Manuel C. Molles Jr. is an emeritus Professor of Biology at the University of New Mexico, where he has been a member of the faculty and curator in the Museum of Southwestern Biology since 1975 and where he continues to teach ecology and advise graduate students. He received his B.S. from Humboldt State University and his Ph.D. from the Department of Ecology and Evolutionary Biology at the University of Arizona. Seeking to broaden his geographical perspective, he has taught and conducted ecological research in Latin America, the Caribbean, and Europe. He was awarded a Fulbright Research Fellowship to conduct research on river ecology in Portugal and has held visiting professor appointments in the Department of Zoology at the University of Coimbra, Portugal, in the Laboratory of Hydrology at the Polytechnic University of Madrid, Spain, and at the University of Montana’s Flathead Lake Biological Station.

Originally trained as a marine ecologist and fisheries biologist, the author has worked mainly on river and riparian ecology at the University of New Mexico. His research has covered a wide range of ecological levels, including behavioral ecology, population biology, community ecology, ecosystem ecology, biogeography of stream insects, and the influence of a large-scale climate system (El Niño) on the dynamics of southwestern river and riparian ecosystems. His current research concerns the influence of climate change and climatic variability on the dynamics of populations and communities along steep gradients of temperature and moisture in the mountains of the Southwest. Throughout his career, Dr. Molles has attempted to combine research, teaching, and service, involving undergraduate as well as graduate students in his ongoing projects. At the University of New Mexico, he has taught a broad range of lower division, upper division, and graduate courses, including Principles of Biology. Evolution and Ecology, Stream Ecology, Limnology and Oceanography, Marine Biology, and Community and Ecosystem Ecology. He has taught courses in Global Change and River Ecology at the University of Coimbra, Portugal, and General Ecology, and Groundwater and Riparian Ecology at the Flathead Lake Biological Station. Dr. Manuel Molles was named Teacher of the Year by the University of New Mexico for 1995–96 and Potter Chair in Plant Ecology in 2000.
Dedication

To Mary Anne and Misha
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Natural History</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1 Life on Land</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2 Life in Water</td>
<td>47</td>
</tr>
<tr>
<td>II</td>
<td>Individuals</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>3 Temperature Relations</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>4 Water Relations</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>5 Energy and Nutrient Relations</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>6 Social Relations</td>
<td>157</td>
</tr>
<tr>
<td>III</td>
<td>Population Ecology</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>7 Population Genetics and Natural Selection</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>8 Population Distribution and Abundance</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>9 Population Dynamics</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>10 Population Growth</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>11 Life Histories</td>
<td>272</td>
</tr>
<tr>
<td>IV</td>
<td>Interactions</td>
<td>297</td>
</tr>
<tr>
<td></td>
<td>12 Competition</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>13 Exploitative Interactions: Predation,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Herbivory, Parasitism, and Disease</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>14 Mutualism</td>
<td>347</td>
</tr>
<tr>
<td>V</td>
<td>Communities and Ecosystems</td>
<td>369</td>
</tr>
<tr>
<td></td>
<td>15 Species Abundance and Diversity</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>16 Species Interactions and Community</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 Primary Production and Energy Flow</td>
<td>411</td>
</tr>
<tr>
<td></td>
<td>18 Nutrient Cycling and Retention</td>
<td>432</td>
</tr>
<tr>
<td></td>
<td>19 Succession and Stability</td>
<td>454</td>
</tr>
<tr>
<td>VI</td>
<td>Large-Scale Ecology</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>20 Landscape Ecology</td>
<td>481</td>
</tr>
<tr>
<td></td>
<td>21 Geographic Ecology</td>
<td>506</td>
</tr>
<tr>
<td></td>
<td>22 Global Ecology</td>
<td>530</td>
</tr>
</tbody>
</table>
4.3 Regulating Body Temperature 91
 Balancing Heat Gain Against Heat Loss 91
 Temperature Regulation by Plants 92
 Temperature Regulation by Ectothermic Animals 94
 Temperature Regulation by Endothermic Animals 96
 Temperature Regulation by Thermogenic Plants 99
 Concept 4.3 Review 101

4.4 Surviving Extreme Temperatures 101
 Inactivity 101
 Reducing Metabolic Rate 101
 Hibernation by a Tropical Species 103
 Concept 4.4 Review 103

Applications: Climatic Warming and the Local Extinction of a Land Snail 103

Chapter 5 Water Relations 108

Concepts 110

5.1 Water Availability 110
 Water Content of Air 110
 Water Movement in Aquatic Environments 111
 Water Movement Between Soils and Plants 112
 Concept 5.1 Review 114

5.2 Water Regulation on Land 114
 Water Acquisition by Animals 115
 Water Acquisition by Plants 116
 Water Conservation by Plants and Animals 118
 Investigating the Evidence 5: Sample Size 119
 Dissimilar Organisms with Similar Approaches to Desert Life 122
 Two Arthropods with Opposite Approaches to Desert Life 122
 Concept 5.2 Review 124

5.3 Water and Salt Balance in Aquatic Environments 126
 Marine Fish and Invertebrates 126
 Freshwater Fish and Invertebrates 126
 Concept 5.3 Review 128

Applications: Using Stable Isotopes to Study Water Uptake by Plants 129
 Stable Isotope Analysis 129
 Using Stable Isotopes to Identify Plant Water Sources 129

Chapter 6 Energy and Nutrient Relations 133

Concepts 134

6.1 Energy Sources 134
 Photosynthesis 135
 Heterotrophs 139
 Chemosynthesis 144
 Concept 6.1 Review 145

6.2 Energy Limitation 146
 Photon Flux and Photosynthetic Response Curves 146
 Food Density and Animal Functional Response 146
 Concept 6.2 Review 148

6.3 Optimal Foraging Theory 148
 Testing Optimal Foraging Theory 148
 Optimal Foraging by Plants 150
 Investigating the Evidence 6: Variation in Data 151
 Concept 6.3 Review 152

Applications: Bioremediation—Using the Trophic Diversity of Bacteria to Solve Environmental Problems 152
 Leaking Underground Storage Tanks 153
 Cyanide and Nitrates in Mine Spoils 153

