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ABSTRACT ARTICLE INFO

If we think of the graph as modeling a network, the
vulnerability measure the resistance of the network to
disruption of operation after the failure of certain sta-
tions or communication links. Many graph theoretical
parameters have been used to describe the vulnerabil-
ity of communication networks, including connectivity,
integrity, toughness, binding number, and tenacity.
In this paper we discuss tenacity and its properties in
vulnerability calculation.
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Introduction
We consider only finite undirected graphs without loops and multiple edges. Let G be a
graph. We denote by V(G), E(G) and | V (G) | the set of vertices, the set of edges and
the order of a graph G, respectively. For a subset S of V(G), let G[S] denote the subgraph
of G induced by S. The degree of a vertex v in a graph G is denoted by dG(v). The end
vertex v of a graph G is a vertex of degree 1 in G, that is dG(v) = 1.
A k-tree of a connected graph is a spanning tree with maximum degree k. Of course, for
k=2, this notion reduces to that of a hamiltonian path.
The concept of tenacity of a graph G was introduced in [2], as a useful measure of the
”vulnerability” of G. In [6], we compared integrity, connectivity, binding number, tough-
ness, and tenacity for several classes of graphs. The results suggest that tenacity is a
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most suitable measure of stability or vulnerability in that for many graphs it is best able
to distinguish between graphs that intuitively should have different levels of vulnerability.
In [3,4,7,8,9,10], they studied more about this new invariant. The tenacity of a graph G,
T(G), is defined by

T (G) = min{ |S|+τ(G−S)
ω(G−S) }, where the minimum is taken over all vertex cutsets S of G. We

define τ(G−S) to be the number of the vertices in the largest component of the graph G
- S, and ω(G− S) be the number of components of G - S. A connected graph G is called
T-tenacious if | S | +τ(G− S) ≥ Tω(G− S) holds for any subset S of vertices of G with
ω(G− S) > 1. If G is not complete, then there is a largest T such that G is T-tenacious
; this T is the tenacity of G. On the other hand, a complete graph contains no vertex
cutset and so it is T-tenacious for every T. Accordingly, we define T (Kp) = ∞ for every

p (p ≥ 1). A set S ⊆ V (G) is said to be a T-set of G if T (G) = |S|+τ(G−S)
ω(G−S) .

Any undefined terms can be found in the standard references on graph theory,including
Bondy and Murty [1].

Theorem 1: If

T (G) ≥ τ(G−S)
ω(G−S) + 1

k−2 , with k ≥ 3, (1)

for any vertex cutset S of G, then G has a k-tree.
Lemma 1. The degree of a vertex of A in any k-tree of H is k.
Lemma 2. Suppose that, for some m and n with m 6= n, there is a vertex xm of Ktm
adjacent in H to a vertex xn in Ktn. Then at least one of xm and xn, say xm has the
following property: if u is an end vertex in a k-tree of G[V (Ktm) ∪ {u}], then in that
k-tree, xm has degree k and so also dKt(xm) = k.

From Lemma 2, we can conclude that there is a k-tree, Kt of H and subsets P and Q of
V(H), with P non-empty.
We may assume Gm

n is labeled by 0,1,2,· · · ,m. Let n be even, n = 2r and two vertices i,j
are adjacent, if i − r ≤ j ≤ r (where addition is taken modulo m). Now let n and m be
odd, (n > 1). Let n = 2r + 1, (r > 0). Then Gm

2r+1 is constructed by first drawing Gm
2r,

and adding edges joining vertex i to veretex i+ m+1
2

for 1 ≤ i ≤ m−1
2

. Note that vertex 0
is adjacent to both vertices m−1

2
and m+1

2
..

Harary in [5] proved the following theorem:
Theorem 2: Graph Gm

n is n-connected.
Through the rest of this paper we will let n = 2r or n = 2r + 1 and m = k(r + 1) + s
for 0 ≤ s ≤ r + 1. So we can indicate that m ∼= s mod(r + 1) and k = b m

r+1
c. Also we

assume that the graph Gm
n is not complete, n+ 1 < m.

In [6] we calculate the tenacity of Gm
2r by using the following theorem:

Theorem 3: T (Gm
2r) = r +

1+d s
k
e

k
.

