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“Though this be madness, 
Yet there’s method in it.” 

. 
The Binary Bible of Saint $ilicon 

Logic and set theory can be regarded as the foundation of mathematics.  Mathematics is 
written in the language of logic, and set theory is the very fundament on which all 
mathematical theories are built.  Logic is not only the language of mathematics.  It 
appears also in programming languages as syntactic constructs to express propositions, 
predicates, and to infer conclusions from given or assumed facts. 

The purpose of this book is to provide the reader with the mathematical knowledge 
needed when they have to deal with spatial information systems.  Readers are expected to 
have a general knowledge of high school mathematics.  The use of computers and 
software for the handling and processing of spatial data requires new contents such as 
discrete mathematics and topology. 

The book is structured into 13 chapters  

Chapter 1 gives a brief overview of the structure of mathematics and how the different 
mathematical disciplines are built on top of more fundamental ones.  The next three 
chapters deal with mathematical logic, the language and foundation of mathematics.  
Propositional and predicate logic are presented as well as logical inference, the methods 
of drawing logical conclusions from given facts. 

Chapter 5 and 6 are an introduction into the basic notions of sets, set operations, relations, 
and mappings.  These two chapters together with the three chapters on logic represent the 
foundation for the subsequent chapters dealing with mathematical structures. 

The next chapter on coordinate systems and transformations builds the bridge between 
the foundation and the more advanced chapters on mathematical structures.  Much of 
chapter 7 would normally be considered to belong either to (analytical) geometry or to 
linear algebra. 

Chapters 8 to 11 present the highly relevant subjects of algebra, topology, ordered sets, 
and graph theory.  These chapters address the mathematical core of many GIS functions 
from data storage, consistency to spatial analysis. 

Uncertainty plays an increasingly important role in GIS.  Chapter 12 addresses fuzzy 
logic and its applications in GIS.  It shows how vague concepts can be formalized in 
mathematical language and how they are applied to spatial decision making. 

CHAPTER 

0 Preface 
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Chapter 13 is a synthesis of the previous chapters together with some philosophical 
considerations about a space and time.  It shows that spatial modeling is built on solid 
mathematics as well as that there are challenging and interesting philosophical questions 
as to how to represent models of spatial features. 

The book can be read in several ways as illustrated by the horizontal blocks in the 
following diagram. 

Chapter 1:
The Structure of 

Mathematics

Chapter 2: 
Propositional Logic

Chapter 3:
Predicate Logic

Chapter 4
Logical Inference

Chapter 7:
Coordinate Systems 
and Transformations

Chapter 12
Fuzzy Logic

Chapter 13:
Spatial Modeling

Chapter 8:
Algebraic Structures

Chapter 9:
Topology

Chapter 10
Ordered Sets

Chapter 11:
Graph Theory

Chapter 5:
Set Theory

Chapter 6:
Relations and 

Functions

 

Readers interested in the logical and set theoretic foundations might want to read chapters 
2 to 4 and chapters 5 and 6, respectively.  For someone with a particular interest in more 
advanced structures chapters 8 to 11 will be of interest. 

Chapters 7, 12, and 13 can be read individually without losing too much of the context.  
The best way, of course, is to read all the text from chapter 1 to 13. 

This book is work in progress and not every chapter or section is complete. The author 
appreciates any comments and hints that might help to improve the text or its appearance. 

 

 

 

 

Wolfgang Kainz 
Vienna, August 2010 
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athematics is an activity that has been performed by humans since 

thousands of years.  The understanding of what mathematics is has 

changed over the centuries.  In the beginning, mathematics was 

mainly devoted to practical calculations related to trade and land surveying.  Over 

the centuries, mathematics has become a scientific discipline with many 

applications in all domains of life.  This chapter gives a brief history of 

mathematics and explains how the different theories and branches of mathematics 

are rooted in logic and set theory. 

 

CHAPTER 

1 The Structure of 
Mathematics 

 

M
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1.1 Brief History of Mathematics 

The first known cultures that actively performed mathematical calculations in ancient 
history were the Sumerians, Babylonians, Egyptians, and the Chinese.  In the beginning, 
mathematics was always related to practical problems of commerce, trading and 
surveying.  This is the reason why the ancient cultures mainly developed practical 
solutions for arithmetic and geometric problems. 

In the fifth century before Christ, the ancient Greeks started to do mathematics for its own 
sake, and to focus the scientific attention to mathematics as a science.  The concept of 
axioms and logical deduction was developed then.  The first great example of this 
approach is The Elements of EUCLID, the first textbook on geometry, which was valid 
until the 19th century. 

The Indians and Arabs further developed the number concept and trigonometry.  In the 
17th and 18th century, the concepts of calculus and analytical geometry were developed as 
a consequence of the intensive studies in physics and natural sciences. 

In the 19th century, mathematicians began to establish an axiomatic foundation of 
mathematical theories.  Starting from a minimal set of axioms statements (theorems) can 
be derived whose validity can be formally established (proof).  This axiomatic approach 
has been applied since then to formalize mathematics.  Logic and set theory play an 
important role as the language and foundation principle, respectively. 

1.2 Sub-disciplines of Mathematics 

Logic is a formal language in which mathematical statements are written.  It defines rules 
how to derive new statements from existing ones, and provides methods to prove their 
validity. 

Set theory deals with sets, the fundamental building block of mathematical structures, and 
the operations defined on them.  The notation of set theory is the basic tool to describe 
structures and operations in mathematical disciplines. 

Relations define relationships among elements of a set or several sets.  These 
relationships allow for instance the classification of elements into equivalence classes or 
the comparison of elements with regard to certain attributes.  Functions (or mappings) are 
a special kind of relations. 

Sets whose elements are in certain relationships to each other or follow certain operations 
are mathematical structures.  We distinguish between three major structures in 
mathematics, algebraic, order, and topologic structures.  In sets with an algebraic 
structure we can do arithmetic, sets with an order structure allow the comparison of 
elements, and sets with a topologic structure allow to introduce concepts of convergence 
and continuity.  Calculus is based on topology. 

Often, sets carry more than one structure.  The real numbers, for instance, carry an 
algebraic, an order, and a topologic structure.  Results from algebraic topology are used in 
the theory of geographic information systems (GIS). 

Figure 1 shows the sub-disciplines and their position in a general concept of mathematics 
and the fundamental building blocks. 
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Structures

Algebraic Order Topological

Logic

Set Theory

Relations

Algebra
Ordered

Sets
Topology

 

Figure 1.  Sub-disciplines of mathematics and their relationships 

On top of the different structures and mixed structures, we find the many mathematical 
disciplines such as calculus, algebra, and (analytical) geometry.  The classical theories of 
great importance in spatial data handling are (analytical) geometry, linear algebra, and 
calculus.  With the introduction of digital technologies of GIS other branches of 
mathematics became equally important, such as topology, graph theory, and the 
investigation of non-continuous discrete sets and their operations.  The latter two fall 
under the domain that is usually called finite or discrete mathematics that plays an 
important role in computer science and its applications. 
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ropositional logic deals with assertions or statements that are either true 

or false and operators that are used to combine them.  Such statements 

are called propositions.  Any other statements for which we cannot 

establish whether they are true or false are not the subject of logic.  This chapter 

explains the principles of propositional logic by introducing the concepts of 

proposition, propositional variable, propositional form, and logical operators.  The 

translation of natural language into propositions and the establishment of their 

truth-values with the help of truth tables are shown as well. 

 

CHAPTER 

2 Propositional Logic 

 

P
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2.1 Assertion and Proposition 

Propositional logic deals with statements that are either true or false.  Here, we will only 
deal with a two-valued logic.  This is the logic on which most of the mathematical 
disciplines are built, and which is used in computing (a bit can only assume two states, on 
or off, one or zero). 

Definition 1 (Assertion and Proposition).  An assertion is a statement.  If an assertion 
is either true or false, but not both1, we call it a proposition.  If a proposition is true, it 
has a truth-value of true; if it is false, it has a truth-value of false.  Truth-values are 
usually written as true, false, or T, F, or 1, 0.  In the following sections, we will use the 
1-0 notation for truth-values. 

Example 1. The following statements illustrate the concept of assertion, proposition and truth-
values.  The following are propositions: 

(1) “It rains.” 

(2) “I pass the exam.” 

(3) “3 + 4 = 8” 

(4) “3 is an odd number and 7 is a prime number.” 

Assertion (1) and (2) can be true or false.  Proposition (3) is false, and (4) is true.  The following 
statements are not propositions: 

(5) “Are you at home?” 

(6) “Use the elevator!” 

(7) “ 12 yx ” 

(8) “ 6x ” 

(5) and (6) are not assertions (they are a question and a command, respectively), and therefore they 
cannot be propositions.  (7) and (8) are assertions, but no propositions.  Their truth-value depends 
on the value of the variables x  and y .  Only when we replace the variables with some values, the 

assertion becomes a proposition. 

Often we have to be more general in writing down assertions.  For this, we use 
propositional variables and propositional forms. 

Definition 2 (Propositional Variable).  A propositional variable is an arbitrary 
proposition whose truth-value is unspecified.  We use upper case letters P, Q, R,… for 
propositional variables. 

We can combine propositions and propositional variables to form new assertions.  For the 
combination we use words such as “and”, “or”, and “not”. 

Example 2. “Beer is good and water has no taste” is a combination of the two propositions 
“Beer is good” and “Water has no taste” using the connector “and”.  “P or not Q.” is a combination 
of the propositional variables P and Q using the connectors “or” and “not”. 

                                                      
1 We call a logic in which assertions are either true or false a two-valued logic. The law of the excluded 
middle characterized a two-valued logic. 
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2.2 Logical Operators 

In the example above P and Q are called operands, the words “and”, “or”, and “not” are 
logical operators, or logical connectives.  An operator such as “not” that operates only on 
one operand is called unary operator; those that operate on two operands such as “and” 
and “or” are called binary operators. 

Definition 3 (Propositional Form).  A propositional form is an assertion that contains 
at least one propositional variable.  We use upper case Greek letters to denote 
propositional forms, ( , , )P Q  . 

When we substitute propositions for the propositional variables of a propositional form, 
we get a proposition.  When we use logical connectives to derive new propositions from 
old ones, the truth-value of the new proposition depends on the logical connective and the 
truth-values of the old propositions. 

Example 3. When P stands for “Vienna is the capital of Austria” and Q stands for “Two is an 
odd number” then the propositional form in Example 2 “P or not Q” becomes the proposition 
“Vienna is the capital of Austria or two is an even number”. 

Logical operators are used to combine propositions or propositional variables.  Table 1 
shows the most common operators. 

Table 1.  Logical Connectors 

Logical Connector Symbol Read or written as 
Conjunction  and 
Disjunction  or 
Exclusive or   either … or but not both 
Negation  not 
Implication  implies, if…then… 
Equivalence  equivalent, …if and only if…, iff2 

To determine the truth-value for a combined statement we need to look at every possible 
combination of truth-values for the operands.  This is done using truth tables that are 
defined for every operand.  Table 2 shows the truth tables for the most common logical 
operators.  We use the symbols “0” for false and “1” for true. 

Negation is a unary operator, i.e., it applies to one variable, and changes the truth-value 
of a proposition.  The other operators apply to two operands.  The conjunction (or logical 
and) is only true if both operands are true.  The disjunction (or inclusive or) is true 
whenever at least one of the operands is true.  The exclusive or is only true if either one 
or the other operand is true, but never both. 

When we use the English term “or” we do not make explicit whether we mean the 
inclusive or exclusive or.  It usually follows from the context what we mean.  In 
mathematics, we cannot operate in this way.  Therefore, we must make a distinction 
between inclusive and exclusive or. 

In the statement “I go to work or I am tired” the operator indicates an inclusive or.  I can 
go to work and I can be tired at the same time.  However, when we say that “I am alive or 
I am dead” we clearly mean an exclusive or.  A person cannot be alive and dead at the 
same time.3 

                                                      
2 The term “iff” meaning “if and only if” is used only in written text. 
3 We exclude here the possibility of being a zombie, a state of existence (the living dead) that appears 
frequently in horror movies. 
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Table 2.  Truth tables for logical operators 

Conjunction Disjunction Exclusive or

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

Negation Implication Equivalence

0 1 0 0 1 0 0 1

1 0 0 1 1 0 1 0

1 0 0 1 0 0

1 1 1 1 1 1

P Q P Q P Q P Q P Q P Q

P P P Q P Q P Q P Q

  

  

 

In the implication P Q  we call P  the premise, hypothesis, or antecedent, and Q  the 

conclusion or consequence.  The implication can be read in many different ways: 

“If P , then Q ” 

“ P  only if Q ” 

“ P  implies Q ” 

“ P  is a sufficient condition for Q ” 

“ Q  if P ” 

“ Q  follows from P ” 

“ Q  provided P ” 

“ Q  is a logical consequence of P ” 

“ Q  whenever P ” 

If QP   is an implication then PQ   is called the converse and PQ   is called 

the contrapositive. 

Example 4. Let us consider the implication “If it rains, then I get wet”.  The converse of this 
implication reads as “If I get wet, then it rains”, and the contrapositive is “If I do not get wet, then 
it does not rain”. 

In natural language, the implication expresses a causal or inherent relationship between a 
premise and a conclusion.  The statement “If I take a shower, then I will get wet” clearly 
states a causal relationship between taking a shower and getting wet.  The statement “If 
this is an airplane, then it has wings” expresses a property of airplanes. 

In propositional logic, there need not be any relationship between the premise and the 
conclusion of an implication.  We have to keep this in mind in order not to get confused 
by some propositions. 

Example 5. Let us take P to be “the moon is larger than the earth” and Q as “the sun is hot”.  
The implication “If the moon is larger than the earth, then the sun is hot” is true, although there is 
no relationship whatsoever between the two propositions.  The implication is true because P is 
false and Q is true.  According to the truth table for implications, anything (either a true or a false 
statement) can follow from a false proposition. 

Two propositions that have the same truth-values are said to be logically equivalent.  
QP   can be read in different ways: 

“ P  is equivalent to Q ” 
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“ P  is a necessary and sufficient condition for Q ” 

“ P  if and only if Q ” 

“ P  iff Q ” 

The truth tables for logical operators are used to determine the truth-values of arbitrary 
propositional forms.  Whenever there are n propositional variables involved in a 
propositional form, we have n2  possible combinations of true and false to investigate. 

Example 6. The truth table for the proposition )( QP   is constructed as: 

( )

0 0 1 0 1

0 1 0 0 1

1 0 1 1 0

1 1 0 0 1

P Q Q P Q P Q   

 

We see that for two variables we have to investigate four different cases. 

2.3 Types of Propositional Forms 

In propositional logic, we distinguish certain propositional forms that are either always 
true or always false, regardless of the truth-values of the propositional variables. 

Definition 4 (Tautology, Contradiction, Contingency).  A propositional form whose 
truth-value is true for all possible truth-values of its propositional variables is called a 
tautology.  A contradiction (or absurdity) is a propositional form that is always false.  A 
contingency is a propositional form that is neither a tautology nor a contradiction. 

The following examples illustrate the concepts of tautology, contradiction, and 
contingency. 

Example 7. The propositional form PQP  )(  is a tautology. 

1111

1001

1010

1000

)( PQPQPQP 

 

Example 8. The propositional form PP   is a contradiction. 

001

010

PPPP 
 

This is propositional form corresponds to the law of the excluded middle (also called “tertium non 
datur” with its Latin name) stating that something cannot be and not be at the same time. 

Example 9. The propositional form QQP  )(  is a contingency. 

( )

0 0 1 1 0

0 1 0 0 1

1 0 1 1 0

1 1 0 1 1

P Q Q P Q P Q Q   

 



10  THE MATHEMATICS OF GIS 

 

 

Definition 5 (Logical Identity).  Two propositional forms ,...),,( RQP  and 

,...),,( RQP  are said to be logically equivalent when their truth tables are identical, or 

when the equivalence ,...),,(,...),,( RQPRQP   is a tautology.  Such 

equivalence is also called a logical identity. 

We can replace one propositional form with its equivalent form.  This helps often to 
simplify logical expressions.  Table 3 lists the most important logical identities. 

Table 3.  Logical identities 

1. )( PPP   idempotence of   

2. P)(PP   idempotence of   

3. )()( PQQP   commutativity of   

4. )()( PQQP   commutativity of   

5. )]([])[( RQPRQP   associativity of   

6. )]([])[( RQPRQP   associativity of   

7. )()( QPQP   
DE MORGAN’s Laws 

8. )()( QPQP   

9. )]()[()]([ RPQPRQP   distributivity of   over   

10. )]()[()]([ RPQPRQP   distributivity of   over   

11. ( )P 1 1   

12. ( )P P 1   

13. ( )P P 0   

14. ( )P 0 0   

15. ( )P P  1  law of the excluded middle 

16. 0)(  PP   

17. )( PP   double negation 

18. )()( QPQP   implication 

19. )]()[()( PQQPQP   equivalence 

20. )]([])[( RQPRQP   exportation 

21. PQPQP  )]()[(  absurdity 

22. )()( PQQP   contrapositive 

In the table, 1 and 0 denote propositions that are always true and false, respectively.  
Identity 18 allows us to replace the implication by negation and disjunction.  The 
equivalence can be replaced by implications through identity 19.  Identities 7 and 8 (DE 

MORGAN’s laws) allow the replacement of conjunction by disjunction and vice versa.  All 
the identities can be proven by constructing their truth tables using the truth tables of the 
logical operators established in Table 1 on page 7. 

Example 10. Simplify the following propositional form: )( QP  . 

The numbers on the right indicate the identities that have been applied to simplify the 
propositional form 

)( QP   (22) 

)( PQ   (18) 

)( PQ  (7) 

PQ   (17) 
PQ   (4) 
QP    
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Many useful tautologies are implications.  Table 4 lists the most important of them. 

Table 4.  Logical implications 

1. )( QPP   addition 

2. PQP  )(  simplification 

3. QQPP  )]([  modus ponens 

4. PQQP  ])[(  modus tollens 

5. QQPP  )]([  disjunctive syllogism 

6. )()]()[( RPRQQP   hypothetical syllogism 

7. )]()[()( RPRQQP    
8. )]()[()]()[( SQRPSRQP    

9. )()]()[( RPRQQP    

Some of these implications correspond to rules of inference that will be discussed later. 

2.4 Applications in GIS 

In GIS applications, we find logical operators mainly in spatial analysis and database 
queries.  Figure 2 shows the Raster Calculator of ArcMap Spatial Analyst with its logical 
connectors.  In this example, all raster cells with an elevation between 1,000 and 1,500 
will be selected.  The logical “and” connector is represented by the character “&”. 

logical connectors

 

Figure 2.  Raster Calculator with logical connectors 

The logical implication can be found in every programming language in the form of the 
if-statement, which takes the general form 

if <condition> then <statement> else <statement> 

The condition contains an expression that can be evaluated as either true or false 
(proposition).  Logical connectors or comparison operators are often part of the condition.  
The following AML program prompts the user for a coverage name and deletes it if it 
exists. 

&sv covername = [response ‘Enter a coverage name’] 
&if [exists %covername%] &then 

KILL %covername% ALL 
&else 

&type Coverage %covername% does not exist! 

2.5 Exercises 

Exercise 1 Construct the truth table of the propositional form PQQP  ])[( . 
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Exercise 2 Show that )()( QPQP   is a tautology. 

Exercise 3 Simplify the propositional form )()( QPQP  . 

Exercise 4 Let P be the proposition “It is raining.” Let Q be the proposition “I will get wet.” Let R be the 
proposition “I am sick.” 
(a) Write the following propositions in symbolic notation: 
 (i) If it is raining, then I get wet and I am sick. 
 (ii) I am sick if it is raining. 
 (iii) I will not get wet. 
 (iv) It is raining and I am not sick. 
(b) Write a sentence in English that corresponds to the following propositions: 
 (i) QR   

 (ii) RQP  )(  

 (iii) )( QR   

 (iv) )()( QRRQ   

Exercise 5 Write down the converse and contrapositive of the following propositions: 
(a) “If it rains, then I get wet.” 
(b) “I will stay only if he leaves.” 
(c) “I will not pass the exam, if I do not study hard.” 

Exercise 6 For the following expressions, find equivalent expressions using identities.  The equivalent 
expressions must use only   and   and be as simple as possible. 
(a) RQP   

(b) ])[( PRQP   

(c) )( PQP   

Exercise 7 In a computer program you have the following statement x ← y and FUNC(y,z) where x, y 
are logical variables, FUNC is a logical function and z is an output variable.  The value of z is 
determined by the execution of the function FUNC.  Optimizing compilers generate code that is 
only executed when really needed.  Assume such an optimized code has been generated for your 
program.  Can you always rely on that a value for z is computed? 
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he language of propositional logic is not powerful enough to make all 

the assertions needed in mathematics.  We frequently need to make 

general statements about the properties of an object or relationships 

between objects, such as “All humans are mortal” or the equation with two 

variables “x + y = 2”. 

This chapter introduces the concepts of predicates and quantifiers that enrich the 

language of logic and allow making assertions in a much more general way than 

what is possible in propositional logic.  The knowledge acquired about predicates 

will be used to translate natural language statements into the form of predicates. 

 

CHAPTER 

3 Predicate Logic 

 

T
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3.1 Predicates 

In the language of propositions we cannot make assertions such as  “ 5 yx ” or “ yx 
”, because the truth-value of this statements depends on the values of the variables x  and 
y .  Only when we assign values to the variables, the assertions become propositions. 

We also make assertions in natural language like “Ann lives in Vienna” or “All humans 
are mortal” that correspond to a general construct “ x  lives in y ” or “all x  and ( )M x ”.  
These constructs express a relationship between objects or a property of objects. 

Definition 6 (Predicate).  A term designating a property or relationship is called a 
predicate. 

Assertions made with predicates and variables become a proposition when the variables 
are replaced by specific values. 

Example 11. In the assertion “x lives in y” x and y are variables, and “lives in” is a predicate.  
When we replace x by “John” and y by “Vienna” it becomes the proposition “John lives in 
Vienna.” 

Example 12. Predicates appear commonly in computer programs as control statements of high-
level programming languages.  The statement “if x < 5 then y ← 2 * y” for instance 
contains the predicate “x < 5”.  When the program runs the current value of x determines the truth-
value of “x < 5”. 

Some predicates have a well-known notation in mathematics.  Examples are “equal to” or 
“greater than” that are usually written as “=” and “>”, respectively.  Otherwise, we will 
denote predicates with upper case letters. 

Example 13. The assertion “x is a woman” can be written as ( )W x , “x lives in y” can be written 

as ),( yxL , and “ zyx  ” could be written as ),,( zyxS . 

Definition 7 (Variables, Universe).  In the expression ),,,( 21 nxxxP  , P  is a 

predicate4, and the ix  are variables.  When P  has n  variables we say that it has n  
arguments or it is an n-place predicate.  Values for the variables must come from a set 
called the universe of discourse, or the universe.  The universe is normally denoted as 
U  and must contain at least one element. 

When we take values nccc ,,, 21   from the universe and assign them to the variables of a 

predicate ),,,( 21 nxxxP  , we get a proposition ),,,( 21 ncccP  . 

Definition 8.  If ),,,( 21 ncccP   is true for every choice of elements from the universe, 

then we say that P is valid in the universe U.  If ),,,( 21 ncccP   is true for some 
elements of the universe, we say that P is satisfiable in the universe U.  The values 

                                                      
4 To be precise, we must distinguish between predicate variables and predicate constants. Whenever we 
use specific predicates, such as W, L or S in Example 13, we actually deal with predicate constants, 
whereas an expression like P with no immediate interpretation of the predicate denotes a predicate 
variable. 
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nccc ,,, 21   that make ),,,( 21 ncccP   true are said to satisfy P.  If ),,,( 21 ncccP   

is false for every choice of values of the universe we say that P is unsatisfiable in U. 

3.2 Quantifiers 

We have seen that a predicate can become a proposition by substituting values for the 
arguments.  We say that the variables are bound.  There are two ways of binding variables 
of predicates. 

Definition 9 (Binding of Variables).  Variables of predicates can be bound by 
assigning a value to them, or by quantifying them.  We know two quantifiers, the 
universal and the existential quantifier. 

If )(xP  is a predicate then the assertion “for all x , )(xP ” (which means, “for all values 

of x , the assertion )(xP  is true”) is a statement in which the variable x  is universally 

quantified.  The universal quantifier “for all” is written as  , and can be read as “for all”, 
“for every”, “for any”, “for arbitrary”, or “for each.” The statement “for all x , )(xP ” 

becomes “ )(xxP ”.  We say that )(xxP  is true if and only if )(xP  is valid in U ; 
otherwise, it is false. 

If )(xP  is a predicate then the assertion “for some x , )(xP ” (which means, “there exists 

at least one value of x  for which the assertion )(xP  is true”) is a statement in which the 

variable x  is existentially quantified.  The existential quantifier “there exists” is written 
as  , and can be read as “there exists”, “for some” or “for at least one”.  The statement 
“for some x , )(xP ” becomes “ )(xxP ”.  We say that )(xxP  is true if and only if )(xP  

is satisfiable in U ; otherwise, it is false. 

There is also a variation of the existential quantifier to assert that there is one and only 
one element in the universe, which makes a predicate true.  This quantifier is read as 
“there is one and only one x  such that…”, “there is exactly one x  such that…” or “there 
is a unique x  such that…”.  It is written as ! . 

Example 14. Let us assume the universe to be all integers   and the following propositions 
formed by quantification: 
(1) ]1[ xxx   

(2) ]5[  xx  

(3) ][ xyxyx   

(4) ]1[  xxx  

(5) ]5[  xx  

(6) ]1[  xxx  

(7) ]5[!  xx  

Propositions (1), (4), (5), and (7) are true.  Propositions (3) is false in the integers; however, it 
would be true in the positive integers  .  Propositions (2) and (6) are false. 

As we have seen above variables can be bound by assigning values to them.  We can also 
express quantified assertions with propositions by assigning all elements of the universe 
to the variables and combining them with logical operators. 



16  THE MATHEMATICS OF GIS 

 

 

Definition 10.  If the universe U consists of the elements ,,, 321 ccc , then the 

propositions )(xxP  and )(xxP  can be written as  )()()( 321 cPcPcP  and 

 )()()( 321 cPcPcP , respectively. 

All variables must be bound to transform a predicate into a proposition.  If in an n-place 
predicate m variables are bound, we say that the predicate has n m  free variables. 

Example 15. The predicate ),,( zyxP  representing “ zyx  ” has three variables.  If we bind 

one variable, e.g., x  is assigned the value 2, then we get the predicate ),,2( zyP  with two free 

variables, representing “ zy 2 ”. 

The order in which the variables are bound is the same as the order in the quantifier list 
when more than one quantifier is applied to a predicate.  Therefore ),( yxyPx  has to 

be evaluated as )],([ yxyPx  .  The order of the quantifiers is not arbitrary.  It affects the 

meaning of an assertion.  yx  has not the same meaning as xy .  The only exception 

is that we can always replace yx  by xy , and yx  by xy . 

Example 16. If ),( yxP  denotes the predicate “x is child of y” in the universe of all persons.  Then 

the proposition ),( yxyPx  means, “Everyone is the child of someone”, whereas ),( yxxPy  

means, “There is a person so that everyone is the child of this person”. 

3.3 Quantifiers and Logical Operators 

When we express mathematical or natural language statements, we generally need 
quantifiers, predicates and logical operators.  These statements can take on a variety of 
different forms. 

Example 17. Let the universe be the integers and )(xE  denote “ x  is an even number”, )(xO  “ x  

is an odd number”, )(xN  “ x  is a non-negative integer”, and )(xP  “ x  is a prime number.” The 

following examples show how assertions can be expressed in the language of predicate logic. 

(a) There exists an odd integer. )(xxO  

(b) Every integer is even or odd. )]()([ xOxEx   

(c) All prime numbers are non-negative. )]()([ xNxPx   

(d) The only even prime number is two. ]2))()([(  xxPxEx  

(e) There is only one even prime number. )]()([! xPxEx   

(f) Not all prime numbers are odd. )]()([ xOxPx  , or )]()([ xOxPx   

(g) If an integer is not even, then it is odd. )]()([ xOxEx   

In analogy to tautologies, contradictions and contingencies in propositional logic we can 
also establish types of assertions involving predicate variables5. 

Definition 11 (Validity of assertions with predicate variables).  An assertion 
involving predicate variables is valid if it is true for every universe.  An assertion is 
satisfiable if there exist a universe and some interpretations of the predicate variable that 
make it true.  It is unsatisfiable if there is no universe and no interpretation that make the 
assertion true.  Two assertions 1A  and 2A  are logically equivalent if for every universe 

                                                      
5 For the notion of predicate variable, see footnote 4 on page 14. 
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and every interpretation of the predicate variables 21 AA  , i.e., 1A  is true iff 2A  is 

true.  

The scope of a quantifier is the part of the assertion for which variables are bound by this 
quantifier. 

Example 18. In the assertion )]()([ xQxPx   the scope of the universal quantifier is 

)()( xQxP  .  In the assertion )]([)]([ xxQxxP   the scope of   is )(xP  and the scope of   

is )(xQ . 

Table 5 shows a list of logical equivalencies and other relationships between assertions 
involving quantifiers. 

Table 5.  Logical relationships involving quantifiers 

1. 

2. 

3. 

4. 

5. 

6. 

7. ])([])([ QxPxQxxP   

8. 

9. ])([])([ QxPxQxxP   

10. 

11. 

12. )]()([)]()([ xxQxxPxQxPx   

13. )]()([)]()([ xQxPxxxQxxP   

The logical equivalencies (3) and (5) can be used to propagate negation signs through a 
sequence of quantifiers. 

Equivalencies (6), (7), (8) and (9) tell us that whenever a proposition occurs within the 
scope of a quantifier, it can be removed from the scope of the quantifier.  Predicates 
whose variables are not bound by a quantifier can also be removed from the scope of this 
quantifier. 

Statements (10) and (12) show that the universal quantifier distributes over the 
conjunction, but the existential quantifier does not.  (13) and (11) show that the existential 
quantifier distributes over the disjunction, but the universal quantifier does not. 

3.4 Compact Notation 

The form of logical notation as presented here is often too complex to express relatively 
simple assertions in mathematical language.  Therefore, a compact form of logical 
notation is used. 

