn) = f(x), (2)

this algorithm evaluates f(x) with the same error as A. This process uses R(f ◦Orm) queries to
the input Y . However, not all of these queries require B to query x. In fact, B only needs to query
x when algorithm A queries a bit that was formerly a ∗ in one of the Yi. The expected number of
queries B makes is therefore the expected number of ∗ entries found by the algorithm A. Using
Markov’s inequality, we can turn B into an R(f) algorithm, which uses a fixed number of queries
to calculate f(x) with bounded error; it follows that the expected number of ∗ entries found by A
is at least Ω(R(f)).

We can now view A as a randomized algorithm that finds Ω(R(f)) star bits (in expectation)
given input in Y1Y2 . . . Yn. Set Y = Yi for a randomly chosen i. The number of queries A makes
to Y must be exactly R(f ◦Orm)/n in expectation. Let the probability that A finds k stars be
pk, for k = 0, 1, . . . , n. Then

n∑

k=0

kpk = Ω(R(f)). (3)

For each k, the probability that A finds a star in Y given it found k stars in total is k/n. The
overall probability that A finds a star in Y is therefore

n∑

k=0

pk(k/n) =
1

n

n∑

k=0

kpk = Ω(R(f)/n). (4)

In other words, A makes R(f ◦ Orm)/n expected queries to Y , and finds the ∗ in Y with
probability Ω(R(f)/n). Now, finding the single ∗ in an otherwise all-zero string is an unordered
search problem; the chance of solving this problem after T queries is at most T/m. In other words,
any decision tree of height T has probability only T/m of solving the problem. Since A’s querying
strategy on Y can be written as a probability distribution over decision trees with expected height
R(f ◦Orm)/n, it follows that the probability of A finding the ∗ is at most R(f ◦Orm)/nm. Thus
we have R(f ◦Orm)/nm = Ω(R(f)/n), or R(f ◦Orm) = Ω(mR(f)).

If A is a zero-error randomized algorithm instead of a bounded-error algorithm, the same argu-
ment follows verbatim, except that there’s no longer a need to use Markov’s inequality to conclude
that the expected number of stars found by A is at least Ω(R0(f)).

The last part follows since we can show the same result for Andm, using the fact that the query
complexity of a function f(x1, . . . , xn) equals that of f(x1, . . . , xn) and the query complexity of f
and f̄ is the same.

11



a1

Forrelation
. . .
n∧

. . .
n

∧
. . .
n∨

. . .
n

∨
. . .
n

∨
. . .
n

∨
. . .
n

a2

Forrelation
. . .
n∧

. . .
n

∧
. . .
n∨

. . .
n

∨
. . .
n

∨
. . .
n

∨
. . .
n

a10 logn

Forrelation
. . .
n∧

. . .
n

∧
. . .
n∨

. . .
n

∨
. . .
n

∨
. . .
n

∨
. . .
n

. . .

array of size n10 marked cell containing

pointers to certificates

proving the value of a

Figure 3: The function f that achieves a superquadratic separation between Q(f) = Õ(n) and
R(f) = Ω̃(n2.5).

We now define the cheat sheet version of f , which we call fCS, depicted in Figure 3. Let the
input to fCS consist of 10 log n inputs to f , each of size nm2, followed by n10 blocks of bits of size
Õ(mn) each, which we refer to as the array of cells or array of cheat sheets. Each cell is large
enough to hold certificates for all 10 log n inputs to f that certify for each input the output of f
evaluated on that input and that the promise holds.

Let us denote the input to fCS as z = (x1, x2, . . . , x10 logn, Y1, Y2, . . . , Yn10), where xi is an input
to f , and the Yi are the aforementioned cells of size Õ(mn). We define the value of fCS(z) to be
1 if and only if the following conditions hold:

1. For all i, xi is in the domain of f . If this condition is satisfied, let ℓ be the positive integer
corresponding to the binary string (f(x1), f(x2), . . . , f(x10 logn)).

2. Yℓ certifies that all xi are in the domain of f and that ℓ equals the binary string formed by
their output values, (f(x1), f(x2), . . . , f(x10 logn)).

We now upper bound the quantum query complexity of fCS. The quantum algorithm starts by
assuming that the first condition of fCS holds and simply computes f on all 10 log n inputs, which
uses Õ(Q(f)) = Õ(m) queries. The answers to these inputs points to the cheat sheet Yℓ, where
ℓ is the integer corresponding to the binary string (f(x1), f(x2), . . . , f(x10 logn)). As discussed,
verifying the cheat sheet of size Õ(mn) requires only Õ(

√
mn) queries by a recursive application

of Grover search. The algorithm outputs 1 if and only if the verification of Yℓ succeeded. If the
certificate is accepted by the algorithm, then both conditions of fCS are satisfied and hence it is
easy to see the algorithm is correct. Hence Q(fCS) = Õ(m+

√
mn).

We also know that R(f) = Ω̃(
√
nm2). We now prove that this implies R(fCS) = Ω̃(R(f)) =

Ω̃(
√
nm2). Proving this completes the proof of Theorem 1, since setting m = n immediately yields

Q(fCS) = Õ(n) and R(fCS) = Ω̃(n2.5).
To complete the proof, we show in general that R(fCS) = Ω̃(R(f)).

Lemma 6. Let f : D → {0, 1} be a partial function, where D ⊆ [M ]n, and let fCS be the cheat
sheet version of f with c = 10 log n copies of f . Then R(fCS) = Ω(R(f)/c2) = Ω̃(R(f)).

Proof. Let A be any bounded-error randomized algorithm for evaluating fCS. We will prove that
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A makes Ω(R(f)/c2) queries.
We start by proving the following claim: Let x1, x2, . . . , xc ∈ Dom(f) denote c valid inputs to

f and let z be an input to fCS consisting of x1x2 · · · xc with blank array—that is, it has 0 in all the
entries of all cheat sheets. Let us assume that the all zero string is not a valid cheat sheet for any
input. This can be enforced, for example, by requiring that all cheat sheets begin with the first
bit equal to 1. Let ℓ be the binary number f(x1)f(x2) · · · f(xc), and let hℓ be the ℓth cheat sheet.
Then we claim that A must query a bit of hℓ when run on z with probability at least 1/3.

This claim is easy to prove. Since the all zero string is an invalid cheat sheet, it follows that
fCS(z) = 0, so A outputs 0 when run on z with probability at least 2/3. Now if we modify hℓ in z
to be the correct cheat sheet for the given input x1, x2, . . . , xc, then we obtain a new input z′ with
fCS(z

′) = 1. This means A outputs 1 when run on z′ with probability at least 2/3. However, since
these inputs only differ on hℓ, if A does not query hℓ with high probability, it cannot distinguish
input z from input z′. Since A is a valid algorithm for fCS, the claim follows.

We now use the hybrid argument to prove the lemma. For any input z with blank array, let
pz ∈ [0, 1]2

c
be the vector such that for each i = [2c], (pz)i is the probability that A makes a query

to the ith cheat sheet when given input z. Then the 1-norm of pz is at most the running time of
A, which is at most R(f). By the claim, if ℓ is the relevant cheat sheet for z, we have (pz)ℓ ≥ 1/3.
On the other hand, since pz has 2c ≥ n10 ≥ R(f)10 entries that sum to at most R(f), almost all of
them have value less than, say, R(f)−5.

Next, consider hard distributions D0 and D1 over the 0- and 1-inputs to f , respectively. We
pick these distributions such that distinguishing between them with probability at least 1/2+1/12c
takes at least Ω(R(f)/c2) queries for any randomized algorithm.

For each i ∈ [2c], let qi be the expectation over pz when z is made of c inputs to f generated
from Di = Di1 ×Di2 × · · · × Dic, together with a blank array (here ij means the jth bit of i when
written in binary). Then for all i ∈ [2c], we have (qi)i ≥ 1/3, and the 1-norm of qi is at most R(f),
so most entries of qi are less than R(f)−5. The entries of qi can be interpreted as the probabilities
of each cheat sheet being queried by the algorithm on an input sampled from Di.