Chapter 7 Social Relations 157

Concepts 159

7.1 Mate Choice 160
 Mate Choice and Sexual Selection in Guppies 160
 Mate Choice Among Scorpionflies 164
 Nonrandom Mating Among Wild Radish 167
 Concept 7.1 Review 169

7.2 Sociality 169
 Cooperative Breeders 170
 Investigating the Evidence 7: Scatter Plots and the Relationship Between Variables 172
 Concept 7.2 Review 175

7.3 Eusociality 175
 Eusocial Species 175
 Evolution of Eusociality 177
 Concept 7.3 Review 179

Applications: Behavioral Ecology and Conservation 179
 Tinbergen's Framework 179
 Environmental Enrichment and Development of Behavior 179

Section III POPULATION ECOLOGY

Chapter 8 Population Genetics and Natural Selection 184

Concepts 186

8.1 Variation Within Populations 187
 Variation in Plant Populations 187
 Variation in Animal Populations 190
 Concept 8.1 Review 192

8.2 Hardy-Weinberg 193
 Calculating Gene Frequencies 193
 Concept 8.2 Review 195
Chapter 10 Population Dynamics 231

Chapter 11 Population Growth 254
Chapter 12 Life Histories 272

Concepts 273

12.1 Offspring Number Versus Size 274
 Egg Size and Number in Fish 274
 Seed Size and Number in Plants 276
 Concept 12.1 Review 280

12.2 Adult Survival and Reproductive Allocation 280
 Life History Variation Among Species 280
 Life History Variation Within Species 281
 Concept 12.2 Review 284

12.3 Life History Classification 284
 r and K Selection 284
 Plant Life Histories 285

Investigating the Evidence 12: A Statistical Test for
 Distribution Pattern 286
 Opportunistic, Equilibrium, and Periodic Life
 Histories 288
 Reproductive Effort, Offspring Size, and Benefit-Cost
 Ratios 290
 Concept 12.3 Review 291

Applications: Using Life History Information
 to Restore Riparian Forests 291

Section IV
INTERACTIONS

Chapter 13 Competition 298

Concepts 300

13.1 Intraspecific Competition 300
 Intraspecific Competition Among Plants 300
 Intraspecific Competition Among Planting 301
 Interference Competition Among Terrestrial Isopods 302
 Concept 13.1 Review 302

13.2 Niches 302
 The Feeding Niches of Galápagos Finches 303
 The Habitat Niche of a Salt Marsh Grass 304
 Concept 13.2 Review 305

13.3 Mathematical and Laboratory Models 305
 Model of Competition Among Specific Species 305
 Laboratory Models of Competition 307
 Concept 13.3 Review 309

13.4 Competition and Niches 309
 Niches and Competition Among Plants 309
 Niche Overlap and Competition Between Barnacles 310
 Competition and the Habitat of a Salt Marsh Grass 311
 Competition and the Niches of Small Rodents 311
 Character Displacement 312
 Investigating the Evidence 13: Field
 Experiments 315
 Evidence for Competition in Nature 316
 Concept 13.4 Review 316

Applications: Using Predators to Control a Parasite 343

Chapter 15 Mutualism 347

Concepts 349

15.1 Plant Mutualisms 349
 Plant Performance and Mycorrhizal Fungi 349
 Ants and Swollen Thorn Acacias 352
 A Temperate Plant Protection Mutualism 355
 Concept 15.1 Review 356

15.2 Coral Mutualisms 357
 Zooxanthellae and Corals 357
 A Coral Protection Mutualism 358
 Concept 15.2 Review 359

15.3 Evolution of Mutualism 359
 Investigating the Evidence 15: Confidence
 Intervals 360
 Facultative Ant-Plant Protection Mutualisms 362
 Concept 15.3 Review 363

Applications: Mutualism and Humans 363
 The Honeyguide 363
 Guiding Behavior 364
Section V
COMMUNITIES AND ECOSYSTEMS

Chapter 16 Species Abundance and Diversity 370

Concepts 372
16.1 Species Abundance 372
 The Lognormal Distribution 372
 Concept 16.1 Review 373
16.2 Species Diversity 373
 A Quantitative Index of Species Diversity 374
 Rank-Abundance Curves 374
 Investigating the Evidence 16: Estimating the Number of Species in Communities 376
 Concept 16.2 Review 377
16.3 Environmental Complexity 377
 Forest Complexity and Bird Species Diversity 377
 Niches, Heterogeneity, and the Diversity of Algae and Plants 378
 The Niches of Algae and Terrestrial Plants 378
 Complexity in Plant Environments 379
 Soil and Topographic Heterogeneity and the Diversity of Tropical Forest Trees 379
 Algal and Plant Species Diversity and Increased Nutrient Availability 380
 Nitrogen Enrichment and Ectomycorrhizal Fungus Diversity 380
 Concept 16.3 Review 382
16.4 Disturbance and Diversity 382
 The Nature of Equilibrium 382
 The Nature and Sources of Disturbance 382
 The Intermediate Disturbance Hypothesis 383
 Disturbance and Diversity in the Intertidal Zone 383
 Disturbance and Diversity in Temperate Grasslands 384
 Concept 16.4 Review 385
Applications: Disturbance by Humans 385
 Human Disturbance: An Ancient Feature of the Biosphere 386
 Disturbance by Humans and the Diversity of Chalk Grasslands 387

Chapter 17 Species Interactions and Community Structure 391

Concepts 392
17.1 Community Webs 392
 Detailed Food Webs Reveal Great Complexity 392
 Strong Interactions and Food Web Structure 394
 Concept 17.1 Review 394
17.2 Keystone Species 394
 Food Web Structure and Species Diversity 395
 Experimental Removal of Sea Stars 396
 Snail Effects on Algal Diversity 397
 Fish as Keystone Species in River Food Webs 400
 Investigating the Evidence 17: Using Confidence Intervals to Compare Populations 401
 Concept 17.2 Review 403
17.3 Exotic Predators 403
 Introduced Fish: Predators That Simplify Aquatic Food Webs 403
 Concept 17.3 Review 405
17.4 Mutualistic Keystones 405
 A Cleaner Fish as a Keystone Species 405
 Seed Dispersal Mutualists as Keystone Species 405
 Concept 17.4 Review 406
Applications: Humans as Keystone Species 406
 The Empty Forest: Hunters and Tropical Rain Forest Animal Communities 406
 Ants and Agriculture: Keystone Predators for Pest Control 407