For the assertion “for every x such that 0x , )(xP  is true” we would have to write 

)]()0[( xPxx  .  Instead we can write in compact notation )(0 xPxx .  In the same 

way we write for the assertion “there exists an x  such that 5x  and )(xP  is true” 

)]()5[( xPxx   in the long notation and )(5 xPxx  in the compact notation.  This 
notation allows also to propagate the negation sign through quantifiers as mentioned in 
logical equivalencies (3) and (5) of Table 5 above. 

universe  theofelement arbitrary an  is  where),()( ccPxxP 
universe  theofelement arbitrary an  is  where),()( cxxPcP 

)()( xxPxPx 
)()( xxPxxP 

)()( xxPxPx 
])([])([ QxPxQxxP 

])([])([ QxPxQxxP 

)]()([)]()([ xQxPxxxQxxP 
)]()([)]()([ xQxPxxxQxxP 
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3.5 Applications in GIS 

In relational database technology, we use the select operator to select a subset of tuples t  
(or records) in a relation that satisfies a given selection condition.  In general, we can 
denote the select operator as selection condition (relation name)  or ( ) ( )t R  when we substitute 

selection condition with ( )t and R  for the relation name.  The selection condition is a 
predicate, i.e., it designates a property of the tuples, and we can thus write the general 
selection as a predicative set expression { | ( )}t R t . 

Let ARC(ID,StartNode,EndNode,LPoly,RPoly) be a relation schema describing 
arcs in a topologically structured data set.  The selection operator 

(LPoly = 'A' OR RPoly = 'A') (ARC) results in all arcs that form the boundary of polygon A.  A 

translation of this selection into standard SQL reads as 

SELECT * FROM ARC WHERE LPoly = 'A' or RPoly = 'A'; 

3.6 Exercises 

Exercise 8 Translate the following assertions into the notation of predicate logic (the universe is given in 
parentheses): 
(a) If three is odd, some numbers are odd.  (integers) 
(b) Some cats are blue.  (animals) 
(c) All cats are blue.  (animals) 
(d) There are areas, lines, and points.  (geometric figures) 
(e) If x is greater than y and y is greater than z, then x is greater than z.  (integers) 
(f) When it is night all cats are black.  (animals) 
(g) When it is daylight some cats are black.  (animals) 
(h) All students of this course are happy if they pass the mathematics exam.  (university students) 
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his chapter introduces the concept of a logical argument.  Starting from 

a set of premises (or hypotheses) a conclusion is drawn.  If the 

conclusion follows logically from the premises, the argument is valid.  If 

this is not the case then the conclusion cannot be drawn from the hypotheses. 

In a formal mathematical system, we assume a set of axioms that are a set of 

given unquestioned true statements.  From these axioms, we derive assertions that 

can be shown to be true.  These assertions are called theorems.  A proof is an 

argument, which established the truth of a theorem. 

 

CHAPTER 

4 Logical Inference 

 

T
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4.1 Logical Arguments 

Often we assume that certain assumptions are true, and we draw a conclusion from these 
assumptions.  If, for instance, we assume that the two statements “Lisa is beautiful” and 
“If Lisa is beautiful, all men will adore Lisa” are true, then we can conclude that “All men 
will adore Lisa”. 

Definition 12 (Logical Argument).  A logical argument consists of a set of hypotheses 
(or premises) that are assumed true.  The conclusion follows from the premises.  Rules 
of inference specify which conclusions can be drawn from assertions known or assumed 
to be true.  An argument is said to be valid (or correct) when the conclusion follows 
logically from the premises. 

Logical arguments are usually written is the form of 

Q

P

P

P

n





2

1

 

where the iP  are the premises and Q  is the conclusion. 

Example 19. The argument presented above is written as 
 
P1:  Lisa is beautiful 
P2:  If Lisa is beautiful, all men will adore Lisa. 
Conclusion:  All men will adore Lisa. 
 
The rule of inference applied is of the form 

  
Q

QP

P




 

4.2 Proving Arguments Valid in Propositional Logic 

In general, arguments can be proven valid in two ways, using truth tables or using rules of 
inference.  In the first case, an argument has to be translated into its equivalent 
tautological form.  The procedure is straightforward: 

(i.) Identify all propositions. 
(ii.) Assign propositional variables to the propositions. 
(iii.) Write the argument in its tautological form using the propositional variables. 
(iv.) Evaluate the tautological form using a truth table. 

Note, that the more propositions are involved the more tedious the procedure becomes.  
In the case of applying rules of inference, the trick is to find the right rules and apply 
them properly. 
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4.2.1 Proving Arguments Valid with Truth Tables 

Every logical argument with n  premises nPPP ,,, 21   and the conclusion Q  can be 

written as a propositional form QPPP n  )( 21  .  If this propositional form is a 
tautology, the argument is correct. 

Example 20. The argument in Example 19 above contains the propositions P “Lisa is beautiful” 
and Q “all men adore Lisa”.  It has the tautological form QQPP  )]([ .  The proof that this 

is a tautology is left to the reader. 

4.2.2 Proving Arguments Valid with Rules of Inference 

A second way to prove an argument valid is to apply rules of inference.  They are applied 
to the premises until the conclusion follows (argument valid) or the conclusion cannot be 
reached (argument invalid).  Table 6 shows the most important rules of inference, their 
tautological form and the name that was given to them by logicians. 

Table 6.  Rules of inference 

Rule of inference Tautological form Name 

QP

P


 

)( QPP   addition 

P

QP




 
PQP  )(  simplification 

Q
QP

P


  

QQPP  )]([  modus ponens 

P
QP

Q





 

PQPQ  )]([  modus tollens 

Q
P

QP





 
QPQP  ])[(  disjunctive 

syllogism 

RP
RQ

QP





 
][)]()[( RPRQQP   hypothetical 

syllogism 

QP
Q

P


 

)()( QPQP   conjunction 

SQ
RP

SRQP




 )()(
 

][)]()()[( SQRPSRQP   constructive 
dilemma 

RP
SQ

SRQP




 )()(
 

][)]()()[( RPSQSRQP 
 

destructive 
dilemma 

Some of these rules of inference are evident.  The disjunctive syllogism, for instance, 
simply says that if you have two options and you know that one is not available, then you 
choose the other one6. 

Example 21. The argument presented in Example 19 above is a straightforward application of 
the modus ponens. 

                                                      
6 Most people would agree that even dogs or cats know this. 



22  THE MATHEMATICS OF GIS 

 

 

Example 22. In the same way as above the argument that “Women do not run after me”, and “If 
I were attractive all women would run after me”, therefore “I am not attractive” is a 
straightforward application of the modus tollens. 

4.3 Proving Arguments Valid in Predicate Logic 

When we want to prove the validity of an argument that contains predicates and 
quantifiers, we need more rules.  Table 7 shows some of the rules of inference involving 
predicates and quantifiers. 

Table 7.  Rules of inference involving predicates and quantifiers 

Rule of inference Name 

)(

)(

cP

xxP




 
universal instantiation 

)(

)(

xxP

xP


 

universal generalization 

)(

)(

cP

xxP




 
existential instantiation 

)(

)(

xxP

cP


 

existential generalization 

The universal instantiation allows us to conclude from the fact that if a predicate is valid 
in a given universe, then it is also valid for one individual from that universe.  The 
universal generalization permits us to conclude that if we can prove that a predicate is 
valid for every element of the given universe, then the universally quantified assertion 
holds. 

The existential instantiation concludes from the truth that there is at least one element of 
the universe for which the predicate is true, that there is one element c for which )(cP  is 
true.  The existential generalization allows us to conclude from the truth that a predicate 
is true for one particular element of the universe, that the existentially quantified assertion 

)(xxP  is true. 

Example 23. Let us consider the following argument: 
 
Every man has a brain. 
John Williams is a man. 
Therefore, John Williams has a brain. 
 
Let )(xM  denote the assertion “x is a man”, )(xB  denote the assertion “x has a brain”, and W 

denote John Williams.  Then the logical argument can be expressed as: 
 

)(.3

)(.2

)]()([.1

WB

WM

xBxMx




 

 
A formal proof of the argument is as follows: 
 

 Assertion Reasons 
1. )]()([ xBxMx   Hypothesis 1 

2. )()( WBWM   Step 1 and universal instantiation 

3. )(WM  Hypothesis 2 

4. )(WB  Steps 2 and 3 and modus ponens 
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We do not go deeper into the theory of proving arguments in general predicate logic. 

4.4 Applications in GIS 

Rule-based systems apply rules to data provided using an inference engine.  These 
systems are also called expert systems, and are widely applied in the geosciences.  Spatial 
decision support systems (SDSS) are rule-based systems that are designed and tuned for 
spatial data. 

Rules are stored as implications in the form “if <premise> then <consequence>”.  The 
inference engine examines the given data in the database and determines if they match a 
given premise.  If this is the case, the consequence is applied accordingly.  This is a 
straightforward application of the modus ponens. 

4.5 Exercises 

Exercise 9 Translate the following argument into a symbolic notation and check if it is correct: 
P1:  If I study well, I will not fail in the mathematics exam. 
P2:  If I do not play soccer, I study. 
P3:  I failed the mathematics exam. 
Conclusion: I played soccer. 

Exercise 10 Translate the following argument into a symbolic notation and check if it is correct using a truth 
table: 
P1:  If the Earth is a disk then I do not reach the USA. 
P2:  If I travel west then I reach the USA. 
P3:  I do not travel west and I reach the USA. 
Conclusion: The Earth is not a disk. 

Exercise 11 Translate the following argument into a symbolic notation and check if it is correct: 
P1:  If 6 is not even, then 5 is no prime number

7
. 

P2:  6 is even. 
Conclusion: 5 is a prime number. 

                                                      
7 A prime number is any natural number n that can only be divided by 1 and n. 
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ets are the very fundamental building block of many mathematical 

theories.  They are intuitively perceived as a collection of well-

distinguished objects.  A formal definition and axiomatic foundation of 

set theory is more complicated and will not be discussed here. 

Starting from an intuitive definition of sets, we explore relations between sets and 

operations on sets.  The fundamental principles of subset and set equality as well 

as set union, intersection, and difference are explained. 

 

CHAPTER 

5 Set Theory 

 

S
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5.1 Sets and Elements 

Set theory was developed by GEORG CANTOR (1845-1918) as what we call today naïve 
set theory.  This is a more intuitive approach than the axiomatic set theory.  However, in 
naïve set theory there is the possibility for logical contradictions (or paradoxes), 
something that should not occur in a formal system. 

Definition 13 (Set).  A set is a collection of well-distinguished objects.  Any object of 
the collection is called an element or a member of the set.  An element x  of a set S  is 
written as Sx .  If x  is not a member of S  we write Sx .  If  a set has a finite 
number of elements we call it a finite set.  A set with no elements is called the empty, 
null or void set and is denoted as {}  or  . 

There are many ways to specify a set.  A finite set can be specified explicitly by listing all 
its elements.  The set A  consisting of the natural numbers smaller than 10 can be written 
as }9,8,7,6,5,4,3,2,1{A , or we can describe the set implicitly by means of a predicate 
and a free variable, { | 10}A x x x    .  We can also draw a set with a VENN diagram 
(Figure 3). 

 
Figure 3.  VENN diagram 

In order to indicate the “size” of a set we need a measure.  This is defined as the number 
of elements (or cardinality). 

Definition 14 (Cardinality).  The cardinality of a set S is the number of its elements, 
written as || S . 

Example 24. The set alphabet}English   theofcharacter  a is |{ xxA   has cardinality 26|| A . 

Example 25. The natural numbers  are an infinite set.  Their cardinality is denoted as 0  
(pronounced as aleph zero8).  Every set S  that has the same cardinality as the natural numbers is 
called countably infinite.9  The proof is usually established by finding a one-to-one function that 
maps the natural numbers to S . 

Example 26. The cardinality of the integers   and the rational numbers   is 0 . The rational 

numbers   are all fractions of the form 
a

b
 where ,a b . 

Example 27. The cardinality of the real numbers   is denoted as c  (the continuum).  They are 
said to be uncountable infinite.  There are more real numbers than rational numbers.  An there are 
more rational numbers than integers. 

                                                      
8 Aleph is a character in the Hebrew alphabet. 
9 A set is finite if there exists a one to one correspondence between its elements and a subset of the 
natural numbers  for some  (including  for the empty set).  A set is countable if it is 

either finite or countably infinite. 

A

{1, 2, , }n n 0n 
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Example 28. The cardinality of the set {1,1, 2, 2, 2,3}A   is 3, because the elements of a set must 

be distinguishable.  In A , element 1 appears twice, 2 appears three times, and 3 appears once.  
Since it does not matter how often an element is repeated, the number of elements is three. 

Example 29. The set { }A    has one element, the empty set.  Therefore, its cardinality is 1.  

Although the empty set has cardinality zero, here it appears as an element of set A . 

5.2 Relations between Sets 

We know two relations between sets, subset and equality.  The subset relation refers to 
the containment of one set in another. 

Definition 15 (Subset).  If each element of a set A  is an element of a set B  then A  is 
subset of B , written as BA .  B  is called superset of A , written as AB  .  We call 
a set A  a proper subset of B  when BA  and BA . 

Two sets A  and B  are equal written as BA  if and only if BA  and AB . 

The following statements can be derived from the definitions of sets and their 
relationships: 

(i.) If U  is the universe of discourse, then UA  . 
(ii.) For any set A , AA . 
(iii.) If BA  and CB  , then CA  . 
(iv.) The empty set is subset of every set, or for any set A , A . 

5.3 Operations on Sets 

In the following, we consider operations on sets that use given sets (operands) to produce 
a new set (resultant). 

Definition 16 (Union).  The union of two sets A  and B , written as BA  is the set 
}|{ BxAxxBA  . 

Definition 17 (Intersection).  The intersection of two sets A  and B , written as BA  
is the set }|{ BxAxxBA  .  If  BA , we say that the two sets are 
disjoint. 

Definition 18 (Difference).  The difference of two sets A  and B , written as BA   (or 
BA \ ) is the set }|{ BxAxxBA  . 

Definition 19 (Complement).  The complement of a set A , written as A , is the set 

}|{ AxxAUA  , where U  is the universe of discourse. 

Example 30. The following Venn diagram illustrates the operations CBA  . 
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Union and intersection can generally be defined for more than two sets.  Let I  be an 
arbitrary finite or infinite index set.  Every element Ii  has assigned a set iA , then the 

union of the iA  is defined as ]}[|{ i
Ii

i AxIiixA 

 .  In the same way we define 

the intersection of the iA  as ]}[|{ i
Ii

i AxIiixA 

 . 

Table 8 summarizes some of the most important rules for set operations.  They can be 
easily proven by translating them into their equivalent form in the language of logic. 

Table 8.  Rules for set operations 

1. AAA    
2. AAA    
3. )()( CBACBA   

associativity 
4. )()( CBACBA   

5. ABBA   commutativity 
6. ABBA   
7. )()()( CABACBA   

distributivity 
8. )()()( CABACBA   

9. BABA   DE MORGAN’s law 
10. BABA   
11. AA    
12. AUA    
13. UUA    
14. A   
15. UAA    

16.  AA   

17. AA   
 

18. U   

19. U   

20. ABA    
21. If BA  and DC   then )()( DBCA    

22. If BA  and DC   then )()( DBCA    

23. BAA    
24. ABA    
25. If BA  then BBA   
26. If BA  then ABA    
27. AA    
28.  )( ABA   

29. BAABA  )(   

30. )()()( CABACBA    

31. )()()( CABACBA    

U

C

A B

C
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Another important concept in set theory is to look at the subsets of a given set.  This leads 
to the definition of the power set. 

Definition 20 (Power Set).  The set of all subsets of a set A  is the power set of A , 
denoted as )(A . 

If a set is finite, the power set is finite; if a set is infinite, the power set is infinite.  The 
power set of a set with n  elements has n2  elements. 

Example 31. The power set of }3,2,1{A  with three elements has 823   elements and is written 

as }}3,2,1{},3,2{},3,1{},2,1{},3{},2{},1{,{)(  A .  Note that the empty set and the set itself are 

always elements of the power set. 

5.4 Applications in GIS 

Overlay operations are among the most common functions that a GIS provides for spatial 
analysis.  Since spatial features such as points, arcs and polygons can be regarded as sets, 
overlay operations correspond to set intersection, union, difference, and complement.  
Table 9 shows the basic ArcInfo overlay commands and the corresponding set operations 
in mathematical notation.  Other ArcInfo functions such as CLIP, UPDATE, and 
IDENTITY are based on combinations of overlay and graphical clip operations. 

Table 9.  ArcInfo overlay commands 

Command A B Set Operation 
ERASE in cover erase cover A B  
INTERSECT in cover intersect cover A B  
UNION in cover union cover A B  

Normally, it does not matter in which sequence we apply overlay operations of the same 
type.  The associative and commutative laws for set operations allow the application of 
intersection and union in arbitrary order. 

The distributive laws can be used to simplify spatial overlay operations by reducing the 
number of operations.  For example, if we have three data sets A, B and C.  We need the 
intersection of A and B and the intersection of A and C, and finally, compute the union of 
the results.  These operations amount to the following set operations ( ) ( )A B A C   .  
This would need three overlay operations.  However, the distributive law of set operations 
allows us to reduce the number of operations to two as ( )A B C  . 

When we deal with polygon features in a GIS, we always have an embedding polygon 
that contains all features of our data set (or coverage).  Often it is called world polygon.  
In set theoretic terms, this corresponds to the universe of discourse10. 

                                                      
10 In Chapter 9 we will se that also for topological reasons we need an embedding space for the cell 
complex of spatial features. 
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5.5 Exercises 

Exercise 12 Highlight in the following VENN diagram BA . 

 

Exercise 13 Highlight in the following VENN diagram )( CBA  . 

 

Exercise 14 Highlight in the following VENN diagram BA . 

 

Exercise 15 Specify the power set for each of the following sets: 
(a) },,{ cba  

(b) }}{},,{{ cba  

(c) }{  

Exercise 16 Let },,,,,,{ gfedcbaU  be the universe, },,,,{ edcbaA  , },,,{ gecaB   and },,,{ gfebC   

are sets.  Compute the following: 

(i) CB  

(ii) AC  
(iii) CB   
(iv) The power set of CB  . 

 

U

A B

U

A B

C

U

A B



 

 31 

 

 

 

elations are a very important concept in mathematics.  Based on the 

fundamental principle of the Cartesian product we will introduce 

relations as the foundation of mappings and functions.  Relations are 

based on a common understanding of relationships among objects.  These 

relationships may refer to a comparison between objects of the same set, or they 

involve elements of different sets.  Two special types of relations, the equivalence 

relation and the order relation, play an important role in mathematics.  The first is 

used to classify objects; the latter one is the basis for the theory of ordered sets.  In 

this chapter, we deal only with binary relations only.  They are relations between 

two sets. 

 

Relations and Functions 

 

6 
CHAPTER 

R
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6.1 Cartesian Product 

Definition 21 (Cartesian Product).  The Cartesian product (or cross product) of two 
sets A  and B , denoted as BA , is the set of all pairs }|,{ BbAaba  . 

Example 32. Let }2,1{A , },{ baB   and C .  Then 

(a) },2,,2,,1,,1{  babaBA  

(b) CA  

Example 33. Consider the sets A = {Vienna, Amsterdam} and B = {Austria, Netherlands, 
France}.  The Cartesian product BA  is the set of six elements {<Vienna, Austria>, <Vienna, 
Netherlands>, <Vienna, France>, <Amsterdam, Austria>, <Amsterdam, Netherlands>, 
<Amsterdam, France>}. 

The Cartesian product is not commutative, i.e., A B B A   .  This can easily be seen in 
the example above. 

We can also graphically represent the Cartesian product.  Assume we have two sets 
{ | 2 3}A x x    and }10|{  yyB .  Then the cross products 

{ , | 2 3 0 1}A B x y x y          and { , | 2 3 0 1}B A y x x y          can be 

graphically represented as in Figure 4. 

 
Figure 4.  Non-commutativity of the Cartesian product 

Some properties of the Cartesian product are listed in Table 10. 

Table 10. Properties of the Cartesian product 

1. )()()( CABACBA   

2. )()()( CABACBA   

3. )()()( BACACBA   

4. )()()( BACACBA   

6.2 Binary Relations 

Although relations are generally defined with more than two sets, we restrict ourselves 
here to binary relations between two sets. 

1 2 3

1

2

3

AB

1 2 3

1

2

3

BA

1 2 3

1

2

3

AB

1 2 3

1

2

3

AB

1 2 3

1

2

3

BA

1 2 3

1

2

3

BA
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Definition 22 (Binary Relation).  A binary relation R  over BA  is a subset of 
BA .  The set A  is called the domain of R ; B  is the codomain.  We write 

Rba  ,  also as aRb , and Rba  ,  is written as a Rb .  If the relation is defined 
over AA , we call it a relation on A . 

Example 34. Consider the set A = {Vienna, Amsterdam} and the set B = {Austria, Netherlands, 
France}.  The set C = {<Vienna, Austria>, <Amsterdam, Netherlands>} is a relation over BA  
that can be read as “is capital of.” 

Definition 23 (Inverse Relation).  Let R  be a relation over BA .  The inverse 
relation (or inverse) 1R  is defined as the relation over AB  such that 

},|,{1 RbaabR  . 

Example 35. Let A = {John, Ann, Frank} and B = {Mercedes, BMW} be two sets of persons and 
cars.  R = {<John, Mercedes>, <Ann, BMW>, <Frank, BMW>} is a relation “drives a.” Then R-1 = 
{<Mercedes, John>, <BMW, Ann>, <BMW, Frank>} is the inverse relation that can be read as “is 
driven by.” 

6.2.1 Relations and Predicates 

Every binary relation R on a set A corresponds to a predicate with two variables and A as 
the universe of discourse.  If the relation is given, the predicate can be defined as 

1 2 1 2( , ) is true if and only if ,P a a a a R  .  Likewise, if a predicate P is given we can 

define a relation R such that 1 2 1 2{ , | ( , ) is true}R a a P a a   . 

6.2.2 Graphic Representation of Binary Relations 

It is often convenient to represent relations graphically.  For this purpose, we will use 
directed graphs (or digraphs11).  If there is a relation between the two elements x  and y , 

i.e., xRy , we use the following digraph representation 

 

Example 36. Let },,,{ dcbaA   be a set and { , , , , , }R a c b b b c        a relation on A .  

The digraph is represented by the following diagram. 

 

6.2.3 Special Properties of Relations 

Some properties of binary relations are so important that they must be discussed in more 
detail.  The following list defines these properties. 

                                                      
11 A graph is defined by two sets  and , the set of nodes (points or vertices) and the set of edges 
(arcs or lines), and an incidence relation on  that describes which nodes are connected by edges. If 
the arcs are directed, we call the graph a directed graph. 

x y
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b
a

c
d

b

V E
V V
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Definition 24 (Properties of Relations).  Let R be a binary relation on a set A.  We say 
that 

(i.) R  is reflexive if xRx  for every x  in A . 
(ii.) R  is irreflexive if xRx  for no x  in A . 
(iii.) R  is symmetric if xRy  implies yRx  for every yx,  in A . 

(iv.) R  is antisymmetrix if xRy  and yRx  together imply yx  for every yx,  in 

A . 
(v.) R  is transitive if xRy  and yRz  together imply xRz for every zyx ,,  in A . 

These properties are reflected in certain characteristics of a digraph representation of 
relations.  The digraph of a reflexive relation has a loop on every node of the graph.  The 
graph of an irreflexive relation has no loop on any node.  A relation can be neither 
reflexive nor irreflexive.  In this case, it simply has loops on some nodes, but not on all. 

The graph of a symmetric relation has either two or no arcs between any two distinct 
nodes of the graph.  For an antisymmetric relation the graph has either one arc or no arc 
between any two distinct nodes of the graph.  Loops may, but need not, occur in the 
graphs of symmetric and antisymmetric relations. 

If in the graph of a transitive relation, there is an arc from x to y and from y to z, then 
there must also be an arc from x to z. 

Example 37. Consider the set of three elements {1, 2, 3} and the relations represented in Figure 5. 

 
Figure 5.  Sample relations 

(a) 1R  is reflexive, symmetric, antisymmetric, and transitive.  It is the equality relation on the set.  

It is not irreflexive. 
(b) 2R  is symmetric but not reflexive, irreflexive, antisymmetric, or transitive. 

(c) 3R  is irreflexive and antisymmetric, but not reflexive, symmetric or transitive. 

(d) 4R is irreflexive, symmetric, antisymmetric and transitive.  It is not reflexive.  It is the empty 

relation on the set. 
(e) 5R  is the universal relation on the set.  It is reflexive, symmetric and transitive, but not 

irreflexive or antisymmetric. 

6.2.3.1 Equivalence Relation 

A reflexive, symmetric and transitive relation is called equivalence relation.  An 
equivalence relation divides a set S  into non-empty mutually disjoint sets or equivalence 

1

2

3

1

2

3

1

2

3

1

2

3 1

2

3
R1 R2 R3

R4 R5
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classes },|{][ Rxaxa   where a  is an element of S  and R  is an equivalence 
relation.  The set of all equivalence classes of S  (written as RS / ) is called the quotient 
set of S  under R , i.e., }|]{[/ RaaRS  .  An element ][ay  is called a representative 

of the class ][a . 

Example 38. Let R  be the relation ||  (parallel) on the set of all lines in the plane.  This relation is 

an equivalence relation, because (i) for every line l  we have ll ||  (reflexive), (ii) for every two 

lines 21 , ll  we have that if 1221 |||| llll   (symmetric), and (iii) if 21 || ll  and 32 || ll  then 31 || ll  

(transitivity).  The relation classifies the set of lines into the equivalence classes of parallel lines.  
Every element of one class is a representative of this class. 

6.2.3.2 Order Relation 

A reflexive, antisymmetric and transitive relation is called order relation.  Order relations 
allow the comparison of elements of a set. 

Example 39. The subset relation between two sets is an order relation, because (i) for all sets we 
have AA   (reflexive), (ii) if BA   and AB   then it follows BA   (antisymmetric), and (iii) 
if BA   and CB   then CA   (transitive). 

6.2.4 Composition of Relations 

We can generate new relations by composing a sequence of relations.  Formally, we 
define the composition of relations as follows. 

Definition 25 (Composition of Relations).  Let 1R  be a relation from A  to B , and 

2R  be a relation from B  to C .  The composite relation from A  to C , written as 

21RR  is defined as 

]},,[|,{ 2121 RcbRbaBbbCcAacaRR  . 

The composition of relations is not commutative, but associative. 

A relation R  on a set A  can be composed with itself any number of times to form a 
new relation on the set A .  For RR  we often write 2R , for RRR  we write 3R , and so 
on. 

Example 40. If R is the relation “is father of”, then RR is the relation “is paternal grandfather of.” 

Let },,,{ dcbaA   be a set and consider },,,,,{1  dbbaaaR  and 

},,,,,,,{2  bcdbcbdaR  to be two relations on A .  Then 

},,,{21  dacaRR , },{12  dcRR , },,,,,{2
1  dabaaaR , and 

},,,,,{3
2  dbbccbR . 

The composition of relations can be illustrated with a digraph as displayed in Figure 6. 
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Figure 6.  Composition of relations 

Let 1R  be a relation from A  to B , 2R  and 3R  be a relation from B  to C , and 4R  be a 

relation from C  to D .  Then the following statements are true: 

(i.) 3121321 )( RRRRRRR   

(ii.) 3121321 )( RRRRRRR   

(iii.) 4342432 )( RRRRRRR   

(iv.) 4342432 )( RRRRRRR   

6.3 Functions 

Functions are a special kind of binary relations.  They are used throughout mathematics. 

Definition 26 (Function).  A function (map, mapping or transformation) f from A to B, 
written as BAf : , is a binary relation from A to B such that for every Aa , there 

exists a unique Bb  such that fba  , .  We write baf )(  and we call A the 
domain and B the codomain of f.  a is the argument and b the value of the function for 
the argument a . 

To correctly specify a function we must indicate the domain, codomain and the value 
)(xf  for every argument x .  Note that the important difference between a relation and a 

function is that for a function it is not possible that an argument has more than one value, 
and a value must exist for all elements of the domain. 

Example 41. Consider the function from the natural numbers to the natural numbers :f    

where 12)(  xxf .  This function maps all natural numbers to the odd numbers.  One is mapped 

to one, two to three, three to five, etc. 

Example 42. Consider the sets }2,1{A  and },,{ cbaB  .  When the domain and codomain are 

finite, we can represent functions as digraphs.  In the following Figure 7 (a) and (b) are functions; 
(c) and (d) are no functions.  (c) is not a function because not for every element of the domain we 
have a value.  (d) is not a function because the argument 1 has more than one value assigned. 

A B C

R1
R2

R1R2

A B C

R1
R2

R1R2
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Figure 7.  Functions and relations 

6.3.1 Composition of Functions 

In the same way as with relations, we can generate new functions by composing a 
sequence of functions. 

Definition 27 (Composition of Functions).  Let BAg :  and CBf :  be two 

functions.  The composite function gf   is a function from A to C and 
))(())(( xgfxgf   for all x in A.  The composition of functions is not commutative, 

but it is associative. 

Note that a composite function is only defined when the codomain of the first function g 
is equal to the domain of the second function f. 

Example 43. Let :g    with xxg 2)(   and :f    with 1)(  xxf .  The composite 

function 12))((  xxgf  and the composite function 22))((  xxfg . 

6.3.2 Classes of Functions 

Certain characteristics of functions are so important that a special terminology has been 
developed for them. 

Definition 28 (Surjection).  A function f from A to B is called surjective (onto or 
surjection) if the image of the codomain is the image of the domain, or BAf )( . 

Definition 29 (Injection).  A function f from A to B is called injective (one-to-one or 
injection) if distinct arguments have distinct values, or if aa   then )()( afaf  . 

Definition 30 (Bijection).  A function f from A to B is bijective (one-to-one and onto, or 
bijection) if it is surjective and injective. 

Example 44. Let : {0,1}f   be a function from the integers to the set {0,1}  defined with 

0 for  is even
( )

1 for  is odd

x
f x

x


 


.  This function is surjective, but not injective. 
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Example 45. Consider the function :f   in the integers with 12)(  xxf .  This function 

is injective, but not surjective. 

Example 46. Consider the function :f    in the integers with 1)(  xxf .  This function is 

bijective. 