Let k ∈ [2c] be such that (q0)k < 1/6. Let k0, k1, . . . , kc be such that k0 = 0, kc = k, and
consecutive k’s differ by at most one bit (when represented as binary vectors of length c). Since
(qk0)k < 1/6 and (qkc)k ≥ 1/3, there must be some j ∈ [c] such that (qkj+1

)k − (qkj )k > 1/6c and
(qkj)k < 1/3. Let a = (qkj+1

)k and let b = (qkj)k.

We can now use this to distinguish the product distribution Dkj+1 from Dkj , with probability
of error at most 1/2 − 1/12c: simply run the algorithm A, output 1 if it queried an entry of the
kth cheat sheet, and otherwise output 1 with probability max(0, 1−a−b

2−a−b). If this maximum is 0, it
means we have b > 2/3 and a < 1/3, so this algorithm has error at most 1/3. Otherwise, it is not
hard to check that the algorithm will determine if the input is from Dkj+1 with probability at most
1/2 − (b− a)/2 < 1/2 − 1/12c.

Finally, note that since kj+1 and kj differ in only one bit, distinguishing Dkj+1 from Dkj allows
us to distinguish between D0 and D1. This is because given any input from D0 or D1, the algorithm
can sample other inputs to construct an input from Dkj+1 or Dkj , and then run the distinguishing
algorithm. It follows that the running time of A is at least Ω(R(f)/c2), by the choice of the
distributions D0 and D1.
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4 Quantum query complexity versus certificate complexity and

degree

We now show a nearly quadratic separation between Q(f) and C(f), which yields a similar separa-
tion between Q(f) and deg(f). We will also use the functions introduced in this section as building

blocks to obtain the nearly 4th power separation between Q(f) and d̃eg(f) proved in Section 5.

4.1 Quadratic gap with certificate complexity

In this section we establish Theorem 3, restated for convenience:

Theorem 3. There exists a total function f such that Q(f) = Ω̃(C(f)2).

Consider the k-sum problem, k-sum : [M ]n → {0, 1}, which asks if there are k elements in the
input string x1, x2, . . . , xn ∈ [M ] that sum to 0 (mod M). Belovs and Špalek [BŠ13] showed that
Q(k-sum) = Ω(nk/(k+1)) when the alphabet M has size nk and k is constant. In Appendix A, we
show that their proof implies a bound of Q(k-sum) = Ω(nk/(k+1)/

√
k) for super-constant k.

Now the 1-certificate complexity of the k-sum problem is k (assuming it costs one query to get
an element of M), since it suffices to provide the k elements that sum to 0 (mod M). If we take
k = log n, we get Q(k-sum) = Ω(n/

√
log n) and C1(k-sum) = O(log n). Although this function is

not Boolean, turning it into a Boolean function will only incur an additional polylogarithmic loss.
While k-sum does not separate quantum query complexity from certificate complexity, its 1-

certificate complexity is much smaller than its quantum query complexity. Composing a function
with small 0-certificates, such as the Andn with k-sum already gives a function whose quantum
query complexity is larger than its certificate complexity: in this case, we have certificate complexity
Õ(n) and quantum query complexity Ω̃(n3/2), which follows from the following general composition
theorem [HLŠ07, Rei11, LMR+11, Kim12]:

Theorem 7 (Composition theorem for quantum query complexity). Let f : D → {0, 1} and g :
E → {0, 1} be partial functions where D ⊆ {0, 1}n and E ⊆ {0, 1}m. Then Q(f◦g) = Θ(Q(f)Q(g)).

To get an almost quadratic gap between Q(f) and C(f), we use a variant of k-sum itself as
the outer function instead of the And function. From k-sum, we define a new Boolean function
that we call Block k-sum, whose quantum query complexity is Θ̃(n) and certificate complexity
is also Θ̃(n). However, although its certificate complexity is linear, the certificates consist almost
exclusively of input bits set to 1 and only Õ(1) input bits set to 0. This means if we compose this
function with k-sum, the composed function has certificates of size Õ(n), since the certificates of
Block k-sum are essentially composed of 1s, which are easy to certify for k-sum. We denote this
composed function BKK : {0, 1}n2 → {0, 1}. It satisfies C(BKK) = Õ(n) and Q(BKK) = Ω̃(n2),
which yields the desired quadratic separation.

We now define the Block k-sum problem.

Definition 8. Let Block k-sum be a total Boolean function on n bits defined as follows. We split
the input into blocks of size 10k log n each and say a block is balanced if it has an equal number of
0s and 1s. Let the balanced blocks represent numbers in an alphabet M of size Ω(nk). The value
of the function is 1 if and only if there are k balanced blocks whose corresponding numbers sum to
0 (mod M) and all other blocks have at least as many 1s as 0s.

We then compose this function with k-sum to get the function BKK.
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Definition 9. Let BKKn2,k : {0, 1}n2 → {0, 1} be the function Block k-sum on n bits composed
with a Boolean version of k-sum on n bits, and define BKKn2 to be BKKn2,k with k = log n.

We are now ready to establish the various complexities of BKK.

Theorem 10. For the total Boolean function BKKn2,k : {0, 1}n2 → {0, 1}, we have

C(BKKn2,k) = O(k2n log n) and Q(BKKn2,k) = Ω
(n2−2/(k+1)

k3 log2 n

)
. (5)

Proof. We start by analyzing the certificates of Block k-sum. The key property we need is that
every input of Block k-sum has a certificate that uses very few 0s, but can use a large number
of 1s. To see this, note that we can certify a 1-input by showing the k balanced blocks that sum
to 0 which requires O(k2 log n) 0s, and all the 1s in every other block. There are two kinds of 0
inputs to certify: A 0-input that has a block with more 0s than 1s can be certified by providing
that block, which only uses O(k log n) 0s. A 0-input in which all blocks have at least as many 1s as
0s can be certified by providing all the 1s: this provides the number represented by each block if it
were balanced (though it does not prove the block is actually balanced), which is enough to check
that no k of them sum to zero. In conclusion, Block k-sum can always be certified by providing
O(n) 1s and O(k2 log n) 0s.

We now analyze the certificate complexity of BKKn2,k. For each input, the outer Block k-sum
has a certificate using O(k2 log n) 0s and O(n) 1s. The inner function, k-sum, has 1-certificates of
size O(k2 log n) since there are k numbers to exhibit and each uses k log n bits when represented
in binary, and has 0-certificates of size O(n). Therefore, the composed function always has a
certificate of size O(k2n log n). Hence C(BKKn2,k) = O(k2n log n).

The quantum query complexity of Block k-sum is Ω(Q(k-sum)/k log n) by a reduction from
k-sum. Using the result in Appendix A, this is Ω(n1−1/(k+1)/k3/2 log n). Invoking the composition

theorem for quantum query complexity (Theorem 7), we get Q(BKKn2,k) = Ω
(
n2−2/(k+1)

k3 log2 n

)
.

Thus for the function BKK : {0, 1}n2 → {0, 1}, defined as BKK = BKKn2,logn, we have

C(BKK) = O(n log3 n) = Õ(n) and Q(BKK) = Ω
( n2

log5 n

)
= Ω̃(n2). (6)

This establishes Theorem 3, since BKK is a total Boolean function.

4.2 Quadratic gap with (exact) degree

We now show how to obtain a total function that nearly quadratically separates Q(f) from deg(f)
using any total function that achieves a similar separation between Q(f) and C(f). This proves
Theorem 4:

Theorem 4. There exists a total function f such that Q(f) = Ω̃(deg(f)2).