Chapter 18 Primary Production and Energy Flow 411

Concepts 413
18.1 Patterns of Terrestrial Primary Production 413
 Actual Evapotranspiration and Terrestrial Primary Production 413
 Soil Fertility and Terrestrial Primary Production 414
 Concept 18.1 Review 415
18.2 Patterns of Aquatic Primary Production 415
 Patterns and Models 416
 Whole Lake Experiments on Primary Production 416
 Global Patterns of Marine Primary Production 417
 Concept 18.2 Review 418
18.3 Consumer Influences 418
 Piscivores, Planktivores, and Lake Primary Production 419
 Grazing by Large Mammals and Primary Production on the Serengeti 421
 Investigating the Evidence 18: Comparing Two Populations with the t-Test 422
 Concept 18.3 Review 423
18.4 Trophic Levels 424
 A Trophic Dynamic View of Ecosystems 424
 Energy Flow in a Temperate Deciduous Forest 424
 Concept 18.4 Review 426
Applications: Using Stable Isotope Analysis to Trace Energy Flow Through Ecosystems 426
 Trophic Levels of Tropical River Fish 426
 Using Stable Isotopes to Identify Sources of Energy in a Salt Marsh 427
 Food Habits of Prehistoric Human Populations 428
Chapter 19 Nutrient Cycling and Retention 432

Concepts 436

19.1 Rates of Decomposition 436
Decomposition in Two Mediterranean Woodland Ecosystems 436
Decomposition in Two Temperate Forest Ecosystems 437
Decomposition in Aquatic Ecosystems 439
Investigating the Evidence 19: Assumptions for Statistical Tests 441
Concept 19.1 Review 442

19.2 Organisms and Nutrients 442
Nutrient Cycling in Streams 442
Animals and Nutrient Cycling in Terrestrial Ecosystems 444
Plants and the Nutrient Dynamics of Ecosystems 445
Concept 19.2 Review 447

19.3 Disturbance and Nutrients 447
Disturbance and Nutrient Loss from the Hubbard Brook Experimental Forest 447
Flooding and Nutrient Export by Streams 448
Concept 19.3 Review 449

Applications: Altering Aquatic and Terrestrial Ecosystems 449

Chapter 20 Succession and Stability 454

Concepts 456

20.1 Community Changes During Succession 456
Primary Succession at Glacier Bay 456
Secondary Succession in Temperate Forests 457
Succession in Rocky Intertidal Communities 458
Succession in Stream Communities 459
Concept 20.1 Review 460

20.2 Ecosystem Changes During Succession 460
Ecosystem Changes at Glacier Bay 460
Four Million Years of Ecosystem Change 461
Recovery of Nutrient Retention Following Disturbance 463
Succession and Stream Ecosystem Properties 464
Concept 20.2 Review 465

20.3 Mechanisms of Succession 465
Successional Mechanisms in the Rocky Intertidal Zone 467
Successional Mechanisms in Forests 468
Concept 20.3 Review 469

20.4 Community and Ecosystem Stability 469
Some Definitions 470
Lessons from the Park Grass Experiment 470
Replicate Disturbances and Desert Stream Stability 471

Chapter 21 Landscape Ecology 481

Concepts 483

21.1 Landscape Structure 483
The Structure of Six Landscapes in Ohio 483
The Fractal Geometry of Landscapes 485
Concept 21.1 Review 486

21.2 Landscape Processes 487
Landscape Structure and the Dispersal of Mammals 487
Habitat Patch Size and Isolation and the Density of Butterfly Populations 488
Habitat Corridors and Movement of Organisms 489
Landscape Position and Lake Chemistry 491
Investigating the Evidence 21: Comparison of Two Samples Using a Rank Sum Test 492
Concept 21.2 Review 493

21.3 Origins of Landscape Structure and Change 493
Geological Processes, Climate, and Landscape Structure 493
Organisms and Landscape Structure 495
Fire and the Structure of a Mediterranean Landscape 499
Concept 21.3 Review 500

Applications: Restoring a Riverine Landscape 500
Riverine Restoration: The Kissimmee River 500

Chapter 22 Geographic Ecology 506

Concepts 508

22.1 Area, Isolation, and Species Richness 508
Sampling Area and Number of Species 508
Island Area and Species Richness 508
Island Isolation and Species Richness 509
Concept 22.1 Review 511

22.2 The Equilibrium Model of Island Biogeography 511
Species Turnover on Islands 513
Experimental Island Biogeography 514
Colonization of New Islands by Plants 515
Manipulating Island Area 516
Island Biogeography Update 516
Concept 22.2 Review 516

22.3 Latitudinal Gradients in Species Richness 517
Area and Latitudinal Gradients in Species Richness 518
23.2 Human Activity and the Global Nitrogen Cycle 539
 Concept 23.2 Review 540
23.3 Changes in Land Cover 540
 Tropical Deforestation 540
 Investigating the Evidence 23: Discovering What's Been Discovered 544
 Concept 23.3 Review 544
23.4 Human Influence on Atmospheric Composition 545
 Depletion and Recovery of the Ozone Layer 548
 The Future 548
 Concept 23.4 Review 549
Applications: Cooperative Research Networks for Global Ecology 549
Appendix A Statistical Tables 554
Appendix B Answers to Concept Review Questions 558
Appendix C Answers to Critiquing the Evidence 567
Glossary 569
References 578
Credits 588
Index 589
The accelerating pace of discovery makes the teaching of a dynamic scientific discipline such as ecology very challenging. The challenge to ecology instructors and their students is made greater by the relevance of ecology to the pressing environmental problems that threaten ecological systems at every level. As we attempt to educate students to understand and design solutions to those problems, every facet of ecology is relevant. Therefore, ideally, an introduction to ecology should include the foundations to all of its major subdisciplines. Including such breadth, and developing it to sufficient depth, is difficult. However, careful organization and a conceptual approach can ease the task.

Introductory Audience

I have written this book for students taking their first undergraduate course in ecology. I have assumed that students in this one-semester course have some knowledge of basic chemistry and mathematics and that they have had a course in general biology that included introductions to physiology, biological diversity, and evolution.