In the case of functions from the real numbers to the real numbers, we can interpret the 
properties of being surjective, injective or bijective in terms of the graph of the function: 

Surjectivity: Every horizontal line intersects the graph of the function at least once. 

Injectivity: No horizontal line intersects the graph of the function more than once. 

Bijectivity: Every horizontal line intersects the graph of the function exactly once. 

Example 47. Consider the function :f    in the real numbers with 23 2)( xxxf  .  Every 

horizontal line intersects the graph of the function at least once.  Therefore, the function is 
surjective.  The function is not injective, because there are lines (e.g., 0y ) that intersect the 

graph more than once. 

 

Example 48. Consider the function :f    with 102)(  xxf .  No horizontal line 

intersects the graph more than once.  Therefore, the function is injective.  It is not surjective, 
because there are lines that do not intersect the graph at all. 
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Example 49. Consider the function :f    with xxf )( .  Every horizontal line intersects 

the graph of the function exactly once.  Therefore, the function is bijective. 

 

Example 50. Consider the function :f    with 2)( xxf  .  The function is neither 

surjective nor injective. 
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These special properties of functions also propagate through composite functions.  If 
f g  is a composite function, then 

(i.) If f  and g  are surjective, then f g  is surjective. 
(ii.) If f  and g  are injective, then f g  is injective. 
(iii.) If f  and g  are bijective, then f g  is bijective. 

The converse of these statements is not true.  However, we can establish the following: 

(i.) If f g  is surjective, then f  is surjective. 

(ii.) If f g  is injective, then g  is injective. 
(iii.) If f g  is bijective, then f  is surjective and g  is injective. 

Definition 31 (Inverse Function).  Let BAf :  be a bijection from A  to B .  The 

converse relation of f  is called the inverse function of f , written as 1f . 

The inverse function is only defined when the function is a bijection.  The inverse 
function then is also a bijection. 

6.4 Applications in GIS 

Relations play an important role in GIS.  The best-known examples of relations in GIS 
are the spatial or topological relations between the building blocks of feature data sets.  
These building blocks correspond to nodes, arcs and polygons in a two-dimensional 
setting. 

Formally, we distinguish between the following relations among the elements of the set 
of nodes, arcs, and polygons.  Every arc has a relation with two nodes (the start node and 
the end node relation); every arc has a relation with two polygons (the left polygon and 
the right polygon relation).  Figure 8 shows a two-dimensional data set and the 
topological relations between nodes, arcs and polygons. 
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Figure 8.  Topological relations 

In this example we have the set of nodes, arcs, and polygons defined as  
{1,2,3,4,5,6}N  , { , , , , , , , , , }A a b c d e f g h i j , and { , , , , }P A B C D E .  The start node – 

end node relation is defined as 

{ ,1 , , 2 , , 2 , ,3 , ,3 , ,1 , , 2 , ,4 , , 4 ,

,6 , ,3 , ,6 , ,6 , ,5 , ,4 , ,5 , ,7 , ,5 , ,1 }

AN a a b b c c d d e

e f f g g h h i j j

                  
                   

, 

whereas the left polygon – right polygon relation can be written as 
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{ , , ,0 , , , ,0 , , , ,0 , , , , , , , , ,

, , , , , , , , , , , , , , , , , , , }

AP a C a b B b c A c d C d B e D e B

f B f A g D g A h C h D i D i E j C j A

                    
                   

 

Other types of relations are those among spatial features in a data set.  The best-known 
examples are the eight relations between simple spatial regions that can be derived from 
topological invariants of boundary and interior (see chapter 9).  Figure 9 shows these 
relations. 

disjoint

meet

equal

inside

covered by

contains

covers

overlap

 
Figure 9.  Spatial relations derived from topological invariants 

Functions appear in many different forms in GIS.  One typical application is map 
projections.  Here, a point on the surface of the earth whose location is given as latitude 
  and longitude   is mapped to a point on a plane by a set of two mapping rules for the 
easting and northing, respectively, as 

1

2

easting = ( , )

northing = ( , )

f

f

 
 

 

Not every map projection is a function in the mathematical sense.  Many map projections, 
for instance, map the pole to a line, which means that there is more than one value for a 
given argument.  These cases, where a point on the earth is mapped to a line or cannot be 
mapped at all, are called singularities.  Figure 10 shows two projections where the poles 
are mapped to a line (a) and to a point (b).  In the second projection, the South Pole 
cannot be mapped at all. 

 
 

(a) Eckert IV (b) Azimuthal equal area 

Figure 10.  Map projections with singularities 
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6.5 Exercises 

Exercise 17 Let },{ baA  , }3,2{B  and }4,3{C .  Compute: 

(i) )( CBA   

(ii) )()( CABA   

(iii) )( CBA   

(iv) )()( CABA   

Exercise 18 Let }4,3,2,1{W  and consider the following relations on W : 

}3,3,2,2,1,1{

}4,2,3,1{

}1,4,3,2,1,1{

}2,1,1,1{

4

3

2

1







R

R

R

R

 

Check these relations whether they are reflexive, irreflexive, symmetric, antisymmetric, or 
transitive. 

Exercise 19 Let }4,3,2,1{X .  Which one of the following relations is symmetric and which one is transitive? 

In case the relation is not symmetric or transitive explain why. 
 

}4,4,1,2,4,1,4,3,1,2{

}1,1,2,4,1,3{

}4,4,2,3,1,2,4,1,3,2{






h

g

f

 

Exercise 20 Let }4,3,2,1{X .  Which one of the following relations is a function from X  to X ? In case the 

relation is not a function explain why. 
 

}4,4,1,2,4,1,4,3,1,2{

}1,1,2,4,1,3{

}4,4,2,3,1,2,4,1,3,2{






h

g

f

 

Exercise 21 Let 1R  and 2R  be relations on a set },,,{ dcbaA   where },,,,,{1  dccaaaR  and 

},,,,,,,{2  dcbbcbdaR .  Find 21RR , 12 RR , 2
1R , and 3

2R . 

Exercise 22 Let :f    be defined as 23)( 2  xxxf .  Compute 
h

xfhxf )()( 
. 

Exercise 23 Let f and g be functions from X = {1,2,3,4,5} in X defined as: 
f = {<1,3>,<2,5>,<3,3>,<4,1>,<5,2>} 
g = {<1,4>,<2,1>,<3,1>,<4,2>,<5,3>} 
Determine (i) the codomain of f and g.  (ii) Determine fg   and gf  . 

 

 



 

 43 

 

 

 

ll points in space can be uniquely referenced by their coordinates.  

Depending on the type of space, we distinguish between different 

coordinate systems such as Cartesian coordinate systems for Euclidean 

spaces or spherical coordinate systems for the surface of a sphere and elliptical 

coordinate systems for the surface of an ellipsoid.  The sphere and the ellipsoid 

are geometric bodies used to approximate the shape of the earth. 

Spatial features such as points, arcs and polygons as well as raster cells are 

spatially referenced through their coordinates.  Often, it is necessary to apply 

transformations to these coordinates in order to shift, rotate, scale or warp the 

features.  In this chapter, we will discuss frequently used coordinate systems and 

transformations applied to geometric features in a Euclidean space. 

 

CHAPTER 

7 Coordinate Systems and 
Transformations 

 

A
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7.1 Coordinate Systems 

A coordinate system functions to assign any point in space a pair or triple of real 
numbers, its coordinates.  The most common coordinate systems are rectangular or 
Cartesian coordinate systems and polar coordinate systems.  In this chapter, we deal with 
a two- or three-dimensional real space (also called the Euclidean space) where every 
point has real-valued coordinates. 

7.1.1 Cartesian Coordinate Systems 

In the real plane 2  every point P  has a unique pair of real numbers ( , )x y  with 

,x y  assigned.  On the other hand, every pair of real numbers ( , )x y  defines uniquely 

a point in the real plane.  We define a single point O , the origin, and two perpendicular 
lines through that point, the axes.  The horizontal axis is called x -axis, the vertical one is 
the y -axis.  Every point P  is uniquely defined by its Cartesian coordinates ( , )P x y .  
Figure 11 illustrates these Cartesian coordinates. 

P(x, y)

x-axis

y-axis

O

x

y

 
Figure 11.  Cartesian coordinate system in the plane 

We can easily extend the 2-dimensional coordinates in the plane to 3-dimensional 
coordinates in space by defining a Cartesian coordinate system in 3 .  Every point P  is 
then clearly defined by the triple ( , , )x y z  of Cartesian coordinates (Figure 12). 

x-axis

y-axis

z-axis

P(x, y, z)

y
x

z
O

 
Figure 12.  Cartesian coordinate system in 3-D space 
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7.1.2 Polar Coordinate Systems 

A different way of assigning a point in the plane unique coordinates is the use of polar 
coordinates.  They are defined in a polar coordinate system which is given by a fixed 
point O , the origin or pole, and a line through the pole, the polar axis.  Every point in the 
plane is then determined by its distance from the pole, the radius r , and the angle   
between the radius and the polar axis (Figure 13). 

polar axisO

P(r, )



r

 

Figure 13.  Polar coordinate system in the plane 

In a three-dimensional polar coordinate system (or spherical coordinate system) a point 
P  is defined by the radius r  from the origin to the point and two angles: the angle   

between the projection of OP  onto the ,x y -plane, and the angle   between OP  and the 
positive z -axis (Figure 14). 

x

y

z

P(r,  , )

O

r




 
Figure 14.  Spherical coordinate system 

7.1.3 Transformations between Cartesian and Polar Coordinate Systems 

The relationships between x  and y  and r  and   are illustrated in Figure 15 and can be 
expressed by the following correspondences: 

P



r

x-axis

y-axis

O

y

x

 

Figure 15.  Conversion between Cartesian and polar coordinates in the plane 
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2 2

cos

sin

tan  with [0,2 ] \ (2 1)
2

x r

y r

r x y

y
k k

x




  




 

 
    

 


 

Example 51. Given the Cartesian coordinates of the point (3,4)P  we can compute its polar 

coordinates as 2 23 4 9 16 25 5r        and 
4

tan 1.3333
3

   , i.e., 53.13   .  The 

point thus has the polar coordinates (5,53.13)P . 

The conversion between three-dimensional Cartesian coordinates and spherical 
coordinates can be performed using the following formulas (see also Figure 16): 

2 2 2

2 2

2 2

2 2

sin cos

sin sin

cos

sin

cos

cos

tan  with [0, ]

tan  with [0,2 ] \ (2 1)
2

x r

y r

z r

r x y z

y

x y

x

x y

z

r

x y

z

y
k k

x

 
 








  

  





  










 

 
    

 


 

x-axis

y-axis

z-axis

P

y
x

z
O

r




 
Figure 16.  Conversion between Cartesian coordinates and spherical coordinates 

Example 52. Given a point (2,3,4)P  in the three-dimensional Euclidean space 3 we can 

compute its spherical coordinates as 2 2 22 3 4 4 9 16 29 5.385r         , 
4

cos 0.743
5.385

    and 
3

tan 1.5
2

   .  From this we get 42.03    and 56.31   . 
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7.1.4 Geographic Coordinate System 

A special case of a spherical coordinate system is the geographic coordinate system, 
which is used to identify locations on the surface of the earth (Figure 17).  The origin M  
of the geographic coordinate system is the center of the earth.  The equator E  lies in the 
plane defined by the x - and y -axes.  The circle G  defined by the intersection of the ,x z
-plane with the earth is the zero meridian through Greenwich.  Every point P  on the 
surface of the earth is uniquely defined by its latitude   and longitude  , denoted as 

( , )P   . 

M
y

z

x




G
P()

E

N

S  
Figure 17.  Geographic coordinate system 

The latitude is measured as the angle between the equatorial plane and the radius from the 
origin to the point towards north (positive latitude) or south (negative latitude).  A latitude 
on the northern hemisphere ranges from 0 to 90, and from 0 to -90 on the southern 
hemisphere.  Note that this is different from the way how the angle   is defined for 
spherical coordinates. 

The longitude is the angle between the planes through the zero meridian and the origin, 
and the plane trough the point P  and the origin.  Longitudes are positive from 0 to 180 
towards east and negative from 0 to 180 west. 

Every circle through the poles is called a meridian; every circle parallel to the equatorial 
plane is called a parallel.  For practical calculations, the radius R  of the earth is assumed 
6,370 kilometers. 

Example 53. The airport of Vienna, Austria, has a latitude of 48 07  North and a longitude of 

16 34  East, or VIE(48.1167,16.5667) . 

7.2 Vectors and Matrices 

Vectors and matrices play an important role in the analytical treatment of geometric 
figures.  We can represent points in space by their respective point vectors, and we can 
apply many calculations related to the characteristics of geometric figures using vector 
representations. 

7.2.1 Vectors 

In section 8.2.4 we have defined the algebraic structure of a vector space.  The elements 
of a vector space are called vectors several axioms for operations among vectors and 
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vectors with scalars are defined.  Here, we define vectors as a class of arrows in two- or 
three-dimensional real space. 

Definition 32 (Vector).  A vector is a class of parallel, directed arrows of the same 
length in space.  A single arrow is called a representative of the vector. 

For simplicity, we will not make a difference between a vector and a representative, and 
will simply call a representative a vector.  The tail of a vector is called the initial point, 
and the head of the arrow is called the terminal point. 

Every point ( , , )P x y z in 3  can be represented by its point vector 

x

P y

z

 
   
 
 


 as shown in 

Figure 1812.  In 2  the point vector components reduce to two for the x - and y -

coordinate components. 

x-axis

y-axis

z-axis

P(x, y, z)

y

x

z
O

 
   
 
 


x

P y
z

 
Figure 18.  Point vector 

The length of a vector is defined as 2 2 2P x y z  


 in 3�  and 2 2P x y 


 in 2 .  

A vector of length 1 is called a unit vector. 

From section 8.2.4 we know that we can define operations of addition and multiplication 
with a scalar for vectors: 

x x x x

y y y y

z z z z

a b a b

a b a b a b

a b a b

     
              
          


 and 

x x

y y

z z

a a

a a a

a a


  



   
       
   
   


 

Example 54. The sum of the two three-dimensional vectors (1,2,3)  and (4,5,6)  is 

1 4 1 4 5

2 5 2 5 7

3 6 3 6 9

       
                 
              

. 

Beside the addition of vectors and the multiplication of a vector with a scalar, we know 
three different vector products.  They all have also a geometric interpretation. 

                                                      
12 For the sake of a more compact vector notation we also write . ( , , )P x y z


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Definition 33 (Dot product).  If a


 and b


 are two vectors the dot product (or 
Euclidean inner product) is defined as 

x x

y y x x y y z z

z z

a b

a b a b a b a b a b

a b

   
           
   
   

 
 

The result of the dot product is always a number (scalar).  The dot product is 
commutative and distributive, but not associative: 

( )

a b b a

a b c a c b c

  

     

   

        

The dot product can be used to compute the angle   between two vectors a


 and b


 
according to the following formula: 

cos
| || |

a b

a b
 


 

   

Example 55. The angle   between the two vectors (1,2,3)a 


 and (3,1,1)b 


 is calculated 

according to the formula as 
1 3 2 1 3 1 8

cos 0.645
1 4 9 9 1 1 14 11

     
  

     
.  It follows that 

49.86   . 

Definition 34 (Cross product).  If a


 and b


 are two vectors the cross product is 
defined as 

x x y z z y

y y z x x z

z z x y y x

a b a b a b

c a b a b a b a b

a b a b a b

    
             

          

  
 

The result of the cross product is a vector.  It is distributive, but not commutative: 

( )a b c a c b c

a b b a

     

   

      

     

The cross product can be geometrically interpreted as illustrated in Figure 19: 

 The product vector c


 is perpendicular to the vectors a


 and b


. 

 ,a b


 and c


 form a right-handed coordinate system. 

 The length of c


 is equal to the area of the parallelogram spanned by a


 and b


, 
where   is the angle between the two vectors, according to the following 

formula sinc a b a b     
   

. 
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a

b

c



 
Figure 19.  Cross product of two vectors 

Example 56. The cross product of the two vectors (1,0,0)a 


 and (1,1,0)b 


 is equal to 

1 1 0 0 0 1 0

0 1 0 1 1 0 0

0 0 1 1 0 1 1

a b

         
                     
                


 and the length of the vector is 1.  The angle between a


 and 

b


 is 45 .  Therefore we can compute the length of the cross product as 
2

1 2 1
2

   . 

Definition 35 (Scalar triple product).  If ,a b


 and c


 are three vectors the scalar triple 
product is defined as 

( ) ( ) ( )

( ) ( ) ( )x y z z y y x z z x z x y y x

abc a b c c a b

a b c b c a b c b c a b c b c

      
    

      

 

If the three vectors do not lie in the same plane, then they form a parallelepiped when 
they are positioned with the common initial point (Figure 20).  The result of the scalar 
triple product is a number equal to the volume of this parallelepiped and can also be 
computed according to the formula 

( ) | | | | cosabc a b c    
   

 

where   is the angle between the cross product vector of a b


 and c


. 

Example 57. The volume of the parallelepiped with (2, 6,2), (0,4, 2)a b   


, and 

(2,2, 4)c  


 is computed by inserting into the formula given in Definition 35 as 

2 [4 ( 4) ( 2) 2] ( 6) [0 ( 4) ( 2) 2] 2 [0 2 4 2] 2 ( 12) ( 6) 4 2 ( 8)

24 24 16 8

                            
    

 

a

b

c

ba

 
Figure 20.  Scalar triple product 

The following correspondences hold between the dot product, cross product and the 
scalar triple product. 
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2 2 2 2

( ) ( ) ( )

( ) ( ) ( )( ) ( )( )

( ) ( )

( ) ( ) ( ) ( )

a b c a c b a b c

a b c d a c b d a d b c

a b a b a b

a b c d c abd d abc

     

        

   

    

       

          

    

         

 

7.2.2 Matrices 

Rectangular arrays of real numbers occur in many contexts in mathematics and as data 
structure in applications of computer science. 

Definition 36 (Matrix).  A matrix is a rectangular array of real numbers.  The numbers 
in the array are called the entries in the matrix. 

A matrix M  is a rectangular array of numbers with m  rows and n  columns represented 
as: 

11 12 13 1

21 22 23 2

1 2 3

n

n

m m m mn

m m m m

m m m m
M

m m m m

 
 
 
 
  
 





    



 

We call M  a m n -matrix.  We also know that the matrices form a vector space and that 
we can multiply matrices with matrices and matrices with vectors according to the 
following rules: 

Let A  and B  be two matrices.  Their sum is defined as  

11 12 1 11 12 1 11 11 12 12 1 1

21 22 2 21 22 2 21 21 22 22 2 2

1 2 1 2 1 1 2 2

n n n n

n n n n

m m mn m m mn m m m m mn mn

a a a b b b a b a b a b

a a a b b b a b a b a b

a a a b b b a b a b a b

       
             
     
                 

  

  

           

  
 

Note that the sum has the same number of rows and columns of the input matrices, and 
that both matrices must have the same number of rows and columns.  If the number of 
rows and columns does not match, the sum is not defined. 

The multiplication of a matrix A  with a scalar s  is defined as 

11 12 1 11 12 1

21 22 2 21 22 2

1 2 1 2

n n

n n

m m mn m m mn

a a a sa sa sa

a a a sa sa sa
sA s

a a a sa sa sa

   
   
    
   
      
   

 

 

       

 

 

The product of two matrices A  and B  is only defined if the number of columns of A  is 
equal the number of rows of B .  Given a m p -matrix A  and a p n -matrix B  the 

product of C AB  of A  and B  is a m n -matrix where every element ijc  of the 

product is calculated according to the following schema 
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11 111 1 11 1

1

1

1

1

1 pn

np n

p

i ip ij

m mp m mn

j

pj

b ba a c c

b

a a

b

c

ba

b

a c c

    
            
        
            
        










  

  

 

  





 

 

and 1 1 2 2
1

p

ij i j i j ip pj ik kj
k

c a b a b a b a b


     . 

Example 58. The product of the two matrices 
r s

t u

 
 
 

 and 1 2 3

1 2 3

a a a

b b b

 
 
 

 is computed as 

1 2 3 1 1 2 2 3 3

1 2 3 1 1 2 2 3 3

a a a ra sb ra sb ra sbr s

b b b ta ub ta ub ta ubt u

      
           

. 

Example 59. The product of 
1 2

3 4

 
 
 

 and 
5 6

7 8

 
 
 

 is calculated as 

1 2 5 6 1 5 2 7 1 6 2 8 19 22

3 4 7 8 3 5 4 7 3 6 4 8 43 50

           
                  

. 

7.3 Transformations 

When we rotate, shift or scale geometric figures we apply geometric transformations.  
Here, we will focus on plane coordinate systems and their transformations.  Another 
problem related to transformations is to determine the parameters of a transformation 
between two plane coordinate systems that compensates for scaling, rotation, skew and 
translation.  We will discuss the HELMERT (or similarity) transformation and the affine 
transformation that both provide solutions to this problem. 

7.3.1 Geometric Transformations 

In the following sections, we will discuss geometric transformations in the plane using 
Cartesian coordinates. 

7.3.1.1 Translation 

The shift of a geometric figure in horizontal and vertical direction results in a translation 
operation (Figure 21).  The translation factor in x -direction is xt , the factor in the y -

direction is yt .  They need not be the same. 

x

y

O

tx

ty

P(x, y)

P'(x', y')

 

Figure 21.  Translation 



COORDINATE SYSTEMS AND TRANSFORMATIONS 53 

 

Given the coordinates of a point ( , )P x y , the coordinates of the new point ( , )P x y    are 
calculated according to the following formula: 

x

y

x x t

y y t

  
  

 

In matrix notation, we can write the translation of a point defined by its vector 
x

P
y

 
  
 


 

with a translation vector 
x

y

t
t

t

 
  
 


 resulting in a new point 

x
P

y

     


 as P P t  

  
 or 

x

y

tx x

ty y

     
           

. 

7.3.1.2 Rotation 

The rotation of a geometric figure in a two-dimensional coordinate system with the angle 
  is shown in Figure 22. 

x

y

O



P(x, y)

P'(x', y')

 
Figure 22.  Rotation 

Given the coordinates of a point ( , )P x y , the coordinates of the rotated point ( , )P x y    
are calculated according to the following formula: 

cos sin

sin cos

x x y

y x y

 
 

  
  

 

In matrix notation the rotation of a point 
x

P
y

 
  
 


 with an angle   can be denoted as 

P RP 
 

 with the rotation matrix 
cos sin

sin cos
R

 
 

 
  
 

 or 
cos sin

sin cos

x x

y y

 
 

     
        

. 

7.3.1.3 Scaling 

The scaling of a geometric figure can be described by the application of a multiplication 
factor (or scaling factor) to the coordinates in a given coordinate system (Figure 23). 
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x

y

O

P(x, y)

P'(x', y')

 
Figure 23.  Scaling 

Given the coordinates of a point ( , )P x y , the coordinates of the scaled point ( , )P x y    are 
calculated according to the following formula: 

x

y

x s x

y s y

  
  

 

The factors xs  and ys  are the scale factors in the x - and y -directions.  They need not be 

the same. 

In matrix notation the scaling of a point 
x

P
y

 
  
 


 with scale factors xs  and ys  for x  and 

y , respectively, can be written as P SP 
 

 with the scaling matrix 
0

0
x

y

s
S

s

 
  
 

 or 

0

0
x

y

sx x

sy y

     
         

. 

7.3.2 Combination of Transformations 

When we want to perform rotation, scaling and translation to a point, either we can apply 
the respective transformations in sequence, one after the other, or we can combine the 
transformation matrices to one matrix for rotation and scaling and add the translation 
vector.  The general approach using the matrices defined in the previous sections is 
written as 

P SRP t  
  

 

In the detailed notation this translates to 

cos sin

sin cos
x x x

y y y

s s tx x

s s ty y

 
 

       
             

. 

Example 60. Let S  be a square defined with the points 1

0

0
P

 
  
 

, 2

1

0
P

 
  
 

, 3

1

1
P

 
  
 

 and 

4

0

1
P

 
  
 

.  We apply a rotation of 45 degrees, a scaling with the factor 2 in x -direction and 1 in y

-direction.  Finally, we shift the figure three units to the right and two units up.  The result can be 

computed according to the transformation matrix 
2 2

1 1
2 2

2 2

T
 
    
 

 and the translation vector 
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3

2
t

 
  
 


 as P TP t  


.  The following figure shows the original square in red and the 

transformed figure in green where 1

3

2
P

    
 

, 2

3 2

1
2

2

P

 
     
 

, 3

3

2 2
P

      
 and 4

3 2

1
2

2

P

 
     
 

. 

1 2 3 4

1

2

3

 

7.3.3 Homogeneous Coordinates 

An easier way to deal with geometric transformations is to use homogeneous coordinates. 

Definition 37 (Homogeneous Coordinates).  Every point with the Cartesian 
coordinates ( , )x y  can be assigned the homogeneous coordinates ( , , )t x t y t  .  

Conversely, given the homogeneous coordinates of a point ( , , )r s t , we can determine 

its Cartesian coordinates as 
r

x
t

  and 
s

y
t

 . 

We assign to a point ( , )P x y  its homogeneous coordinates ( , ,1)x y .  The geometric 

transformations can then be expressed by 3 3 -matrices. 

cos sin 0

sin cos 0

0 0 1

R

 
 

 
   
 
 

rotation 

0 0

0 0

0 0 1

x

y

s

S s

 
   
 
 

scaling 

1 0

0 1

0 0 1

x

y

t

T t

 
   
 
 

translation 

Note that now also the translation can be expressed through a translation matrix.  This 
allows us to combine all three transformations in one single transformation matrix 

cos sin

sin cos

0 0 1

x x x

y y y

s s t

U s s t

 
 

 
   
 
 

. 
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The general transformation of a point including rotation, scaling and translation can then 
be written simply as the multiplication of the transformation matrix with the point vector 

P UP 
 

 or 

cos sin

sin cos

1 0 0 1 1

x x x

y y y

x s s t x

y s s t y

 
 

     
         
    
    

 

Example 61. The transformation of the square in the previous example can now be written as 

2 2 3

2 2
2

2 2
1 10 0 1

x x

y y

 
    
          

        
 

 

7.3.4 Transformation between Coordinate Systems 

In many applications, we have to transform coordinates from one system into another 
coordinate system.  In principle, this relates to the geometric transformations discussed in 
the previous sections.  However, often we do not know the rotation angle, scale factor or 
translation vector, or there are more distortions involved.  In these cases, we must 
determine the transformation parameters from known coordinates of points in both 
systems.  These points are called control points.  The most common transformations used 
are 

 similarity transformation 

 affine transformation 

 projective transformation 

The similarity transformation (also called HELMERT transformation) scales, rotates, and 
translates the data.  It does not independently scale the axes or introduce any skew.  It is 
also known as four-parameter transformation and has the general form 

x Ax By C

y Bx Ay F

   
    

 

A minimum of two control points is required to be able to compute the four parameters 
A , B , C , and F . 

The affine transformation (or 6-parameter transformation) will differentially scale, skew, 
rotate, and translate the data.  It requires a minimum of three control points and has the 
general form 

x Ax By C

y Dx Ey F

   
   

 

Finally, the projective transformation (or 8-parameter transformation) can compensate 
for greater distortions between the two coordinate systems and requires a minimum of 
four control points.  It has the general form 

1

1

Ax By C
x

Gx Hy

Dx Ey F
y

Gx Hy

  
 
  
 

 

Example 62. Given two control points 1P  and 2P , compute the parameters of a HELMERT 

transformation.  The coordinates of the control points are measured (digitized) on a digitizing 
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device as 1 1 1( , )P x y  and 2 2 2( , )P x y .  The map coordinates of the tics are given as 1 1 1( , )P x y    and 

2 2 2( , )P x y   .  We can now compute the parameters of the HELMERT transformation by solving the 

following system of linear equations for , ,A B C  and F . 

1 1 1

1 1 1

2 2 2

2 2 2

x Ax By C

y Bx Ay F

x Ax By C

y Bx Ay F

   

    

   

    

 

Normally, we use more than the required minimum number of control points.  We then 
need to solve the resulting system of equations with a least squares approach.  The root 
mean square error (RMS) indicates the goodness of fit.  Ideally, the best fit would result 
in a RMS of zero, which is never the case when we use more than the required number of 
control points.  However, the RMS should be as small as possible to achieve a reliable set 
of parameters for the transformation. 

7.4 Applications in GIS 

In GIS, we apply geometric transformations in many different ways.  One use of 
transformations is in the graphic editing functions of every GIS.  When we edit spatial 
features, we need to shift, rotate, skew and scale them. 

Another important application lies in the transformation of coordinates of datasets as it 
occurs, for instance, in manual digitizing.  Here, we have to set up a transformation from 
the device coordinates, i.e., the coordinates produced by the digitizing device – usually in 
millimeters or inches – to the world coordinates, i.e., the coordinates of the map 
projection. 

Figure 24 shows a sketch of a digitizing tablet with a map mounted on it.  The origin of 
the tablet coordinates lies at tO .  The map coordinate system is indicated with kO  and the 

axes kx  and ky .  On the map we have identified four ticks (or control points) designated 

with  .  The map coordinates of these ticks are either known or can be determined 
easily, for instance as grid intersection points or corner points of the map sheet whose 
coordinates can be read from the map. 

The map usually is not aligned with the coordinate system of the tablet.  Before we can 
start digitizing, we need to establish a relationship between the tablet coordinate and the 
map coordinate system.  This is done by choosing a proper transformation and by 
computing its parameters.  Usually, we select a four- or six-parameter transformation.  
With the given coordinates of the ticks (in the map coordinate system) and their measured 
coordinates (in the tablet coordinate system), we can compute the transformation 
parameters and subsequently apply the transformation to every point measured on the 
map.  The transformation converts these coordinates into map coordinates. 

Every GIS software package should provide this functionality for manual digitizing or 
general coordinate transformation.  The TRANSFORM command in Workstation Arc/INFO 
is one example of such a function. 
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Figure 24.  Manual digitizing setup 

7.5 Exercises 

Exercise 24 Given the geographic coordinates of Vienna airport as 48.12  , 16.57   and the radius of the 

Earth as 6370R km , compute the Cartesian coordinates of the airport when the origin of the 
Cartesian coordinate system is located at the center of the earth and the axes directions are as 
illustrated in Figure 17. 

