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 The origins of modern electromagnetism and electrodynamics can be traced back to the 

influential work of two nineteenth century thinkers: Michael Faraday and James Clerk Maxwell.  

Michael Faraday, a British scientist with little formal training, was a great experimentalist. He 

devised a number of unique, inventive ways to test and explore electromagnetic phenomena, and 

he made several important discoveries regarding the nature of electromagnetism. These insights 

later provided a foundation for the work of James Clerk Maxwell, who used his mathematical 

skill to unify the then disparate science of electromagnetism into a coherent theory, complete 

with mathematical formalism.  

 It is tempting to hold the joint work of Faraday and Maxwell up as a paradigmatic 

example of the modern scientific process in practice, in which experimentation and observation 

yield facts that can then be organized into theory, the result being the mathematical formalism 

that allows for the prediction of future phenomena.  And it is certainly true that the work that 

began with Faraday’s experiments and ended with Oliver Heaviside’s reformulation of 

Maxwell’s mathematical relations did, in 1884, produce what are now known as Maxwell’s Four 

Unifying Equations, which physicist Daniel Fleisch calls “four of the most influential equations 

in all of science.”
1
  But, in addition to this, the history of the work of Faraday and Maxwell can 

also serve as a case study for an interesting question regarding the place of mathematical 

formalism and systematic theories in physics. Although Faraday eschewed theoretical systems 

involving any mathematical formalism (or any mathematics at all beyond simple geometries), he 

did produce theoretical work, a type of theory that he felt more closely resembled the physical 

processes it was meant to describe. An analysis, then, of both the experiments and theoretical 

summations of Faraday can be usefully compared to the theoretical system and mathematical 

formalism produced by Maxwell in order to examine the differences between a physics theory 

                                                        
1
 Daniel Fleisch, A Student’s Guide to Maxwell’s Equations (Cambridge: Cambridge University Press, 2008), vii. 

1

Israelsen: Faraday and Maxwell

Published by Purdue e-Pubs, 2014



 

without formalisms and a physics theory in which systematized mathematics have been 

incorporated—in other words, to examine why physicists feel the need to go beyond 

experimentation and relation of facts to the creation of complete and formal mathematized 

systems.   

As will be demonstrated in this analysis, the expression of physics concepts and 

relationships in mathematical form can bring to light the fundamental features of a phenomenon 

that would otherwise remain opaque, as well as allow for a more precise exploration of the 

individual components of the phenomenon in question. 

 

The Historical Backdrop 

 The continuity between the work of Faraday and Maxwell is not just thematic; it exists 

even in historical terms: “At age 64 in [the year] 1855,” science writer Thomas K. Simpson 

notes, “Faraday…[was] finishing his productive scientific work at the moment when Maxwell, 

aged 24, [was] beginning his: the quest for the electromagnetic field [was] passed in the course 

of one year from Faraday’s hands to Maxwell’s. In one of history’s magic moments, Faraday in 

1855 handed his Experimental Researches directly to their ideal reader.”
2
   

There are, perhaps, two areas of historical backdrop relevant to the comparison of the 

work of Faraday and Maxwell: the individual educational background of each scientist, and their 

place in the overall scientific tenor of the time period. 

 James Clerk Maxwell was born in Scotland in 1831, the only child of an upper-middle 

class father. And he graduated from Trinity College at Cambridge University—a fact that is not 

insignificant in appraising Maxwell’s mathematical training. As noted by Thomas K. Simpson,  

                                                        
2
 Thomas K. Simpson, Maxwell on the Electromagnetic Field: A Guided Study (New Brunswick, NJ: Rutgers 

University Press, 1997), 11. 
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The centerpiece of liberal education as understood at Trinity College in the mid-

nineteenth century [was] not so much the traditional humanities but rather 

mathematics…The ‘mathematics’ involved [was] itself broadly understood.  

Founded on the one hand in geometry and the geometrical style adopted by Isaac 

Newton in the Principia, it extend[ed] to mastery of powerful methods in 

differential and integral calculus which [were] newer and [owed] their origin 

rather to the French.  Furthermore, ‘mathematics’ in the Cambridge 

curriculum…[included] without strict distinction both pure mathematics and a 

range of topics, such as mechanics, optics, and heat, which would fall today under 

the heading ‘mathematical physics’.
3
   

 

It seems likely that this broad interpretation of mathematics grounded Maxwell’s view 

that science, at least in part, was mathematical in nature, for it prepared him to produce a physics 

theory that was more mathematically-oriented. 