"I receive positive feedback about the text from my students. During or after the course, some students majoring in other fields have expressed an interest in switching to ecology as a major, and I believe the text contributes toward that interest."

—Carolyn Meyer
University of Wyoming

Unique Approach

In an address at the 1991 meeting of the Ecological Society of America in San Antonio, Texas, eminent ecologist Paul Risser challenged ecology instructors to focus their attention on the major concepts of the field. If we subdivide a large and dynamic subject, such as ecology, too finely, we cannot cover it in one or two academic terms. Risser proposed that by focusing on major concepts, however, we may provide students with a robust framework of the discipline upon which they can build.

This book attempts to address Risser's challenge. **Each chapter is organized around two to five major concepts, presenting the student with a manageable and memorable synthesis of the subject.** I have found that while beginning ecology students can absorb a few central concepts well, they can easily get lost in a sea of details. Each concept is supported by discussions that provide evidence for the concept and introduce students to the research approaches used in the various areas of ecology. Wherever possible, the original research and the scientists who did the research are presented. Allowing the scientists who created this field to emerge from the background and lead students through the discipline breathes life into the subject and helps students retain information.

"What primarily motivated me to adopt Ecology: Concepts and Applications is the way the author emphasizes a few key ecological concepts in each chapter and then uses relevant studies to demonstrate how scientists have "discovered" these concepts. I find this emphasis on concepts and the science behind them to be a refreshing change from the typical textbook that tends to present the science of ecology as a rather dull collection of facts. I feel that the students who read this text will come away with a better understanding not only of ecology, but also of the method of doing science."

—Tim Maret
Shippensburg University

New to This Edition

All 23 chapters of the book have been revised following the suggestions of numerous reviewers. An attempt was made to address reviewers' concerns, to update material where needed, add missing perspectives, correct errors, and generally freshen and streamline the treatment. Suggested readings have been shortened and updated, drawing mainly from literature published since the publication of the third edition.

The presentation has been reformatted to help students orient to the flow of information in each chapter. The concepts in each chapter are now numbered both in the first listing of chapter concepts and at the beginning of each section in which concepts are discussed. The concept numbers are repeated in the concept review questions that conclude each concept section. Thus the beginning and end of all concepts are signaled clearly for the student. Each "Investigating the Evidence" boxed discussion is also given the number of the chapter in which it appears, again as a locator for the student.

Over 240 study questions have been added throughout the text to help students review the major concepts. The "Concept
In chapter 6, I added material on the evolution, diversity, and significance of C₄ plants, and cross-referenced materials to chapters 18 (Liebig’s law), 19 (nutrient cycling), and 23 (atmospheric CO₂ increase).

I introduced Hamilton’s rule in chapter 7, converted a former Application to a Concept focused on evolution of eusociality and shortened for better coherence, and added a new Application on the utility of behavioral ecology in conservation.

In chapter 9, the discussion of distributions was divided into two concepts, one focused on small-scale patterns, and the other one focused on large-scale patterns. Metapopulation discussion has been moved from chapter 9 of the third edition to chapter 10.

In chapter 11, the whooping crane population growth record has been updated, as well as all the human population statistics.

In chapter 13, I explained the introductory story about root competition in more detail, rewrote two concepts to better reflect material and to be more concise, and revised and shortened the flour beetle competition experiments discussion.

In chapter 23, I updated information on the ozone hole, changed the concluding section on “The Future” to underscore the magnitude and rapidity of current global change, especially existing and predicted environmental and ecological responses to global warming. I updated the information on the U.S. LTTER Network and the International LTTER network, including an update of the map of the U.S. LTTER network.

Features Designed with the Student in Mind

The features of this textbook are unique and were carefully planned to enhance the students’ comprehension of ecology. All chapters beyond the introductory chapter 1 are based on a distinctive learning system, featuring the following key components:

Introduction: The introduction to each chapter presents the student with the flavor of the subject and important background information. Some introductions include historical events related to the subject; others present an example of an ecological process. All attempt to engage students and draw them into the discussion that follows.

Concepts: The goal of this book is to build a foundation of ecological knowledge around key concepts. These key concepts are listed after the chapter introduction to alert the student to the major topics to follow, and to provide a place where the student can find a list of the important points of each chapter. The sections in which concepts are discussed reinforce concepts with a focus on published studies. This case-study approach supports the concepts with evidence, and introduces students to the methods and people that have created the discipline of ecology.

Organized Around Key Concepts

An evolutionary perspective forms the foundation of the entire textbook, as it is needed to support understanding of major concepts. The textbook begins with a brief introduction to the nature and history of the discipline of ecology, followed by section I, which includes two chapters on natural history—life on land and life in water. Sections II through VI build a hierarchical perspective through the traditional subdisciplines of ecology: section II concerns the ecology of individuals; section III focuses on population ecology; section IV presents the ecology of interactions; section V summarizes community and ecosystem ecology; and finally, section VI discusses large-scale ecology and includes chapters on landscape, geographic, and global ecology. These topics were first introduced in section I within a natural history context. In summary, the book begins with the natural history of the planet, considers portions of the whole in the middle chapters, and ends with another perspective of the entire planet in the concluding chapter.

Significant Changes

In chapter 3, the zebra mussel information was updated, and the biome descriptions were edited to make them more concise.

Review" questions that conclude each concept discussion are designed to help students think critically about content and to encourage them to reflect on the design of research projects and on the thinking of researchers. "Investigating the Evidence" boxed discussions include questions called "Critiquing the Evidence," which are intended to explore some of the details of the statistics and study design topics presented.

Two new appendices provide the answers to the more than 240 "Concept Review" and "Critiquing the Evidence" questions.

A list of key terms at the end of each chapter alerts students to new vocabulary as it is introduced.
Illustrations: A great deal of effort has been put into the development of illustrations, both photographs and line art. The goal has been to create more effective pedagogical tools through skillful design and use of color, and to rearrange the traditional presentation of information in figures and captions. Much explanatory material is located within the illustrations, providing students with key information where they need it most.

“I love the boxes in the illustrations! I think they facilitate both the reading and comprehension for the students. I think this style is the most helpful with the graphs and charts.”