Exercise 25 Explain why each of the following expressions makes no sense when the operation “  ” denotes the 

dot product of vectors: (a) ( )a b c 
 

, (b) ( )a b c 
 

, (c) ( )k a b 


. 

Exercise 26 Let (1,3,2)a 


, (1,2,3)b 


 and (2, 1,4)c  


.  Compute (a) b c
 

, (b) ( ) 2a b c 
 

, and (c) 

( ) ( )a b b c  
  

. 

Exercise 27 What is wrong with the expression a b c 
 

? 

Exercise 28 Let (1,3,2)a 


, (1,2,3)b 


 and (2, 1,4)c  


.  Compute ( , , )a b c
 

. 

Exercise 29 Given the triangle ABC  with the coordinates (1,0)A , (3,0)B  and (2,1)C  compute the 

coordinates of the resulting figure when the triangle is rotated by 60 , scaled with a factor of 1.5 
in both x - and y -direction, and translated 2 units to the right and 3 units down. 

Exercise 30 Use a map sheet of your choice and perform the procedure for setting up the transformation 
parameters in manual digitizing using four control points and a six-parameter transformation. 
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athematical structures are used to describe real world processes or 

phenomena.  As we have seen before, there are three main 

structures in mathematics: algebras, topological structures, and 

order structures.  In this chapter we will describe algebraic structures (or algebras) 

that are characterized by a set on which operations are defined for the elements of 

this set. 

These operations are needed when we want to “compute” or “calculate” with the 

elements of a set.  Often we need to identify mappings from one algebra to 

another.  If the structure is preserved under such a mapping, we call it a structure 

preserving mapping or homomorphism. 

 

CHAPTER 

8 Algebraic Structures 

 

M
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8.1 Components of an Algebra 

Definition 38 (Algebra).  Whenever we specify an algebra we need to describe the 
following components: 

 A set S , the carrier of the algebra. 
 Operations defined on the elements of the carrier, and 
 Distinguished elements of the carrier, the constants of the algebra 

The carrier S  of an algebra is a set of elements on which operations are defined.  
Examples of carriers are number sets such as   (natural numbers),  (integers), or   
(real numbers).  Operations are defined as a mapping SS m :  where the m  is called 
the “arity” of the operation.  Operations from SSS 1  are called unary operations.  
As an example of a unary operation consider the operation “–” that assigns the negative 
value to an element, i.e., it takes the number x  to x .  Binary operations are mappings 
from SS 2  and operate on two elements of the carrier.  Examples of a binary operation 
are addition yx  and multiplication yx   of elements.  The constants of an algebra are 

distinguished elements of the carrier set with properties of special importance.  Algebras 
are denoted as n -tuples <carrier, operations, constants>. 

Example 63. The real numbers   with the binary operations )(  (addition) and multiplication 

)( , the unary operation )( and the constants 0 and 1 are an algebra that is represented as the 6-

tuple , , , , 0,1     . 

8.1.1 Signature and Variety 

Often we look at a class of algebras such that every member of the class has the same 
characteristics. 

Definition 39 (Signature of an algebra).  Two algebras have the same signature (or 
are of the same species) if their n -tuples include the same number of operations and 
constants and the arities of corresponding operations are the same. 

Example 64. The algebras , , ,1, 0     and  ,,,),( SS  have the same signature 

because they posses two binary operations (  and )  and (  and )  and two constants (1 and 0) 

and S(  and ) , respectively. 

Example 65. The algebras , , 0    and ,    are not of the same species, because the 
number of constants is not the same.  The second algebra does not possess any constants. 

Algebras that have the same signature need not be related at all.  In order to be able to 
distinguish different classes of algebras that “behave” in the same way, we need certain 
rules that are valid for the elements of the carrier.  Such “rules” are called axioms and are 
written as equations of elements of the carrier. 

Definition 40 (Variety).  A set of axioms for the elements of the carrier, together with a 
signature, specifies a class of algebras called variety. 
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Algebras that belong to the same variety behave in exactly the same way.  Although the 
carrier set, operations and constants may be different, all algebras of the same variety 
obey the same axioms.  In the following sections, we will discuss some of the more 
important varieties of algebras. 

Example 66. Consider the variety of algebras with the same signature , , 0    and the 

following axioms: (i) xyyx  , (ii) )()( zyxzyx  , and (iii) xxx  00 .  Then 

, , 0   ,  ,),(S ,  SS ,),( , and , ,1    are all members of this variety, where 

the binary operations are denoted as “+”, “ ”, “ ”, and “  ”, and the constants are “0”, “ ”, “
S ”, and “1”, respectively.  Any theorem proven for this variety will hold for all algebras that 
belong to this variety. 

For the remainder of this chapter, whenever we deal with an arbitrary algebra A , we will 
use the following notation  kSA ,,, , where S  is the carrier,   denotes a binary 
operation,   a unary operation, and k  a constant. 

8.1.2 Identity and Zero Elements 

Constants possess special properties relative to one or more operations in an algebra.  The 
following definition describes the most important properties of constants for binary 
operations. 

Definition 41 (Identity and Zero Element).  Let   be a binary operation on S .  An 
element S1  is an identity (or unit) for the operation   if Sx , xxx  11  .  
An element S0  is a zero for the operation   if Sx , 000   xx .  If no 
confusion can result we may not specify the operation and speak of an identity (or 
identity element) and a zero (or zero element). 

Example 67. The algebra , ,1, 0    with the multiplication as operation has an identity 1 and a 
zero 0. 

Example 68. The algebra , , 0    has an identity 0 but no zero element. 

If identities exist, we can define the inverse with respect to an operation. 

Let   be a binary operation on S , and 1 an identity for this operation.  If 1 xyyx   

for every y  in S , then x  is called (two-sided) inverse of y  with respect to the operation 

 . 

Example 69. The algebra , , 0    has an identity 0 and every element x  has an inverse 

with respect to the addition.  The inverse of x  is written as x  and 0)(  xx . 

Example 70. The algebra , ,1    has an identity 1 and all elements x  of the real numbers 

except 0 have an inverse 
x

x
11   such that 1

1


x
x . 

8.2 Varieties of Algebras 

Algebras play an important role in many applications of computer science such as formal 
languages and automata theory as well as in coding theory and switching theory.  In 
spatial analysis map algebra, i.e., operations on (usually raster) data sets, is very common.  
In this section, we will discuss a few algebras of importance. 
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8.2.1 Group 

Many algebraic structures are the basis of arithmetic, as we usually know it for numbers 
(integers, rational and real numbers).  One basic structure is a group that formalizes the 
arithmetic of one binary operation (usually addition or multiplication for number sets). 

Definition 42 (Group).  A group is an algebra with the signature   1,,,S  with one 

binary ( ) and one unary (  ) operation, where   is the inverse with respect to  , and 
the following axioms: 

1. cbacba  )()(   

2. aaa   11  
3. 1aa   

If the operation   is also commutative, then we call the group a commutative group (or 
Abelian group). 

Example 71. The algebra , , , 0     is a commutative group where   are the integers,   the 
usual addition, – the inverse (negative number) with regard to the addition, and 0 the identity for 
the addition.  The axioms can be easily verified as: 

1. cbacba  )()(  

2. aaa  00  
3. 0)(  aa  

4. abba   

Example 72. The algebra 1{0}, , ,1     is a commutative group where   are the real 

numbers,   is the usual multiplication, 1  the inverse with regard to the multiplication, and 1 the 
identity for the multiplication.  The axioms are verified as follows: 

1. cbacba  )()(  

2. aaa  11  
3. 11  aa  
4. abba   

Example 73. The natural numbers   with addition and multiplication are not a group because 
there is no inverse with regard to addition and multiplication. 

8.2.2 Field 

Fields are very general algebras that formally describe the interrelation of two binary 
operations on a carrier set.  Simply speaking, a field guarantees all arithmetic operations 
(as we know them for instance from the usual number sets) without restrictions (except 
division by zero). 

Definition 43 (Field).  A field is an algebra with the signature   1,0,,,,, 1S  

where   and 1  are the inverse operations for   and  , respectively; and the following 
axioms: 

1.   0,,,S  is a commutative group 
2. cbacba  )()(   

3. cabacba   )(  

4. cbcacba   )(  
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5.   1,,},0{ 1S  is a commutative group 

Example 74. The real numbers 1, , , , ,0,1      are a field with addition and multiplication 
as binary operations, and the inverse unary operations for addition and multiplication.  The 
numbers 0 and 1 function as identity elements for   and  , respectively.  The axioms are verified 
as 

1. See Example 71 
2. cbacba  )()(  (associative law of multiplication) 

3. cabacba  )(  (distributive law) 

4. cbcacba  )(  (distributive law) 

5. See Example 72 

8.2.3 Boolean Algebra 

Definition 44 (Boolean Algebra).  A Boolean algebra has a signature   1,0,,,, S  

where   and   are binary operations, and   is a unary operation (the 
complementation), with the axioms: 

1. abba   
2. abba    
3. )()( cbacba   

4. )()( cbacba    

5. cabacba   )(  

6. )()()( cabacba    

7. aa  0  
8. aa 1  
9. 1 aa  
10. 0aa   

Example 75. The power set )(A  of a given set A  with the usual set operations of union, 

intersection and complement relative to A  is a Boolean algebra   AA ,,,,),( .  Let X , 

Y and Z  be arbitrary subsets of A  (i.e., elements of the power set of A ) then the axioms can 
easily be verified as 

1. XYYX   
2. XYYX   
3. )()( ZYXZYX   

4. )()( ZYXZYX   

5. )()()( ZXYXZYX   

6. )()()( ZXYXZYX   

7. XX   
8. XAX   
9. AXX   
10.  XX  

8.2.4 Vector Space 

Some algebraic structures are defined on more than one set.  Vector spaces are one 
example. 
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Definition 45 (Vector Space).  Let   0,,,V  be a commutative group and 

  1,0,,,,, 1S  a field.  V  is called a vector space over S , if for all Vba ,  and 
S ,  

1. baba   )(  
2. aaa   )(  

3. )()( aa    
4. aa 1  

The elements of V  are called vectors; the elements of S  are called scalars. 

Example 76. The set of all vectors with   as the vector addition is a vector space over the real 
numbers where   is the multiplication of a vector with a scalar. 

Example 77. The set of all matrices with the matrix addition is a vector space over the real 
numbers with   being the multiplication of a matrix with a scalar. 

Vector spaces play an important role in the mathematical discipline of linear algebra, a 
sub-discipline of algebra. 

8.3 Homomorphism 

Often we need to compare algebras to find out whether they are similar.  If two algebras 
are similar they show the same “behavior” in terms of their operations and they have 
corresponding constants.  Often we know an algebra very well; i.e., we have established 
theorems for this algebra.  If we can show that a different algebra is related to the given 
algebra (usually we want to show that they are essentially the same in terms of their 
behavior), then the same theorems (in a related way) also hold for the new algebra. 

A formal way of investigating related algebras is to establish a structure-preserving 
mapping from the (given) algebra to the new algebra.  Such a mapping is called a 
homomorphism. 

Definition 46 (Homomorphism and Isomorphism).  Let  kSA ,,,  and 
 kSA ,,,  be algebras with the same signature, and let h  be a function such 

that 

1. SSh :  
2. )()()( bhahbah    

3. ))(())(( ahah   

4. kkh )(  

Then h  is called a homomorphism from A  to A .  If the function h  is bijective then 
we call it an isomorphism from A  to A , and A  is an isomorphic image of A  under 
the map h . 

In the definition above   and   represent binary operations,   and   unary 
operations, and k  and k   are constants. 

Two algebras that are isomorphic are essentially the same algebra with different names.  
A homomorphic image of an algebra is a “smaller” or “generalized” version of the given 
algebra. 
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8.5 Exercises 

Exercise 31 Given are two algebras: , , , 0    with the integers as carrier set, two operations, addition (  ) 
and negative number (-), and the constant 0;  0,,,E with the even numbers as carrier set, the 
constant 0 and the operations (  ) and (-) defined in the usual way (addition and negative number, 
respectively).  Show that both algebras are Abelian groups and that the function :f  E , 

defined as xxf 2)(  , is an isomorphism. 

Exercise 32 Let },{ FT  be a set where T  stands for “true” and F  stands for “false”.  Show that 

 TFFT ,,,,},,{  is a Boolean algebra with the binary operations “and” ( ), “or” ( ), and 

the unary operation “not” ( ) being logical operators.  The constants F  and T  are propositions 
that are always false ( F ) and always true (T ), respectively. 

Exercise 33 Given are two algebras: , , , 0     with the integers as carrier set, two operations, addition (  ) 

and negative number (-), and the constant 0; and  0,,,B  with the carrier set }1,0{B , the 

constant 0 and two operations defined as 

011

100

10

 and xx  )( .  Show that the function 

:f B , defined as 





odd is 1

even is 0
)(

x

x
xf , is a homomorphism.  Why is f  not an 

isomorphism? 
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opology is a central concept in every GIS.  It deals with the structural 

representation of spatial features and their properties that remain 

invariant under certain transformations.  In this chapter, we introduce 

the mathematical concept of a topological space based on the topology that is 

induced on the real plane by a distance function. 

We also show how simple structures can be used to build complex objects in GIS 

databases, and how to check the consistency of a two-dimensional topologic 

representation of spatial features. 

 

CHAPTER 

9 Topology 

 

T
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9.1 Topological Spaces 

In this chapter, we will deal with topological spaces, i.e., a set and a collection of subsets 
of this set that satisfy certain conditions.  There are two equivalent approaches to define a 
topological space.  The first one starts with the concept of a neighborhood of a point and 
defines a topological space as a system of neighborhoods that fulfill certain conditions.  
The concept of open sets follows from the definition of a neighborhood.  The second 
approach starts from a family of subsets of a given set (which are called open sets) and 
defines a topology through properties of these open sets.  The concept of a neighborhood 
follows from the definition of a topological space. 

9.1.1 Metric Spaces and Neighborhoods 

The first approach is more intuitive than the second one that is usually used in general 
topology (or point-set topology).  For our purpose, we chose the intuitive approach on the 
Euclidean plane with a system of neighborhoods.  In order to define a neighborhood we 
need the concept of a distance.  Generally, this can be achieved with a metric space. 

Definition 47 (Metric Space).  Let X  be a nonempty set and d  a function 

0X X     such that for every , ,x y z X  

(i) ( , ) 0d x y   if and only if x y  

(ii) ( , ) ( , )d x y d y x  

(iii) ( , ) ( , ) ( , )d x y d y z d x z   (triangle inequality) 

We call the pair ( , )X d  a metric space and d  a distance function (or metric) on X . 

Example 80. Let us consider the real plane 2  equipped with the Euclidean distance 
2 2

1 1 2 2( , ) ( ) ( )Ed p q a b a b     between two points 1 2( , )p a a  and 1 2( , )q b b .  We call this 

space the 2-dimensional Euclidean space.  2( , )Ed is a metric space.  The Euclidean distance is 

the shortest distance between two points.  This is the usual space of plane geometry.  We can 
easily extend this space to three dimensions. 

Example 81. The real numbers   with the distance function ( , )d x y x y   are a metric space. 

In every metric space, we can define a neighborhood for points of this space. 

Definition 48 ( -neighborhood).  In a metric space ( , )X d , for each x X  and each 

0  , we define an (open)  -neighborhood of x  as the set 
( , ) { | ( , ) }N x y y X d x y     .  When no confusion is possible we call ( , )N x   

neighborhood and write ( )N x . 

The set ( ) { ( , ) | 0}d x N x x X    N  is called the neighborhood system of x
induced by the metric d .  In short we will write ( )xN . 

In the Euclidean plane 2  an open disk with radius   around a point p  is an  -
neighborhood (Figure 26). 
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Figure 26.  Open disk in 2  

9.1.2 Topology and Open Sets 

When we require a neighborhood system to satisfy certain conditions, we arrive at the 
definition of a topological space. 

Definition 49 (Topological space).  Let X  be a set and for every x X  there exists a 
neighborhood system ( ) ( )x XN  that satisfies the following conditions 
(neighborhood axioms): 

(N1) The point x  lies in each of its neighborhoods. 

(N2) The intersection of two neighborhoods of x  is itself a neighborhood. 

(N3) Every superset U  of a neighborhood N  of x  is a neighborhood of x .  X  is a 
neighborhood of x . 

(N4) Every neighborhood N  of x  contains a neighborhood V  of x  such that N  is a 
neighborhood of every point of V . 

We then call the set with its neighborhood system ( , ( ))X xN  a topological space.  

Sometimes we denote a topological space simply by X . 

Figure 27 illustrates the four neighborhood axioms.  With the help of the concept of a 
neighborhood, we can now define open sets. 

Definition 50 (Open set).  Let X  be a topological space.  A subset O  of X  is an open 
set if it is a neighborhood for each of its points. 

Example 82. The open intervals ( , )a b  in the real numbers and the open disks in 2  are open 

sets. 

Definition 51 (Closed set).  Let X  be a topological space.  A set C  is closed if its 
complement X C  is open. 

1 2( , )p a a

D
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Figure 27.  Neighborhood axioms 

Example 83. The closed interval [ , ]a b  in the real numbers is a closed set, because its complement 

( , ) ( , )a b    is the union of two open sets, which again is an open set. 

Example 84. The half-open interval ( , ]a b  in the real numbers is neither open nor closed. 

The previous example shows that “closed” does not mean “not open”.  Sets can be neither 
open nor closed, or they can be both open and closed (sometimes called clopen sets).  The 
following statements can be proven to be true for open sets. 

(O1) The empty set   and the set X  are open. 
(O2) The intersection of any finite number of open sets is open. 
(O3) The union of any number of open sets is open. 
(O4) A subset U  of X  is a neighborhood of x X  if and only if there exists an open 

set O  with x O U  . 

The intersection of an arbitrary number of open sets does not need to be open.  Take for 
example the intersection of an infinite collection of open intervals 

1 1
( , )

n n
   for 1,2,3,...n   

Obviously, the intersection is the set {0}  which is not an open set. 

It can be proven that the intersection of an arbitrary number of closed sets, and the union 
of a finite number of closed sets, are closed. 

Our approach to the definition of a topological space is based on the concept of the  -
neighborhood defined in a metric space.  For this definition we needed the distance, a 
concept which is too special for general topological spaces.  Statement (O4) above gives 
us a way to define neighborhoods without the notion of distance.  Here, we also see that a 
neighborhood does not need to be an open set; it can also be a closed set.  As an example 
consider a point p  of the Euclidean plane 2 .  Every closed disk around p  is a 
neighborhood of p , because it contains the open disk around p , which is an open set. 

x

x

U

N x

N

V

(i)

(iv)(iii)

(ii)

x
1N

2N
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9.1.3 Continuous Functions and Homeomorphisms 

We can define mappings between topological spaces.  A function that maps the 
neighborhood of a point to the neighborhood of the image of this point is called a 
continuous function.  We can define it formally as follows. 

Definition 52 (Continuous function).  Let :f X Y  be a function from the 

topological space X  to the topological space Y .  We call f  continuous at point 

0x X  if for every neighborhood V  of 0( )f x  there is a neighborhood U  of 0x  such 
that the image of U , i.e., ( )f U , is a subset of V .  If f  is continuous at every point of 

X , we call it a continuous function. 

Figure 28 illustrates both concepts of continuity at a point and continuous function. 

0( )f x0x

X
Y

U
V
( )f U

f

 
Figure 28.  Continuous function 

The definition above is valid for any two topological spaces.  For the real numbers  , 
the definition of continuity usually reduces to the following statement: 

A function :f    is continuous at point 0x  if for every 0   there exists a 0   

such that 0| |x x    implies 0| ( ) ( ) |f x f x   .  A function is continuous if it is 
continuous at every point.  Continuity of a function essentially means that the graph of 
the function has no “jumps” or “gaps”. 

Like in other mathematical structures, also for topological spaces we know structure-
preserving mappings.  They map one topological space to another topological space 
thereby preserving the topology. 

Definition 53 (Homeomorphism).  Let :h X Y  be a function from the topological 
space X  to the topological space Y .  If this function is continuous, bijective, and 
possesses a continuous inverse, we call it a homoeomorphism (or topological mapping). 

If two spaces are homeomorphic they are essentially the same and expose the same 
topological behavior. 

Example 85. Let ( 1,1)X    be an open interval in   and :f X    a function defined as 

( ) tan
2

f x x


 .  This function is bijective, continuous and has a continuous inverse.  Figure 29 

shows the graph of the function.  It is a homeomorphism.  This means that the open interval (-1,1) 
and the real numbers are homeomorphic. 
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Figure 29.  Example of a homeomorphic function 

Example 86. The open disk 1 {( , ) | 1}D r r   given with its polar coordinates ( , )r   and radius 

1 is homeomorphic to the open disk 2 {( , ) | 2}D r r   with radius 2 through the function 

(( , )) (2 , )f r r  . 

A property of a topological space that is preserved by a homeomorphism is called a 
topological property or a topological invariant.  Mathematical topology is mainly 
focused on properties of topological spaces that remain invariant under topological 
mappings. 

The two previous examples show that length and area are not topological invariants, 
because the length of the interval (-1,1) is different from the “length” of the real line, and 
in the second example both disks are homeomorphic but their areas are not the same. 

9.1.4 Alternate Definition of a Topological Space 

As mentioned earlier, a different, yet equivalent, definition of a topological space starts 
with the idea of an open set, defines a topology as properties of a collection of open sets 
and derives the definition of a neighborhood from the open sets.  We take the properties 
O1 to O3 of open sets as axioms and define a topological space as follows. 

Definition 54 (Topological Space).  Let X  be a set and O  a collection of subsets of 
X , i.e., ( )O X .  We call O  a topology on X  when the subsets satisfy the 
following three conditions: 

(O1) ,O X O   

(O2) ,A B O A B O     

(O3) i i
i I

A O A O
 

    

We call the iO  open sets, ( , )X O  a topological space and the elements x X  the 
points of the topological space. 

The three conditions for a topology require that the empty set and the set itself must 
always be a member of the topology.  Further, the intersection of a finite number of open 
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sets always is an open set, and the union of an arbitrary number of open sets is an open 
set. 

With the help of the open sets used in the definition of a topology we can now define a 
neighborhood. 

Definition 55.  (Neighborhood).  N  is a neighborhood of the point x  if N X  and 
there exists an open set A O  such that x A N  . 

With this definition, we can prove the statements N1 to N4 of Definition 49 about 
neighborhoods to be true. 

Example 87. Two extreme topologies can be found on any set X .  The first one consists only of 
two elements { , }X  , the second one consists of all subsets of X , i.e., the power set ( )X .  We 

can easily verify that the three conditions are satisfied for both topologies.  The first topology is 
called indiscrete topology.  It is the coarsest of all topologies, because it consists only of two 
elements.  The second one is called discrete topology, which is the finest of all topologies. 

Example 88. Consider the real line 1 .  We call a subset A of 1  an open set if it is either empty 
or with each of its points x A  contains an open interval xS that completely lies within A .  All 

open intervals ( , )a b  on the real line 1  are open sets.  The real line itself is an open set.  Again, 

we can show that these open sets are a topology on 1 .  We call it the natural topology.  This can 
be extended to the n  with open disks, balls, etc. 

Both approaches to the definition of a topological space as mentioned above are equally 
valid and lead to the same results.  Figure 30 summarizes both approaches: the intuitive 
approach based on the concept of a neighborhood, and the set theoretic abstract approach 
based on the concept of open sets. 

 
Figure 30.  Equivalent approaches to the definition of a topological space, open sets and 

neighborhoods and related theorems 

The first one defines a topological space through properties of neighborhoods.  Open sets 
are then defined through neighborhoods, and the properties O1 to O4 follow as theorems. 

( ,{ ( )| })X x x XN ( , )X O

Topological space
based on concept of

neighborhood
(N1 to N4):

Topological space
Based on concept of

open set
(O1 to O3):

Definition
of open set

Definition of
neighborhood (O4)

Properties
of open sets:

O1 to O4

Properties
of neighborhoods:

N1 to N4

More theorems

Axioms

Theorems
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The second approach defines a topological space through properties of open sets. It then 
defines neighborhoods through property O4 of open sets, and derives N1 to N4 as 
theorems about neighborhoods.  More theorems about topological spaces follow from 
there. 

9.2 Base, Interior, Closure, Boundary, and Exterior 

From the definition of a topological space we know that the union of open sets is an open 
set.  If in a topological space every open set can be generated as the union of some open 
sets, we call these sets a base of the topology. 

Definition 56 (Base).  Let X  be a topological space and a collection B  of open sets 
such that every open set of the topology is the union of members of B .  Then B  is 
called a base for the topology and the elements of B  are called basic open sets. 

An equivalent definition for a base requires that for every point x X  that belongs to 
an open set O  there is always an element BB  such that x B O  . 

Example 89. The open disks in the Euclidean plane 2  are a base for the natural topology of the 
plane.  This follows easily from the definition of a neighborhood.  The number of the basic open 
sets is uncountable infinite. 

Example 90. The open disks in the Euclidean plane 2  with radii and center coordinates being 
rational numbers are a base for the natural topology of the plane.  Note that the number of the 
basic open sets is countably infinite. 

Whereas a base for a topology is a global characteristic of a topological space, we can 
also define a local base at a point of a topological space.  This is a local characteristic of a 
topological space determined only by the neighborhood of the point. 

Definition 57 (Local base).  A collection B  of neighborhoods of a point x  of a 
topological space X  is a local base at x  if every neighborhood of x  contains some 
member of B . 

Example 91. Consider the natural topology in the Euclidean plane 2  and a point x .  The system 
of open disks xB with center x  is a local base at x .  This is true because for every open set O  that 

contains x  there is an open disk with center at x  that is contained in O . 

Example 92. Let x  be a point of a metric space.  The countably infinite set of  -neighborhoods 

of x  defined as 1 1
2 3{ ( ,1), ( , ), ( , ), }N x N x N x   is a local base at x . 

The relationship between a base of a topology and a local base at a point can be expressed 
in the following statement: 

Let B  be the base for a topology and x X  a point of the topological space.  Then the 
members of B  that contain x  form a local base at x . 

For further investigations, we need the concepts of interior, closure, boundary and 
exterior of a set. 

Definition 58 (Interior, Closure, Boundary, Exterior).  Given a subset A  of a 
topological space X  we define the interior, closure and boundary as follows: 
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 The union, of all open sets contained in A  is called the interior of A  (written as 
A ). 

 The smallest closed set containing A  is called the closure of A  (written as A ), in 
other words it is the intersection of all closed sets containing A .13 

 The boundary of set A  is the intersection of the closure of A  with the closure of its 
complement X A .  The boundary14 is written as A . 

 The exterior of a set A  (written as A ) is the interior of the complement of A , i.e., 
( )A X A     

An open set is its own interior.  A closed set is equal to its closure.  The following table 
shows some properties of interior, closure, and boundary. 

Table 11.  Properties of interior, closure, and boundary of a set 

Interior Closure Boundary 

A A  , ( )A A    A A , A A  A A A    

A B A B     A B A B    ( )A A X A     

( )A B A B      A B A B   A A X A     

i i
i I i I

A A




 

 
 

 
   i i

i I i I

A A
 

   
( ( ))A X A X A       

i i
i I i I

A A




 

 
 

 
   i i

i I i I

A A
 

   
( )A X A     

Example 93. Consider the set { , , , , }X a b c d e , the topology O  defined on X  as 

{ , ,{ },{ , },{ , , },{ , , , }}O X a c d a c d b c d e   and the subset { , , }A b c d  of X .  The interior of A  is 

{ , }A c d , because the only open sets contained in A  are { , }c d  and   whose union is { , }c d .  

The closure of A  is { , , , }A b c d e , because among the closed sets 15  of X , i.e.,  , X , 

{ , , , }b c d e , { , , }a b e , { , }b e , and { }a , the smallest one that contains A  is { , , , }b c d e .  The 

boundary of A  is the difference of the closure with the interior, i.e., 

{ , , , } { , } { , }A A A b c d e c d b e      .  The exterior of A  is the interior of the complement of 

A , i.e., { , }a e  , which results to { }a . 

Example 94. Let us consider an open subset A  of the Euclidean plane 2 .  Figure 31 illustrates 
the interior, boundary, closure and exterior of the set. 

                                                      
13 Note that we use for closure the same symbol as for the set complement.  They are, however, not 
related to each other. 
14 The boundary of a set is often denoted as frontier of a set. 
15 The closed sets are the complements of the open sets. 
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Figure 31.  Interior (upper left), boundary (upper right), closure (lower left) and exterior (lower 

right) of an open set 

9.3 Classification of Topological Spaces 

There are several ways to classify topological spaces.  Usually, this is done according to 
the degree to which their points are separated, regarding their compactness, their overall 
size, and their connectedness.  Let us look at each of them in some detail. 

9.3.1 Separation Axioms 

In topology we know many different ways to distinguish disjoint sets and distinct points.  
We first present axioms that separate two distinct points. 

Definition 59 (T0 space).  We call a topological space T0 (or a T0 space) if for two 
distinct points at least one has a neighborhood that does not contain the other point. 

Definition 60 (T1 space).  We call a topological space T1 (or a T1 space) if two distinct 
points have neighborhoods that do not contain the other point. 

Definition 61 (HAUSDORFF Space).  A topological space X  is called a HAUSDORFF 
space or T2 space if two distinct points ,a b X  possess disjoint open neighborhoods.  
In other words, there exist two open sets A  and B  with a A  and b B  and 
A B   . 

Every metric space with the metric topology is T2.  HAUSDORFF spaces are always T1, 
and every T1 space is always T0. 

Figure 32 illustrates separation axioms T0, T1, and T2. 
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Figure 32.  Separation axioms T0, T1, and T2 

We now look at axioms that separate sets.  First we define an axiom that separates closed 
sets from the points that lie outside that set. 

Definition 62 (Regular space).  If a topological space is T1 and for every closed set C  
and every point x  outside C  there exists an open set A  that contains C  and a disjoint 
neighborhood N  of x , then we call this space a regular space or T3 space. 

Every metric space with the metric topology is regular.  Every regular space is a 
HAUSDORFF space.  The converse is not true, because there are HAUSDORFF spaces that 
are not regular. 

Finally, we introduce a separation axiom that separates closed sets. 