 Faraday’s academic background contrasted greatly with Maxwell’s. As was typical of 

someone with his impoverished economic background, Faraday had little formal education. 

“Beyond the rudiments of reading, writing, and calculation, [Faraday] was self-educated, 

learning from books,” Simpson writes. “He learned his electricity from an article in the 

Encyclopedia Britannica.”
4
  Though one might at first glance attribute his exclusion of 

mathematics in physics theories to this lack of mathematical training, it must be remembered 

that, as a self-educated scientist, Faraday certainly could have trained himself in mathematics 

had he simply added the subject to his studies in chemistry and electricity. Additionally, 

Faraday’s own comments on the relationship between mathematics and science must be taken 

into account:  

I do not remember that Math. have predicted much.  Perhaps in Ampère’s theory 

one or at most two independent facts.  I am doubtful of two.  Facts have preceded 

the math. or where they have not the facts have remained unsuspected though the 

calculations were ready…; and sometimes when the fact was present…the 

calculations were insufficient to illustrate its true nature until other facts came into 

help.
5
 

                                                        
3
 Simpson, Maxwell on the Electromagnetic Field, 1-3. 

4
 Simpson, Maxwell on the Electromagnetic Field, 11. 

5
 Olivier Darrigol, Electrodynamics from Ampère to Einstein (Oxford: Oxford University Press, 2000), 38. 
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 However, Faraday’s antipathy towards mathematics may have been justified given the 

state of the study of electricity and magnetism in the early nineteenth century. When Faraday 

entered the field, most theoretical work involved Newtonian fluid mechanics, which were 

heavily mathematical, allowing for a great deal of quantitative analysis, but often producing little 

in the way of useful qualitative descriptions of the actual phenomenon. The champion of this 

particular form of theorizing was French scientist Ampère, who is appropriately recognized as 

the founder of electrodynamics. This “hegemony of Newtonian fluid theories” was prevalent in 

most European scientific communities, but, as Darrigol goes on to note, “a few British physicists 

escaped this general evolution…First and foremost was Faraday,” joined by William Thomson 

(Lord Kelvin), and, of course, by Maxwell.
6
  

 

Faraday: Methods and Theory 

 Faraday consistently broke with traditional methods in his approach to electromagnetic 

research. In order to properly identify the difference between a mathematically-based theory, 

such as Maxwell’s, and physics research done without recourse to such formalisms, it is vital that 

one understand Faraday’s view of the relationship between experimentation, theory, and 

scientific discovery. 

 Faraday held what might be termed a purist’s view of physics theories—he wanted any 

theoretical explanation to provide a direct correlation between the account of a phenomenon and 

the phenomenon itself, without intervening conceptual abstractions or mathematical 

formulations.  Faraday described his method as one of “feel[ing] my way by facts closely placed 

together.”
7
  While it is tempting to distill this view into one where science is either purely 

                                                        
6
 Darrigol, Electrodynamics from Ampère to Einstein, 77.  

7
 Darrigol, Electrodynamics from Ampère to Einstein, 21. 
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experimental or purely descriptive, such a perspective does not appear to have been adopted—

Faraday’s works do, in fact, include speculation and even formulations. However, for Faraday, 

these are always an attempt to actually come to know, in the sense of coming to meet, the 

physical phenomena qua phenomena.
8
 Faraday thought that what the scientist ought to desire 

was “not a variety of different methods of representing forces, but the one true physical 

signification of that which is rendered apparent to us by the phaenomena.”
9
  One can conclude, 

then, that Faraday’s objection to mathematics was that it was something that came between the 

scientist and the observed phenomenon. 

 Simpson writes that a paradigmatic example of how Faraday viewed the relationship 

between theoretical concepts and physical phenomena can be found in the scientist’s own 

speculations regarding the physical existence of magnetic lines of force.
10

 Originally, these lines 

of force held only explanatory power, but as he continually noted the way these lines could be 

integrated into other aspects of electromagnetic phenomena, Faraday began to believe that these 

lines must have some kind of physical existence—the explanatory concept, if experimentally 

relevant, must possess a physical reality. 