Let f : {0, 1}n → {0, 1} be a total function with Q(f) = Ω̃(n) and C(f) = Õ(
√
n), such as the

BKK function introduced in the previous section. Let fCS denote the cheat sheet version of f (as
described in Section 3), created using 10 log n copies of f that point to a cheat sheet among n10

potential cheat sheets, where a valid cheat sheet contains certificates of size Õ(
√
n) for each of the

10 log n inputs to f and the binary string corresponding to their outputs equals the location of the
cheat sheet. In this case f is a total function so the cheat sheets do not certify that the input
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satisfies the promise, but only the value of f evaluated on the input. We claim that the cheat
sheet version of f satisfies Q(fCS) = Ω̃(n) and deg(fCS) = Õ(

√
n).

Let us start with the degree upper bound, deg(fCS) = Õ(
√
n). Let ℓ ∈ [n10] be a potential

location of the cheat sheet. For any ℓ, consider the problem of outputting 1 if and only if fCS(z) = 1
and ℓ is the location of the cheat sheet for the input z. Since ℓ is known, this can be solved by a
deterministic algorithm Aℓ that makes Õ(

√
n) queries, since it can simply check if the certificate

stored at cell ℓ in the array is valid: it can check all the 10 log n certificates of size Õ(
√
n) for

each of the 10 log n instances of f and then check if the outputs of f evaluate to the location ℓ.
Since polynomial degree is at most deterministic query complexity, we can construct a representing
polynomial for Aℓ for any location ℓ. This is a polynomial pℓ of degree Õ(

√
n) such that pℓ(z) = 1

if and only if fCS(z) = 1 and ℓ is the position of the cheat sheet on input z. Now we can simply
add all the polynomials pℓ together to obtain a new polynomial q of the same degree. We claim
q(z) = fCS(z) since if fCS(z) = 0 then certainly all the polynomials pℓ(z) = 0 (since none of the
cheat sheets is valid) and if fCS(z) = 1 then q(z) = 1 because exactly one of many pℓ(z) will
evaluate to 1, the one corresponding to the location of the cheat sheet for the input z. Note that
the property used here is that in a 1-input to fCS, exactly one location serves as the correct cheat
sheet, i.e., the location of the cheat sheet for a 1-input is unique.

The claim that Q(fCS) = Ω̃(n) seems intuitive since Q(f) = Ω̃(n) and the cheat sheet version
of f cannot be easier than f itself. This intuitive claim is true and we show below that Q(fCS) =
Ω(Q(f)) in general, which completes the proof of Theorem 4.

To prove this general result for quantum query complexity, we will need the following strong
direct product theorem due to Lee and Roland [LR13].

Theorem 11. Let f be a (partial) function with Q1/4 (f) ≥ T . Then any T -query quantum
algorithm that outputs the value of f evaluated on c independent instances has success probability
at most O((3/4)c/2).

We now prove the lower bound on the quantum query complexity of cheat sheet functions.

Lemma 12. Let f : D → {0, 1} be a partial function, where D ⊆ [M ]n, and let fCS be a cheat
sheet version of f with c = 10 log n copies of f . Then Q(fCS) = Ω(Q(f)).

Proof. By Theorem 11, we know that given c = 10 log n instances of f , any quantum algorithm
that makes fewer than T = Q1/4(f) queries will correctly decide all the instances with probability

at most O((3/4)c/2).
Now suppose by way of contradiction that Q1/4 (fCS) ≤ T . Then we will show how to decide

c copies of f with probability Ω
(
1/T 2

)
by making T quantum queries. Since

1

T 2
≥ 1

n2
≥ 1

2c/5
≫
(
3

4

)c/2

, (7)

this is enough to contradict Theorem 11.
Let Q be a quantum algorithm that decides fCS using at most T queries. Then consider

running Q on an input z = (x1, . . . , xc, Y1, Y2, . . . , Y2c), where the xi are in the domain of f and
whose cheat-sheet array (Y1, Y2, . . . , Y2c) has been completely zeroed out. We assume again that
the all-zero cheat sheet is invalid for any input. This can always be enforced by requiring a valid
cheat sheet to have the first bit set to 1.

For all y ∈ [2c] and t ∈ [T ], define my,t, or the query magnitude on y at query t, to be the
probability that Q would be found querying some bit in cell Yy, were we to measure in the standard
basis immediately before the tth query.
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For an input z where we have zeroed out the cheat sheet array, clearly fCS(z) = 0 and hence Q
outputs 0 on this input with high probability. On the other hand, if we let ℓ = f

(
x1
)
· · · f (xc) ∈

[2c], by modifying only the ℓth cell in the array, Yℓ, we could produce an input z′ such that
fCS (z

′) = 1. From these facts, together with the standard BBBV hybrid argument [BBBV97], it
follows that √

mℓ,1 + · · ·+√
mℓ,T = Ω(1) . (8)

So by the Cauchy–Schwarz inequality, we have

mℓ,1 + · · ·+mℓ,T = Ω

(
1

T

)
. (9)

This implies that, if we simply choose a t ∈ [T ] uniformly at random, run Q until the tth query
with the cheat-sheet array zeroed out, and then measure in the standard basis, we will observe
ℓ = f

(
x1
)
· · · f (xc) with probability Ω

(
1/T 2

)
. This completes the proof.

5 Quantum query complexity versus approximate degree

We now show how to obtain a nearly quartic separation between quantum query complexity and
approximate degree from a function that quadratically separates Q(f) from C(f). As in Section 3,
we first motivate the construction in Section 5.1 and then formally give the separation in Section 5.2.
The main result of this section is Theorem 2:

Theorem 2. There exists a total function f such that Q(f) ≥ d̃eg(f)4−o(1).

5.1 Intuition

To obtain the quartic separation with approximate degree, we could try the same approach as in
the previous section for exact degree. Using notation from Section 4.2, consider the algorithm Aℓ

that makes Õ(
√
n) queries. Instead of using a polynomial to exactly represent Aℓ, we could try

to construct more efficient approximating polynomials. If there were a quantum algorithm that
checked the certificate quadratically faster than the deterministic Aℓ, then we would be done. This
is because such a quantum algorithm would yield a polynomial of degree Õ(n1/4) that approximates
Aℓ. Then we could sum up these polynomials as before, with some error reduction to ensure that
the error in each polynomial is small enough not to affect the sum of the polynomials. This error
reduction only adds an overhead of O(log n), which gives us a polynomial of degree Õ(n1/4) that
approximates fCS.

However, it is unclear if there is a quantum algorithm to check a certificate of size Õ(
√
n)

quickly. Reading the certificate itself could require Ω̃(
√
n) queries. All we know is that the

certificate can be checked using Õ(
√
n) queries classically, but this does not imply a quadratic

quantum speedup. To obtain a quadratic speedup the certificates need some structure that can,
for example, be exploited with Grover’s algorithm. But the certificates in this case are simply
0-inputs of k-sum of size Õ(

√
n), and it is unclear how to quantumly check if an input is a 0-input

(even with query access to any certificate) any quicker than querying the entire input. What we
would like is for the certificate to be checkable using Õ(n1/4) queries to the certificate and the
input. So we construct a new function that has this property by modifying the BKK function
used in Section 4.2.

Let f be BKK : {0, 1}n2 → {0, 1} for some large, but constant n. We choose n to be
large enough that Adv±(f) ≥ n1.99 and C(f) ≤ n1.01. Such an n exists because asymptotically
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C(BKK) = Õ(n) and Q(BKK) = Ω̃(n2) (and Q(BKK) = Θ(Adv±(BKK)) [LMR+11]). Compos-
ing this function with itself d times gives us a new function g : {0, 1}N → {0, 1}, where N = n2d.
This function has C(g) ≤ C(f)d ≤ n1.01d ≤ N0.51. Since the general adversary bound satis-
fies a perfect composition theorem [LMR+11], we have Q(g) = Ω(Adv±(g)) = Ω(Adv±(f)d) =
Ω(n1.99d) = Ω(N0.99).