Definition 63 (Normal space).  If a topological space is T1 and for any two disjoint 
closed sets 1C  and 2C  there exist disjoint neighborhoods that contain the closed sets, 
then we call this space a normal space or T4 space. 

Every metric space with the metric topology is normal, and every normal space is regular.  
The converse is not true, because there exist regular spaces that are not normal. 

Figure 33 illustrates the axioms that lead to the definition of regular (T3 and T1 axioms) 
and normal spaces (T4 and T1 axioms). 
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Figure 33.  Separation axioms T3 and T4 

The following Figure 34 shows the relations between the separation characteristics of 
topological spaces. 

Metric spaces

Normal spaces
Regular spaces

Hausdorff spaces
T1 spaces
T0 spaces

 
Figure 34.  Relationship between separation characteristics of topological spaces 

Separation characteristics are topological properties of a space, i.e., if a topological space 
X  has a certain separation characteristic and there is a homeomorphism from X  to a 
topological space Y , also Y  will have the same characteristic.  We see that a metric 
space is a very special case of a topological space that possesses all separation 
characteristics. 

9.3.2 Compactness 

In this section we discuss properties of topological spaces whose conditions are stronger 
than separation characteristics.  These conditions are defined by what is called open 
covers.  Finally, we will see that subsets of a Euclidean space which are both closed and 
bounded16 are of special importance. 

                                                      
16 A set is bounded when it is contained in some open ball with finite radius. 



TOPOLOGY 79 

 

Definition 64 (Open cover).  Let X  be a topological space and F  a family of open 
subsets of X .  If the union of these subsets is the whole space X , we call F  an open 
cover of X .  If F  is a subfamily of F  with X F , then F  is a subcover of F . 

Example 95. Consider all open disks in the Euclidean plane 2  whose radius is 1 and their 
centers have integer coordinates.  The union of these disks covers the whole space.  Therefore, 
they are an open cover of 2 .  If we leave out one disk, their union is not the whole space any 
more.  Therefore, this family of open disks has no subcover. 

If a topological space has a finite subcover, we call this space with a special name. 

Definition 65 (Compact space).  If every open cover of a topological space  has a 
finite subcover, we call  a compact space. 

The following spaces are compact: 

 The closed unit interval [0, 1] 

 Any finite topological space 

 A closed interval, disk or ball in 1 , 2 , or 3 , respectively 

The following statements can be made about compact spaces.  Their proofs can be found 
in the topological literature: 

(i) A continuous image of a compact space is compact.17 

(ii) A closed subset of a compact space is compact. 

(iii) A subset of the Euclidean -space is compact if and only if it is closed and 
bounded. 

(iv) A compact HAUSDORFF space is normal. 

The results from the previous section about separation and the last item from the previous 
list tell us that metric spaces as well as compact HAUSDORFF spaces are normal. 

If we relax the condition for compactness to have a countable instead of a finite cover we 
arrive at the definition of a LINDELÖF space. 

Definition 66 (LINDELÖF space).  If every open cover of a topological space  has a 
countable subcover, we call  a LINDELÖF space (or we say that space  is 
LINDELÖF).  Compact spaces are always LINDELÖF. 

Example 96. The Euclidean plane 2  equipped with the natural topology of open disks is a 
LINDELÖF space. 

Compactness is a topological property that remains invariant under homeomorphisms. 

                                                      
17 This proposition states that compactness as a topological property is even preserved under the weaker 
condition of a continuous mapping (and not a homeomorphism). 

X
X

n

X
X X



80  THE MATHEMATICS OF GIS 

 

 

9.3.3 Size 

A further characterization of topological spaces can be done according to their size.  A 
measure for the size of a set is its cardinality, or number of elements.  We recall from 
chapter 5 on set theory that a set is countable if it has either a finite number of elements 
or is countably infinite. 

In order to proceed we need the definition of the term dense. 

Definition 67 (Dense set).  A subset A  of a topological space X  is dense if its closure 

is X , i.e., A X . 

Example 97. The rational numbers   are a dense subset of the real numbers, because it can be 

shown that   .  The rational numbers are countably infinite. 

With both properties of a set to be countable and dense we can impose some limit on the 
size of a topological space which leads to the definition of a separable topological space. 

Definition 68 (Separable space).  A topological space is separable if it has a countable 
dense subset. 

Example 98. The -dimensional Euclidean space is separable. 

Definition 69 (First-countable).  A topological space is first-countable if every point 
has a countable local base. 

Example 99. Every metric space is first-countable.  According to Example 92 we have identified 
a countable local base for a metric space.  It is therefore first-countable. 

Example 100. Every discrete topological space is first-countable. 

First-countable is a local property of a topological space, which is solely determined by 
the properties of the neighborhoods of a point.  Another property of a topological space is 
related more to a global characteristic of space. 

Definition 70 (Second-countable).  A topological space is second-countable if it has a 
countable base for its topology. 

Example 101. The Euclidean plane 2  is second-countable.  According to Example 90 the open 

disks with rational radii and center coordinates are a countable base for 2 .  Therefore, 2  is 
second-countable. 

For topological spaces we can make the following statements with regard to their size 
characteristics: 

If a topological space is second-countable, then it is also first-countable, separable, and 
LINDELÖF. 

The properties of a topological space to be separable, first-countable, and second-
countable are topological properties and remain invariant under homeomorphisms. 

n
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9.3.4 Connectedness 

Connectedness of topological spaces deals with the property of such spaces that they 
cannot be divided into two disjoint nonempty open sets whose union is the entire space. 

Definition 71 (Connected Space).  A space X is connected if whenever it is 
represented as the union of two nonempty subsets X A B   then A B    or 

A B   . 

Intuitively speaking, a space is connected if it appears in one piece or it cannot be 
represented as the union of two disjoint open subsets.  The following conditions on a 
topological space X  are equivalent to formulate connectedness: 

(i) X  is connected. 

(ii) The only subsets of X  that are both open and closed are the empty set   and X . 

(iii) X  cannot be expressed as the union of two disjoint nonempty open sets. 

Example 102. The Euclidean space n  is connected, because the empty set and n  are the only 
sets that are both open and closed. 

Example 103. Let { , , , , }X a b c d e  be a set and { , ,{ },{ , },{ , , },{ , , , }}O X a c d a c d b c d e   a 

topology on X .  Then X  is not connected, because { }a  and { , , , }b c d e  are disjoint open sets and 

{ } { , , , }X a b c d e   is the union of two disjoint nonempty open subsets. 

A somewhat stronger condition can be stated when we consider how two points in a 
topological space can be connected. 

Definition 72 (Path-connected space).  A topological space X  is path-connected if 
any two points 1 2,x x X  of the space can be connected by a path.  A path in a 

topological space X  is a continuous function :[0,1]f X  such that 1(0)f x  

(beginning point) and 2(1)f x  (end point). 

In general, every path-connected space is connected.  The converse is not true.  However, 
for regions18 of the Euclidean plane 2  with the natural topology we have the following 
result: 

Every open connected subset of 2  is path-connected. 

Connectedness is a topological property, i.e., it remains invariant under 
homeomorphisms.  The image of a connected set under a continuous mapping is 
connected. 

                                                      
18 An open connected subset of a topological space is called a region. 
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9.4 Simplicial Complexes and Cell Complexes 

The topological spaces we have treated so far are usually very general and too complex 
for many investigations.  We, therefore, look for simpler spaces that can be used instead.  
These spaces can then be pieced together to form more complex spaces, yet keeping a 
recognizable shape and being easy to handle. 

One class of these simple spaces is polyhedra.  A polyhedron is a topological space that is 
built of simple building blocks, the simplexes.  A generalization of polyhedra leads to cell 
complexes (or CW complexes) glued together from cells. 

9.4.1 Simplexes and Polyhedra 

We first need to introduce the concept of a simplex.  Simply speaking, a simplex is the 
simplest geometric figure of a respective geometric dimension in the Euclidean space, 
i.e., a point in a zero-dimensional space, a straight line segment in a one-dimensional 
space, a triangle in a two-dimensional space, and a tetrahedron in a three-dimensional 
space. 

Definition 73 (Simplex).  Given 1k   points 0 1, , , n
kv v v    in general position, 

where k n , we call the smallest convex set containing them a closed k -simplex (or 
simplex of dimension k ), written as k .  The points 0 , , kv v  are called the vertices of 

the simplex.  A closed simplex can be written as 0 0 1 1
k

k kv v v        where the 

0 0, , k     and 0 1 1k      . 

If we require 0 , , k     (positive real numbers excluding zero) we get an open k -

simplex, written as k . 

Figure 35 illustrates the definition with closed simplexes of dimensions 0, 1, 2, and 3. 

 
Figure 35.  Simplexes of dimension 0, 1, 2, and 3 

0-simplex (point)
0v

1-simplex (closed line segment)
0v 1v

2-simplex (triangle)

2v

0v 1v

3-simplex (solid tetrahedron)

3v

0v 1v

2v
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Definition 75 (Unit Ball, Unit Sphere, Unit Cell, Cell).  Let n  be the n -dimensional 
Euclidean space with the natural topology. 

The subspace { | | | 1}n nD x x    is called the n -dimensional unit ball. 

The ( 1)n  -dimensional subspace 1 { | | | 1}n nS x x     is called the ( 1)n  -
dimensional unit sphere. 

The subspace { | | | 1}n nD x x  


  is called the n -dimensional unit cell.  A 

topological space homeomorphic to nD


 is called a n -dimensional cell (or n -cell). 

Example 104. In 2  the unit ball is a closed disk with radius 1, the unit sphere is the circle with 
radius 1, and the unit cell is the open disk with radius 1. 

Example 105. Every open n -simplex is a n -cell. 

Figure 37 shows unit balls of dimension 0, 1, 2, and 3 and corresponding 0-, 1-, 2-, and 3-
cells. 

 
Figure 37.  Unit balls and cells 

We can now generalize the concept of a simplicial complex to a cell complex, which is 
defined as a collection of cells that are glued together in a certain way. 

Definition 76 (Cell decomposition, skeleton).  A cell decomposition is a topological 
space X  and a set C  of subspaces of X  whose elements are cells such that X  is the 
disjoint union of these cells, i.e., 

c

X c



C

.  The n -dimensional skeleton of X  is the 

subspace { | dim( ) }nX c c n   C .  We have then a sequence of subspaces 
1 0 1 1n nX X X X X         with nX X . 

Figure 38 shows a cell decomposition of a 2-dimensional space with the 1- and 0-
dimensional skeletons. 

0-dimensional unit cell

1-dimensional unit cell

2-dimensional unit cell

3-dimensional unit cell

0-cell

1-cell

2-cell

3-cell
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Figure 38.  Cell decomposition and skeletons 

Example 106. The open simplexes of a polyhedron | |K  are a cell decomposition of | |K .  This 

means that the disjoint union of 0-, 1-, and 2-cells (of for instance a 2-dimensional polyhedron) is 
equal to | |K . 

Definition 77 (Closure and boundary of cells).  For every cell we have c  a closed 
cell or the closure of c  in X .  The difference c c c    is the boundary of c . 

It is important to note that the boundary of a cell in general is not the same as the 
boundary of a set.  The boundary of a set is always defined with regard to an embedding 
space, whereas the boundary of a cell is depending on the dimension of the cell which is 
clearly determined. 

Example 107. Consider a line segment L  in 3 .  The point set topological boundary of L  is 

defined as 3L L L    , which is all of L .  If, however, L  is a 1-dimensional cell, then its 
boundary are the two end points. 

Definition 78 (Cell complex).  A HAUSDORFF space X  with a cell decomposition is a 
cell complex (or CW complex) if the following conditions are met: 

1. For every cell c  there exists a continuous function : nf D X  such that 
1 1( )n nf S X   and the open cell c  is a homeomorphic image of the unit cell, i.e., 

( )nf D c


. 
2. Every closed cell c  is contained in a finite union of open cells. 
3. A subspace A X , such that for every cell l, A c  is closed in c , is closed in 

X . 

A CW complex is n -dimensional if 1n nX X X   .  If a cell complex has a finite 
number of cells it is called a finite CW complex.. 

Cell decomposition
of a 2-dimensional space

1-dimensional skeleton

0-dimensional skeleton
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Condition 1 defines a function from the n -dimensional unit ball to the space X  such that 
the open cell appears as a homeomorphic image of the unit cell and the ( 1)n  -sphere is 

continuously mapped to a subset of the 1nX  -space.  In particular, we have 

1: ( , ) ( , )n nf D S c c    or 1( )n nf D S c c  


.  The closed cell and the boundary are 
compact.  Condition 2 is also called closure finite; condition 3 is the condition for the so-
called weak topology. 

The following statements underline the differences between CW complexes and 
simplicial complexes: 

1. Cells of a CW complex need not be geometric simplexes. 

2. The closure of a n -cell need not be a n -ball and the boundary of a n -cell need 
not be a ( 1)n  -sphere. 

3. Not for every k n  with n  being the dimension of the CW complex there need 
to be cells of dimension k .  However, every non-empty CW complex has at least 
one 0-cell. 

4. The closure c  and boundary c  of a cell need not be the union of cells. 

CW complexes can be easily constructed.  Figure 39 illustrates the construction of a 2-
dimensional CW complex.  We start with a discrete space 0X  (consisting of at least one 
0-cell); we then glue 1-cells so that we get 1X , then we glue 2-cells which gives us 2X .  
We see that 0 1 2X X X  . 

Start with 0-cells Gluing of 1-cells

Gluing of 2-cells

0X 1X

2X

 
Figure 39.  Construction of a CW complex 

9.5 Applications in GIS 

The space used in GIS to represent spatial features is predominantly the 2-or 3-
dimensional Euclidean space 2  or 3  equipped with the natural topology of open disks 
and balls.  The Euclidean space is a metric space (therefore also a normal, regular, and 
HAUSDORFF space), second-countable (therefore also first-countable, separable, and 
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LINDELÖF), and connected.  Closed and bounded subsets of a Euclidean space are 
compact (such as closed cells and simplexes). 

Spatial data sets consisting of linear features (network) in 2  or 3  are 1-dimensional 
CW complexes where the arcs are the 1-cells and the nodes the 0-dimensional skeleton.  
Polygon feature data sets are 2-dimensional CW complexes with the polygons as 2-cells 
and the bounding arcs and nodes as the 1-dimensional skeleton. 

9.5.1 Spatial Data Sets 

To represent 2-dimensional spatial features in a GIS we have two options: (i) to use a 
simplicial complex, i.e., to represent all spatial features as a set of simplexes with certain 
conditions (see Definition 74 of a simplicial complex), or (ii) to represent them as a cell 
complex by considering the cells being glued together in a proper way (see Definition 78 
of a CW complex). 

In the first case, we must represent all features by a set of triangles.  On the one hand, 
triangles are very simple structures and easy to handle; on the other hand, every polygon 
has to be approximated by a potentially large number of triangles which is often 
undesirable.  An exception is a triangular irregular network (TIN) to represent a digital 
elevation model. 

In the second case all features are cells glued together.  This approach is much more 
suitable for general polygon features, because it avoids the use of triangles.  In fact, every 
topologically structured data set in a GIS database is a digital representation of a 2-
dimensional cell complex. 

Figure 40 shows a 2-dimensional spatial data set as a cell complex embedded in the 2 .  
This complex consists of four 0-cells (1, 2, 3, 4), six 1-cells (a, b, c, d, e, f), and three 2-
cells (A, B, C).  The embedding Euclidean space 2  functions as the “world polygon” or 
“outside polygon” often denoted as W or O. 

A

B

C

f

e

d

c

b

a

43

2

1

2

 
Figure 40.  Two-dimensional spatial data set as cell complex 

A data structure to represent this cell complex is the so-called arc-node structure.  The 0-
cells are the nodes and the 1-cells are the arcs between the nodes.  Every arc has a start 
and an end node, thereby defining an orientation of the arc20.  The orientation is indicated 
by arrows in the figure.  For every arc we note which polygon (2-cell) lies to the left and 
which one to the right of it viewed in the direction from start node to end node. 

Networks, like road or river networks, are best modeled as a one-dimensional subset (or 
skeleton) of a cell complex.  The topological relationships are then reduced to incidence 
relationships between edges (arcs) and nodes.  Such a structure is also called a graph.  
Graph theory, although closely related to topology, has developed as an independent 
mathematical discipline.  A special type of graph frequently used in GIS is a planar graph.  
It is completely embedded in the plane such that no two edges intersect except at nodes.  

                                                      
20 The orientation of an arc is usually determined by the digitization process, i.e., a line is followed from 
the beginning (start node) to the end (end node). 
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An implementation of the arc-node structure in a relational database needs one table for 
the arc-node relations, one for the polygon attributes, and one for the vertices of the arcs.  
Table 12 shows the arc table of the arc-node structure of the cell complex in Figure 40. 

Table 12.  Arc table for the arc-node structure 

Arc-id Start-node End-node Left-polygon Right-polygon 
a 4 1 C W 
b 1 2 A W 
c 1 3 C A 
d 3 2 B A 
e 4 3 B C 
f 4 2 W B 

9.5.2 Topological Transformations 

As we have seen, topology is the branch of mathematics that deals with properties of 
spaces that remain invariant (i.e., do not change) under topological mappings.  Assume 
you have spatial features stored in a database using the arc-node structure.  When you 
apply a transformation (such as a map projection) to the data set, the neighborhood 
relationships between A, B, and C remain, and the boundary lines have the same start and 
end nodes.  The areas are still bounded by the same boundary lines, only their shapes and 
the length of the perimeters have changed (Figure 41). 
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Figure 41.  Topological mapping 

Topologically speaking, we have applied a homeomorphism  from the cell 

complex  to the cell complex .  They are topologically equivalent. 

9.5.3 Topological Consistency 

A representation of a cell complex must be consistent, i.e., the topological properties must 
not be violated.  If we can show that the following rules are satisfied for every element in 
the data set, we know that it is a topologically consistent 2-dimensional configuration.   

(TC1) Every 1-cell is bounded by two 0-cells.  (Every arc has a start node and an 
end node). 

(TC2) For every 1-cell there are two 2-cells.  (For every arc there exist two adjacent 
polygons, the left and right polygon). 

(TC3) Every 2-cell is bounded by a closed cycle of 0- and 1-cells.  (Every polygon 
has a closed boundary consisting of an alternating sequence of nodes and 
arcs.) 

(TC4) Every 0-cell is surrounded by a closed cycle of 1- and 2-cells.  (Around every 
node there exists an alternating closed sequence of arcs and polygons.) 

1 2:h M M

1M 2M
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(TC5) Cells intersect only in 0-cells.  (If arcs intersect, they do so in nodes.) 

These rules cannot be applied without additions or modifications to other dimensions.  In 
the following we will discuss how these conditions can be checked when we have an arc 
table. 

TC1 demands that every arc must have a start node and end node.  The presence of a 
NOT NULL value for the Start-node and End-node for every arc is sufficient. 

TC2 ensures the neighborhood relationship of polygons.  The presence of a NOT NULL 
Left-polygon and Right-polygon for every arc is sufficient. 

TC3 ensures that polygons are closed, i.e., starting at any node of the boundary of a 
polygon, we have a closed cycle of nodes and arcs.  We will illustrate a procedure for 
polygon A in Figure 40: 

Select all rows from the arc table where A appears either as Right-polygon or Left-
polygon. 

Arc-id Start-node End-node Left-polygon Right-polygon 
a 4 1 C W 
b 1 2 A W 
c 1 3 C A 
d 3 2 B A 
e 4 3 B C 
f 4 2 W B 

Make sure that for all selected records A appears always as the Left-polygon or always as 
the Right-polygon.  In our example we want A always to be the Right-polygon.21  For 
those rows where A is not the Right-polygon, we must swap Left- and Right-polygon.  Of 
course, if we do that, we must also swap Start- and End-node to maintain orientation.  In 
our case we must swap for arc b, which results in the following configuration: 

Arc-id Start-node End-node Left-polygon Right-polygon 
a 4 1 C W 
b 2 1 W A 
c 1 3 C A 
d 3 2 B A 
e 4 3 B C 
f 4 2 W B 

We now start at any Start-node of the selected rows and chain through the nodes.  In our 
example let us start with arc c and node 1 (Figure 42).  The end-node of c is 3.  In the 
next step look up the record where 3 appears as the start node and continue as before.  
When we return to the node where we started, the cycle is closed and the polygon 
boundary is closed.  Otherwise, we have an inconsistency in the polygon boundary. 

 
Figure 42.  Closed polygon boundary check 

                                                      
21 The choice could be based on the fact that for two out of three rows this condition is already fulfilled. 
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TC4 ensures the planarity of the cell complex near a node, i.e., for every node there must 
be an “umbrella” of a closed cycle of alternating 1-cells and 2-cells.  We will illustrate a 
procedure for node 3 in Figure 40: 

Select all rows from the arc table where 3 appears either as Start-node or End-node. 

Arc-id Start-node End-node Left-polygon Right-polygon 
a 4 1 C W 
b 1 2 A W 
c 1 3 C A 
d 3 2 B A 
e 4 3 B C 
f 4 2 W B 

Make sure that for all selected records 3 appears always as the Start-node or always as the 
End-node.  In our example we want 3 always to be the End-node.  For those rows where 3 
is not the End-node, we must swap Start- and End-node.  Of course, if we do that, we 
must also swap Left- and Right-polygon to maintain orientation.  In our case we must 
swap for arc d, which gives us 

Arc-id Start-node End-node Left-polygon Right-polygon 
a 4 1 C W 
b 2 1 W A 
c 1 3 C A 
d 2 3 A B 
e 4 3 B C 
f 4 2 W B 

We now start at any Left-polygon of the selected rows and chain through the polygons.  
In our example let us start with arc c and Left-polygon C (Figure 43).  The Right-polygon 
of c is A.  In the next step look up the record where A appears as the Left-polygon and 
continue as before.  When we return to the polygon where we started, the cycle is closed 
and the “umbrella” is closed.  Otherwise, we have an inconsistency in the node. 

 
Figure 43.  Node consistency check 

TC5 must be checked by calculating intersections of arcs and pointing out intersections at 
locations without nodes. 

9.5.4 Spatial Relations 

Whereas relationships between simplexes or cells define consistency constraints for 
spatial data, we can use the topological properties of interior, boundary, and exterior to 
define relationships between spatial features.  Since the properties of interior, boundary, 
and exterior do not change under topological mappings, we can investigate their possible 
relations between spatial features. 

Let us assume two spatial regions  and .  Both have their respective boundary, 
interior, and exterior.  When we consider all possible combinations of intersections 
between the boundaries, the interiors, and the exteriors of  and , we know that these 
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will not change under any topological transformation.  This can be put into a rectangular 
schema  which is called the 9-intersection, written as 

. 

From these intersection patterns, we can derive eight mutual spatial relationships between 
two regions.  If, for instance, the boundary of  intersects the boundary of , the 
interiors of  and  do not intersect, and the exteriors of  and  intersect, we say 
that  and  meet.  Figure 44 shows all possible eight spatial relationships: disjoint, 
meet, equal, inside, covered by, contains, covers, and overlap.  These relationships can be 
used, for instance, in queries against a spatial database. 

 
Figure 44.  Spatial relationships between two simple regions based on the 9-intersection 

9.6 Exercises 

Exercise 34  
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ne of the basic structures mathematical disciplines are built upon is 

order.  A set is said to be (partially) ordered when an order relation is 

defined between its elements, which makes them comparable.  The 

study of partially ordered sets and lattices (a special kind of ordered set) is 

covered by an extensive amount of mathematical literature.  This theory has 

mainly been applied in computer science, such as in multiple inheritance or 

Boolean algebra. 

In this chapter, we will introduce the basic principles of partially ordered sets and 

lattices and show how they can be applied to spatial features and their 

relationships with each other. 

 

CHAPTER 

10 Ordered Sets 

 

O
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10.1 Posets 

Definition 79 (Partially Ordered Set).  Let P  be a set.  A binary relation   on P  
such that, for every Pzyx ,,  

1. xx   (reflexive) 
2. if yx   and xy  , then yx   (antisymmetric) 

3. if yx   and zy  , then zx   (transitive) 

is called a partial order on P .  A set P  equipped with a reflexive, antisymmetric and 
transitive relation (order relation)   is called a partially ordered set (or poset) and is 
written as );( P .  Usually we will write P  with the meaning ‘ P is a poset’. 

For every partially ordered set P  we can find a new poset, the dual of P , by defining 
that yx   in the dual if and only if xy   in P .  Any statement about a partially ordered 
set can be turned into a statement of its dual by replacing   with   and vice versa. 

Example 108. The natural numbers with the relation   read as “less than or equal” are a poset. 

When we take the power set )(X  of a set X , i.e.  all subsets of X , then )(X  is ordered by 

set inclusion and for every )(, XBA   we define BA  if and only if BA  . 

Example 109. For spatial subdivisions A  and B  the order relation BA  means that “ A  is 
contained in B ” or dually, that “ B  contains A ”. 

Any hierarchy is a poset with at most one element directly above any element.  A special 
type of hierarchy—and therefore a more special type of poset—is the totally ordered set 
(or chain).  This is a hierarchy in which at most one element is directly below any 
specific element, which means that every element can be compared with every other 
element in the set.  The integer space is a typical example of a total ordering. 

10.1.1 Order Diagrams 

For every (finite) poset there exists a graphical representation, the diagram (or Hasse 
diagram) of the poset.  To describe how to construct a diagram we need the idea of 
covering: 

Definition 80 (Cover).  By “ A covers B ” (or “ B  is covered by A ”) in a poset P  we 
mean that AB   and there exists no Px  that AxB   and we write BA   or 

AB  .  In other words, A  covers B  means that A  is immediately greater than B  
and there is no other element in between.  The set of all elements that cover an element 
X  is called the cover of X , written as X .  Dually, the set of all elements that are 
covered by X  is called the cocover of X  and we write X . 

A diagram of a poset P  is drawn as a configuration of circles (representing the elements 
of P ) and connecting lines (indicating the covering relation), where the circle for 
element A  is drawn above the circle for element B , when A  covers B .  The circles are 
connected with a straight line.  For a finite poset we obtain the diagram of the dual by 
turning it upside down.  Figure 45 shows a poset and its corresponding diagram. 
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Figure 45.  Poset and corresponding diagram 

The circles and the connecting lines in a diagram can be viewed as vertices and edges of a 
graph.  Since the order relation defines a direction for the edges, a Hasse diagram is a 
directed graph.  There are no cycles in that graph, i.e. starting from a specific node and 
moving along the edges of the graph in the given direction, no node is visited twice.  Such 
a graph is called a directed acyclic graph (or dag).  There are many algorithms for 
traversing directed acyclic graphs and for other related operations. 

Definition 81 (Maximum and Minimum).  Let P  be a poset and PS  .  An element 
Sa  is the greatest (or maximum) element of S  if xa   for every Sx  and we 

write Sa max .  The greatest element of P , if it exists, is called the top element of P
and the least (or minimum) element of S , written as Smin , and the bottom element of 
P , if it exists, are defined by duality. 

Example 110. In )(X  we have X  as the top element and the empty set as the bottom element. 

The natural numbers under their usual order have 1 as the bottom element but no top element. 

10.1.2 Upper and Lower Bounds 

Definition 82 (Upper Bound).  Let P  be a poset and PS  .  An element Px  is an 
upper bound of S  if xs   for all Ss .  A lower bound is defined by duality.  The set 
of all upper bounds of S  is denoted by *S  (or “S upper”) and the set of all lower 
bounds (or “ S  lower”) is written as *S ; in other words we define 

} )(  {* xsSsPxS   and } )(  {* xsSsPxS  . 

If *S  has a least element, it is called least upper bound (l.u.b.), also join or supremum.  
By duality, if *S  has a largest element, it is called greatest lower bound (g.l.b.), meet or 

infimum.  If a least upper bound or a greatest lower bound exists, it is always unique.  For 
the least upper bound and the greatest lower bound of two elements x  and y  we write 

sup{ , }x y  or x y  (read as “ x  join y “) and inf{ , }x y  or x y  (read as “ x  meet y ”), 

respectively.  For a subset S  we write S  (the “join of S “) or sup S  and S  (the “meet 

of S ”) or inf S . 

There are cases when a greatest lower bound or a least upper bound does not exist.  This 
may be the case because elements do not have common bounds or because a g.l.b. or 
l.u.b. does not exist.  Take for example the two elements B  and C  of Figure 45.  The set 
of their lower bounds are D  and E .  However, none of the lower bounds is greater than 
the other, they are not comparable.  Therefore, there is no greatest lower bound for the 
subset },{ CB  (see Figure 46). 
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Figure 46.  Lower bounds 

10.2 Lattices 

In the previous section we have seen that in the general case of a partially ordered set we 
cannot expect that join and meet always exist.  Therefore, a more specific order structure 
is needed. 

Definition 83 (Lattice).  A lattice L  is a poset in which every pair of elements has a 
least upper bound and a greatest lower bound.  A lattice is called complete, when meet 
and join exist for every subset of the poset22. 

If L  is a lattice then   and   are binary operations on L  and we have an algebraic 
structure  ,,L  with   and   satisfying the following conditions for all 

Lcba ,, : 

1. )()( cbacba  , )()( cbacba   (associative laws) 
2. abba  , abba      (commutative laws) 
3. aaa  , aaa      (idempotency laws) 
4. abaa  )( , abaa  )(    (absorption laws) 

Every set L  with two binary operations satisfying conditions (1) to (4) is a lattice.  We 
see that a lattice can be viewed as either being an order structure or an algebraic structure.  
Many theories, e.g. Boolean algebras, rely heavily on the algebraic properties of lattices. 

The order relation   is related to the algebraic operations of   and   by the following 
statement: 

Let L  be a lattice and let x  and y  be elements of L .  Then yx   is equivalent to each 

of the conditions: xyx  and yyx  . 

It can be proven that every finite lattice is complete.  This is an important result because it 
means that whenever we have a lattice with a finite number of elements we can always 
find least upper bounds and greatest lower bounds for every subset of the lattice. 

Example 111. Every chain is a lattice in which },min{ yxyx   and },max{ yxyx  .  

Therefore, the natural numbers, integers, rational and real numbers all are lattices under their usual 
order.  None of them is a complete lattice.  To show this let us take any of these sets and determine 

                                                      
22 Note that the difference between a lattice and a complete lattice is in the existence of the meet and join 
for every pair of elements (lattice) or every subset of elements (complete lattice). 
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the supremum of the set itself.  Since there is no greatest number in any of these sets, the set of the 
upper bounds is empty and a least upper bound does not exist. 