—Tatiana Roth
Coppin State College

“Investigating the Evidence” Boxes: These important readings offer “mini-lessons” on the scientific method, emphasizing statistics and study design. They are intended to present a broad outline of the process of science, while also providing step-by-step explanation. The series of boxes begins in chapter 1 with an overview of the scientific method, which provides a conceptual context for more specific material in the next 21 chapters. The last reading wraps up the series with a discussion on electronic literature searches.

“What I really like are the Investigating the Evidence (boxes) scattered through the chapters. This is an absolutely brilliant way to encourage quantification especially if there is no lab associated with the course.”

—Peter E. Buscher
Boston University

Applications: Many undergraduate students want to know how abstract ideas and general relationships can be applied to the ecological problems facing us all. They are concerned with the practical side of ecology and want to know more about the tools of science. Including a few applications in each chapter motivates students to learn more of the underlying principles of ecology. In addition, it seems that environmental problems are now so numerous and so pressing that they have erased a once easy distinction between general and applied ecology.

“The idea of Applications sections in the chapter is excellent.”

—Frank S. Gilliam
Marshall University

Application

Using Proportion to Control a Parameter

Pounding disease affects approximately 30% of married women in some areas of the world, producing a variety of health problems including infertility, stillbirth, and neonatal death. Because research is curtailed in such areas, cautious optimism is the best approach in developing effective strategies to control the problem. This is a complex parameter that is difficult to measure, but proportional data can be used to develop effective strategies. We assume that a parameter is directly proportional to the number of years of age. That is, as the number of years of age increases, so does the parameter.

![Diagram of a normal distribution, showing the percentage of observations about the mean, and these standard deviations of the mean.](Figure 11.29)
End-of-Chapter Material:

- **Summary** The chapter summary reviews the main points of the content. The concepts around which each chapter is organized are boldfaced and redefined in the summary to reemphasize the main points of the chapter.

- **Key Terms**

- **Review Questions** The review questions are designed to help students think more deeply about each concept and to reflect on alternative views. They also provide a place to fill in any remaining gaps in the information presented and take students beyond the foundation established in the main body of the chapter.

- **Suggested Readings** Each chapter ends with a list of suggested readings. Though all of the readings offer the student coverage beyond the chapter content, they have been chosen to serve a variety of purposes. Some are books that provide a broad overview; others are papers that trace the development of particular topics or controversies in ecology. I have provided a brief description and rationale for each.

End-of-Book Material:

- **Appendixes** Three appendixes, “Statistical Tables,” “Answers to Concept Review Questions,” and “Answers to Critiquing the Evidence,” are available to the student for reference and as study aids.

- **Glossary**

- **References** References are an important part of any scientific work. However, many undergraduates are distracted by a large number of references within the text. One of the goals of a general ecology course should be to introduce these students to the primary literature without burying them in citations. The number of citations has been reduced to those necessary to support detailed discussions of particular research projects.

- **Index**

“*This text is extraordinarily well integrated. The recurring emphasis of how the scientific method and process are used within the methods used in each case study is very well done.*”

—Thomas Pliske
Florida International University

Teaching Supplements for Instructors

Online Learning Center (OLC)
(www.mhhe.com/molles4e)

This text-specific website offers an extensive array of teaching tools. In addition to all of the student assets available, this site includes:

- Answers to review questions
- Class activities
- PowerPoint lecture presentations
- Interactive world maps
- eInstruction questions
- List of transparencies

OLC Presentation Center (found at www.mhhe.com/molles4e)

Build instructional materials where-ever, when-ever, and how-ever you want!

OLC Presentation Center is an online digital library containing assets such as photos, artwork, animations, PowerPoint, and other media types that can be used to create customized lectures, visually enhanced tests and quizzes, compelling course websites, or attractive printed support materials.

Access to your book, access to all books!

The Presentation Center library includes thousands of assets from many McGraw-Hill titles. This ever-growing resource gives instructors the power to utilize assets specific to an adopted textbook as well as content from all other books in the library.

Nothing could be easier!

Accessed from the instructor side of your textbook’s website, Presentation Center’s dynamic search engine allows you to explore by discipline, course, textbook chapter, asset type, or keyword. Simply browse, select, and download the files you need to build engaging course materials. All assets are copyrighted by McGraw-Hill Higher Education but can be used by instructors for classroom purposes.

Instructors will find the following digital assets for *Ecology: Concepts and Applications* at OLC Presentation Center:

- **Color Art** Full-color digital files of ALL illustrations in the text can be readily incorporated into lecture presentations, exams, or custom-made classroom materials. These include all of the 3-D realistic art found in this edition, representing some of the most important concepts in ecology.

- **Photos** Digital files of ALL photographs from the text can be reproduced for multiple classroom uses.

- **Additional Photos** 444 full-color bonus photographs are available in a separate file. These photos are searchable by content and will add interest and contextual support to your lectures.

- **Tables** Every table that appears in the text is provided in electronic format.

Teaching and Learning Supplements

McGraw-Hill offers various tools and technology products to support *Ecology: Concepts and Applications*. Students can order supplemental study materials by contacting their local bookstore or by calling 800-262-4729. Instructors can obtain teaching aids by calling the Customer Service Department at 800-338-3987, visiting the McGraw-Hill website at www.mhhe.com, or by contacting their local McGraw-Hill sales representative.
• **Videos** This special collection of 71 underwater video clips displays interesting habitats and behaviors for many animals in the ocean.

• **Animations** 100 full-color animations that illustrate many different concepts covered in the study of ecology are available for use in creating classroom lectures, testing materials, or online course communication. The visual impact of motion will enhance classroom presentations and increase comprehension.

• **PowerPoint Lecture Outlines** Ready-made presentations that combine art and photos and lecture notes are provided for each of the 23 chapters of the text. These outlines can be used as they are, or tailored to reflect your preferred lecture topics and sequences.

• **PowerPoint Slides** For instructors who prefer to create their lectures from scratch, all illustrations, photos, and tables are preinserted by chapter into blank PowerPoint slides for convenience.

Earth and Environmental Science DVD by Discovery Channel Education (ISBN: 978-0-07-352541-9; MHID: 0-07-352541-3)

Begin your class with a quick peek at science in action. The exciting NEW DVD by Discovery Channel Education offers 50 short (3–5 minute) videos on topics ranging from conservation to volcanoes. Search by topic and download into your PowerPoint lecture.