If we view the function g as a tree of depth d and fanin n2, it has N leaves but only N0.51 of
these leaves are part of a certificate. Consider the subtree of g that consists of all nodes that are
ancestors of these N0.51 certificate leaves. This subtree has size O(N0.51) and the set of values of
all nodes in this subtree is a certificate for g. Furthermore, this certificate can be checked by a
quantum algorithm in only O(N0.26) queries, since each level of the tree consists of at most N0.51

instances of f acting on a constant number of bits. Checking a constant-sized f costs only O(1)
queries, and searching over all N0.51 instances for an invalid certificate costs O(N0.26) queries by
Grover’s algorithm. This can be done for each level, resulting in a quantum algorithm with query
complexity Õ(N0.26).

Thus we have constructed a function g for which Q(g) is close to N , but the complexity of
quantumly checking a certificate (given query access to it) is close to N1/4. Plugging this into the
cheat sheet construction yields a nearly 4th power separation between quantum query complexity
and approximate degree.

5.2 Implementation

Recall the functionBKK : {0, 1}n2 → {0, 1} introduced in Theorem 10. We introduce a function we
call RecBKK which consists of recursively composing BKK with itself d times; that is, we replace
each bit in BKK with a new copy of BKK, then replace each bit in the new copies with yet more
copies of BKK, and so on. The resulting function will look like a tree of height d where each vertex
has n2 children and will have total input size N = n2d. We will choose d = (4/25) log n/ log log n
to optimize our construction. The resulting function RecBKK has the following properties.

Theorem 13. There exists a total function RecBKK : {0, 1}N → {0, 1} such that given query
access to a certificate of size N1/2+o(1), a quantum algorithm can check the validity of the certificate
using at most N1/4+o(1) queries. Furthermore, Q(RecBKK) = N1−o(1).

Proof. Our function RecBKK is defined as the d-fold composition of BKK : {0, 1}n2 → {0, 1}
with itself. This yields a function on N = n2d bits and we set d = (4/25) log n/ log log n.

With this choice of d, we can show more precisely that the function RecBKK has a certificate
that can be checked by a quantum algorithm using O(N1/4LN [1/2, 1]) = N1/4+o(1) queries, where
LN [a, c] = exp((c+ o(1)) logaN log log1−aN), and Q(RecBKK) = Ω(N/LN [1/2, 1]) = N1−o(1).

With this choice of d, the parameters are now related as follows: Since N = n2d, we have
logN = 2d log n = (8/25) log2 n/ log log n. This gives log n = (5/4 + o(1))

√
logN log logN , so we

get n = LN [1/2, 5/4]. Additionally, since (log n)d = exp(d log log n) = exp((4/25) log n) = n4/25,
it follows that (log n)d = LN [1/2, 1/5].

We start with the quantum lower bound for Q(RecBKK). By Theorem 10 and the optimality
of the general adversary bound [LMR+11], we have

Adv±(BKK) = Ω(Q(BKK)) = Ω

(
n2

log5 n

)
=

n2

(log n)5+o(1)
. (10)
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By using the fact that Adv±(fd) = Adv±(f)d for Boolean functions f [LMR+11], we get

Q(RecBKK) = Ω(Adv±(BKK)d) =
n2d

(log n)(5+o(1))d
=

N

LN [1/2, 1/5]5+o(1)
= Ω(N/LN [1/2, 1]).

(11)
Now we show the upper bound on quantumly checking a certificate. First note that every

non-leaf node in the RecBKK tree corresponds to a BKK instance. For each such node, there is
therefore a set of C(BKK) children that constitute a certificate for that BKK instance. We can
therefore certify the RecBKK instance by starting from the top of the tree, listing out C(BKK)
children that constitute a certificate, then listing out C(BKK) children for each of those, and so
on. In each layer i of the tree, we thus have C(BKK)i nodes that belong to a certificate.

We require our quantumly checkable certificate to provide, for each non-leaf node that belongs
to a certificate, pointers to C(BKK) of the node’s children that constitute a certificate for that
BKK instance, starting with the root of the tree. A quantum algorithm can then use Grover
search to search for a bad certificate. More precisely, the algorithm checks the certificate for the
root to see if the C(BKK) children of the root pointed to and their claimed values do indeed form
a certificate. It then checks if all the claimed values in the first level are correct assuming the
claimed values of nodes in the second level and so on. The total number of certificates to check is

1 + C(BKK) + C(BKK)2 + · · ·+ C(BKK)d−1 ≤ 2C(BKK)d−1, (12)

where each certificate has size C(BKK). Therefore, the quantum algorithm will make

Õ(C(BKK)(d−1)/2C(BKK)) = Õ(C(BKK)(d+1)/2) (13)

queries, where we have logarithmic factors due to the pointers being encoded in binary and error
reduction. From Theorem 10, we have C(BKK) = O(n log3 n) = n(log n)3+o(1), so the search
takes

Õ(n(d+1)/2(log n)(3+o(1))(d+1)/2) = Õ(N1/4n1/2(log n)(3/2+o(1))d) = Õ(N1/4LN [1/2, 37/40]). (14)

quantum queries, which is is O(N1/4LN [1/2, 1]).

Using this function RecBKK we can now establish Theorem 2. This proof is very similar to
the separation between quantum query complexity and exact degree in Section 4.2.

Let f be the total function RecBKK : {0, 1}n → {0, 1} with Q(f) = n1−o(1) and C(f) =
n1/2+o(1), and more importantly given query access to this certificate, a quantum algorithm can
check its validity using n1/4+o(1) queries. Let fCS denote the cheat sheet version of f created
using 10 log n copies of f as before. From Lemma 12 we know that Q(fCS) = Ω(Q(f)) and hence

Q(fCS) = n1−o(1). We now show d̃eg(fCS) = n1/4+o(1).
Let ℓ ∈ [n10] be a potential location of the cheat sheet. For any ℓ, consider the problem of

outputting 1 if and only if fCS(z) = 1 and ℓ is the location of the cheat sheet for the input z. For
any fixed ℓ, this can be solved by a quantum algorithm Qℓ that makes n1/4+o(1) queries as shown
in Theorem 13, since it can simply check if the certificate stored at cell ℓ in the array is valid: it
can check all the 10 log n certificates for each of the 10 log n instances of f and then check if the
outputs of f evaluate to the location ℓ.

Since approximate polynomial degree is at most quantum query complexity, we can construct
a representing polynomial for Qℓ for any location ℓ. This is a polynomial pℓ of degree n1/4+o(1)

such that pℓ(z) = 1 if and only if fCS(z) = 1 and ℓ is the position of the cheat sheet on input z.
Now we can simply add all the polynomials pℓ together to obtain a new polynomial q of the same
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degree, except that we first reduce the error in each polynomial to below 1/n10 so that the total
error is bounded. (This can be done, for example, using the amplification polynomial construction
of [BNRdW07, Lemma 1].) Now q(z) = fCS(z) as argued in Section 4.2.

6 Cheat sheet functions

In this section we define the cheat sheet framework more generally. Once the framework is set up,
proofs based on the framework are short and conveniently separate out facts about the framework
from results about the separation under consideration. To demonstrate this, we reprove some
known separations in Section 6.4.

6.1 Certifying functions and cheat sheets

Intuitively, a certifying function for a function f : D → {0, 1}, where D ⊆ [M ]n, is a function φ
that takes in an input x ∈ [M ]n, a claimed value y1 for f(x), and a proof (y2, y3, . . . , yk) that we
indeed have x ∈ D and f(x) = y1. The value of the certifying function will be 1 only when these
conditions hold. We would also like the certifying function to depend nontrivially on the certificate
y, i.e., for every x ∈ D there should be some y that makes the function output 1, and some y that
makes it output 0. For convenience of analysis, we enforce that the certificate y = 0k is invalid
for all x. Any nontrivial certifying function can be made to have this property by requiring that
(say) the second bit of y, y2, is 1 for all valid certificates.