Example 112. The power set )(X  of any set X  is a complete lattice where meet and join are 

defined as   
Ii

ii AIiA


    and   
Ii

ii AIiA


   , respectively. 

If a subset )(XS  is closed under finite unions and intersections, it is called a lattice 

of sets.  It is called a complete lattice of sets if it is closed under arbitrary unions and 
intersections.  Meet and join are then defined as set intersection and set union. 

If L  is a complete lattice then the following is true for every ,S T L : 

(i) s S  , s S  and s S . 

(ii) Let x L .  Then x S  if and only if x s  for all s S . 

(iii) Let x L .  Then x S  if and only if x s  for all s S . 

(iv) S T   if and only if s t  for all s S  and all t T . 

(v) If S T , then S T   and S T  . 

(vi) ( ) ( ) ( )S T S T      and ( ) ( ) ( )S T S T     . 

10.3 Normal Completion 

Not every poset is a lattice, because posets exist in which not all subsets have greatest 
lower bounds and least upper bounds.  For example, the subset },{ CB  of the order in 

Figure 46 has no greatest lower bound.  It is, however, possible, to add elements to a 
poset to create a lattice.  This is in fact possible with all posets. 

It is even more interesting to find the smallest number of elements necessary to add to a 
poset to create a lattice.  In other words, we want to build the minimal containing lattice 
of a poset.  The method for doing this is called normal completion. 

In order to define the normal completion we need the concept of a closure operator, 
which is defined as follows: 

Definition 84 (Closure).  Let X  be a set.  A map )()(: XXC   is called a 

closure operator on X  if, for all XBA , : 

1. )(ACA  

2. If BA , then )()( BCAC   

3. )())(( ACACC   

A subset A  of X  is called closed if AAC )( . 

The following theorem summarizes the important facts about the normal completion of 
posets.  It even gives us a procedure for building the normal completion lattice. 

Let P  be a poset and *
* )(A  the set of the lower bounds of the upper bounds of a subset 

A  of P .  Then 

1. *
*( ) ( )C A A defines a closure operator on P . 
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2. The family *
*DM( ) { | ( ) }P A P A A    is a complete lattice (the DEDEKIND-

MACNEILLE completion, or normal completion or completion by cuts of P ), when 
ordered by inclusion, in which   

Ii
ii AIiA



    and 

  )(  
Ii

ii ACIiA


 . 

3. The map )(: PDMP   defined by *
* )()( xx   for all Px  is an order-

embedding, i.e. it is order-preserving and injective.  In fact   can be defined as 

}|{)( * xyPyxx  , because **
* )( xx   for all Px .  )(PDM  is a 

completion of P  via   and all greatest lower bounds and least upper bounds 

which exist in P  are preserved.  This means, if PA  and A  exists in P , then 
)()( AA    , and )()( AA    . 

4. )(DM P is the smallest lattice in which P  can be embedded in the sense, that if L  

is any other lattice such that LP , we have LPP  )(DM . 

By calculating the normal completion we have to look at all subsets of the poset P .  For 
practical applications, this is rather inefficient, because every set with n  elements has n2  
subsets. 

The theorem above has a simple corollary, which yields two important properties of the 
normal completion lattice: 

1. If L  is a lattice, then )(DM LL  . 

2. For all posets P  we have ))(()( PDMDMPDM  . 

First, the corollary tells us that whenever the poset is already a lattice, the normal 
completion does not add anything to the lattice.  It leaves the lattice unchanged.  
Secondly, it follows from the idempotency of a closure operator that applying the 
completion more than once does not increase the number of elements added to the 
completion lattice, i.e. the number of elements in the completion lattice is bounded by n2  
for n  elements in the poset. 

10.3.1 Special Elements 

Let P  be a poset and S  a subset of the poset.  We had defined upper bounds and lower 
bounds for the subset S .  The set of all upper bounds of S  was denoted as *S  and the set 
of all lower bounds of S  as *S .  For the normal completion lattice we need to identify all 

*
* )(S  for all subsets of P . 

If there exists a greatest element in P  it is called top element and written as T; if there is 
a least element in P  it is called bottom element and written as  . 

There are two cases that require special attention: when PS   and when S .  First, 

let us investigate the case when PS  .  If P  has a top element, then }{* ΤP  and 

TPsup .  When P  has no top element, then *P  and there is no supremum of P .  

By duality, if P  has a bottom element, then * { }P    and inf P  .  If P  does not have 

a bottom element, then *P  and the infimum does not exist. 

Now, let us assume that S , i.e., S  is the empty subset of P .  Then (vacuously) for 
all Ss  we have that xs   for every element Px .  Thus P*  and Psup  exists, if 

and only if P  has a bottom element; i.e., then we have Psup .  Dually, P *  
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(because again we have vacuously that for all Ss , xs   for every Px ) and 
TPinf  whenever P  has a top element.  Table 13 summarizes the result. 

Table 13.  Special elements and the closure operator in the normal completion 

Subset 

*S  *S  

Top element 
exists 

No top element 
Bottom element 

exists 
No bottom 

element 
P  {T}    }{    

  P  P  P  P  

From the table above we can derive the following sets: 

PP *
* )(  








otherwise

element bottom a has  if}{
)( *

* P
 

10.3.2 Normal Completion Algorithm 

The algorithm for the normal completion can be written as follows: 

1. Determine all subsets, i.e., the power set ( )P , of the poset P . 

2. For every subset ( )S P  determine ( )S
  

3. Arrange all ( )S
  to a poset where   (subset) is the order relation. 

4. Identify every element a P  of the original poset with its corresponding ( )a
  

in the new poset. 

5. Assign suitable symbols to the remaining elements of the new poset. 

6. The resulting poset is the normal completion lattice of P . 

To illustrate how this works we take the poset of Figure 45 and build the normal 
completion lattice according to the algorithm.  First we determine all subsets of the poset 
{ , , , , }A B C D E .  This results in 32 sets.  For every subset S  we must then compute ( )S

 .  
The result is given in Table 14. 

Table 14.  Normal completion 

 S S  ( )S 
  

1   { , , , , }A B C D E    

2 { }A  { }A  { , , , , }A B C D E  

3 { }B  { , }A B  { , , }B D E  

4 { }C  { , }A C  { , , }C D E  

5 { }D  { , , , }A B C D  { }D  

6 { }E  { , , , }A B C E  { }E  

7 { , }A B  { }A  { , , , , }A B C D E  

8 { , }A C  { }A  { , , , , }A B C D E  

9 { , }A D  { }A  { , , , , }A B C D E  

10 { , }A E  { }A  { , , , , }A B C D E  

11 { , }B C  { }A  { , , , , }A B C D E  

12 { , }B D  { , }A B  { , , }B D E  
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13 { , }B E  { , }A B  { , , }B D E  

14 { , }C D  { , }A C  { , , }C D E  

15 { , }C E  { , }A C  { , , }C D E  

16 { , }D E  { , , }A B C  { , }D E  

17 { , , }A B C  { }A  { , , , , }A B C D E  

18 { , , }A B D  { }A  { , , , , }A B C D E  

19 { , , }A B E  { }A  { , , , , }A B C D E  

20 { , , }A C D  { }A  { , , , , }A B C D E  

21 { , , }A C E  { }A  { , , , , }A B C D E  

22 { , , }A D E  { }A  { , , , , }A B C D E  

23 { , , }B C D  { }A  { , , , , }A B C D E  

24 { , , }B C E  { }A  { , , , , }A B C D E  

25 { , , }B D E  { , }A B  { , , }B D E  

26 { , , }C D E  { , }A C  { , , }C D E  

27 { , , , }A B C D  { }A  { , , , , }A B C D E  

28 { , , , }A B C E  { }A  { , , , , }A B C D E  

29 { , , , }A B D E  { }A  { , , , , }A B C D E  

30 { , , , }A C D E  { }A  { , , , , }A B C D E  

31 { , , , }B C D E  { }A  { , , , , }A B C D E  

32 { , , , , }A B C D E  { }A  { , , , , }A B C D E  

The resulting sets are { , , , , }A B C D E , { , , }B D E , { , , }C D E , { , }D E , { }D , { }E , and  .  
When we arrange them in a poset according to the subset relation, we get the normal 
completion lattice (Figure 48)23. 

{A, B, C, D, E}

{D, E}

{E}{D}

{ }

{C, D, E}{B, D, E}

 

Figure 47.  Normal completion lattice 

Finally, we identify the original poset elements with their corresponding lattice elements 
and denote the newly created elements with X  and {} .  Figure 48 shows the normal 

completion of the poset.  We see that two new elements were added to the poset to form a 
lattice. 

                                                      
23 Note that we may use either {}  or   to denote the empty set. 
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A

B C

D E

X

{ }
 

Figure 48.  Normal completion 

The new elements can be interpreted in a geometric way as shown in Figure 49.  Element 
X  can be interpreted as the intersection of B  and C . 

A

B C

D E

X

{ }

B
CD

E

A

X

X = B » C

 

Figure 49.  Geometric interpretation of new lattice elements 

10.4 Application in GIS 

The intuitive interpretation of order relations as “is contained in” or, dually, as “contains” 
can be used for relationships among spatial features such as polygons, lines and points.  
The structure of a poset accommodates both strict hierarchies (every object has exactly 
one parent object) and relationships where one object possesses more than one parent 
object. 

Examples of hierarchies are administrative subdivisions where for instance every county 
belongs to exactly one state, and every state belongs to exactly one country.  General 
posets can be used to represent situations where one object belongs to several parents, 
such as agricultural production zones that may be part of several municipalities, or 
regions that are composed of several unconnected polygons such as the Hawaiian Islands. 

10.5 Exercises 

Exercise 35 From the poset in Figure 45 determine the upper bounds of (a) { }D , (c) { , }D C , (c) { }A . 
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Exercise 36 From the poset in Figure 45 determine the greatest lower bound of (a) { , }B D , (b) { }A , (c) 

{ , , }A B C  

Exercise 37 The following relationships are given for the four regions A, B, C, and D: C is contained in A and 
D is contained in B.  Draw the poset for the four regions, compute and draw the normal 
completion lattice. 
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he origin of graph theory lies in the investigation of topological 

problems given by a set of points and the connections between 

them.  Today, graph theory is a branch of mathematics in its own 

right dealing with problems that can be represented by a collection of 

vertices and connecting edges. 

This chapter deals with the basic principles of graphs, their representation 

and ways to traverse them.  The importance of graph theory for the analysis 

of transpiration and flow problems is highlighted in the section on 

applications to GIS. 

 

CHAPTER 

11 Graph Theory 

 

T
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11.1 Introducing Graphs 

Generally, the origin of graph theory is attributed to the Swiss mathematician 
LEONHARD EULER who published a paper in 1736 on what is now commonly 
known as the Königsberg bridge problem.  Figure 50 shows a sketch of the seven 
bridges across the river Pregel in Königsberg (which is today’s Kaliningrad).  The 
problem is to determine whether it is possible to make a circular walk through 
Königsberg by starting at a river bank and crossing every bridge exactly once. 

 
Figure 50.  The seven bridges of Königsberg 

Euler solved the problem by abstracting the island and river banks to points and 
representing the bridges by lines connecting these points.  In the figure they are 
represented by black points and red lines. 

Figure 51 shows these points (vertices) and lines (edges) in a schematic way with 
the vertices numbered 1v  to 4v , and the edges 1e  to 7e .  Such a configuration is 
called a graph.  Starting from an arbitrary vertex we find after some tries that such 
a circular walk is impossible24. 

v1

v2

v3

v4

e1

e2

e4

e3

e5

e7

e6

 
Figure 51.  Graph of the Königsberg bridge problem 

                                                      
24 We will see later that the problem is to find an Eulerian circuit in the graph and that there is a 
theorem stating when such a circuit exists. 
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11.1.1 Basic Concepts 

Definition 85 (Graph).  Given a non-empty set 1 2{ , , , }nV v v v  , the vertex-

set, a set 1 2{ , , , }mE e e e  , the edge-set, and a function :g E V V  , the 

incidence map, which assigns to every element of E  a pair ( , )i jv v  of elements 

of V .  We call the triple ( , , )G V E g  a graph. 

The elements of V  are called points (or vertices), the elements of E  are called 
edges.  For an edge ( , )i je v v  vertices iv  and jv  are called end points of e ; we 

say that e  is incident with iv  and jv , and that iv  is adjacent to jv .  If 

( ) ( , )g e v v  we call e a loop.  If ( ) ( )i jg e g e  we call ie  and je  parallel 

edges. 

Here, we will deal only with finite graphs, i.e., the number of vertices and the 
number of edges are both finite.  When there is no confusion possible we will 
denote a graph with ( , )G V E  for short. 

Example 113. The graph for the Königsberg bridge problem in Figure 51 can be written as 
( , , )G V E g  with the vertex-set 1 2 3 4{ , , , }V v v v v , the edge-set 1 2 3 4 5 6 7{ , , , , , , }E e e e e e e e  

and the incidence map defined as 1 1 2( ) ( , )g e v v , 2 1 2( ) ( , )g e v v , 3 1 3( ) ( , )g e v v , 

4 1 3( ) ( , )g e v v , 5 1 4( ) ( , )g e v v , 6 3 4( ) ( , )g e v v , 7 2 4( ) ( , )g e v v .  Edges 1e , 2e  and 3e , 4e  

are parallel.  The graph contains no loop. 

A graph without loops and parallel edges is called a simple graph.  A graph with 
loops and parallel edges is sometimes called a multigraph.  The number of edges 
incident with a vertex v  is called the degree of v  and is written as ( )d v .  A vertex 

v  with ( ) 0d v   is called an isolated vertex. 

Example 114. In the previous example the degree of vertex 1v  is 5, and the degrees of 

vertices 2 3,v v  and 4v  are three. 

A graph is called complete if there exists an edge for every pair of distinct vertices.  
For n  vertices the complete graph is denoted by nK .  We call a graph regular 

when every vertex has the same degree.  If the degree is k  then the graph is k -
regular.  A complete graph nK  is ( 1)n  -regular, i.e., every vertex in a complete 

graph nK  has degree ( 1)n  .  Figure 52 illustrates some complete graphs. 

K2 K3 K4K1  

Figure 52.  Complete graphs 

Two graphs 1 1 1( , )G V E  and 2 2 2( , )G V E  are isomorphic if there is a bijective 

mapping 1 2:i V V  preserving the incidence relationships, i.e., for every 1 2 1,v v V  

we have 1 2 1( , )v v E  implies 1 2 2( ( ), ( ))i v i v E .  Isomorphic graphs have the same 



106 THE MATHEMATICS OF GIS 

 

 

structure, although they might look quite different at a first glance.  Figure 53 
shows two isomorphic graphs. 

v1

v5v4

v3

v2 i(v3)

i(v4)i(v1)

i(v5)

i(v2)

 

Figure 53.  Isomorphic graphs 

If we remove a number of edges or vertices from a graph G  we obtain a subgraph 
S G .  The removal of a vertex implies that all edges incident with it must also be 
removed.  However, if we remove an edge the vertices remain.  The result could be 
some isolated vertices.  A subset of vertices V V   and edges with both end-points 
in V   is called a subgraph induced by V  . 

11.1.2 Path, Circuit, Connectivity 

For many applications we need to traverse a graph, sometimes in a particular way.  
A path from 1v  to nv  is a sequence of alternating vertices and edges 

1 1 2 2 1, , , , , ,n nP v e v e e v   such that for 1 i n  , ie  is incident with iv  and 1iv  .  For 

a simple graph it is sufficient to list only the vertices in a path.  If 1 nv v  then the 

path is called a cycle or circuit.  A path is called a simple path if every vertex is 
visited only once.  In a simple circuit every vertex appears once except that 1 nv v .  
The length of a path or a circuit is the number of edges it contains. 

Example 115. In the graph of Figure 51 1 2 2 1 4, , , ,P v e v e v  is a simple path from 1v  to 4v .  

4 5 1 4 3 1 5 4, , , , , , ,C v e v e v v e v  is circuit.  Note that it is not a simple circuit, because vertex 1v  

is visited twice. 

When we assign a number (weight) to each edge of a graph we get a weighted 
graph.  In many applications such a weight is being used to represent the length of 
an edge as distance or travel time.  This must not be confused with the length of a 
path as defined above. 

Two vertices iv  and jv  are connected if there exists a path from iv  to jv .  Every 

vertex is connected to itself.  A subgraph induced by a set of vertices is called a 
component of a graph.  A graph with only one component is called connected, 
otherwise it is disconnected.  If the removal of a vertex v  would disconnect the 
graph, then v  is called an articulation point.  A block is a graph without any 
articulation point.  If the removal of an edge e  would disconnect the graph then 
this edge is call a cut-edge. 

Figure 54 shows an example of a connected and disconnected graph.  Graph H  
has two components.  The vertices 1 2,v v G  are articulation points; 1e G  is a 
cut-edge. 
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HG

v1 v2 v1 v2

e1

 
Figure 54.  Connected (G) and disconnected (H) graph 

11.2 Important Classes of Graphs 

11.2.1 Directed Graph 

If for every edge we assign one of its vertices as start point the graph becomes a 
directed graph (or digraph).  We draw the edges of a digraph with arrows 
indicating their direction.  A directed graph without cycles is called a directed 
acyclic graph (or DAG).  DAG’s play an important role in the representation of 
partially ordered sets.  Digraphs are used to represent transportation or flow 
problems.  Figure 55 shows two directed graphs.  Graph G  contains a cycle; H  is 
a DAG. 

HG

 

Figure 55.  Directed graphs 

In a digraph an edge ( , )i jv v  is said to be incident from iv  and incident to jv .  The 

number of edges incident from a vertex v  is called the out-degree ( )d v , the 

number of edges incident to v  is the in-degree ( )d v .  A digraph is symmetric if 

for every edge ( , )i jv v  there is also an edge ( , )j iv v .  A digraph is balanced if for 

every vertex v  the out-degree is equal to the in-degree, i.e., ( ) ( )d v d v  . 

11.2.2 Planar Graph 

An important class of graphs is the planar graphs.  A graph is planar if it can be 
drawn on a plane surface without intersecting edges25.  Such a representation 
divides the plane into connected regions (or faces).  The faces are bound by edges 
of the graph.  One face encloses the graph.  This face is often called the exterior 
face. 

                                                      
25 This class of graphs plays an important role in the structuring of two-dimensional spatial data 
sets for GIS. 
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A planar graph in the real drawing plane corresponds to a 2-dimensional cell 
complex, where the vertices correspond to the 0-cells, the edges to the 1-cells, and 
the faces to the 2-cells.  Clearly, this cannot be extended to higher dimensions. 

Figure 56 shows a planar graph.  This graph has four vertices 1 2 3 4{ , , , }V v v v v , six 

edges 1 2 3 4 5 6{ , , , , , }E e e e e e e , and four faces 1 2 3 4{ , , , }F f f f f .  Face 4f  is the 
exterior face. 

v3

v1

v2

v4
e6

e5

e4

e3

e2

e1

f4

f3

f2

f1

 

Figure 56.  Planar graph 

EULER’s formula connects the number of vertices, edges and faces.  It states that 
for every connected planar graph with n  vertices, e  edges, and f  faces we have 

2n e f    

If we do not count the exterior face the formula changes to 

1n e f    

Example 116. For the planar graph in Figure 56 with four vertices, six edges, and four 
faces we have 4 6 4 2   . 

For every planar graph G  we can construct a graph *G  whose vertices are the 
regions of G ; the edges represent the adjacency of faces, i.e., there is an edge 
connecting two vertices of *G  if the two corresponding faces of G  are adjacent.  
The edge is drawn crossing the bounding edge of the faces in G .  Such a graph is 
called the dual graph.  It is again planar.  Figure 57 shows the planar dual graph of 
the graph in Figure 56. 

*
1v

*
2v

*
3v

*
4v

 
Figure 57.  Dual graph 

11.3 Representation of Graphs 

For many computational purposes we need efficient data structures and algorithms 
to represent and traverse graphs.  The best known structures to represent a graph 
are adjacency matrices and adjacency lists. 
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Given a graph ( , )G V E  with n  vertices an adjacency matrix is an n n  matrix 
A , such that: 

1 if ( , )
( , )

0 otherwise

i j E
A i j


 


 

For an undirected graph ( , ) ( , )A i j A j i .  For a digraph A  is usually asymmetric.  

Figure 58 shows an undirected graph 1G  and a directed graph 2G . 

G2G1

5v4v

3v2v

1v

5v4v

3v2v

1v

 
Figure 58.  Undirected and directed graph 

If we sort the columns and rows from 1v  to 5v  the adjacency matrices for 1G  and 

2G  are written as: 

1

0 1 1 0 0

1 0 0 1 1

( ) 1 0 0 1 1

0 1 1 0 0

0 1 1 0 0

A G

 
 
 
 
 
 
 
 

 2

0 1 1 0 0

0 0 0 1 1

( ) 0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

A G

 
 
 
 
 
 
 
 

 

An adjacency list L  shows for every vertex the vertices adjacent to it.  The 
adjacency lists for the graphs in Figure 58 are: 

1 2 3

2 1 4 5

1 3 1 4 5

4 2 3

5 2 3

: ,

: , ,

( ) : : , ,

: ,

: ,

v v v

v v v v

L G v v v v

v v v

v v v









 

1 2 3

2 4 5

2 3 4 5

4

5

: ,

: ,

( ) : : ,

:

:

v v v

v v v

L G v v v

v

v





 
 

 

We see easily that the storage requirement for adjacency matrices is usually higher 
than adjacency lists. 

For directed acyclic graphs it is often more convenient to represent also the 
transitive relationships in the graph.  This means that if we have ( , )i jv v E  and 

( , )j kv v E  then we also show the relationship ( , )i kv v  in the matrix or list.  The 

relationships ( , )i iv v  are trivially contained in the transitive closure.  This is called 

the transitive closure of the graph.  For the directed acyclic graph 2G  in Figure 58 
we represent the transitive closure as: 
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2

1 1 1 1 1

0 1 0 1 1

( ) 0 0 1 1 1

0 0 0 1 0

0 0 0 0 1

A G

 
 
 
 
 
 
 
 

 

1 2 3 4 5

2 4 5

2 3 4 5

4

5

: , , ,

: ,

( ) : : ,

:

:

v v v v v

v v v

L G v v v

v

v





 
 

 

Based on the representation of a graph by a matrix or a list, efficient algorithms can 
be formulated to traverse the graph.  Traversal means that from a given start point 
all other vertices of the graph are visited.  One of the best known graph traversal 
algorithms is the depth-first-search (DFS).  It works in the following way: 

Starting from a given vertex v  visit an adjacent vertex that has not yet been 
visited. 

If no such vertex can be found then return to the vertex visited just before v  
and repeat step 1. 

11.4 Eulerian and Hamiltonian Tours, Shortest Path Problem 

As mentioned above we often want to traverse a graph in a particular manner.  
When we do not distinguish between path and cycle we will talk about a tour. 

A tour through a graph in which every edge is traversed exactly once is called an 
Eulerian tour.  If we traverse the graph visiting each vertex exactly once we call 
this a Hamiltonian tour.  The shortest path problem is about finding the shortest 
path between two given vertices in a graph. 

11.4.1 Eulerian Graphs 

An Eulerian graph is an undirected graph or digraph containing an Eulerian circuit.  
The following statements can be proven for undirected graphs and digraphs: 

An undirected graph contains an Eulerian circuit if and only if it is connected and 
the number of vertices with odd degree is 0. 

An undirected graph contains an Eulerian path if and only if it is connected and 
the number of vertices with odd degree is 2 (denoted with 1v  and 2v ). 

A digraph contains an Eulerian circuit if and only if it is connected and balanced. 

A digraph contains an Eulerian path if and only if it is connected and for the 
degrees of the vertices we have: 

1 2

1 1

2 2

( ) ( ) for all  or 

( ) ( ) 1

( ) ( ) 1

d v d v v v v

d v d v

d v d v

 

 

 

 
 
 

 

Example 117. When we recall the Königsberg bridge problem, we see that the question is 
whether there exists an Eulerian circuit in the graph of Figure 51.  The graph is connected.  
However, there are four vertices with odd degree.  Therefore, the problem cannot be solved. 

Example 118. A famous problem in graph theory is the Chinese postman problem.  In its 
colloquial form it is about a postman who has to deliver the mail.  In order to be more 
efficient the question is whether he can traverse the street network of his town in such a 
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way that starting at the post office he walks every street not more than once before he 
returns to the office.  In graph theoretic terms we are checking whether there is an Eulerian 
cycle in the graph of the street network. 

11.4.2 Hamiltonian Tours 

A graph is called Hamiltonian if it contains a Hamiltonian circuit.  Unlike with 
Eulerian graphs we do not have a simple way of determining whether a graph is 
Hamiltonian.  All known algorithms to find a Hamiltonian tour in graph are either 
inefficient or solve the problem only through approximations. 

Example 119. A generalization of the Hamiltonian cycle problem is the traveling salesman 
problem.  The problem can be formulated as: Given a number of cities and the costs of 
traveling form one city to the other, what is the cheapest roundtrip that visits every city and 
then returns to the starting city?  The cities are the vertices of a weighted graph.  There are 
no efficient algorithms to solve the problem.  Good approximations exist, however. 

11.4.3 Shortest Path Problem 

The shortest path problem can be formulated as follows.  Given are a weighted 
graph with : f E   assigning weights to the edges, and two vertices 1v  and 2v .  

Find a path P  from 1v  to 2v  such that for all edges e P of the path ( )
e P

f e

  is 

minimal among all paths connecting 1v  and 2v . 

Example 120. A well known algorithm to solve the shortest path problem for a connected 
digraph with non-negative weights is DIJKSTRA’s algorithm named after the Dutch 
computer scientist EDSGER DIJKSTRA. 

11.5 Applications in GIS 

Graphs have played an important role in GIS right from the early beginnings.  The 
reason is that in the early days of GIS the storage of map data (or cartographic 
data) was the focus of interest.  Early data structures for the representation of 
spatial data (predominantly two-dimensional) are almost exclusively based on 
planar graphs. 

One of the famous examples is the GBF/DIME (Geographic Base File/Dual 
Independent Map Encoding) file of the United States Bureau of the Census.  This 
file structure was introduced to conduct the 1970 census.  The United States 
Geological Survey developed the DLG (Digital Line Graph) file format to store 
and transfer topographic base data. 

In terms of data modeling planar graphs have been used extensively to represent 
two-dimensional spatial data.  So-called topological graphs are the backbone of 
efficient representations.  A topological graph is isomorphic to a planar graph 
embedded in 2 .  The vertices are usually called nodes, the edges are called arcs 
and the faces are the polygons.  Such a topological graph is homeomorphic to a 2-
dimensional cell complex.  A network consisting of nodes (vertices) and arcs 
(edges) can be considered a graph or a 1-dimensional cell complex.  Therefore, 
planar graphs or cell complexes can be used interchangeably as long as we do not 
exceed the 2-dimensional space.  For 3-dimensional configurations we need to turn 
to topology.  Beside the representation of spatial features graphs play an important 
role in the representation and analysis of networks. 
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Definition 86 (Network).  A network is a finite connected digraph in which one 
vertex x  with ( ) 0d x   is the source of the network, and one vertex y  with 

( ) 0d y   is the sink of the network. 

The network analysis functions of a GIS provide tools to find the shortest path 
from a A to B, to perform allocation analysis, to trace a network path, as well as 
location-allocation analyses. 

11.6 Exercises 

Exercise 38 Draw . 

Exercise 39  
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any phenomena show a degree of vagueness or uncertainty that 

cannot be properly expressed with crisp sets of class boundaries.  

Spatial features often do not have clearly defined boundaries, and 

concepts like “steep”, “close”, or “suitable” can better be expressed with degrees 

of membership to a fuzzy set than with a binary yes/no classification.  This 

chapter introduces the basic principles of fuzzy logic, a mathematical theory that 

has found many applications in various domains.  It can be applied whenever 

vague phenomena are involved. 

 

CHAPTER 

12 Fuzzy Logic and GIS 

 

M
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12.1 Fuzziness 

In human thinking and language we often use uncertain or vague concepts.  Our thinking 
and language is not binary, i.e., black and white, zero or one, yes or no.  In real life we 
add much more variation to our judgments and classifications.  These vague or uncertain 
concepts are said to be fuzzy.  We encounter fuzziness almost everywhere in our everyday 
lives. 

12.1.1 Motivation 

When we talk about tall people, the concept of “tall” will be depending on the context.  In 
a society where the average height of a person is 160cm, somebody will be considered to 
be tall differently from a population with an average height of 180cm.  In land cover 
analysis we are not able to draw crisp boundaries of, for instance, forest areas or 
grassland. Where does the grassland end and the forest start?  The boundaries will be 
vague or fuzzy. 

In real life applications we might look for a suitable site to build a house.  The criteria for 
the area that we are looking for could be formulated as follows.  The site must 

 have moderate slope 
 have favorable aspect 
 have moderate elevation 
 be close to a lake 
 be not near a major road 
 not be located in a restricted area 

All the conditions mentioned above (except the one for the restricted area) are vague, but 
correspond to the way we express these conditions in our languages and thinking.  Using 
the conventional approach the above mentioned conditions would be translated into crisp 
classes, such as 

 slope less than 10 degrees 
 aspect between 135 degrees and 225 degrees, or the terrain is flat 
 elevation between 1,500 meters and 2,000 meters 
 within 1 kilometer from a lake 
 not within 300 meters from a major road 

If a location falls within the given criteria we would accept it, otherwise (even if it would 
be very close to the set threshold) it would be excluded from our analysis.  If, however, 
we allow degrees of membership to our classes, we can accommodate also those locations 
that just miss a criterion by a few meters.  They will just get a low degree of membership, 
but will be included in the analysis.  Usually, we assign a degree of membership to a class 
as a value between zero and one, where zero indicates no membership and one represents 
full membership.  Any value in between can be a possible degree of membership. 

12.1.2 Fuzziness versus Probability 

Degrees of membership as values ranging between zero and one look very similar to 
probabilities, which are also given as a value between zero and one.  We might be 
tempted to assume that fuzziness and probability are basically the same.  There is, 
however, a subtle, yet important, difference. 