Licensed from some of the highest quality life science video producers in the world, these brief video clips on DVD range in length from 15 seconds to two minutes and cover all areas of general biology, from cells to ecosystems. Engaging and informative, McGraw-Hill’s digitized biology videos will help capture students’ interest while illustrating key biological concepts, applications, and processes.

Instructor’s Testing Resource CD-ROM

This CD-ROM contains a wealth of cross-platform (Windows and Macintosh) resources for the instructor. Supplements featured on this CD-ROM include a computerized test bank, which utilizes EZ Test software to quickly create customized exams. This flexible and user-friendly program allows instructors to search for questions by topic, format, or difficulty level, and edit existing questions or add new ones. Multiple versions of the test can be created, and any test can be exported for use with course management systems such as WebCT, Blackboard, or PageOut. Word files of the test bank are included for those instructors who prefer to work outside of the test-generator software. Other assets on the Instructor’s Testing and Resource CD-ROM are grouped within easy-to-use folders.

A set of 100 overhead transparencies includes key illustrations and tables from the text. The images are printed for great visibility and contrast, and labels are large and bold for clear projection.

eInstruction

This classroom performance system (CPS) utilizes wireless technology to bring interactivity into the classroom or lecture hall. Instructors and students receive immediate feedback through wireless response pads that are easy to use and engage students. eInstruction can assist instructors by:

• Taking attendance
• Administering quizzes and tests
• Creating a lecture with intermittent questions
• Using the CPS grade book to manage lectures and student comprehension
• Integrating interactivity into PowerPoint presentations

Contact your local McGraw-Hill sales representative for more information.

Course Delivery Systems

With help from WebCT, Blackboard, and other course management systems, professors can take complete control of their course content. Course cartridges containing website content, online testing, and powerful student tracking features are readily available for use within these platforms.

Learning Supplements for Students

Online Learning Center (OLC) (www.mhhe.com/molles4e)

This text-specific website offers a wide variety of student resources providing many opportunities to master the core concepts in ecology. Learn more about the exciting features provided for students through the **Ecology: Concepts and Applications** website:

• Practice quizzing
• Hyperlinks on chapter topics
• Links to professional, educational, and governmental organizations
• Animations
• Guide to electronic research
• Regional perspectives (case studies)
• Lab exercises
• Ecology/environmental science issues world map
• Periodic table
• Key term flashcards
• Career information
Preface

This introductory ecology lab manual focuses on the process of collecting, recording, and analyzing data, and equips students with the tools they need to function in more advanced science courses. It reflects the most current techniques for data gathering so that students can obtain the most accurate samples. Balanced coverage of plant, animal, and physical elements offers a diverse range of exercises. The lab manual includes an exercise on writing research reports.

Designed for juniors and seniors, this one-semester laboratory manual is based on mathematical statistics. Author George Cox begins with exercises covering library research, designing an ecological study, and other introductory concepts. He then proceeds to an examination of specific types of measurement and an analysis of various aspects of ecology. Many of these laboratories are tied to current, commercially available computer programs and software packages.

This short book provides exercises for students and instructors who are new to GIS, but are familiar with the Windows operating system. The exercises focus on improving analytical skills, understanding spatial relationships, and understanding the nature and structure of environmental data. Because the software used is distributed free of charge, this text is appropriate for courses and schools that are not yet ready to commit to the expense and time involved in acquiring other GIS packages.

This twenty-fifth edition is a compilation of current articles from the best of the public press. The selections explore the global environment, the world’s population, energy, the biosphere, natural resources, and pollutions.

This book represents the arguments of leading environmentalists, scientists, and policymakers. The issues reflect a variety of viewpoints and are staged as “pro” and “con” debates. Issues are organized around four core areas: general philosophical and political issues, the environment and technology, disposing of wastes, and the environment and the future.

This volume brings together primary source selections of enduring intellectual value—classic articles, book excerpts, and research studies—that have shaped environmental studies and our contemporary understanding of it. The book includes carefully edited selections from the works of the most distinguished environmental observers, past and present. Selections are organized topically around the following major areas of study: energy, environmental degradation, population issues and the environment, human health and the environment, and environment and society.

This atlas is an invaluable pedagogical tool for exploring the human impact on the air, waters, biosphere, and land in every major world region. This informative resource provides a unique combination of maps and data that help students understand the dimensions of the world’s environmental problems and the geographical basis of these problems.

Acknowledgments

A complete list of the people who have helped me with this project would be impossibly long. However, during the development of this fourth edition, several colleagues freely shared their ideas and expertise, reviewed new sections, and offered the encouragement a project like this needs to keep
it going: Eric Charnov, Scott Collins, John Craig, Cliff Crawford, Cliff Dahm, Tim Lowrey, Randy Thornhill, Eric Toolson, and Robert Waide. I wish to offer special thanks to professor Jianguo Wu for his time and patience in helping me improve the historical and conceptual framework for the chapter on landscape ecology. In addition, I am indebted to the many student readers of earlier editions who have helped by contacting me with questions and suggestions for improvements.

I also wish to acknowledge the skillful guidance throughout the publishing process given by many professionals associated with McGraw-Hill during this project, including Marge Kemp, Brian Loehr, Joan Weber, Tami Petsche, Dan Wallace, Laurie Jansen, Melissa Leick, Judi David, Gloria Schiesl, Carrie Burger, and Laura Fuller.

Finally, I wish to thank all my family for support given throughout the project, especially Mary Ann Esparza, Dan Esparza, Hani Molles, Anders Molles, Mary Anne Nelson, and Misha.

I gratefully acknowledge the many reviewers who, over the course of the last several revisions, have given of their time and expertise to help this textbook evolve to its present fourth edition. Their depth and breadth of knowledge and experience, both as researchers and teachers, are humbling. I honestly could not have done it without them.