Definition 14 (Certifying function). Let f : D → {0, 1} be a partial function, where D ⊆ [M ]n for
some integer M ≥ 2. We say a total function φ : [M ]n × {0, 1}k → {0, 1}, where k is any positive
integer, is a certifying function for f if the following conditions are satisfied:

1. ∀x /∈ D, φ(x, y) = 0 (invalid inputs should not have certificates)

2. ∀x ∈ [M ]n, ∀y ∈ {0, 1}k, if y1 6= f(x) then φ(x, y) = 0 (certificate asserts y1 = f(x))

3. ∀x ∈ D, ∃y ∈ {0, 1}k such that φ(x, y) = 1 (valid inputs should have certificates)

4. ∀x ∈ [M ]n, φ(x, 0k) = 0 (nontriviality condition)

Typically, a certifying function will be defined so that its value is only 1 if y includes pointers
to a certificate in x and if f is a partial function, we will also want y to include a proof that x
satisfies the promise of f . Thus the query complexity of φ may be smaller than that of f .

We now define the cheat sheet version of a function f with certifying function φ. In the
separations in the previous sections we used 10 log n copies of the function f to create the address
of the cheat sheet. For generality we now use c = ⌈10 logD(f)⌉ instead so that the construction
only adds logarithmic factors in D(f), as opposed to logarithmic factors in n, which may be larger
than D(f). This does not make a difference in our applications, however.

Definition 15 (Cheat sheet version of f). Let f : D → {0, 1} be a partial function, where D ⊆ [M ]n

for some integer M ≥ 2, and let c = ⌈10 logD(f)⌉. Let φ : [M ]n × {0, 1}k → {0, 1}, for some
positive integer k, be a certifying function for f . Then the cheat sheet version of f with respect
to φ, denoted fCS(φ), is a total function

fCS(φ) : ([M ]n)c × (({0, 1}k)c)2c → {0, 1} (15)

acting on an input (X,Y1, Y2, . . . , Y2c), where X ∈ ([M ]n)c and Yi ∈ ({0, 1}k)c. Also, let X ∈
([M ]n)c be written as X = (x1, x2, . . . , xc), where xi ∈ [M ]n. Then we define the value of
fCS(φ)(X,Y1, Y2, . . . Y2c) to be 1 if and only if conditions (1) and (2) hold.
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(1) For all i ∈ [c], xi ∈ D.

If condition (1) is satisfied, let ℓ ∈ [2c] be the positive integer corresponding to the binary string
(f(x1), f(x2), . . . , f(xc)) and let Yℓ = (y1, y2, . . . yc) where each yi ∈ {0, 1}k.
(2) For all i ∈ [c], xi ∈ D and φ(xi, yi) = 1.

Intuitively, the input to fCS(φ) is interpreted as c inputs to f , which we call (x1, x2, . . . , xc),
followed by 2c strings (Y1, Y2, . . . Y2c) of length ck called cheat sheets. The value of the function
will be 0 if any of the c inputs to f do not satisfy the promise of f . If they do satisfy the promise,
let ℓ ∈ [2c] be the number encoded by the binary string f(x1)f(x2) . . . f(xc), where 0c and 1c

encode the numbers 1 and 2c respectively. If the ℓth cheat sheet in the input, Yℓ, is written as
Yℓ = (y1, y2, . . . , yc), where yi ∈ {0, 1}k for all i, then the value of fCS(φ) is 1 if φ(xi, yi) = 1 for all
i ∈ [c], and 0 otherwise.

In other words, the value of fCS(φ) is 1 if the first part of its input consists of c valid inputs to
f that together encode a location of a cheat sheet in the second part of the input, and this cheat
sheet in turn contains pointers that certify the values of the c inputs to f . The idea is that the
only way to find the cheat sheet is to solve the c copies of f , so that fCS(φ) has query complexity
at least that of f , but once the cheat sheet has been found one can verify the value of fCS(φ) using
only the query complexity of φ, which may be much smaller.

We now characterize the query complexity of fCS(φ) in terms of the query complexities of f and
φ in various models. The following result summarizes our results for the query complexity of cheat
sheet functions.

Theorem 16 (Query complexity of cheat sheet functions). Let f : D → {0, 1}, where D ⊆ {0, 1}n,
be a partial function, and let φ be a certifying function for f . Then the following relations hold.

• D(fCS(φ)) = Θ̃(D(f) +D(φ))

• R(fCS(φ)) = Θ̃(R(f) +R(φ))

• Q(fCS(φ)) = Θ̃(Q(f) +Q(φ))

• deg(fCS(φ)) = Θ̃(deg(φ))

• d̃eg(fCS(φ)) = Θ̃(d̃eg(φ))

• R0(fCS(φ)) = Ω̃(R0(f) +R0(φ)) (but the corresponding upper bound relation is false)

• QE(fCS(φ)) = Õ(QE(f) +QE(φ)) (we conjecture that the corresponding lower bound holds)

The algorithmic measures, D, R, and Q behave as expected since Theorem 16 asserts that the
straightforward way to compute fCS(φ) in these models, which is to first compute all c copies of f
and then check if they point to a valid cheat sheet, is essentially optimal. We conjecture that QE ,
the quantum analogue of D, should behave similarly to D or Q, but we can only prove the upper
bound (see Lemma 17). In fact, if the lower bound for QE can be proved, then we would get a near
cubic separation between Q(f) and QE(f).

For the zero-error class R0, while we can show that the lower bound holds, the upper bound
relation is false (see Theorem 28 for a counterexample). We believe the zero-error class Q0 behaves
similarly: we conjecture the analogous lower bound holds for Q0, but are unable to prove it. For
Q0, the corresponding upper bound is false, for reasons similar to those for R0.

Notably, one-sided error measures do not behave well for cheat sheet functions at all. In
Theorem 27, we demonstrate f and φ such that R1(fCS(φ)) ≪ R1(f), showing that the lower
bound fails. The upper bound need not hold either.

Lastly, note that deg and d̃eg behave fundamentally differently on cheat sheet functions than
the algorithmic measures. The (approximate) degree of the function f does not even play a role
in determining the (approximate) degree of fCS(φ).
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Theorem 16 is proved in the next two sections. In Appendix B we present some examples
where the näıvely expected relations do not hold.

6.2 Upper bounds on the complexity of cheat sheet functions

We start by showing that the usual algorithmic models can compute fCS(φ) in roughly the number
of queries they require for f and φ.

Lemma 17. Let f : D → {0, 1}, where D ⊆ [M ]n, be a partial function, and φ be a certifying
function for f . Then the following upper bounds hold.

• D(fCS(φ)) = Õ(D(f) +D(φ))

• R(fCS(φ)) = Õ(R(f) +R(φ))

• Q(fCS(φ)) = Õ(Q(f) +Q(φ))

• QE(fCS(φ)) = Õ(QE(f) +QE(φ))

Proof. The algorithm to evaluate fCS(φ) is the following: First, evaluate f on the c inputs to f
contained in z, assuming they satisfy the promise of f . If one of these inputs is discovered to
contradict the promise of f , then output 0 and halt. This takes cD(f) queries for a deterministic
algorithm (and cQE(f) queries for an exact quantum algorithm), O(R(f)c log c) for a bounded-
error randomized algorithm, and O(Q(f)c log c) for a bounded-error quantum algorithm, where the
factor of O(log c) comes from reducing the error enough to ensure that all c functions are computed
correctly with high probability. From the c outputs we get a binary number ℓ. We can then go to
the appropriate cheat sheet, and evaluate φ on all the (xi, yi) pairs and output 1 if they are all 1.
This takes cD(φ) queries for a deterministic algorithm (and cQE(φ) queries for an exact quantum
algorithm), O(R(φ)c log c) queries for a randomized algorithm, and O(Q(φ)c log c) queries for a
quantum algorithm. Since φ(x, y) = 0 when x does not satisfy the promise of f , this algorithm is
correct.