Probability gives us an indication with which likelihood an event will occur.  Whether it 
is going to happen, is not sure depending on the probability.  Fuzziness is an indication to 
what degree something belongs to a class (or phenomenon).  We know that the 
phenomenon exists.  What we do not know, however, is its extent, i.e., to which degree 
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members of a given universe belong to the class.  In the following sections we will 
establish the mathematical basis to deal with vague and fuzzy concepts. 

12.2 Crisp Sets and Fuzzy Sets 

In general set theory an element is either a member of a set or not.  We can express this 
fact with the characteristic function for the elements of a given universe to belong to a 
certain subset of this universe.  We call such a set a crisp set. 

Definition 87 (Characteristic function).  Let A  be a subset of a universe X .  The 
characteristic function A  of A  is defined as : {0,1}A X   with 

1 iff
( )

0 iffA

x A
x

x A



  

 

In this way we always can clearly indicate whether an element belongs to a set or not.  If, 
however, we allow some degree of uncertainty as to whether an element belongs to a set, 
we can express the membership of an element to a set by its membership function. 

Definition 88 (Fuzzy set).  A fuzzy set A  of a universe X  is defined by a membership 
function A  such that : [0,1]A X   where ( )A x  is the membership value of x  in 
A .  The universe X  is always a crisp set. 

If the universe is a finite set 1 2{ , , , }nX x x x  , then a fuzzy set A  on X   is expressed 

as 1 1 2 2
1

( ) / ( ) / ( ) / ( ) /
n

A A A n n A i i
i

A x x x x x x x x   


     .  The term 

( ) /A i ix x  indicates the membership value to fuzzy set A  for ix .  The symbol “/” is 
called separator,   and “+” function as aggregation and connection of terms. 

If the universe is an infinite set 1 2{ , , }X x x  , then a fuzzy set A  on X  is expressed 

as ( ) /AX
A x x  .  The symbols  and “/” function as aggregation and separator.26 

The empty fuzzy set   is defined as , ( ) 0x X x   . 

For every element of the universe X  we trivially have , ( ) 1Xx X x   , i.e., the 

universe is always crisp. 

A membership function assigns to every element of the universe a degree of membership 
(or membership value) to a fuzzy set.  This membership value must be between zero (no 
membership) and one (definite membership).  All other values between zero and one 
indicate to which degree an element belongs to the fuzzy set.  It is important to note that 
the membership degree of 1 does not need to be obtained for members of a fuzzy set. 

Example 121. Let us take three persons A, B, and C and their respective heights as 185cm (A), 
165cm (B) and 186cm (C).  We want to assign the different persons to classes for short, average, 
and tall people, respectively. 

                                                      
26 Note that the symbols  , +, and   are not to be interpreted in their usual meaning as sum, addition, 
and integral. 
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If we take a crisp classification and set the class boundaries to (-, 165] for short, (165, 185] for 
average, and (185, -) for tall, we see that A falls into the average class, B into the short class, and 
C into the tall class.  We also see that A is nearly as tall as C, and yet they fall into different 
classes.  The characteristic functions of the three classes are displayed in Table 15. 

Table 15.  Characteristic function for height classes 

 Short Average Tall 
A 0 1 0 
B 1 0 0
C 0 0 1 

When we choose a fuzzy set approach, we need to define three membership functions for the three 
classes, respectively (Figure 59). 
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Figure 59.  Membership functions for “short”, “average”, and “tall” 

For short we select a linear membership function that produces a membership value of one for 
persons shorter than 150cm and decreases until it reaches zero at 180cm. 

The membership function for the average class produces values equal zero for persons shorter than 
150cm, it then increases until it reaches one at 175cm. From there it decreases until it reaches zero 
at 200cm. 

The membership function for the tall class is zero up to 170cm.  From there it increases until it 
reaches one at 200cm.  The membership values for the three persons to the three classes are given 
in Table 16. 

Table 16.  Membership values for the height classes 

 Short Average Tall 
A 0.00 0.60 0.50 
B 0.50 0.60 0.00 
C 0.00 0.56 0.53 

Using the fuzzy set approach we can much better express the fact that A and C are nearly the same 
height and that both have a higher degree of membership to the average class than to short or tall, 
respectively. 

12.3 Membership Functions 

The selection of a suitable membership function for a fuzzy set is one of the most 
important activities in fuzzy logic.  It is the responsibility of the user to select a function 
that is a best representation for the fuzzy concept to be modeled.  The following criteria 
are valid for all membership functions: 
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 The membership function must be a real valued function whose values are between 
0 and 1. 

 The membership values should be 1 at the center of the set, i.e., for those members 
that definitely belong to the set. 

 The membership function should fall off in an appropriate way from the center 
through the boundary. 

 The points with membership value 0.5 (crossover point) should be at the boundary 
of the crisp set, i.e., if we would apply a crisp classification, the class boundary 
should be represented by the crossover points. 

We know two types of membership functions: (i) linear membership functions and (ii) 
sinusoidal membership functions.  Figure 60 shows the linear membership function.  This 
function has four parameters that determine the shape of the function.  By choosing 
proper values for a , b , c , and d , we can create S-shaped, trapezoidal, triangular, and 
L-shaped membership functions. 
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Figure 60.  Linear membership function 

If a rounded shape of the membership function is more appropriate for our purpose we 
should choose a sinusoidal membership function (Figure 61).  As with linear membership 
functions we can achieve S-shaped, bell-shaped, and L-shaped membership functions by 
proper selection of the four parameters. 
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Figure 61.  Sinusoidal membership function 

A special case of the bell-shaped membership functions is the Gaussian function derived 
from the probability density function of the normal distribution with two parameters c  
(mean) and   (standard deviation).  Although this membership function is derived from 
probability theory, it is used here as a membership function for a fuzzy set. 
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Figure 62.  Gaussian membership function 

Example 122. The membership functions in Example 121 are linear functions with the following 
parameters: 
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12.4 Operations on Fuzzy Sets 

Operations on fuzzy sets are defined in a similar way as for crisp sets.  However, not all 
rules for crisp set operations are also valid for fuzzy sets.  Like for crisp sets we have 
subset, union, intersection, and complement.  In addition, there are alternate operations 
for union and intersection of fuzzy sets. 

Definition 89 (Support).  All elements of the universe X  that have a membership 
value greater than zero for a fuzzy set A  are called the support of A , or 
supp( ) { | ( ) 0}AA x X x   . 

Example 123. The support of the fuzzy set for short people (Example 121) is those persons who 
are shorter than 150cm. 

Definition 90 (Height).  The height of a fuzzy set A  is the largest membership value in 
A , written as hgt( )A .  If hgt( ) 1A   then the set is called normal. 
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Example 124. The height of the fuzzy sets Short, Average, and Tall is 1.  They are all normal 
fuzzy sets. 

We can always normalize a fuzzy set by dividing all its membership values by the height 
of the set. 

Definition 91 (Equality).  Two fuzzy sets A  and B  are equal (written as A B ) if for 
all members of the universe X  their membership values are equal, i.e., 

, ( ) ( )A Bx X x x    . 

Subsets in fuzzy sets are defined by fuzzy set inclusion. 

Definition 92 (Inclusion).  A fuzzy set A  is included in a fuzzy set B  (written as 
A B ) if for every element of the universe the membership values for A  are less than 
or equal to those of B , i.e., , ( ) ( )A Bx X x x    . 

When we look at the graph of the membership functions a fuzzy set A  will be included in 
fuzzy set B  when the graph of A  is completely covered by the graph of B  (Figure 63). 
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Figure 63.  Set inclusion 

For the union of two fuzzy sets we have more than one operator.  The most common ones 
are presented here. 

Definition 93 (Union).  The union of two fuzzy sets A  and B  can be computed for all 
elements of the universe X  by one of the three operators: 

1. ( ) max( ( ), ( ))A B A Bx x x     

2. ( ) ( ) ( ) ( ) ( )A B A B A Bx x x x x          

3. ( ) min(1, ( ) ( ))A B A Bx x x      

The max-operator is a non-interactive operator in the sense that the membership values of 
both sets do not interact with each other.  In fact, one set could be completely ignored in a 
union operation when it is included in the other.  The two other operators are called 
interactive, because the membership value of the union is determined by the membership 
values of both sets. 

Example 125. Figure 64 illustrates the union operators for the fuzzy sets Short and Average from 
Example 121. 
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Figure 64.  Fuzzy set union operators 

Definition 94 (Intersection).  The intersection of two fuzzy sets A  and B  can be 
computed for all elements of the universe X  by one of the three operators: 

1. ( ) min( ( ), ( ))A B A Bx x x     

2. ( ) ( ) ( )A B A Bx x x      

3. ( ) max(0, ( ) ( ) 1)A B A Bx x x       

The min-operator a non-interactive, the two others are interactive operators as explained 
above. 

Example 126. Figure 65 illustrates the intersection of the fuzzy sets Short and Average from 
Example 121. 
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Figure 65.  Fuzzy set intersection 
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Definition 95 (Complement).  The complement of a fuzzy set A  in the universe X  is 
defined as , ( ) 1 ( )AA

x X x x     . 

Example 127. Figure 66 shows the fuzzy set Average from Example 121 and its complement. 
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Figure 66.  Fuzzy set and its complement 

Many rules for set operations are valid for both crisp and fuzzy sets.  Table 17 shows the 
rules that are valid for both. 

Table 17.  Rules for set operations valid for crisp and fuzzy sets 

1. AAA  idempotent law 
2. AAA 
3. )()( CBACBA   associativity 

4. )()( CBACBA   

5. A B B A   commutativity 
6. ABBA 
7. )()()( CABACBA   distributivity 

8. )()()( CABACBA   

9. BABA  DE MORGAN’s law 

10. BABA 
11. AA   

double complement 

Table 18 shows those rules that in general are valid for crisp sets but not for fuzzy sets. 

Table 18.  Rules valid only for crisp sets 

1. A A X  law of the excluded middle 
2. A A   law of contradiction 

Figure 67 illustrates that the law of the excluded middle and the law of contradiction does 
not generally hold for fuzzy sets. 
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Figure 67.  Law of the excluded middle and law of contradiction for fuzzy set Average. 
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12.5 Alpha-Cuts 

If we wish to know all those elements of the universe that belong to a fuzzy set and have 
at least a certain degree of membership, we can use  -level sets. 

Definition 96 ( -Cut).  A (weak)  -cut (or  -level set) A  with 0 1   is the set 

of all elements of the universe such that { | ( ) }AA x X x     .  A strong  -cut 

A  is defined as { | ( ) }AA x X x     . 

Example 128. The 0.8-cut of the fuzzy set Tall contains all those persons who are 194cm or taller. 

With  -level sets we can identify those members of the universe that typically belong to 
a fuzzy set. 

12.6 Linguistic Variables and Hedges 

In mathematics variables usually assume numbers as values.  A linguistic variable is a 
variable that assumes linguistic values which are words (linguistic terms).  If, for 
example, we have the linguistic variable “height”, the linguistic values for height could be 
“short”, “average”, and “tall”.  These linguistic values possess a certain degree of 
uncertainty or vagueness that can be expressed by a membership function to a fuzzy set.  
Often, we modify a linguistic term by adding words like “very”, “somewhat”, “slightly”, 
or “more or less” and arrive at expressions such as “very tall”, “not short”, or “somewhat 
average”. 

Such modifiers are called hedges.  They can be expressed with operators applied to the 
fuzzy sets representing linguistic terms (see Table 19). 

Table 19.  Operators for hedges 

Operator Expression 

Normalization norm( )
A

( )
( )

hgt( )
A

A

x
x





  

Concentration 2
con( ) ( ) ( )A Ax x   

Dilation dil( ) ( ) ( )A Ax x   

Negation not( ) ( ) ( ) 1 ( )A AA
x x x      

Contrast intensification 
2

int( ) 2

2 ( ) if ( ) [0,0.5]
( )

1 2(1 ( )) otherwise
A A

A

A

x x
x

x

 



  
 

 

The following Table 20 shows the models being used to represent hedges for linguistic 
terms. 

Table 20.  Hedges and their models 

Hedge Operator 

very A  con( )A  

more or less A  (fairly A ) dil( )A  

plus A  1.25A
not A  not( )A  

slightly A  int(norm(plus not(very )))A A  

Example 129. Figure 68 shows the membership functions for Tall, Very Tall, and Very Very Tall. 
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Figure 68.  Membership functions for Tall, Very Tall, and Very Very Tall 

Example 130. Figure 69 shows the membership functions for Tall and Not Very Tall. 
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Figure 69.  Membership function for Tall and Not Very Tall 

Example 131. Figure 70 shows the membership functions for Tall and Slightly Tall. 
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Figure 70.  Membership function for Tall and Slightly Tall 

12.7 Fuzzy Inference 

In binary logic we have only two possible values for a logical variable, true or false, 1 or 
0.  As we have seen in this chapter, many phenomena can be better represented by fuzzy 
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sets than by crisp classes.  Fuzzy sets can also be applied to reasoning when vague 
concepts are involved. 

In binary logic reasoning is based on either deduction (modus ponens) or induction 
(modus tollens).  In fuzzy reasoning we use a generalized modus ponens which reads as 

Premise1: If x  is A  then y  is B  
Premise2: x  is A  
Conclusion: y  is B  

Here, A , B , A , and B  are fuzzy sets where A  and B  are not exactly the same as A  
and B . 

Example 132. Consider the generalized modus ponens for temperature control: 

Premise1: If the temperature is low then set the heater to high 
Premise2: Temperature is very low
Conclusion: Set the heater to very high 

With logic inference we normally have more than one rule.  In fact, the number of rules 
can be rather large.  We know several methods for fuzzy reasoning. 

12.7.1 MAMDANI’s Direct Method 

Here, we discuss the methods known as MAMDANI’S direct method.  It is based on a 
generalized modus ponens of the form 

1 1 1

2 2 2

1

1

If  is  and  is  then  is 

If  is  and  is  then  is 
:

If  is  and  is  then z is 

:  is , y is 

:  is 

n n n

x A y B z C

x A y B z C
p q

x A y B C

p x A B

q z C



 



 




 

Premise1 becomes a set of rules as illustrated in Figure 71.  A , B , and C  are fuzzy sets, 
x  and y  are premise variables, z  is the consequence variable.27 

If x is A and y is B then z is C

premise consequence
 

Figure 71.  Inference rule in MAMDANI’s direct method 

The reasoning process is then straightforward according to the following procedure.  Let 

0x  and 0y  be the input for the premise variables. 

1. Apply the input values to the premise variables for every rule and compute the 
minimum of 0( )

iA x  and 0( )
iB y : 

                                                      
27 There can be more than two premise variables to express complex rules.  The procedure can be 
extended to this case without any problems. 
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2. Cut the membership function of the consequence ( )
iC z  at im : 

1 1

2 2

1 1 1

2 2 2

n

Conclusion of rule : ( ) min( , ( ))

Conclusion of rule : ( ) min( , ( ))

Conclusion of rule : ( ) min( , ( ))
n n

C C

C C

C n C n
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 
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  
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3. Compute the final conclusion by determining the union of all individual 
conclusions from step 2: 

1 2
( ) max( ( ), ( ), , ( ))

nC C C Cz z z z        

The result of the final conclusion is a fuzzy set.  For practical reasons we need a definite 
value for the consequence variable.  The process to determine this value is called 
defuzzification.  There are several methods to defuzzify a given fuzzy set.  One of the 
most common is the center of gravity (or center of area). 

For a discrete fuzzy set the center of area is computed as 

0

( )

( )
C

C

z z
z

z





 


 

For a continuous fuzzy set this becomes 

0

( )

( )

C

C

z zdz
z

z dz






 


 

Example 133. Given the speed of a car and the distance to a car in front of it, we would like to 
determine whether we should break, maintain the speed, or accelerate.  Assume the following set 
of rules for the given situation: 

Rule 1 If the distance between the cars is short and the speed is low then maintain speed 
Rule 2 If the distance between the cars is short and the speed is high then reduce speed 
Rule 3 If the distance between the cars is long and the speed is low then increase speed 
Rule 4 If the distance between the cars is long and the speed is high then maintain speed 

Distance, speed, and acceleration are linguistic variables with the values “short”, “long”, “high”, 
“low”, and “reduce”, “maintain”, and “increase”, respectively.  They can be modeled as fuzzy sets 
(Figure 72). 
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Figure 72.  Fuzzy sets of the rules 

With a given distance 0 15x  meters and a speed of 0 60y  km/h we perform step 1.  The results 

are shown in Table 21. 

Table 21.  Fuzzy inference step 1 

Rule Short Long Low High Min 
1 0.75  0.25  0.25 
2 0.75   0.75 0.75 
3  0.25 0.25  0.25 
4  0.25 0.75 0.25 

Now we must cut the membership function for the conclusion variable at the minimum values 
from step 1.  The result is illustrated in Figure 73. 
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Figure 73.  Fuzzy inference step 2 

Finally, we must combine the individual membership functions from step 2 to the final result and 
defuzzify it.  The union of the four membership functions is displayed in Figure 74.  The final 
value after defuzzification is -5.46 and is indicated by the blue dot.  The conclusion of this fuzzy 
inference is that when the distance between the cars is 15 meters and the speed is 60 km/h, then we 
have to break gently to reduce the speed. 
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Figure 74.  Fuzzy inference final result 

12.7.2 Simplified Method 

Often, the defuzzification process is too time-consuming and complicated.  An alternative 
approach is the simplified method where the conclusion is a real value c  instead of a 
fuzzy set.  It is based on a generalized modus ponens of the form: 

1 1 1

2 2 2

1

1

If  is  and  is  then  is 

If  is  and  is  then  is 
:

If  is  and  is  then z is 

:  is , y is 

:  is 

n n n

x A y B z c

x A y B z c
p q

x A y B c

p x A B

q z c



 

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Premise1 becomes a set of rules as illustrated in Figure 75.  The premise variables are 
fuzzy sets; the conclusion is a real number (fuzzy singleton). 

If x is A and y is B then z = c

premise consequence

fuzzy singleton

 
Figure 75.  Simplified Method 

The reasoning process is then straightforward in analogy to the previous method with the 
difference that the result is not a fuzzy set that needs to be defuzzified but be can compute 
the final result directly after step 2 in the algorithm. 

The algorithm works as outlined in the following procedure procedure.  Let 0x  and 0y  be 

the input for the premise variables. 

1. Apply the input values to the premise variables for every rule and compute the 
minimum of 0( )

iA x  and 0( )
iB y : 
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2. Compute the conclusion value per rule as: 
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3. Compute the final conclusion as: 
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Example 134. Given the slope and the aspect maps of a region and the following set of rules, we 
can conduct a risk analysis based on degrees of risk ranging from 1 (low risk) to 4 (very high risk).  
The fuzzy sets for flat and steep slope are displayed in Figure 18 and Figure 19- 

Rule 1 If slope is flat and aspect is favorable then risk is 1
Rule 2 If slope is steep and aspect is favorable then risk is 2 
Rule 3 If slope is flat and aspect is unfavorable then risk is 1 
Rule 4 If slope is steep and aspect is unfavorable then risk is 4
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Figure 76.  Membership functions for flat and steep slope 
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Figure 77.  Membership functions for favorable and unfavorable aspect. 

For a slope of 10 percent and an aspect of 180 degrees we have the following results: 
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 Slope (s) Aspect (a) Min(s,a) Conclusions 
Rule1 0.5 1 0.5 0.5 
Rule2 0.2 1 0.2 0.4 
Rule3 0.5 0 0 0 
Rule4 0.2 0 0 0 

For the final result we get 
0.5 0.4 0 0

1.29
0.5 0.2 0 0

c
    
  

, which means a low risk. 

12.8 Applications in GIS 

Many spatial phenomena are inherently fuzzy or vague or possess indeterminate 
boundaries.  Fuzzy logic has been applied for many areas in GIS such as fuzzy spatial 
analysis, fuzzy reasoning, and the representation of fuzzy boundaries.  The following 
example illustrates how a fuzzy set can be computed from a given grid data set. 

12.8.1 Objective 

The objective of this analysis is to determine high elevation in the area covered by the 1 : 
24,000 topographic map sheet of Boulder, Colorado 

12.8.2 Fuzzy Concepts 

Elevation is considered high when it is above 1,700 meters.  We represent the features 
meeting the criterion as a fuzzy set with a sinusoidal membership function (Figure 78) 
defined as 

high elevation
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Figure 78.  Membership function for “high elevation” 

12.8.3 Software Approach 

The 1 : 24K DEM was downloaded from the USGS and imported into ArcGIS as a grid 
ELEVATION.  In principle, there are several ways to solve the problem: we can use 
ArcInfo GRID, ArcMap Spatial Analyst, or ArcView 3.x Spatial Analyst.  We can even 
create our own fuzzy logic tool using the scripting environment of the geoprocessor in 
ArcGIS 9.  In the following, all approaches are illustrated.  The grid involved is 
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12.8.4 Result 

Figure 79 shows the result of the analysis with a fuzzy logic approach (left map) and a 
crisp approach (right map).  The grid size has been set to 10 meters according to the grid 
cell size of the elevation model. 

Fuzzy set Crisp set 

Figure 79.  Analysis with a fuzzy logic approach (left) and a crisp approach (right) 

12.9 Exercises 

Exercise 40 Determine a linear membership function for “moderate elevation” when the ideal elevation is 
between 400 and 600 meters. 

Exercise 41 Determine a Gaussian membership function for the aspect “south.” 

Exercise 42 Use the 1:24,000 digital topographic data set of Boulder, Colorado and determine a suitable site 
with the following characteristics: 

(i) moderate slope 

(ii) favorable aspect 

(iii) moderate elevation 

(iv) near a lake or reservoir 

(v) not very close to a major road, and 

(vi) not in a park or military reservation. 

Choose suitable membership functions for the fuzzy terms. 

Exercise 43 Design a simple fuzzy reasoning system for avalanche risk in the Rocky Mountains (Boulder, CO 
area).  The variables involved are slope, aspect, snow cover change.  For simplicity we do not 
consider surface cover.  The snow cover change must be simulated.  The rules are given as: 

Rule 1: If the slope is very steep and the aspect is unfavorable and the snow cover change is big 
then the risk is very high. 

Rule 2: If the slope is moderate and the aspect is unfavorable and the snow cover change is big 
then the risk is moderate. 
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Rule 3: If the slope is steep and the aspect is unfavorable and the snow cover change is small then 
the risk is low. 

Rule 4: If the slope is not steep and the aspect is unfavorable and the snow cover change is big 
then the risk is moderate. 
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e live in a constantly changing world.  What we perceive with our 

senses are processes, states and events that happen or exist in the 

real world.  They may be natural or man-made, and are called real 

world phenomena.  In our brains, we process the input from our senses, which 

leads to mental models, learning, cognition, and knowledge.  Everything that 

happens in the real world and that we process through our senses leads to models 

of reality that we create for ourselves.  Usually, we agree on common principles 

and interpretations derived from experience, research or learning that enable us to 

reach a consensus on the perception of real world phenomena. 

This chapter deals with spatial modeling, a process that maps aspects of the real 

world to abstract models.  We discuss fundamental principles of space and time 

and their bearing on GIS. 

 

CHAPTER 

13 Spatial Modeling 

 

W
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13.1  Real World Phenomena And Their Abstractions 

In the real world, we distinguish between natural and man-made phenomena.  Natural 
phenomena exist independently from human actions and are subject only to the laws of 
nature.  Examples are the landscape (topography), the weather, or natural processes that 
shape and influence them.  Man-made phenomena are objects that have come into 
existence by human activities through construction or building processes. 

Based on these phenomena we develop high-level abstract models for particular purposes 
and applications.  Features (abstractions of phenomena) populate these models that are 
usually organized in layers.  Examples of such models are a cadastre, topography, soil, 
hydrography, land cover, or land use. 

The fact that these models are abstractions of the real world can be illustrated by the 
example of a cadastre.  Let us assume that a cadastre is a legal and organizational 
framework for the handling of land.  It is a very important, clearly described and 
understood concept.  Yet, we do not see a cadastre when we look around us.  What we see 
are real world phenomena such as buildings, roads, fences around pieces of land, and 
people.  A cadastre abstracts from certain phenomena and their relationships to create 
something new that is real in a given context. 

Layers are an ordering principle for real world phenomena.  Again, when we look around 
us, we do not see the world in layers.  Yet, we are used to organize phenomena of the real 
world in such a way that we classify them according to a perceived purpose or 
characteristic into subsets (layers) that allow us to deal with them efficiently. 

13.1.1 Spatial Data And Information 

In order to conceptualize mental models of the real world, we need to categorize the 
phenomena we observe.  These phenomena exist in space and time and have therefore a 
spatial (geometric) and a temporal extent.  They possess certain thematic characteristics 
(also called attributes) that allow us not only to refer to them in terms of spatiotemporal, 
but also according to thematic information.  The thematic information of real world 
phenomena is the basis for the definition of layers. 

Humans perceive signals through their senses, process them and extract information that 
leads to knowledge and wisdom.  Here, we focus on spatial information, i.e., information 
concerning phenomena with a spatiotemporal extent.  It is obvious that thematic 
information is an integral part of spatial phenomena. 

Data are representations of information in a computer.  Spatial data refer to spatial 
information that we store in a computer for processing and analysis. 

The following example illustrates the principle.  Assume that we stand on top of a hill and 
look at the landscape surrounding us.  What we see are meadows, fields, trees, and roads.  
The meadows are green with grass, the fields are yellow, the trees are green, and the road 
is covered with brownish-black asphalt.  Our brains have processed the optical signals 
that we receive through our eyes and our minds recognize the phenomena observed.  We 
also have assigned attributes to them such as color, (relative) size and we might 
remember that five years ago the road was not paved, and what is a field now has been a 
forest. 

Since we want to build a land cover database of this area, we need to store a 
representation of the phenomena in a computer database.  To achieve this we need to 
define features, collect (spatial and attribute) data about them and enter them into a 
database.  A geographic information system (GIS) will be used to enter, store and 
maintain, process, analyze and display these data. 
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13.2 Concepts Of Space And Time 

Space and time are two closely related concepts that have been the subject of 
philosophical and scientific consideration since the dawn of mankind.  The space that 
humans live in is the three-dimensional (Euclidean) space as a frame of reference for our 
senses of touch and sight.  Of all possible physical and mathematical spaces, this is the 
space that is illustrative and that we perceive as being real28. 

Time is a measure for change in our immediate experience.  Usually, we assume time to 
be of a continuous linear nature extending from the past, through the present into the 
future. 

Space and time (at least as we perceive them) are so well known and appear to be given 
beyond any doubt that we hardly ever contemplate their structure and characteristics in 
our everyday lives.  When we deal with information systems that process and manipulate 
spatiotemporal features, we need clear and well-understood models of space and time.  
The following sections describe how concepts of space and time developed in Western 
philosophy and physics.  We discuss them according to three epochs: (i) pre-Newtonian 
concepts, (ii) the Newtonian and classical concepts, and (iii) contemporary concepts of 
space and time. 

13.2.1 Pre-Newtonian Concepts Of Space And Time 

The concepts of space and time of this epoch are mainly dominated by the ideas of Greek 
philosophers about the logical conditions for things to change and the structure of the 
world in which change occurs. 

HERACLITUS (around 500 BC) of Ephesos (western Turkey) studied the problem of 
change, i.e., how can the identity of things be preserved when they change.  He stated that 
everything flows, nothing remains, and the only thing that really exists is change 
(processes).  “Everything flows” and “We cannot step into the same river twice” are 
attributed to him. 

At about the same time, PARMENIDES of Elea (southern Italy) developed a completely 
opposite philosophy of the non-existence of the void.  He postulates (through deductive 
reasoning) that change does not exist and that the real world (the real being) is plenum (a 
solid complete compact being), immutable, without change and eternal.  A void (or empty 
space, i.e., something non-existent) does not exist.  What we perceive as change is a 
delusion of our senses.  PARMENIDES’ ideas were further developed and “proven” by his 
student ZENO. 

One of ZENO’s famous “proofs” that change and movement cannot exist is known as the 
race between Achilles and the tortoise.  The tortoise gets a head-start and begins the race 
at point B, whereas ACHILLES starts from point A.  When ACHILLES reaches point B, the 
tortoise already has moved on to point C.  When ACHILLES reaches point C, the tortoise 
has moved on to another point, and so on.  The lead of the tortoise gets smaller and 
smaller, ad infinitum.  We get an infinite number of (smaller and smaller) leads. 

The argument is now: In order to reach the tortoise, ACHILLES must catch up an infinite 
number of (finite in length) leads.  It is impossible to run this infinite number of short 
distances, because ACHILLES would have to run infinitely far (or forever).  Therefore, it is 
impossible for ACHILLES to catch the tortoise29.  Since we can easily catch a tortoise 
when we would run against it, we end up with a paradox.  This proves that the assumption 

                                                      
28 Human geographers, of course, might disagree. 
29 The solution of the paradox lies in the fact that an infinite series can converge to a finite value, i.e., in 
our case the point where ACHILLES passes the tortoise.  This mathematical result was, however, not 
known until the 17th century. 
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that movement and change are real, leads to contradictions.  Therefore, movement and 
change are impossible. 

DEMOCRITUS (460–370 BC) did not accept the non-existence of change as postulated by 
PARMENIDES.  Space is an absolute and empty entity existing independently from the 
atoms that fill the space.  Atoms are indivisible real things; they are immutable and 
eternal, and have different size and weight.  There is no empty space within atoms.  An 
atom is a plenum.  Objects are formed as a collection of atoms.  The importance of the 
Atomist theory is evident in today’s modern particle physics. 

Greek mathematics was strongly dominated by the Pythagorean number theoretic 
approach.  It was essentially arithmetic based on (philosophical) properties of numbers, 
counting, and the ratios between numbers.  The discovery of irrational numbers such as  

 (the length of the diagonal in the unit square) shook the foundation of Greek 
mathematics that was based on counting in natural units.  The need for a truly geometrical 
description of the world became apparent. 

The great philosopher PLATO (427–347 BC) and one member of his school, EUCLID (at 
300 BC), laid the foundation for a new geometric modeling of the real world.  This 
geometric model of matter is based on right triangles as atoms and solids built from these 
triangles.  Matter consists of four elements: earth, air, fire, and water.  Each element is 
made of particles, i.e., solids (see Figure 80) that in turn are made from triangles.  
Transformations between the elements fire, air and water are possible through geometric 
transformations.  Earth cannot be transformed. 