Reviewers for the Fourth Edition

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>John M. Andreie</td>
<td>Arizona State University</td>
</tr>
<tr>
<td>Eric M. Anderson</td>
<td>University of Wisconsin-Stevens Point</td>
</tr>
<tr>
<td>David M. Armstrong</td>
<td>University of Colorado-Boulder</td>
</tr>
<tr>
<td>Tom Arnsfield</td>
<td>Texas State University</td>
</tr>
<tr>
<td>Michelle A. Baker</td>
<td>Utah State University</td>
</tr>
<tr>
<td>Lawrence S. Barden</td>
<td>University of North Carolina-Charlotte</td>
</tr>
<tr>
<td>John C. Belk</td>
<td>Brigham Young University</td>
</tr>
<tr>
<td>Brian D. Bovard</td>
<td>Florida International University</td>
</tr>
<tr>
<td>Leslie S. Bowker</td>
<td>California Polytechnic State</td>
</tr>
<tr>
<td></td>
<td>University of San Luis Obispos</td>
</tr>
<tr>
<td>Steven W. Brewer</td>
<td>University of North Carolina-Wilmington</td>
</tr>
<tr>
<td>Arthur L. Bubicka Jr.</td>
<td>Virginia Tech</td>
</tr>
<tr>
<td>David Byers</td>
<td>Florida Community College-Jacksonville</td>
</tr>
<tr>
<td>Erica A. Corbett</td>
<td>Southeastern Oklahoma State University</td>
</tr>
<tr>
<td>Christopher Cronan</td>
<td>University of Maine</td>
</tr>
<tr>
<td>Richard J. Desilppe</td>
<td>Texas Tech University</td>
</tr>
<tr>
<td>Stephanie A. Elliott</td>
<td>University of Texas-San Antonio</td>
</tr>
<tr>
<td>Lloyd Fitzpatrick</td>
<td>University of North Texas</td>
</tr>
<tr>
<td>Irwin Forseth</td>
<td>University of Maryland</td>
</tr>
<tr>
<td>Douglas C. Gayou</td>
<td>University of Missouri-Columbia</td>
</tr>
<tr>
<td>Frank S. Gilliam</td>
<td>Marshall University</td>
</tr>
<tr>
<td>Colleen Hatfield</td>
<td>Rutgers University</td>
</tr>
<tr>
<td>Thomas W. Jurik</td>
<td>Iowa State University</td>
</tr>
<tr>
<td>Kimberley J. Kolb</td>
<td>California State University-Bakersfield</td>
</tr>
<tr>
<td>Angelo Lattuca</td>
<td>Mohawk Valley Community College</td>
</tr>
<tr>
<td>David A. Lipson</td>
<td>San Diego State University</td>
</tr>
<tr>
<td>Jay Magrere</td>
<td>Ohio Northern University</td>
</tr>
<tr>
<td>Chris Migliaccio</td>
<td>Miami Dade College</td>
</tr>
<tr>
<td>L. Maynard Moe</td>
<td>California State University-Bakersfield</td>
</tr>
<tr>
<td>Don Moll</td>
<td>Southwest Missouri State University</td>
</tr>
<tr>
<td>Timothy A. Mousseau</td>
<td>University of South Carolina</td>
</tr>
<tr>
<td>Jean Pan</td>
<td>University of Akron</td>
</tr>
<tr>
<td>Craig Plante</td>
<td>College of Charleston</td>
</tr>
<tr>
<td>Thomas Pliske</td>
<td>Florida International University</td>
</tr>
<tr>
<td>Kenneth A. Schmidt</td>
<td>Texas Tech University</td>
</tr>
<tr>
<td>John Skillman</td>
<td>California State University-San Bernardino</td>
</tr>
<tr>
<td>John F. Weishampel</td>
<td>University of Central Florida</td>
</tr>
<tr>
<td>Jake F. Wolfen</td>
<td>University of Tennessee</td>
</tr>
<tr>
<td>Rodney Will</td>
<td>University of Georgia</td>
</tr>
<tr>
<td>Craig E. Williamson</td>
<td>Miami University of Ohio</td>
</tr>
<tr>
<td>Jianguo (Jingle) Wu</td>
<td>Arizona State University</td>
</tr>
<tr>
<td>Douglas Zook</td>
<td>Boston University</td>
</tr>
</tbody>
</table>