Before proving the upper bounds for the degree measures, we prove a technical lemma that
shows that log(D(f)) and log(C(φ)) or log(d̃eg(φ)) are the same up to constants. We prove this
to show that the log factors that appear in our construction really can be neglected compared to
the measures we consider.

Lemma 18. Let f : D → {0, 1} be a partial function, where D ⊆ [M ]n, and let φ be a certifying
function for f . Then D(f) ≤ C(1)(φ)2 and C(f) ≤ C(1)(φ). As a consequence, we have D(f) ≤
D(φ)2 and C(f) ≤ C(φ).

Proof. Note that every 1-certificate for φ(x, y) proves that f(x) = y1. In particular, such a 1-
certificate must reveal a certificate for f in x. This already shows that C(f) ≤ C(1)(φ).

Moreover, every 1-certificate of φ(x, y) where y1 = 0 must conflict with every 1-certificate of
φ(x, y) where y1 = 1 on some bit in x. This is because otherwise, there would be some x in the
promise of f that can be certified to be both a 0- and a 1-input for f .

We can then use the following strategy to compute f(x). On input x ∈ Dom(f), pick a 1-
certificate of some φ(x, y) with y1 = 0, and query all of its entries in x. This reveals at least one
bit of every 1-certificate of φ that has y1 = 1. We then find another 1-certificate of some φ(x, y)
where y1 = 0, consistent with the inputs revealed in x so far. We once again reveal all of its
entries in x. After C(1)(φ) iterations of this process, we have either eliminated all 1-certificates of
φ with y1 = 0, or else all 1-certificates of φ with y1 = 1. This tells us the value of f(x), because
since x ∈ Dom(f), there must be some y such that φ(x, y) = 1, and hence there must be some
1-certificate of φ consistent with x. The total number of queries used was at most C(1)(φ)2.

22



Next, we show the upper bounds on the degree measures of fCS(φ) and show that they only
depend on the degree of φ and not on any measure of the function f .

Lemma 19. Let f : D → {0, 1} be a partial function, where D ⊆ {0, 1}n, and φ be a certifying

function for f . Then deg(fCS(φ)) = Õ(deg(φ)) and d̃eg(fCS(φ)) = Õ(d̃eg(φ)).

Proof. We start by showing this for deg(fCS(φ)). For each ℓ ∈ [2c], we construct a polynomial

which is 1 if fCS(φ)(z) = 1 and the cheat sheet of z is the ℓth cheat sheet, and 0 otherwise. We can
do this by simply multiplying together the polynomials of φ(xi, yi) for all i ∈ [c], where xi are the
inputs to f in z and yi are the entries found in the ℓth cheat sheet of z.

The resulting polynomial, pℓ, has degree cdeg(φ), is 1 on input z if z is a 1-input for fCS(φ) and
ℓ is the location of the cheat sheet for input z, and is 0 on all other inputs. To get a polynomial
for fCS(φ), we simply sum up the polynomials pℓ for all ℓ ∈ [2c]. The resulting polynomial is equal
to fCS(φ)(z) on all inputs z, and has degree cdeg(φ).

The same trick works for d̃eg, except in that case we cannot simply construct the And of c
polynomials by multiplying them together: we must first perform error reduction on the polyno-
mials and map the output range [0, 1/3] ∪ [2/3, 1] to [0, 1/3c] ∪ [1 − 1/3c, 1]. It is possible to do
this amplification while increasing the degree of the polynomials by at most O(log c) using, for
example, the amplification polynomial construction of [BNRdW07, Lemma 1]. Therefore we have

d̃eg(fCS(φ)) = O(c d̃eg(φ) log c) = Õ(d̃eg(φ)).

Finally, note that c is at most logarithmic in d̃eg(φ), since c = O(logD(f)) = O(logC(1)(φ)) =

O(logC(φ)) = O(log d̃eg(φ)), where the last equality follows from [BdW02] and from the fact that
φ is a total function.

6.3 Lower bounds on the complexity of cheat sheet functions

Lemma 20. Let f : D → {0, 1} be a partial function, where D ⊆ {0, 1}n, and let φ be a certifying
function for f . Then the complexity of fCS(φ) is at least that of φ with respect to any complexity
measure that does not increase upon learning input bits, which includes all reasonable complexity
models such as Q, D, R, R0, R1, Q1, Q0, QE, C, RC, bs, deg, and d̃eg.

Proof. Consider restricting fCS(φ) to a promise that guarantees that all cheat sheets of the input
are identical. An input z to this promise problem evaluates to 1 if and only if the φ inputs from
the first cheat sheet all evaluate to 1. We add the additional promise that this is true for all but
the last input to φ. The value of an input z to this function then becomes exactly φ evaluated
on a certain portion of the input. The complexity measures mentioned do not increase when the
function is restricted to a promise. Thus the complexity of fCS(φ) under these measures is at least
that of φ.

Lemma 21. Let f : D → {0, 1} be a partial function, where D ⊆ [M ]n, and let φ be a certifying
function for f . Then D(fCS(φ)) = Ω(D(f)).

Proof. We describe an adversary strategy that can be used to force a deterministic algorithm to
make Ω(D(f)) queries. Let x1, x2, . . . , xc represent the c inputs to f . Whenever the algorithm
queries a bit not in x1, x2, . . . , xc, the adversary returns 0. Whenever the algorithm queries a bit
in xi, the adversary uses the adversarial strategy for f on that input; that is, it returns answers
that are consistent with the promise of f , but that force any deterministic algorithm to use D(f)
queries to discern f(xi).

Now if a deterministic algorithm uses fewer than D(f) queries on an input to fCS(φ), then
there must be many cheat sheets in the input that it did not query at all. In addition, such an
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algorithm cannot determine the value of f(xi) for any i. It follows that this algorithm could not
have discerned the value of fCS(φ) on the given input, and thus D(fCS(φ)) ≥ D(f).

Lemma 22. Let f : D → {0, 1} be a partial function, where D ⊆ [M ]n, and let φ be a certifying
function for f . Then R0(fCS(φ)) = Ω(R0(f)).

Proof. Let A be a zero-error randomized algorithm for fCS(φ). Then Amust always find a certificate
for fCS(φ). Consider running A on an input z consisting of c 0-inputs to f , together with an all-
zeros array. Certifying such an input requires presenting 0-certificates for some of the c inputs to
f , and presenting at least one bit from each cheat sheet whose index has not been disproven by the
0-certificates of the f inputs.

Now, since there are at least D(f)10 cheat sheets, only a small fraction can be provided in a
certificate of size at most O(R0(f)). It follows that the algorithm A must find certificates to at
least half of the c 0-inputs to f with high probability.

We can now turn A into a new algorithm B that finds a certificate in a given 0-input to f sampled
from the hard distribution D0 over the 0-inputs of f . Given such an input x, the algorithm B will
generate c− 1 additional inputs from D0, shuffle them together, and add an all-zero array. B will
then feed this input to A. We know that with high probability, A will find a certificate for at least
half the inputs to f , so it must find a certificate for x with probability close to 1/2 (say, probability
at least 1/3). If it does not return a certificate, B can repeat this process. The expected running
time of B is at most 3 times that of A.

Similarly, if we feed A an input consisting of c 1-inputs to f together with an all-zero array, we
can use a similar argument to construct an algorithm C for finding 1-certificates in inputs sampled
from D1 (the hard distribution over 1-inputs for f). We can then alternate running steps of B and
steps of C to get an algorithm that finds a certificate in an input sampled from either D0 or D1,
which uses an expected number of queries that is at most 6 times that of A.