 
Figure 80.  Platonic solids as building blocks of matter 

In his book The Elements, EUCLID developed a mathematical theory of geometry that 
remained valid until the late 19th century.  Euclidean geometry was considered a true 
description of our physical world until it was discovered that many consistent geometric 
systems are possible, some of them non-Euclidean, and that geometry is not a description 
of the world but yet another formal mathematical system with no necessary reference to 
real world phenomena. 

13.2.2 Classical Concepts Of Space And Time 

The time between the classical Greek period and the rise of modern science was 
dominated by the philosophy and teaching of ARISTOTLE (384–322 BC).  According to 
his ideas, empty space is impossible, and time is the measure of motion with regard to 
what is earlier and later.  Space is defined as the limit of the surrounding body towards 
what is surrounded. 

Following from this approach space can be conceptualized in two possible ways: 

Absolute space.  Space as a set of places.  It is an absolute real entity, the container 
of all things.  Its structure is fixed and invariable.  Generally, this is considered the 
space as described by the Euclidean geometry. 

Relative space.  Space is a system of relations.  It is the set of all material things, and 
relations are abstracted from them.  Space is a property of things or things have spatial 
properties. 
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The rise of modern science took shape in the works of Nikolaus COPERNICUS 
(heliocentric system stating that the sun is the center of our planetary system), Johannes 
KEPLER (mathematical foundation of the heliocentric system), and Galileo GALILEI 
(foundations of mechanics) in the 16th and 17th centuries. 

Isaac NEWTON (1643 – 1727) was a brilliant scientist (dynamic theory) and philosopher.  
In his philosophy, he was an outspoken proponent of the concept of absolute space, 
although it strictly contradicts his dynamics theory.  The concept of absolute space 
remained dominant until the late 19th century. 

Gottfried Wilhelm LEIBNIZ (1646–1716) on the other hand sustained the concept of 
relative space.  For him, space is a system of relationships between things.  It is 
interesting to note that both NEWTON and LEIBNIZ are the founders of mathematical 
calculus. 

One of the greatest philosophers, Immanuel KANT (1724–1804), claimed that space and 
time are not empirical physical objects or events.  They are merely a priori true intuitions, 
not developed by experience, but used by us to relate and order observations of the real 
world.  Space and time have empirical reality (they are absolute and a priori given) and 
transcendental idealism (they belong to our conceptions of things but are not part of the 
things).  We cannot know anything about the things as such.  In this regard, KANT can be 
seen as a proponent of absolute space, yet in a far more elaborate and sophisticated way 
than the previous philosophical approaches. 

13.2.3 Contemporary Concepts Of Space And Time 

The development of modern physics (field theories, theory of relativity, quantum theory) 
and mathematics (non-Euclidean geometries) lead to the conclusion that traditional 
Euclidean geometry (describing the three-dimensional space of our perception) is only an 
approximation to the real nature of the world. 

The field theories (Michael FARADAY and James Clerk MAXWELL) lead to the 
assumption that space is not empty, but is filled with energy.  Therefore, a material 
existence of space is strongly supported by these theories. 

As a consequence of the special and general theory of relativity by Albert EINSTEIN 
(1879–1955), space and time cannot anymore be considered as two separate entities.  We 
speak of space-time, which is considered a four-dimensional space that can only be 
described by non-Euclidean geometry.  Quantum mechanics states the principle of 
uncertainty and the discrete character of matter and energy.  It has become evident that 
the space of our perception is not necessarily identical with the microscopic (sub-atomic) 
space or the space of cosmic dimensions. 

13.2.4 Concepts Of Space And Time In Spatial Information Systems 

Spatial information is always related to geographic space, i.e., large-scale space.  This is 
the space beyond the human body, space that represents the surrounding geographic 
world.  Within such space, we move around, we navigate in it, and we conceptualize it in 
different ways.  Physical geographic space is the space of topographic, cadastral, and 
other features of the geographic world.  Geographic information system technology is 
used to manipulate objects in geographic space, and to acquire knowledge from spatial 
facts. 

Geographic space is distinct from small-scale space, or tabletop space.  In other words, 
objects that are smaller than us, objects that can be moved around on a tabletop, belong to 
small-scale space and are not subject of our interest. 

The human understanding of space, influenced by language and cultural background, 
plays an important role in how we design and use tools for the processing of spatial data. 
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In the same way as spatial information is always related to geographic space, it relates to 
the time whose effects we observe in the changing geographic world around us.  We are 
less interested in pure philosophical or physical considerations about time or space-time, 
but more in the observable spatiotemporal effects that can be described, measured and 
stored in information systems. 

13.3 The Real World And Its Models 

As mentioned in the previous sections we always create models of the real world in our 
minds.  When we want to acquire, store, analyze, visualize, and exchange information 
about the real world, we use other media and means than just interpersonal 
communication.  We need representations of our mind models, i.e., models of the real 
world that can be used to acquire, store, analyze and transfer information about real world 
data. 

The most common of these models are—in historic sequence—maps and databases.  Both 
have distinct characteristics, advantages and disadvantages.  Whereas maps usually have 
been used to picture real world phenomena, databases can be used to represent real and 
virtual worlds. 

Real worlds are subsets of the reality that we perceive.  Virtual worlds are computer 
generated “realities” that exist only as potentialities with no counterpart in the real world.  
Yet, we can visualize them, navigate through them and perceive them as “real” (therefore 
the term virtual reality).  There is no difference between real and virtual world models 
with regard to their representation.  The only difference is that the former is a model of 
something that exists in the real world and the latter is a model of something that exists 
only in a virtual (physically non-existent) world. 

13.3.1 Maps 

The best known (conventional) models of the real world are maps.  Maps have been used 
for thousands of years to represent information about the real world.  We know maps 
from ancient Mesopotamia and Egypt, through the Roman times, the Medieval Ages until 
the present.  Today, they are usually drawn on paper or other permanent material and 
function as data storage and visualization medium.  Their conception and design has 
developed into an art and science with a high degree of scientific sophistication and 
artistic craftsmanship.  Maps have proven to be extremely useful models of reality for 
many applications in various domains. 

Yet, maps are two-dimensional (flat) and static.  It is not easy to visualize three-
dimensional dynamic features without considerable abstractions in the spatial and 
temporal domain.  We distinguish between topographic and thematic maps.  Other 
cartographic products that are not maps are often used to represent three-dimensional and 
dynamic phenomena.  Such products are, for instance, block diagrams, animations, and 
panoramic views. 

A disadvantage of maps is that they are restricted to two-dimensional static 
representations, and that they always are displayed in a given scale.  The map scale 
determines the spatial resolution of the graphic feature representation.  The smaller the 
scale, the less detail a map can show.  The accuracy of the primary data, on the other 
hand, puts limits to the scale in which a map sensibly can be drawn.  The selection of a 
proper map scale is one of the first and most important steps in a map conception. 

A map is always a graphic representation at a certain level of detail, which is determined 
by the scale.  The process to derive less detailed representations from a detailed one is 
called map generalization (or cartographic generalization).  Map sheets have physical 
boundaries, and features spanning two map sheets have to be cut into pieces. 
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Cartography as the science and art of map making functions as an interpreter, translating 
real world phenomena (primary data) into correct, clear and understandable 
representations for our use.  Maps also become a data source for other maps. 

With the advent of computer systems, analog cartography became digital cartography.  It 
is important to note that whenever we speak about cartography today, we implicitly 
assume digital cartography.  The use of computers in map making is an integral part of 
modern cartography.  The role of the map changed accordingly.  Increasingly, maps lose 
their role as data storage.  This role is taken over by databases.  What remains is the 
visualization function of maps. 

When we look back into the history of digital cartography and geographic information 
systems, we see that originally maps were considered the main data source for GIS 
databases.  To transfer the contents of a map into a computer database was the major 
goal.  We observe this also in the scientific literature of that time.  The terms “map data 
model” and “map data structure” were widely used.  It was not clearly understood that we 
actually want to store representations of real world phenomena (primary data) and not 
map data (secondary data).  In short, to store map data into a database instead of primary 
data means to create the model of a model. 

13.3.2 Databases 

Spatial databases store representations of spatial phenomena in the real world to be used 
in a geographic information system.  They are also called GIS databases or geodatabases.  
In the design of a database, we distinguish between three different levels of definition.  A 
language that we use to define the database is called a data model; each level typically 
has its own data model.  The data model used at the level closest to the end-users is called 
a conceptual data model. In our context, it is used for spatial data modeling.  The 
intention is to define which concepts of interest exist in the application domain for which 
a database is being designed, and what their relationships are.  Such a definition identifies 
the types of things relevant for a particular application, for example, a cadastral 
administration, or a landslide hazard analysis system.  A commonly used conceptual data 
model is the entity-relationship (ER) model; it uses primitives like entity type to describe 
independently existing entities, relationship type to define relationships between entities, 
and attributes to describe characteristic values of entities and relationships.  The complete 
database definition is called the (conceptual) database schema.  It can be compared to a 
story written in a language that is the data model.  Other, more implementation-oriented, 
data models will be discussed in Section 13.4.1. 

The assumption for the design of a spatial database schema is that spatial phenomena 
exist in a two- or three-dimensional Euclidean space.  All phenomena have various 
relationships among each other and possess spatial (geometric), thematic and temporal 
attributes.  Phenomena are classified into thematic layers depending on the purpose of the 
database.  This is usually described by a qualification of the database as, for example, 
cadastral, topographic, land use, or soil database. 

The representations of spatial phenomena (i.e., spatial features) are stored in a scaleless 
and seamless manner.  Scaleless means that all coordinates are world coordinates given in 
units that are normally used to reference features in the real world (geographic 
coordinates, meters, feet).  From there, calculations can be easily performed and any 
(useful) scale can be chosen for visualization. 

It must be noted, however, that scale plays a role when data are captured from maps as 
data source.  Here, the scale of the source map determines the accuracy of the feature 
coordinates in the database.  Likewise, the accuracy of measurements in field surveys 
determines the quality of the data.  If the coordinates are given in units other than 
geographic coordinates, information concerning the spatial reference system should also 
be present. 
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A seamless database does not show map sheet boundaries or other partitions of the 
geographic space other than imposed by the spatial features themselves. 

It is easy to query a database, and to combine data from different layers (spatial join or 
overlay).  Spatiotemporal databases consider not only the spatial and thematic but also the 
temporal extent of the features they represent.  Various spatial, temporal and 
spatiotemporal data models have been developed. 

13.3.3 Space And Time In Real World Models 

In modern physics, it is common to speak of space-time to express the close connection 
that exists between space and time according to the special and general theory of 
relativity.  Here, we do not consider the physical characteristics of space and time, but the 
(simplified) ways of representing spatial phenomena in a GIS database. 

In general, modeling can be described as creating a structure preserving mapping 
(morphism) from a domain to a co-domain.  In our case, the domain is the real world, and 
the co-domain is a real world model.  Such a mapping normally creates a ‘smaller’ (i.e., 
abstracted, generalized) image of the original.  Structure preserving means that the 
elements of the co-domain (spatial features) behave in the same (however simplified or 
abstracted) way as the elements of the domain (spatial phenomena). Figure 81 illustrates 
the principle of spatial modeling. 

 
Figure 81.  Spatial modeling is a structure preserving mapping from the real world to a spatial 

model. 

As mentioned above, we consider space to be the three-dimensional Euclidean space of 
our common sense.  All phenomena exist in this space and undergo changes, which we 
perceive as the passing of time.  In this sense, time is modeled indirectly as changes in 
(spatial or thematic) attributes of the features. 

We call a spatial data model that also considers time a spatiotemporal data model.  
Sometimes such a model is addressed as four-dimensional, giving the impression that 
time is the fourth dimension in addition to the three spatial dimensions.  It is, however, 
better to call it spatiotemporal instead of four-dimensional.  First, time is not of the same 
type as the spatial dimensions; it has a distinct different quality.  Secondly, the term ‘four-
dimensional’ only makes sense when we always would consider three spatial dimensions.  
In most of the cases, however, the spatial data model only considers two dimensions. 

13.4 Real World Models And Their Representation 

Spatial data are computer representations of spatial features.  A modeling language for a 
GIS database is a spatial data model.  It is used in the design of spatial databases.  A 
spatial database holds a digital representation of the real world, sometimes called a digital 
landscape model (DLM). 

MorphismSpatial phenomena

Domain
(Real World)

Spatial features

Co-domain
(Real World Model)
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A database is generally thought to serve multiple users or user groups.  They may have 
different perceptions of the data stored.  At this level, each user (group) is supported with 
its own external view of the database.  We may define an external view as a personalized 
conceptual database schema.  There will be as many external views as there are users and 
user groups.  Mainly domain experts do spatial modeling at this level. 

All external views are merged into a single conceptual schema of the database.  This is 
usually done with high-level semantic data models such as the entity-relationship model 
(ER model), the extended ER model (EER), or object-oriented data models.  The basic 
constructs of the ER model are entity types (e.g., country), attribute types (e.g., 
population) and relationship types (e.g., neighbor of).  Instances of the types populate the 
database, e.g., ‘Austria’, ‘8 million’, and ‘Germany, Switzerland’ are instances of the 
entity type ‘country’, the attribute type ‘population’, and the relationship type ‘neighbor 
of’, respectively.  A conceptual schema is implementation-independent and not related to 
any particular database management software.  It provides an answer to the question what 
phenomena are represented in the database. 

The conceptual schema is translated into a logical schema using one of the logical data 
models.  Currently, the most popular one is the relational data model, which is based on 
relational algebra.  Most commercial database implementations provide support for this 
model.  It is easy to understand because it is based on relations—sets of records—that 
have a straightforward implementation as tables.  The logical schema is meant to provide 
the definition of a redundancy-free data set. 

A physical schema is the result of the implementation of the logical schema with 
particular database management software.  Table 22 summarizes the ANSI/SPARC 
architecture. 

Table 22.  Data models and schemas in database design (the ANSI/SPARC architecture) 

Schema Models used to derive the schema 
External views Depending on different user perspectives, a subset of 

the real world is defined and described (spatial 
modeling). 

Conceptual schema A synthesis of external views to create a conceptual 
schema making use of semantic data modeling 
techniques such as the entity-relationship approach. 

Logical schema Transformation of the conceptual schema into a 
logical schema using the relational model.  Emphasis 
is on redundancy removal. 

Physical schema This is the mapping of the logical schema into data 
structures and algorithms.  It is normally not accessible 
or visible to the user.  Its emphasis is on processing 
speed. 

13.4.2 Spatial Data Models 

Among spatial data models, we can distinguish two major types, field- and object-based 
models.  Field-based models consider spatial phenomena to be of a continuous nature 
where in every point in space a value of the field can be determined.  Examples of such 
phenomena are temperature, barometric pressure, or elevation.  Object-based models 
consider space to be populated by well distinguishable, discrete, bounded objects with the 
space between objects potentially being empty.  Examples are a cadastre with clearly 
identifiable objects like parcels and buildings. 

Field versus object can be viewed as a manifestation of the philosophical conception of 
plenum versus atomic space (see Section 13.2.1), or as in modern physics, wave versus 
particle (see Section 13.2.3).  In GIS, fields are usually implemented with a tessellation 
approach, objects with a (topological) vector approach.  The following sections briefly 
illustrate the two different model types. 
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13.4.2.1 Field-based Models 

The underlying space for a field-based model is usually taken as the two- or three-
dimensional Euclidean space.  A field is a computable function from a geometrically 
bounded set of positions (in 2D or 3D) to some attribute domain.  Computable means that 
for every position within the geometric bounds a value can be determined by either 
measurement or by computation.  A field-based model consists of a finite collection of 
such fields (Figure 83). 

 
Figure 83.  Two data layers in a field-based model 

Fields can be discrete, continuous and differentiable.  Discrete fields represent features 
with boundaries; continuous fields are used for features where the underlying function is 
continuous, such as for temperature, barometric pressure or elevation.  If the field 
function is differentiable, we can even compute the slope at every position. 

Though geometrically bounded, the domain of a field is still an infinite set of positions.  
Computers cannot easily represent field values for all these positions, so we must accept 
an approximation.  The standard way to obtain this is to finitely represent the 
geometrically bounded space through a subdivision into a regular or irregular tessellation, 
consisting either of square (cubic) or triangular (tetrahedral) parts.  These individual parts 
are called locations; points often approximate them. 

Our finite approximation of positions into locations leads so some forms of interpolation.  
The field value at a location can be interpreted as one for the whole tessellation cell, in 
which case the field is discrete, not continuous or even differentiable.  Some convention 
is needed to state which value prevails on cell boundaries; with square cells, this 
convention often says that lower and left boundaries belong to the cell. 

Another option is to interpret the field value at a location as representative only for some 
position within the cell.  Again that position is fixed by convention, and may be the cell 
centroid or, for instance, its left lower corner.  Field values for positions other than these 
must be computed through some form of interpolation function, which will use one or 
more nearby field values to compute the value at the requested position.  This allows 
representing continuous, even differentiable, functions. 

To represent spatial features using a field-based approach we have to perform the 
following steps: 

1. Define or use a suitable model for the underlying space (tessellation). 

2. Find suitable domains for the attributes. 

3. Sample the phenomena at the locations of the tessellation to construct the spatial 
field functions. 

4. Perform analysis, i.e., compute with the spatial field functions. 

Layer 1

Layer 2
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13.4.2.2 Object-based Models 

Object-based models decompose the underlying space into identifiable, describable 
objects that have spatial, thematic, and temporal attributes, as well as relationships among 
each other (Figure 84).  The space outside the objects is empty.  Examples of objects are 
buildings, cities, towns, districts or countries; attributes are, for instance, the number of 
floors, population, boundary or area. 

In a GIS database implementation, objects are represented as a structured collection of 
geometric primitives (points, lines, polygons, and volumes) under geometric, thematic 
and topological constraints. 

Object-based models are discrete models.  Operations in the model always refer to the 
manipulation of individual objects or sets of objects.  Manipulations concern the spatial, 
thematic, topological or temporal domain.  Accordingly, they are realized through 
geometric, attribute manipulation or topological operations. 

 

Figure 84.  Layers in an object based model 

Topology plays a major role in object-based models.  It is the ‘language’ that allows us to 
specify and enforce consistency constraints for spatial databases.  The majority of object-
based models are two-dimensional.  Recently, three-dimensional data models have been 
proposed.  Their topology is more difficult to handle than in the standard two-
dimensional cases. 

13.4.3 Spatiotemporal Data Models 

Beside geometric, thematic and topological properties, spatial data possess also temporal 
characteristics.  It is, for instance, interesting to know who were the owners of a land 
parcel in 1980, or how did land use of a given piece of land change over the last 20 years. 

Spatiotemporal data models are data models that can also handle temporal information in 
spatial data.  Several models have been proposed.  The most important ones will be 
discussed briefly.  Before we describe the major characteristics of the spatiotemporal data 
models, we need a framework to describe the nature of time itself.  Time can be 
characterized according to the following properties: 

Time density.  Time can be discrete or continuous.  Discrete time is composed of 
discrete elements (seconds, minutes, hours, days, months, or years).  In continuous time, 
for two points in time, there is always another point in between.  We can also structure 
time by events (points in time) or states (time intervals).  When we represent states by 
intervals bounded by nodes (events) we can derive temporal relationships between events 
and states such as “before”, “overlap”, “after”, etc. 

Dimensionality of time.  Valid time (or world time) is the time when an event really 
happened.  Transaction time (or database time) is the time when the event was recorded 
in the database. 

Layer 1

Layer 2
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Time order.  Time can be linear, extending from the past to the present, and into the 
future.  We know also branching time (possible scenarios from a certain point in time 
onwards) and cyclic time (repeating cycles such as seasons or days of a week). 

Measures of time.  A chronon is the shortest non-decomposable unit of time that is 
supported by a database (e.g., a millisecond).  The life span of an object is measured by a 
(finite) number of chronons.  Granularity is the precision of a time value in a database 
(e.g., year, month, day, second, etc.).  Different applications require different granularity.  
In cadastral applications, time granularity can be a day; in geological mapping, time 
granularity is more likely in the order of thousands of years. 

Time reference.  Time can be represented as absolute (fixed time) or relative (implied 
time).  Absolute time marks points on the timeline where events happen (e.g., “6 July 
1999 at 11:15 p.m.”).  Relative time is indicated relative to other points in time (e.g., 
“yesterday”, “last year”, “tomorrow,” which are all relative to “now”, or “two weeks 
later,” which may be relative to an arbitrary point in time.). 

In spatiotemporal data models, we consider changes of spatial and thematic attributes 
over time.  In data analysis, we can keep the spatial domain fixed and look only at the 
attribute changes over time for a given location in space.  We would, for instance, be 
interested how land cover changed for a given location or how the land use changed for a 
given land parcel over time, provided its boundary did not change. 

On the other hand, we can keep the attribute domain fixed and consider the spatial 
changes over time for a given thematic attribute.  In this case, we could be interested to 
see which locations were covered by forest over a given period. 

Finally, we can assume both the spatial and attribute domain variable and consider how 
an object changed over time.  This actually leads to notions of object motion, and these 
are a subject of current research, with two of the applications being traffic control and 
mobile telephony.  But many more applications are on the horizon: think of wildlife 
tracking, disease control, and weather forecasting.  Here, the problem of object identity 
becomes apparent.  When does a change or movement cause an object to disappear and 
become a new one? 

In the following, we describe the major characteristics of some popular spatiotemporal 
models. 

13.4.3.1 Space-Time Cube Model 

This model is based on a two-dimensional space (spanned by the x- and y-axis) whose 
features are traced through time (along the z-axis) thereby creating a space-time cube.  
The traces of objects through time create a worm-like trajectory in the space-time cube.  
This model potentially allows absolute, continuous, linear, branching and cyclic time.  It 
supports only valid time.  The attribute domain is kept fixed and the spatial domain 
variable. 

13.4.3.2 Snapshot Model 

In the snapshot model, layers of the same theme are time-stamped.  For every point in 
time that we would like to consider, we have to store a layer and assign the time to it as 
an attribute.  We do not have any information about the events that caused different states 
between layers.  This model is based on a linear, absolute, discrete time.  It supports only 
valid time and multiple granularity.  The spatial domain is fixed (field-based) and the 
attribute domain is variable. 

13.4.3.3 Space-Time Composite Model 

The space-time composite model starts with a two-dimensional situation (plane or layer) 
at a given start time.  Every change of features that happens later is projected onto the 
initial plane and intersected with the existing features, thereby creating an incrementally 
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built polygon mesh.  Every polygon in this mesh has its attribute history stored with it.  
The space-time composite model is based on linear, discrete, relative time.  It supports 
both valid and transaction time, and multiple granularity.  It keeps the attribute domain 
fixed and the spatial domain variable. 

13.4.3.4 Event-based Model 

In an event-based model, we start with an initial state and record events (changes) along 
the time line.  Whenever a change occurs, an entry is recorded.  This is a time-based 
model.  The spatial and thematic attribute domains are secondary.  The model is based on 
discrete, linear, relative time, supports only valid time and multiple granularity. 

13.4.3.5 Spatiotemporal Object Model 

This model is based on spatio-temporal objects (ST-objects) that are a complex of ST-
atoms (STA).  Both objects and atoms have a spatial and a temporal extent.  The model is 
based on discrete, absolute, linear time, and supports valid and transaction time as well as 
multiple granularity. 

13.5 Summary 

Geographical information systems process spatial information.  The information is 
derived from spatial data in a database.  To sensibly work with these systems, we need 
models of spatial information as a framework for database design.  These models address 
the spatial, thematic and temporal dimensions of real world phenomena.  An 
understanding of the principle concepts of space and time rooted in philosophy, physics 
and mathematics is a necessary prerequisite to develop and use spatial data models. 

We know two major approaches to spatial data modeling, the analogue map approach, 
and spatial databases.  Today, the function of maps as data storage (map as a database) is 
increasingly taken over by spatial databases.  In databases, we store representations of 
phenomena in the real world.  These representations are abstractions according to selected 
spatial data models.  We know two fundamental approaches to spatial data modeling, 
field-based and object-based models.  Both have their merits, advantages and 
disadvantages for particular applications. 

Consistency is an important requirement for every model.  Topology provides us with the 
mathematical tools to define and enforce consistency constraints for spatial databases, 
and to derive a formal framework for spatial relationships among spatial objects. 

Spatial data not only possess spatial and thematic attributes, but extend also into the 
temporal domain.  A model of time for spatial information is an important ingredient for 
any spatial data model, thus leading to what is called spatiotemporal data models. 
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his section contains solutions of the exercises mentioned in the text.  The reader 

is advised to first try to solve the problems him/herself before consulting this 

section.  For many of the problems a detailed solution is given; for some only 

the results are mentioned. 
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Chapter 2 

 

Chapter 3 

 

Chapter 4 

 

Chapter 5 

Exercise 16 },,,,{ gfedbCB  , CdcaAC  },,{ , },{ caCB  , }},{},{},{{{},)( cacaCB   

 

Chapter 6 

Exercise 19 f is not symmetric because <1,4> is in f but not <4,1>.  f is not transitive because <2,3> and <3,2> 
in f but not <2,2>.  g is not symmetric because <3,1> in g but not <1,3>.  g is transitive.  h is not 
symmetric because <2,1> in h but not <1,2>.  h is not transitive because <2,1> and <1,4> in h but 
not <2,4>. 

Exercise 20  is not a function because 2 has more than one value!   is not a function because not all 

elements of the domain appear in the relation!   is a function!  The fact that <2,1> appears twice 
does not change the set of pairs. 

Exercise 21 },{21  daRR , },{12  dbRR , },,,,,{2
1  dacaaaR , 

},,,,,{3
2  cbdbbbR  
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Exercise 24  

Exercise 26 (a) (11,2,-5), (b) (1,1,-9), (c) (7,14,21) 

Exercise 27  

Exercise 28 7 

Chapter 8 

Exercise 31 Both algebras are commutative groups.  This can easily be verified by the usual laws for addition 
and negative numbers.  The function xxf 2)(   is surjective (all even numbers appear as values) 
and injective (distinct arguments produce distinct values), therefore bijective.  Furthermore, we 

f g

h
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have that )()(22)(2)( bfafbababaf  .  )(2)(2)( afaaaf  .  002)0( f .  
Therefore the function is an isomorphism! 

Exercise 32 This can be easily verified by substituting T and F into the axioms for a Boolean algebra and 
applying the rules for logical operators. 
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Exercise 33 The function is surjective and maps every element of I to B.  Because the function is surjective, it 
cannot be an isomorphism!  To prove that the function maps the binary operation properly, we 
distinguish between four cases for , with  

a b f(a+b) with + as usual f(a) f(b) 
f(a)+f(b) with + as 

defined in the  
operation table 

even even even + even = even, therefore 0 0 0 0 
even odd even + odd = odd, therefore 1 0 1 1 
odd even odd + even = odd, therefore 1 1 0 1 
odd odd odd + odd = even, therefore 0 1 1 0 

 To prove that the unary operation maps correctly, we show that f(-even) = -f(even) = -0 = 0 and f(-
odd) = -f(odd) = -(1) = 1.  The constant maps as f(0) = 0, because 0 is even. 

Chapter 9 

 

Chapter 10 

Exercise 35 The order diagram of the poset looks like 

 
 
The normal completion lattice is built as follows:  ({A}*)* = {A,C}, ({B}*)* = {B,D}, ({C}*)* = 
{C}, ({D}*)* = {D}, ({A,B}*)* = {A,B,C,D}, ({A,C}*)* = {A,C}, ({A,D}*)* = {A,B,C,D}, 
({B,C}*)* = {A,B,C,D}, ({B,D}*)* = {B,D}, ({C,D}*)* = {A,B,C,D}, ({A,B,C}*)* = {A,B,C,D}, 
({A,C,D}*)* = {A,B,C,D}, ({A,B,D}*)* = {A,B,C,D}, ({B,C,D}*)* = {A,B,C,D}, ({A,B,C,D}*)* = 
{A,B,C,D}, ({ }*)* = {} 
 
This gives the following poset ordered by set inclusion and after the mapping of corresponding 
elements and renaming the universe: 

ba  Iba ,

A B

C D
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absurdity, 9 
antisymmetrix, 34 
Arabs, 2 
argument 

logical, 20 
assertion, 6 
Babylonians, 2 
bijection. See bijective 
bijective, 37 
CANTOR, 26 
cardinality, 26 
Cartesian product, 32 
Chinese, 2 
codomain, 33, 36 
complement, 27 
composite function, 37 
composite relation, 35 
conclusion, 20 
conjunction, 7 
constructive dilemma, 21 
contingency, 9 
contradiction, 9 
contrapositive, 8 
converse, 8 
cross product, 32, See Cartesian product 
destructive dilemma, 21 
difference, 27 
digraph, 33 
directed graph. See digraph 
disjunction, 7 
domain, 33, 36 
Egyptians, 2 
equivalence class, 35 
equivalence relation, 35 
EUCLID, 2 
exclusive or, 7 
existential, 15 
existential generalization, 22 
existential instantiation, 22 
existential quantifier. See quantifier 
function, 2, 36 
hypotheses, 20 

implication, 8 
inclusive or, 7, See disjunction 
Indians, 2 
injection. See injective 
injective, 37 
intersection, 27 
inverse function, 40 
irreflexive, 34 
logic, 2 
logical and, 7, See conjunction 
map, 36, See function 
mapping, 36, See function 
modus ponens, 21 
modus tollens, 21 
negation, 7 
one-to-one. See injective 
onto. See surjective 
operators, 7 
power set, 29 
predicate, 14 
premises, 20 
proposition, 6 
propositional forms, 6 
propositional variables, 6 
quantifier 

existential, 15 
universal, 15 

quotient set, 35 
reflexive, 34 
relation, 2, 33 
satisfiable, 15, 16 
set, 26 
set theory, 2 
structures, 2 
subset, 27 

proper, 27 
Sumerians, 2 
superset, 27 
surjection. See surjective 
surjective, 37 
syllogism, 21 

disjunctive, 21 
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hypothetical, 21 
symmetric, 34 
tautology, 9 
transformation, 36, See function 
transitive, 34 
truth table, 7 
union, 27 
universal generalization, 22 

universal instantiation, 22 
universal quantifier. See quantifier 
universe. See universe of discourse 
universe of discourse, 14 
unsatisfiable, 15, 16 
valid, 16 

 


