
Introduction
Parallel Systems?

Parallel Programming
Conclusion

An Introduction to Parallel Systems
Lecture 1 - Who, What, Why, Where, When?

Martin Brain

University of Bath

November 15, 2007

Martin Brain An Introduction to Parallel Systems



Introduction
Parallel Systems?

Parallel Programming
Conclusion

Introduction (Who & Where)

I Martin Brain, 3rd year PhD Student, University of Bath
ma9mjb@bath.ac.uk

I Course website
http://www.cs.bath.ac.uk/~mjb/parallel/

I An introduction to ...

I “multi-disciplinary”

Martin Brain An Introduction to Parallel Systems

ma9mjb@bath.ac.uk
http://www.cs.bath.ac.uk/~mjb/parallel/


Introduction
Parallel Systems?

Parallel Programming
Conclusion

When

Week 1 Introduction – Who, What, Why, Where, When?

Week 2 Data Parallelism and Vector Processors

Week 3 Message Passing Systems

Week 4 Shared Resource Parallelism

Martin Brain An Introduction to Parallel Systems



Introduction
Parallel Systems?

Parallel Programming
Conclusion

Why?

Why bother learning about parallel systems?

Martin Brain An Introduction to Parallel Systems



Introduction
Parallel Systems?

Parallel Programming
Conclusion

Why?

Why bother learning about parallel systems?

I Faster

I Use of parallel hardware

I More efficient use of hardware

I Reliability

I Natural programming model

Martin Brain An Introduction to Parallel Systems



Introduction
Parallel Systems?

Parallel Programming
Conclusion

What?

What are parallel systems?

I Hardware (within core, multi-core, multi-processor)

I Within the operating system kernel

I Programming languages / userspace

I Between computers

I Between groups of computers

I Between people

Martin Brain An Introduction to Parallel Systems



Introduction
Parallel Systems?

Parallel Programming
Conclusion

Classification of Parallel Systems

I Synchronous vs. asynchronous

I Homogeneous vs. heterogeneous

I Static vs. dynamic

I Reliable vs. unreliable

I Scalability

I Granularity

I Concurrency

Martin Brain An Introduction to Parallel Systems



Introduction
Parallel Systems?

Parallel Programming
Conclusion

How?

1. Take an algorithm (not a task) and find the bits that can be
done simultaneously - i.e find the bits that are independent.

2. Consider what order sub tasks have to be done and the
dependencies between them.

3. (Access to) resources are the limit.

Martin Brain An Introduction to Parallel Systems



Introduction
Parallel Systems?

Parallel Programming
Conclusion

Resource Sharing

no sharing ↔ explicit sharing ↔ implicit sharing

data parallel ↔ message passing ↔ shared resource

Martin Brain An Introduction to Parallel Systems



Introduction
Parallel Systems?

Parallel Programming
Conclusion

Examples

I Matrix calculations

I Search engines

I Game playing / search algorithms

I Virtual world

I Databases

I Climate simulation

Martin Brain An Introduction to Parallel Systems



Introduction
Parallel Systems?

Parallel Programming
Conclusion

The Good

I Amdahl’s Law:
0 ≤ P ≤ 1, proportion of task that can be done in parallel.
N, the number of nodes.

speedup =
1

(1 − P) + P

N

Martin Brain An Introduction to Parallel Systems



Introduction
Parallel Systems?

Parallel Programming
Conclusion

The Good

I Amdahl’s Law:
0 ≤ P ≤ 1, proportion of task that can be done in parallel.
N, the number of nodes.

speedup =
1

(1 − P) + P

N

I Superlinear speed up is possible

Martin Brain An Introduction to Parallel Systems



Introduction
Parallel Systems?

Parallel Programming
Conclusion

The Good

I Amdahl’s Law:
0 ≤ P ≤ 1, proportion of task that can be done in parallel.
N, the number of nodes.

speedup =
1

(1 − P) + P

N

I Superlinear speed up is possible

Before you start, work out how much improvement you can expect
– is it worth it?

Martin Brain An Introduction to Parallel Systems



Introduction
Parallel Systems?

Parallel Programming
Conclusion

The Bad

Running the system may be non deterministic / timing dependant.

Martin Brain An Introduction to Parallel Systems



Introduction
Parallel Systems?

Parallel Programming
Conclusion

The Bad

Running the system may be non deterministic / timing dependant.

I Can’t find bugs by testing

I Hard to debug

I Hard to profile

Martin Brain An Introduction to Parallel Systems



Introduction
Parallel Systems?

Parallel Programming
Conclusion

The Bad

Running the system may be non deterministic / timing dependant.

I Can’t find bugs by testing

I Hard to debug

I Hard to profile

Design and formal modelling are important.

Martin Brain An Introduction to Parallel Systems



Introduction
Parallel Systems?

Parallel Programming
Conclusion

Problems Unique to Parallel Systems

Include ...

I Race conditions
array[numberOfItems++] = input;

I Synchronisation of processes

I Synchronisation of data (replication)

Martin Brain An Introduction to Parallel Systems



Introduction
Parallel Systems?

Parallel Programming
Conclusion

The Dining Philosopher’s Problem

Something to think about ...

Martin Brain An Introduction to Parallel Systems



Introduction
Parallel Systems?

Parallel Programming
Conclusion

Conclusion

I Parallel systems exist at many different levels in computing
and have a variety of properties.

I Potentially linear speed up (or more) but introduce a number
of theoretical and practical problems.

I Resources and the sharing of resources are key.

Martin Brain An Introduction to Parallel Systems



Introduction
Parallel Systems?

Parallel Programming
Conclusion

Questions?

Questions?

Made using only Free Software

Martin Brain An Introduction to Parallel Systems


	Introduction
	Parallel Systems?
	Parallel Programming
	Conclusion