This last algorithm evaluates f on inputs sampled from the hard distribution for f , and therefore
must have expected running time at least R0(f). It follows that the expected running time of A
is at least R0(f)/6.

The lower bounds for bounded-error randomized query complexity and bounded-error quantum
query complexity are exactly as in Lemma 6 and Lemma 12.

6.4 Proofs of known results using cheat sheets

Theorem 23 ([ABB+15]). There exists a total function f such that R0(f) = Ω̃(Q(f)3).

Proof. This proof is similar to that of Theorem 1, except with a different function g. Let g : D →
{0, 1}, where D ∈ {0, 1}n, be a partial function that satisfies Q(g) = 1 and R0(g) = Ω(n), such
as the Deutsch–Jozsa problem [DJ92, CEMM98]. R0(g) = Ω(n) follows from the fact that even
certifying that the input is all zeros or all ones requires a certificate of linear size.

Let h : {0, 1}m → {0, 1} be the And-Or function on m bits. Let f = g ◦ h and let φ be a
certifying function that requires the obvious certificate for f (as used in the proof of Theorem 1).
Then we have Q(φ) = O(n +

√
nm1/4) and Q(f) = Q(g ◦ h) = O(

√
m). From Theorem 5 we

have that R0(f) = R0(g ◦ h) = Ω̃(nm). Using Theorem 16, we have Q(fCS(φ)) = Õ(Q(f) +

Q(φ)) = Õ(
√
m+ n+

√
nm1/4) and R(fCS(φ)) = Ω̃(R0(f)) = Ω̃(nm). Plugging in m = n2, we get

Q(fCS(φ)) = Õ(n) and R(fCS(φ)) = Ω̃(n3).

Theorem 24 ([ABB+15]). There exists a total function f such that R(f) = Ω̃(QE(f)
3/2) .
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Proof. Let g : D → {0, 1}, where D = {x ∈ {0, 1}n : |x| = 0 or |x| = 1}, be the partial function
that evaluates to 0 if the input is the all-zeros string and evaluates to 1 if the input string has
Hamming weight 1. This function satisfies R(g) = Ω(n), since the block sensitivity of the 0-input
is linear and QE(g) = O(

√
n), since Grover’s algorithm can be made exact in this case [BHMT02].

Let h : {0, 1}m → {0, 1} be the And function on m bits, which satisfies R(h) = Ω(m) and
QE(h) = O(m). Let f = g ◦h, and let φ be a certifying function for f . The certificate complexity
of this function is O(n) in the no case (by showing one 0-input to each of the n And gates), and
is O(m) in the yes case (by showing all the 1 inputs to an And gates). We choose the certifying
function φ that requires this certificate for f and hence QE(φ) ≤ D(φ) = Õ(n +m).

Now by composing quantum algorithms for g and h we have QE(f) = O(m
√
n), and by

Theorem 5 we have R(f) = Ω(mn). Hence using Theorem 16, we have QE(fCS(φ)) = Õ(QE(f) +

QE(φ)) = Õ(n+m+m
√
n), and R(fCS(φ)) = Ω̃(mn). Choosing m =

√
n gives QE(fCS(φ)) = Õ(n)

and R(fCS(φ)) = Ω̃(n3/2).
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A Quantum query complexity of k-sum

Belovs and Špalek [BŠ13] proved a lower bound of Ω(nk/(k+1)) on the quantum query complexity
of k-sum for constant k, as long as the alphabet is large enough. However, in their result, Belovs
and Špalek do not keep track of the dependence on k. We trace their proof to determine this
dependence, ultimately proving the following theorem.

Theorem 25. For the function k-sum : [q]n → {0, 1}, if |q| ≥ 2
(
n
k

)
, we have

Q(k-sum) = Ω(nk/(k+1)/
√
k), (16)

where the constant in the Ω is independent of k.

Proof. We proceed by tracing Belovs and Špalek’s proof, which can be found in section 3 of [BŠ13],
to extract an unsimplified lower bound. We then tune some parameters to determine the best
dependence on k.

The proof in [BŠ13] proceeds by the generalized adversary method. Belovs and Špalek construct
an adversary matrix Γ, which depends on parameters αm for m = 0, 1, . . . , n−k. This construction
can be found in Section 3.1 of their paper. They then show a lower bound on ‖Γ‖ and an upper
bound on ‖Γ ◦∆1‖ in terms of the parameters αm (the upper bounds on ‖Γ ◦∆i‖ for i 6= 1 follow
by symmetry). Finally, they pick the values for the parameters that give the best lower bound.

A lower bound on ‖Γ‖ without Ω notation, which therefore does not ignore factors of k, can be
found in Section 3.6 of their paper. In that section, they show

‖Γ‖ ≥ α0

√(
n

k

)(
1− 1

q

(
n

k

))
, (17)
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where q is the alphabet size. When q ≥ 4
3

(n
k

)
, this gives

‖Γ‖ ≥ α0

2

√(
n

k

)
. (18)

For the upper bound on ‖Γ ◦∆1‖, it turns out to be more convenient to switch to a different
matrix, Γ̃, which satisfies ‖Γ ◦∆1‖ ≤ ‖Γ̃ ◦∆1‖. This is explained in the beginning of Section 3 of
their paper and in Section 3.1. To upper bound ‖Γ̃ ◦∆1‖, in Section 3.3 the authors switch to yet
another matrix, Γ̃1, with the property that Γ̃1 ◦∆1 = Γ̃ ◦∆1 and that ‖Γ̃1 ◦∆1‖ ≤ 2‖Γ̃1‖. This
gives ‖Γ ◦∆1‖ ≤ 2‖Γ̃1‖, so it suffices to upper bound ‖Γ̃1‖.

In Section 3.4, the authors express ‖Γ̃1‖2 as the norm of a sum of matrices, with the sum ranging
over a set S. They split S = S1∪S2; by the triangle inequality, it then suffices to separately upper
bound the norm of the sum over S1 and the norm of the sum over S2. The former is upper bounded
by maxm α2

m

(m+k−1
k−1

)
, and the latter by k

(n−1
k

)
maxm(αm − αm+1)

2. We therefore conclude that

‖Γ ◦∆1‖2 ≤ 4max
m

α2
m

(
m+ k − 1

k − 1

)
+ 4k

(
n− 1

k

)
max
m

(αm − αm+1)
2. (19)

It remains to pick values for αm to optimize the resulting adversary bound. There are no
restrictions on the αm parameters. To maximize the adversary bound, we want α0 to be large,
consecutive α’s to be close (to minimize maxm(αm − αm+1)

2), and αm for large m to be small (to
minimize maxm α2

m

(
m+k−1
k−1

)
). We choose to make the αm parameters decrease to 0 in an arithmetic

sequence, with αm − αm+1 = c > 0 for all m ≤ α0/c, and αm = 0 for all m ≥ α0/c. Let β = α0/c.
Then αm = α0 − cm for m ≤ β.

We can write the final adversary bound as follows:

Adv±(k-sum)2 = Ω

(
α2
0

(n
k

)

maxm≤β(α0 − cm)2
(m+k−1

k−1

)
+ k
(n−1

k

)
c2

)
(20)

= Ω

(
min

{ (
n
k

)

maxm≤β(1−m/β)2
(m+k−1

k−1

) ,
(
n
k

)

k
(n−1

k

)β2

})
(21)

The second term in the minimization simplifies to n
k(n−k)β

2, which is Ω(β2/k). To deal with the

first term, we use the well-known inequalities (n/k)k ≤
(
n
k

)
≤ (en/k)k, which hold for all n and k.