 Though his theory was limited—it could offer description, speculation, and, at its highest 

points, direct relationships that could be used as laws, but never fundamental theoretical 

frameworks or definitions of the essence of the phenomena—Faraday’s experimental methods 

were inversely thorough and often striking in their subtlety. Unconcerned with making broad 

statements, Faraday reserved his genius for application to his experimental researches. Faraday’s 

method was to identify a salient feature of electromagnetism that bore inquiry, devise a method 

for exploration, and then repeat the experiment, gradually altering various aspects to see what he 

                                                        
8
 Simpson, Maxwell on the Electromagnetic Field, 15.  

9
 Simpson, Maxwell on the Electromagnetic Field, 15. 

10
 Simpson, Maxwell on the Electromagnetic Field, 12. 
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could tease out. It is this character of Faraday’s work that Darrigol picks out when he refers to 

Faraday’s methods as the making of “chains or trees of experiments.”
11

 

 

Faraday: Experiments and Findings 

 Given Faraday’s preference for experiment and observation above theoretical formalisms, 

it should not be surprising that Faraday proliferated far more varied and significant experimental 

results than any other electromagnetic physicist of his day.  While this paper is principally 

concerned with Faraday’s conceptual physics, his ideas must be placed within their framework of 

Faraday’s extensive observations, explorations, and discoveries. It is therefore appropriate to 

discuss some of his more influential experimental work. 

 The phenomena either discovered or furthered by Faraday include rotations of the 

magnetic field around an electric current, exploration of all possible methods of induction, 

researches in diamagnetism (the effect on various materials to an applied magnetic field), 

electrochemical equivalence, dielectrics (or inductive capacity), and magneto-optical rotation.  

Though this list is by no means exhaustive, these are the areas that were most fruitful for 

Faraday, and which had the most effect on his thinking.  

 

Faraday: Important Concepts and the Field 

 By the time he had completed some of his most important experiments, Faraday had 

begun to focus on certain speculations that would become central to the science of 

electromagnetism. Of these, lines of force were, for Faraday, paramount. His thoughts on this 

concept influenced his interpretation of the remaining phenomena, including contiguity, charge, 

                                                        

11 Darrigol, Electrodynamics from Ampère to Einstein, 38. 
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and induction; it also provided a conceptual foundation for a field theory of electromagnetic 

phenomena. 

 Lines of force rose to prominence for Faraday as the result of his focus on what he called 

“powers”.  In order to avoid the common use of fluid theories by his contemporaries, which he 

saw as ad hoc at best, Faraday instead focused on powers, which “referred to portions of space 

from which specific actions emanated.  Powers could equally belong to a magnet or to the sides 

of a wire, and they could attract or repel each other.”
12

   

Further, rather than address the specific charged object and its state, as implied in any use 

of Coulomb’s force law, Faraday focused on the “distribution of powers” that occurred during 

induction; attempts to visualize these distributions led Faraday on to the notion of the lines of 

force.
13

  

The explanatory power of the lines of force was great—and would later prove to be even 

more so when Maxwell used the concept to fully formalize his field theory. Faraday speculated 

that the lines could, in fact, be physical in nature. The fact that induction occurred along these 

lines, even when curved, led Faraday to conclude that the forces were communicated by 

contiguous particles in the medium between charges; the line traced out the passage of action 

from one contiguous particle to another. In this way, charge was communicated through space. 

While Faraday’s notion of contiguity did not rid the science of electromagnetic attraction 

and repulsion of a problematic action-at-a-distance explanation, it did confine the action to 

extremely small distances. Additionally, this contiguity was invoked in the explanation of 

electric charge. For Faraday, charge was not an inherent characteristic of a particular body, but 

was rather a state of affairs in which every charge was one part of a polarized pair. In this way, 

                                                        
12

 Darrigol, Electrodynamics from Ampère to Einstein, 19.   
13

 Darrigol, Electrodynamics from Ampère to Einstein, 40, 91.   
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charge was always the result of induction, because for every charged body there existed 

somewhere else in the contiguous, intervening medium that charge’s polarized opposite.   