Reviewers for the Third Edition

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sina Adl</td>
<td>Dalhousie University, Canada</td>
</tr>
<tr>
<td>Harvey J. Alexander</td>
<td>College of Saint Rose</td>
</tr>
<tr>
<td>Peter Alpert</td>
<td>University of Massachusetts-Amherst</td>
</tr>
<tr>
<td>Julie W. Amblor</td>
<td>Millersville University</td>
</tr>
<tr>
<td>Robert K. Antibus</td>
<td>Bluffton College</td>
</tr>
<tr>
<td>Tom L. Arcuffi</td>
<td>Southwest Texas State University</td>
</tr>
<tr>
<td>Claude D. Baker</td>
<td>Indiana University</td>
</tr>
<tr>
<td>Ellen H. Baker</td>
<td>Santa Monica College</td>
</tr>
<tr>
<td>Charles L. Baube</td>
<td>Oglethorpe University</td>
</tr>
<tr>
<td>Edmund Bedecarrax</td>
<td>City College of San Francisco</td>
</tr>
<tr>
<td>Jerry Beilby</td>
<td>Northwestern College</td>
</tr>
<tr>
<td>R. P. Benard</td>
<td>American International College</td>
</tr>
<tr>
<td>Erica Bergquist</td>
<td>Holyoke Community College</td>
</tr>
<tr>
<td>Richard A. Boutwell</td>
<td>Missouri Western State College</td>
</tr>
<tr>
<td>Ward Bradie</td>
<td>Arizona State University East-Mesa</td>
</tr>
<tr>
<td>Fred J. Brenner</td>
<td>Grove City College</td>
</tr>
<tr>
<td>Robert Brodman</td>
<td>Saint Joseph's College</td>
</tr>
<tr>
<td>Elaine R. Brooks</td>
<td>San Diego City College</td>
</tr>
<tr>
<td>Evert Brown</td>
<td>Casper College</td>
</tr>
<tr>
<td>Stephanie Brown Fabritius</td>
<td>Southwestern University</td>
</tr>
<tr>
<td>Rebecca S. Burton</td>
<td>Alverno College</td>
</tr>
<tr>
<td>James E. Byers</td>
<td>University of New Hampshire</td>
</tr>
<tr>
<td>Guy Cameron</td>
<td>University of Cincinnati</td>
</tr>
<tr>
<td>Geralyn M. Caplan</td>
<td>Owensboro Community and Technical College</td>
</tr>
<tr>
<td>Walter P. Carson</td>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td>Ben Cash III</td>
<td>Maryville College</td>
</tr>
<tr>
<td>Young D. Choi</td>
<td>Purdue University-Calumet</td>
</tr>
<tr>
<td>Ethan Clifteller</td>
<td>Providence College</td>
</tr>
<tr>
<td>Liane Cochran-Stafira</td>
<td>Saint Xavier University</td>
</tr>
<tr>
<td>Joe Coelho</td>
<td>Culver-Stockton College</td>
</tr>
<tr>
<td>Jerry L. Cook</td>
<td>Sam Houston State University</td>
</tr>
<tr>
<td>Tanaka J. Cook</td>
<td>Sam Houston State University</td>
</tr>
<tr>
<td>Erica Corbett</td>
<td>Southeastern Oklahoma State University</td>
</tr>
<tr>
<td>Tim Craig</td>
<td>University of Minnesota</td>
</tr>
<tr>
<td>Jack A. Crawford</td>
<td>Virginia Tech</td>
</tr>
<tr>
<td>Greg Cronin</td>
<td>University of Colorado-Denver</td>
</tr>
<tr>
<td>Todd Crown</td>
<td>Utah State University</td>
</tr>
<tr>
<td>Richard J. Desilpe</td>
<td>Texas Tech University</td>
</tr>
<tr>
<td>Kenneth M. Duke</td>
<td>Brevard College</td>
</tr>
<tr>
<td>Andy Dyer</td>
<td>University of South Carolina</td>
</tr>
<tr>
<td>Ginny L. Eckert</td>
<td>University of Alaska</td>
</tr>
<tr>
<td>J. Nicholas Ehrieger</td>
<td>Hillsborough Community College</td>
</tr>
<tr>
<td>George F. Estabrook</td>
<td>University of Michigan</td>
</tr>
<tr>
<td>Richard S. Feldman</td>
<td>Marist College</td>
</tr>
<tr>
<td>Charles A. Francis</td>
<td>University of Nebraska-Lincoln</td>
</tr>
</tbody>
</table>
Carl Freeman Wayne State University
J. Phil Gibson Agnes Scott College
Robert R. Glesener Brevard College
Michael L. Golden Grossmont College
Paul Greay Salisbury University
Lana Hamilton Northeast State Tech Community College
Brian Helmut University of South Carolina
James R. Hodgson Saint Norbert College
Jeremiah N. Jarrett Central Connecticut State University
Krish Jayachandran Florida International University
Mark Jonasson Crafton Hills College
Thomas W. Jurik Iowa State University
Karen L. Kandl University of New Orleans
Robert Keys Cornerstone University
Mark E. Knaus Shorter College
Jean Knops University of Nebraska
Anthony J. Krzyszik Embry-Riddle Aeronautical University
Eddie N. Laboy-Nieves InterAmerican University
of Puerto Rico
Vic Landrum Washburn University
Michael T. Lanes University of Mary
Tom Langen Clarkson University
Kenneth A. LaSota Robert Morris College
Hugh Lefort Gonzaga University
Peter V. Lindeman Edinboro University of Pennsylvania
John F. Logue University of South Carolina–Sumter
John S. Mackiewicz State University of New York–Albany
Tim Marek Shippensburg University
Ken R. Marion University of Alabama–Birmingham
Vicky Meretsky Indiana University
John C. Mertz Delaware Valley College
Carolyn Meyer University of Wyoming
Sheila G. Miracle Southeast Community College–Bell City
Timothy Mousseau University of South Carolina
Virginia Naples Northern Illinois University
Peter Nonoas University of California–Los Angeles
Mark H. Olson Franklin and Marshall College
David W. Onstad University of Illinois–Champaign
Fatimata A. Palé Thiel College
Mary Lou Pelier Saint Martin's College
Carolyn Peters Spoon River College
Kenneth L. Petersen North College
Eric R. Ptanka University of Texas
Raymond Pierotti University of Kansas–Lawrence
David Pindel Corning Community College
Jon K. Piper Bethel College
Thomas E. Piske Florida International University
Michael V. Plummer Harding University
Ellen Porter Holtman Virginia Western Community College
Diane Post University of Texas–Permian Basin
Kathleen Ruth Marr Lakeland College
Brian C. Reeder Morehead State University
Seth R. Reice University of North Carolina–Chapel Hill
Robin Richardson Winona State University
Carol D. Riley Gainesville College
Marianne W. Robertson Millikin University
Tom Robertson Portland Community College
Bernadette M. Roche Loyola College in Maryland
Tatiana Roth Coppin State College
Neil Sabine Indiana University East
Seema Sanjay Jejurikar Bellevue Community College
Timothy Savisky University of Pittsburgh
Josh Schiemel University of California–Santa Barbara
Michael G. Scott Lincoln University
Erik R. Scully Towson University
Michael J. Sebetich William Paterson University
Walter M. Shriver Mount Hood Community College
John Skillman California State University–San Bernardino
Jerry M. Skinner Keystone College
Garret W. Smith University of South Carolina–Aiken
Stacy Smith Lexington Community College
Joseph Stable Iona College
Alan Stam Capital University
Alan Striven University of North Carolina–Chapel Hill
Eric D. Storic Roanoke-Chowan Community College
William A. Szelistowski Eckerd College
Robert Tatuma Dakota Wesleyan University
Nina N. Thunser California University of Pennsylvania
John A. Tiedemann Monmouth University
Anne H. Todd Bockarie Philadelphia University
Conrad Toepfer Millikin University
Donald E. Trisel Fairmont State College
Dessie L. A. Underwood California State University–Long Beach
Carl Von Ende Northern Illinois University
Fred E. Wasserman Boston University
Phillip L. Watson Ferris State University
Donna Wear Augusta State University
John F. Wegner Emory State University
Matt R. White Southern Illinois University
Howard Whitteman Murray State University
Craig E. Williamson Lehigh University
Gordon Wolfe California State University–Chico
Derek Zelmer Emporia State University
Douglas Zook Boston University

Manuel C. Molles Jr.