This gives

Adv±(k-sum)2 = Ω

(
min

{
nk

(k − 1)maxm≤β(1−m/β)2(e(m+ k − 1))k−1

(
k − 1

k

)k

,
β2

k

})

(22)

= Ω

(
min

{
nk

kmaxm≤β(1−m/β)2(e(m+ k))k−1
,
β2

k

})
. (23)

We can solve the maximization in the denominator using calculus. The unique maximum occurs

at m = β −
(

2
k+1

)
(β − k). Substituting this in and simplifying, we get

Adv±(k-sum)2 = Ω

(
min

{
kβ

(1− k/β)2

(
n

e(β + 3)

)k

,
β2

k

})
= Ω

(
min

{
kβ

(
n

3β

)k

,
β2

k

})
,

(24)
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where for the last equality we assumed β ≥ 2k and β ≥ 3e/(3 − e).
Finally, we set β = (1/3)nk/(k+1). This gives

Adv±(k-sum)2 = Ω

(
min

{
knk/(k+1)

( n

nk/(k+1)

)k
,
n2k/(k+1)

k

})
= Ω(n2k/(k+1)/k), (25)

so
Q(k-sum) = Ω(Adv±(k-sum)) = Ω

(
nk/(k+1)

/√
k
)
. (26)

Note that we assumed β ≥ 2k. Since β = nk/(k+1)/3, we need nk/(k+1) ≥ 6k, or n ≥ (6k)1+1/k .
Since (6k)1/k = exp(ln(6k)/k) = 1+Θ(log(k)/k), it suffices to have n ≥ 6k+ω(log k). In particular,
this bound works as long as we have k ≤ n/10. When k ≥ n/10, we can directly prove a lower
bound of Ω(

√
n) by a reduction from Grover search; this means there are no restrictions on the size

of n and k in this result.

B Measures that behave curiously with cheat sheets

In this appendix we show that R1 and Q1 can behave strangely on cheat sheet functions, potentially
decreasing from R1(f) to R(f) and from Q1(f) to Q(f).

Theorem 26. Let f : D → {0, 1} be a partial function, where D ⊆ [M ]n, and let φ be a certifying
function for f . Then

R1(fCS(φ)) = Õ(R(f) +R0(φ)) and Q1(fCS(φ)) = Õ(Q(f) +Q0(φ)). (27)

Proof. We show a randomized (and quantum) algorithm for fCS(φ) that uses the required number
of queries and finds a 1-certificate with constant probability. Such an algorithm could be made to
have one-sided error by outputting 1 only if it finds a 1-certificate.

The algorithm works as follows. First, use the randomized (resp. quantum) algorithm on the
c inputs to f (with some amplification), to determine the number ℓ of the correct cheat sheet with
high probability (assuming the promises of f all hold). Next, go to the ℓth cheat sheet, and use a
zero-error algorithm to evaluate φ(xi, yi) for i = 1, 2, . . . , c, where xi are the inputs to f and yi are
the cheat sheet strings. This finds certificates for each input to φ.

Now, if the value of the function is 1 on the given input, then with constant probability, all
the c certificates found should be 1-certificates for φ. These 1-certificates certify the value of the
inputs to f . Therefore, taken together, they constitute a valid 1-certificate for fCS(φ). It follows

that this algorithm uses Õ(R(f)+R0(φ)) randomized queries and finds a 1-certificate with constant
probability. The result for quantum algorithms follows similarly.

We now show that it is possible for R1(fCS(φ)) to be much smaller than R1(f), unlike some of
the other measures studied. Intuitively, this is because 1-inputs of fCS(φ) contains a cheat sheet
with a certificate and hence even if the algorithm is not sure of its answer before finding the cheat
sheet, the cheat sheet may convince the algorithm of its answer.

Theorem 27. There is a total function f : {0, 1}n → {0, 1} and a certifying function φ for f such
that R1(fCS(φ)) = Õ(

√
R1(f)).

Proof. We can use Theorem 26 to construct an explicit function f and a certifying function φ for
f such that R1(fCS(φ)) is smaller than R1(f). The construction is as follows. In [ABB+15],

a Boolean function was constructed that has R0 = Ω̃(n2) and R1 = Õ(n). This function has
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certificate complexity roughly equal to n. Now, by taking the Xor of this function with an
additional bit, we get a function f for which R1 is roughly n2 but R and C are still roughly n.

We define φ to be a certifying function that simply checks if y provides pointers to a certificate
for f . Then R0(φ) = Õ(n). It follows that R1(fCS(φ)) = Õ(n), while R1(f) = Ω̃(n2).

Lastly we show that even zero-error randomized query complexity behaves curiously with cheat
sheets. We might have expected that the obvious upper bound R0(fCS(φ)) = Õ(R0(f) + R0(φ))
holds, but in fact it does not. The reason is subtle and relates to the behavior of the zero-error
algorithm on inputs outside of the domain D. For a partial function f : D → {0, 1}, a zero-error
algorithm’s behavior is not constrained on inputs outside the domain D. The algorithm could,
for example, run forever on such inputs. The obvious algorithm, which simply runs the zero-error
algorithm for f on all c inputs to f now fails to output any answer on 0-inputs to fCS(φ) in which
the inputs to f do not lie in D. We exploit this observation to prove the following counterexample.

Theorem 28. There is a partial function f : D → {0, 1}, where D ⊆ {0, 1}n, and a certifying
function φ for f such that R0(fCS(φ)) = Ω̃(R0(f)

3/2 +R0(φ)
3/2).

Proof. Let g : {0, 1}4m → {0, 1} be the partial function defined as follows. On input (x, y) with
x, y ∈ {0, 1}2m, define g(x, y) = 0 if the Hamming weight of x is m and the Hamming weight of y
is 0, and define g(x, y) = 1 if the Hamming weight of y is m and the Hamming weight of x is 0.
The promise of g is that one of these two conditions holds for every input (x, y).

It is easy to see that R0(g) = O(1). Let f be the composition of g with an m by m And-Or,
and let n = 4m3. Then R0(f) = O(m2) = O(n2/3). Let φ be a certifying function for f that takes
an input to f and an additional string, and asserts that the latter provides pointers to a certificate
for each And-Or instance in the input to f . This assertion can be verified (or refuted) in Õ(m2)
deterministic queries, so R0(φ) ≤ D(φ) = Õ(m2).

We now show that R0(fCS(φ)) = Ω̃(m3). Consider an input consisting of c inputs to f , each of
which has all its And-Or instances evaluate to 0. Note that these inputs to f do not satisfy the
promise of f . We attach a blank cheat sheet array after these c inputs. By definition of fCS(φ),
the resulting input is therefore a 0-input to fCS(φ). However, any 0-certificate of it (of reasonable
size) must “partially certify” at least half of the c inputs to f ; that is, for at least half the inputs
to f , it must either prove the input is not a 0-input or prove it is not a 1-input. The only way to
do this is to display (c/2)m 0-certificates for And-Or instances.

This means we have an algorithm that takes in 4cm zero-inputs to And-Or, and finds a cer-
tificate for at least cm/8 of them using R0(fCS(φ)) expected queries. It follows that given one
input from the hard distribution over 0-inputs to f , we can find a certificate for it by generating
4cm−1 additional inputs from this distribution, mixing them together, and running the R0(fCS(φ))
algorithm. This finds a certificate with probability at least 1/8, and uses R0(fCS(φ))/cm expected
queries. By repeating the algorithm if necessary, we find a certificate using 8R0(fCS(φ))/cm ex-
pected queries.

We construct a function f ′ is the same as f except with Not-And-Or instead of And-Or.
Repeating the argument provides a randomized algorithm that finds a 1-certificate for And-Or

using 8R0(f
′
CS(φ′)/cm expected queries. By running both algorithms in parallel, we get

R0(And-Or) ≤ 8R0(fCS(φ))/cm+ 8R0(f
′
CS(φ′))/cm. (28)

Since R0(And-Or) = Ω(m2), it follows that either R0(fCS(φ)) = Ω(m3) or R0(f
′
CS(φ′)) = Ω(m3).

The desired result follows.
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