Ultimately, these concepts, so different than any other contemporary theory, were the 

seeds of a field theory. Darrigol defines a field theory as “the introduction of physical or 

mathematical entities in the space intervening between electric and magnetic sources.”
14

 The 

fundamental characteristic of a field theory is that in such a theory, the phenomena being 

explained is not limited to the specific bodies within the system, but is rather given a holistic 

place within the whole system qua system, replacing its emphasis on isolated body analysis with 

descriptions of interactions. Faraday’s lines of force and emphasis on the intervening space is 

clearly just such a notion; his was the “first precise and quantitative concept of a field.”
15

  

Though his ideas were poorly understood by most of his peers, Faraday’s field approach would 

ultimately prove to be the key to forming a successful electromagnetic explanation. 

 

Maxwell’s Equations 

 Much of Faraday’s work had already been published when James Clerk Maxwell first 

begin studying issues related to electricity and magnetism in the 1850s. Although the former’s 

studies were widely praised for the wealth of experimental data they contained, his contentions 

were, nonetheless, more often than not ignored. Maxwell, however, determined to make a precise 

evaluation of the science, dedicated himself to a study of Faraday’s entire body of work. 

 Darrigol has described what followed as a “stepwise” development of Maxwell’s field 

theory of electromagnetics: Maxwell completed his theory in discrete stages, documenting the 

                                                        

14 Darrigol, Electrodynamics from Ampère to Einstein, 78. 
15 Darrigol, Electrodynamics from Ampère to Einstein, 78.  
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progression of his thought in a series of three “memoirs” which began with Faraday’s lines of 

force and ended with a unified electromagnetic field theory.
16

 

 Maxwell’s theory built upon Faraday’s work. For this reason, it was both unique and 

inventive. It provided a theoretical framework for the entire science that was more accurate than 

anything that had yet been devised. The specific concepts that Maxwell adopted from Faraday 

included “the field-based definitions of electric charge and current, the concept of conduction as 

the competition between polarization build-up and decay, and the reduction of all electric and 

magnetic actions to stresses in the field.”
17

 

 Maxwell’s notion of what made an effective theory was explicitly stated in the 

introduction to his first paper on the subject of electromagnetism, titled, “On Faraday’s Lines of 

Force”.  Disturbed by the chaotic state of the science, Maxwell wrote,  

 

The first process therefore in the effectual study of the science, must be one of 

simplification and reduction of the results of previous investigation to a form in 

which the mind can grasp them.  The results of this simplification may take the 

form of a purely mathematical formula or of a physical hypothesis.  In the first 

case we entirely lose sight of the phenomena to be explained; and though we may 

trace out the consequences of given laws, we can never obtain more extended 

views of the connexions of the subject.  If, on the other hand, we adopt a physical 

hypothesis, we see the phenomena only through a medium, and are liable to that 

blindness to facts and rashness in assumption which a partial explanation 

encourages.  We must therefore discover some method of investigation which 

allows the mind at every step to lay hold of a clear physical conception, without 

being committed to any theory founded on the physical science from which that 

conception is borrowed, so that it is neither drawn aside from the subject in 

pursuit of analytical subtleties, nor carried beyond the truth by a favourite 

hypothesis.
18

 

  

It seems that Maxwell’s clear and holistic view of what a good physics theory ought to 

contain—mathematical analysis, which could validate but not usurp the physical description—

                                                        
16

 Darrigol, Electrodynamics from Ampère to Einstein, 172. 
17

 Darrigol, Electrodynamics from Ampère to Einstein, 168. 
18

 Simpson, Maxwell on the Electromagnetic Field, 58.  
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paid off, for after a great deal of research and a number of publications on the subject, Maxwell 

accomplished precisely what he had set out to do: he provided a clear physical description of the 

electromagnetic field, complete with mathematical equations that could be used to relate the 

fundamental concepts and make measurement and prediction possible. 

 The result of Maxwell’s work was summed up in twenty field equations; but, toward the 

end of the nineteenth century, Oliver Heaviside managed to reduce them to four. Because all four 

were derived from Maxwell’s original twenty, they are still referred to as “Maxwell’s Field 

Equations,” and can be described explicitly in terms of Maxwell’s theory. 

