
Integrating and Engineering
Intelligent Systems
– Robot Operating System –

O. Boissier

Univ. Lyon, IMT Mines Saint-Etienne, LaHC UMR CNRS 5516, France

UP9 DEFI IA – Winter 2019

UMR • CNRS • 5516 • SAINT-ETIENNE

http://www.emse.fr/~boissier/

Robot Operating System (ROS)
Material issued partially from Rodrigo Ventura, João Reis, Institute
for Systems and Robotics, Instituto Superior Tecnico, Lisboa, 2013

Introduction to ROS Framework
ROS:
I is an open-source, software framework for robot software

development
I provides operating system-like functionality on heterogenous

computer cluster
I OS services: hardware abstraction, low-level device control,

commonly used functionality, message-passing between processes,
package management

I is based on graph architecture where processing takes place in a
distributed framework of processes (aka nodes)

I enables executables to be individually designed and loosely coupled
at runtime

I is appropriate for large runtime systems and for large development
processes

I has two basic sides: operating system side, suite of user
contributed packages or stacks

3

ROS Concepts at Filesystem level
Introduction to ROS Framework

I Packages: main unit for organizing software in ROS, e.g. ROS
runtime processes (nodes), ROS-dependent library, datasets,
configuration files.
It is a directory with a manifest.xml file.
A package manifest is a set of metadata about a package (e.g.
dependencies, compiler flags)

I Stacks: collections of packages that provide aggregate
functionality, such as a navigation stack.
It is a directory with a stack.xml file.
A stack manifest is a set of metadata about a stack (e.g.
dependencies on other stacks).
A package inside a stack’s directory is part of that stack.

4

ROS Concepts at Computation Graph level
Introduction to ROS Framework

Peer-to-peer network of ROS processes that are processing data
together based on:
I Name and Parameter server: roscore; singleton (i.e. only one

instance running)
I name registration and lookup to the rest of the computation graph
I stores topics and services, registration of information for ROS nodes

By default, used roscore is the one running in localhost by default.
It is overriden by the env. var. ROS_MASTER_URI

I Nodes: a process performing computation and communicating with
other nodes via roscore using topics or services
I Services: request/response pattern via typed messages
I Topics: publish/subscribe pattern via typed messages

For example, one node controls a camera processing, another node
performs object recognition.
A ROS node is written with the use of a ROS client library (e.g.
roscpp, rospy)

5

ROS Concepts at Computation Graph level
Introduction to ROS Framework

PÓLO DO I.S.T

Basic concept #1: Node

• Demo: lanching roscore

6

ROS Concepts at Computation Graph level (contd)
Introduction to ROS Framework

I Messages: data structure of types fields.
I Standard primitive types (integer, floating point, boolean, string,

etc), arrays of primitive types
I Can include arbitrarily nested structures and arrays

I Topics: 1:n non blocking communication, name used to identify the
content of a message
I a node interested in a certain kind of data will subscribe to the

appropriate topic
I corresponds to a strongly typed message bus: each bus has a name

and anyone can connect to the bus to send or receive messages as
long as they are the right type

I Services: 1:1 blocking communication, pair of message structures:
one for the request, one for the reply
I a providing node offers a service under a name and a client uses the

service by sending the request message and awaiting the reply

7

Publishing String to topic
Introduction to ROS Framework

PÓLO DO I.S.T

Basic concept #2: Topic

• Demo: publishing an “Hello world” String to topic /xpto

8

Querying and calling a service
Introduction to ROS Framework

PÓLO DO I.S.T

Basic concept #3: Service

• Demo: querying and calling a service

9

Message types
Introduction to ROS Framework

I All messages (including service requests/responses) are defined in
text files in a folder msg

PÓLO DO I.S.T

Message types

• All messages (including service requests/responses)
are defined in text files

• Example: built-in laser scan data message

--- sensor_msgs/msg/LaserScan.msg ---

Header header # timestamp in the header is the acquisition time of
 # the first ray in the scan.
 #
 # in frame frame_id, angles are measured around
 # the positive Z axis (counterclockwise, if Z is up)
 # with zero angle being forward along the x axis

float32 angle_min # start angle of the scan [rad]
float32 angle_max # end angle of the scan [rad]
float32 angle_increment # angular distance between measurements [rad]

float32 time_increment # time between measurements [seconds] - if your scanner
 # is moving, this will be used in interpolating position
 # of 3d points
float32 scan_time # time between scans [seconds]

float32 range_min # minimum range value [m]
float32 range_max # maximum range value [m]

float32[] ranges # range data [m] (Note: values < range_min or > range_max should be discarded)
float32[] intensities # intensity data [device-specific units]. If your
 # device does not provide intensities, please leave
 # the array empty.

10

Introduction to ROS Framework

cf. file: master-ros-framework-intro.pdf

11

Developing Packages on ROS

cf. file: master-ros-packages.pdf

12

rosbridge

I JSON protocol to bridge to non-ROS systems

I for example, connect web browsers to ROS
I more broadly, connect sockets to ROS

I Much more at http://rosbridge.org and
http://www.ros.org/wiki/rosbridge_suite

13

http://rosbridge.org
http://www.ros.org/wiki/rosbridge_suite

References

I Entry point to ROS: http://wiki.ros.org/
I ROS users forum: http://answers.ros.org
I ROS cheat sheet: https://github.com/ros/cheatsheet/

releases/download/0.0.1/ROScheatsheet_catkin.pdf
I https:

//www.youtube.com/playlist?list=PLDC89965A56E6A8D6
I Turtlebot: https://www.turtlebot.com/
I Learn Turtlebot and ROS: http://learn.turtlebot.com/

14

http://wiki.ros.org/
http://answers.ros.org
https://github.com/ros/cheatsheet/releases/download/0.0.1/ROScheatsheet_catkin.pdf
https://github.com/ros/cheatsheet/releases/download/0.0.1/ROScheatsheet_catkin.pdf
https://www.youtube.com/playlist?list=PLDC89965A56E6A8D6
https://www.youtube.com/playlist?list=PLDC89965A56E6A8D6
https://www.turtlebot.com/
http://learn.turtlebot.com/

