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Introduction (Who & Where)

I Martin Brain, 3rd year PhD Student, University of Bath
ma9mjb@bath.ac.uk

I Course website
http://www.cs.bath.ac.uk/~mjb/parallel/

I An introduction to ...

I “multi-disciplinary”
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When

Week 1 Introduction – Who, What, Why, Where, When?

Week 2 Data Parallelism and Vector Processors

Week 3 Message Passing Systems

Week 4 Shared Resource Parallelism
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Why?

Why bother learning about parallel systems?
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Why?

Why bother learning about parallel systems?

I Faster

I Use of parallel hardware

I More efficient use of hardware

I Reliability

I Natural programming model
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What?

What are parallel systems?

I Hardware (within core, multi-core, multi-processor)

I Within the operating system kernel

I Programming languages / userspace

I Between computers

I Between groups of computers

I Between people
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Classification of Parallel Systems

I Synchronous vs. asynchronous

I Homogeneous vs. heterogeneous

I Static vs. dynamic

I Reliable vs. unreliable

I Scalability

I Granularity

I Concurrency
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How?

1. Take an algorithm (not a task) and find the bits that can be
done simultaneously - i.e find the bits that are independent.

2. Consider what order sub tasks have to be done and the
dependencies between them.

3. (Access to) resources are the limit.
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Resource Sharing

no sharing ↔ explicit sharing ↔ implicit sharing

data parallel ↔ message passing ↔ shared resource
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Examples

I Matrix calculations

I Search engines

I Game playing / search algorithms

I Virtual world

I Databases

I Climate simulation
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The Good

I Amdahl’s Law:
0 ≤ P ≤ 1, proportion of task that can be done in parallel.
N, the number of nodes.

speedup =
1

(1 − P) + P

N
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The Good

I Amdahl’s Law:
0 ≤ P ≤ 1, proportion of task that can be done in parallel.
N, the number of nodes.

speedup =
1

(1 − P) + P

N

I Superlinear speed up is possible
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The Good

I Amdahl’s Law:
0 ≤ P ≤ 1, proportion of task that can be done in parallel.
N, the number of nodes.

speedup =
1

(1 − P) + P

N

I Superlinear speed up is possible

Before you start, work out how much improvement you can expect
– is it worth it?
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The Bad

Running the system may be non deterministic / timing dependant.
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The Bad

Running the system may be non deterministic / timing dependant.

I Can’t find bugs by testing

I Hard to debug

I Hard to profile
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The Bad

Running the system may be non deterministic / timing dependant.

I Can’t find bugs by testing

I Hard to debug

I Hard to profile

Design and formal modelling are important.
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Problems Unique to Parallel Systems

Include ...

I Race conditions
array[numberOfItems++] = input;

I Synchronisation of processes

I Synchronisation of data (replication)
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The Dining Philosopher’s Problem

Something to think about ...
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Conclusion

I Parallel systems exist at many different levels in computing
and have a variety of properties.

I Potentially linear speed up (or more) but introduce a number
of theoretical and practical problems.

I Resources and the sharing of resources are key.
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Questions?

Questions?

Made using only Free Software
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