 

The Four Equations 

The modern expression of Maxwell’s unified electromagnetic field theory is most 

famously represented in the four Maxwell Equations. Each equation is expressed in both an 

integral form and a partial differential form in order to highlight different aspects of the same 

phenomenon.
19

 

 Gauss’ Law for Electric Fields.  Gauss’s Law is the only of the four equations that deals 

solely with the electrostatic field, the field produced by an individual charge (as opposed to an 

induced electromagnetic field produced by an oscillating magnetic field). The integral form 

relates the electric flux (best understood as the number of field lines in a given space) to an 

enclosed electric charge. The differential form relates the divergence of the field, or the tendency 

of charge to “flow away” from a charge, to the density of that charge.   

 Both of these forms clearly examine a state of the field; the integral in looking at field 

line density, and the differential in analyzing the flow direction of the field. As such, both forms 

                                                        
19

 For the entirety of this section, I have relied heavily on Daniel Fleisch’s excellent Guide to Maxwell’s Equation 

(Cambridge: Cambridge University Press, 2008). 
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are clearly formulations of Faraday concepts. The usefulness of the mathematical form in which 

they were placed by Maxwell, however, is twofold: For one, Gauss’ Law enables one to measure 

the field and derive therefrom knowledge about the associated charge, or vice versa.  The second 

use is the application of knowledge about the field to describe either a surface (integral form) or 

a specific point in space (differential form). Ultimately, the formalization of the Gauss Law 

depicts a specific relationship between the electrostatic field and the amount of charge producing 

that field.   

 Gauss’ Law for Magnetic Fields.  Gauss’ Law, when applied to magnetic fields, 

employs the same kind of questions about flux and field divergence. However, given the dipole 

nature of magnetism, which always occurs in a pair of opposite poles, both forms draw 

conclusions different from the electric law. In the case of the integral form, the total flux through 

any surface containing a magnetic dipole will be zero, because each end of the pole will 

necessarily create lines of force that are equal in magnitude but opposite in direction and will 

therefore cancel, or sum to zero.  The same sort of occurrence is present in the differential form 

as well: the total divergence of the magnetic field will be zero, for the same reason.   

 This fact, brought to light through the mathematics of the surface integral or partial 

differential, is extremely useful; when it is known that a total situation will sum to zero, all sorts 

of information can be deduced about individual unknowns, particularly in the case of complex 

surfaces.  

When Guass’ Law for Electric Fields is contrasted with the way Gauss’ Law works for 

magnetic fields, one can see an evaluation of one of Faraday’s fundamental concepts, namely his 

idea that all electric induction always implied some kind of polarization of pairs of opposites. It 

is easy to see why Faraday might have thought this when one considers the nature of magnetic 
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dipoles, which do occur in such pairs. However, as these laws demonstrate, the dipole nature of 

magnetism manifests itself in the mathematics of Gauss’ Law for magnetic fields, where both the 

flux and the field divergence equate to zero due to the nature of a dipole. In the case of an 

electrostatic field, the flux and divergence can have non-zero sum values, indicating a field 

produced by a “monocharge” rather than distinct pairs of charges. 

 Faraday’s Law.  Faraday’s Law is based on his (Faraday’s) discovery that an oscillating 

magnetic field will induce an electric current. The integral form of the law describes the 

movement of a charged particle that has been motivated by an electromotive force through a 

magnetic field. The differential form relates the curl (the tendency of the field lines to circulate 

around a point) of the electric field created by the moving charge to the rate of change of the 

magnetic field. 

This law allows one to grasp the cause of magnetic induction in an electric current: a 

magnetic flux creates a field that has the capacity to cause the directional motion of a charged 

particle.  As noted, Faraday conceived of the induction of a current in terms of the intervening 

medium and field lines; the Maxwell equation named after Faraday provides a precise 

mathematical description of the field and force lines that Faraday emphasized. 

 The Ampère-Maxwell Law.  The Ampère-Maxwell equation is based on Ampère’s 

original formulation describing Oersted’s discovery that a steady electric current will create a 

magnetic force. In his reformulation, Maxwell extended this relation to include a varying electric 

flux as well, as a steady current, in the creation of a circulating magnetic field. The integral form 

depicts the magnetic field circulating around any path bounded by the surface through which the 

electric current or flux moves. The differential form ties together this magnetic curl to the 

electric field density and the time rate of change of the electric field. 

12
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 Again, though the concepts of electromagnetism that Maxwell expressed in this law are 

clearly based on Faraday’s notions, the time-rate variation in this equation is what stands out as 

an element that simply could not have been described by Faraday without the use of 

mathematics. Additionally, the description of the path around which the magnetic field curls is 

made precise only with the use of integrals. 

 From Maxwell’s Equations to the Wave Equation.  The Maxwell Equations possess 

one further feature that has yet to be discussed: consideration of all four equations, in 

conjunction with one another, leads directly to the wave equation, which relates 

electromagnetism to the spectrum of electromagnetic radiation. In other words, further 

manipulation of the mathematics of the Maxwell equations directly indicates the electromagnetic 

nature of light. 

   It is unlikely that this particular connection would ever have resulted from a continuation 

of Faraday’s research—the electromagnetic nature of light was a mathematical discovery rather 

than an experimental one. But such a description of physical phenomena is precisely the sort of 

theory Faraday approved of. Just like his lines of force, wave-like electromagnetic phenomena is 

the sort of useful geometrical description of powers that Faraday was trying to get at with his 

lines of force. 

 A Unified Field Theory.  Though the Maxwell equations are the crowning achievement 

of Maxwell’s work, the emphasis placed on them in this paper may give the impression that they 

are the main feature of Maxwell’s theory. For this reason, it is important to note that the truly 

fundamental aspect of Maxwell’s theory was the specific way in which Maxwell unified all of 

the classical electromagnetism through his field theoretical approach. It was this physical 

13
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framework that facilitated the unification of relevant mathematics, geometrical approaches, and 

observed phenomena. 

 

Conclusions 

Maxwell’s conceptions of the ideal physical theory, and his application of it to the study 

of electromagnetism, have proven to be lasting contributions to science. Darrigol sums these 

contributions up, writing, “Maxwell defined a new kind of theoretical physics in which the 

classification of mathematical quantities, vector symbolism, and Lagrangian dynamics became 

major construction tools. He also revealed a tension between field macrophysics and the atomic 

structure of matter, and inaugurated ways of dealing with this tension. His physics was an 

unended quest. He provided methods that kept the theory open and alive.”
20

 

 Though Maxwell’s conception of physics theories differed greatly from Faraday’s, even 

Faraday himself could appreciate at least some aspects of what Maxwell was trying to do. After 

its publication, Maxwell sent a copy of his “On Faraday’s Lines of Force” to Faraday, who was 

then in the final decade of his life. Faraday wrote to Maxwell several times about this work, 

saying, “I was at first almost frightened when I saw so much mathematical force made to bear 

upon the subject, and then wondered to see that the subject stood it so well.”
21

 In another letter, 

he continued, “I have always found that you could convey to me a perfectly clear idea of your 

conclusions…neither above nor below the truth, and so clear in character that I can think and 

work from them.”
22

   

                                                        
20

 Darrigol, Electrodynamics from Ampère to Einstein, 176. . 
21

 Simpson, Maxwell on the Electromagnetic Field, 407. 
22

 Simpson, Maxwell on the Electromagnetic Field: A Guided Study, 407. 
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Though Faraday never fully accepted that the use of mathematics could be integral to the 

study of science, he did recognize that it had been possible for Maxwell to employ mathematics 

without leaving behind the qualitative aspects of the phenomena about which he was theorizing.  

As Simpson states, “When Maxwell joins his efforts to those of Faraday, he seems to be drawn 

not only to a promising mode of explanation but to a concept of science itself, opting, despite his 

own powers in analytic mathematics, for a science centered not on such formalities but on an 

intimate understanding of the ways of nature in some simpler sense.”
23

 

 Ultimately, Maxwell demonstrated that the use of mathematics allows for a deeper 

pursuit of scientific explanation when properly incorporated into a theoretical framework that is 

firmly based upon experiment and observation, just as Maxwell’s ideas were built on the novel, 

innovative research done by Michael Faraday.  In Maxwell’s theoretical work, we see that it 

was—and is—possible to employ mathematics without abandoning a physical closeness to the 

phenomenon. Further, it is clear that the addition of mathematical formalism can assist in 

clarifying relationships, quantifying physical effects, and, in the strongest case, can even lead to 

the furtherance of a greater understanding of the phenomenon itself. 

  

 

 

 

 

 

 

 

                                                        
23

 Simpson, Maxwell on the Electromagnetic Field, 15. 
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