Lemma 3: Let Gm
n be the graph with m and n both odd, n = 2r + 1 and r > 0. Then

m ∼= 1 mod(n+ 1) if and only if s = 1 and k is even.
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Lemma 4: Let Gm
n be the graph with m and n both odd, n = 2r + 1 and r > 0. Then

α(Gm
n ) =

{
k if m 6= 1 mod(n+ 1)
k − 1 if m ∼= 1 mod(n+ 1)

Theorem 4: Let Gm
n be the graph with m and n odd, n = 2r + 1, then

r +
1 + d s

k
e

k
≤ T (Gm

n ) ≤
{
r + s+1

k
ifm 6= 1 mod9n+ 1)

kr+s+2
k−1 ifm ∼= 1 mod(n+ 1)

Proof: Let H = Gm
n . We proved in [2] that T (H) ≤ m−α(H)+1

α(H)
. Thus by Lemma 4, if

m 6= 1 mod(n+ 1), then

T (H) = m−k−1
k

= k(r+1)+s−k+1
k

= r + s+1
k

, and if m ∼= 1 mod(n + 1), then T (H) ≤
m−(k−1)+1

k−1 = kr+s+2
k−1 .

Since V (Gm
2r = V (H) and E(Gm

2r) ⊆ E(H), then Gm
2r is a spanning subgraph of H. We

have in [2], T (Gm
2r) ≤ T (H). Thus by Theorem 3, we have

r +
1 + d s

k
e

k
≤ T (Gm

n )

Lemma 5: Let Gm
n be the graph with m odd, n = 2r + 1, r ≥ 2, 1 < s < r = 1, and k is

even. Then there is an cutset A with kr+1 elements such that number of components is
ω(Gm

n − A) = k,and the largest component is τ(Gm
n − A) = 2.

Proof: We may assume Gm
n is labeled by 0, 1, 2, · · · ,m − 1. Let s < k, then s = k − l

for some l. Since m is odd and k is even, then s is odd. Hence l = 2t+ 1 and k = 2q, for
some t and q. Thus s = k − l = 2q − 2t − 1, q > t + 1. Thus m = s(r + 2) + l(r + 1).
Choose the sets

D = {1, 2, · · · , m− 1

2
} = {1, 2, · · · , qr + 2q − t− 1},

F = {m+ 1

2
, · · · ,m− 1} = {m+ 1

2
, · · · , m+ 1

2
+ qr + 2q − t− 2}.

Hence | D |=| F |. Consider the cutset A = C ∪ Y , such that C is the union of the set,

{1, 2, · · · , r}, {r + 3, · · · , 2r + 2}, · · · ,
{(q − t− 2)r + 2(q − t− 1)r + 2(q − t− 1)− 1, · · · , (q − t− 1)r + 2(q − t− 1)− 2},

{(q − t− 1)r + 2(q − t− 1) + 1, · · · , (q − t)r + 2(q − t− 1)},
{(q − t)r + 2(q − t), · · · , (q − t+ 1) + 2(q − t)− 1}, · · · ,

{(q − 1)r + 2q − t− 1, · · · , qr + 2q − t− 2},

and Y = {m+1)
2
, · · · , m+1

2
+ r − 1} ∪ Y1 ∪ Y2 ∪ {0} where

Y1 = ∪{{m+1
2

+ cr + 2c− 1, · · · , m+1
2

+ (c+ 1)r + 2c− 2}|1 ≤ c ≤ q − t− 1}
Y2 = ∪{{m+1

2
+ hr+ h+ q− t− 1, · · · , m+1

2
+ (h+ 1)r+ h+ q− t− 2}|q− t ≤ h ≤ q− 1}
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Hence the cutset C is a subset of D and Y is a subset of B. Now consider W =D-C. Thus
W = W ′ ∪ {qr + 2q − t− 1} wheren W’is the union of the sets

{r + 1, r + 2}, {2r + 3, 2r + 4}, · · · ,
{(q − t− 1)r + 2(q − t− 1)− 1, (q − t− 1)r + 2(q − t− 1)},

{(q − t)r + (q − t) + q − t− 1}, · · · , {(q − 1)r + (q − 1) + q − t− 1}.

Thus C = D −W is the union of the q set of r consecutive vertices. The doubleton sets
in W’ are of the form {dr+ 2d− 1, dr+ 2d} where 1 ≤ d ≤ q − t− 1.The singlton sets in
W’ are of the form {fr + f + q − t− 1} where q − t ≤ f ≤ q − 1. We want to prove that
if x ∈ W , then x+ m+1

2
∈ Y .If x is a first element of doubleton set in W’ then x is in the

form x = dr = 2d− 1 where 1 ≤ d ≤ q− t− 1. Hence x+ m+1
2

= m+1
2

+ dr+ 2d− 1 ∈ Y1.
Similarly x + 1 + m+1

2
∈ Y1, since r ≥ 2. If x is in a singleton set, then x is of the form

x = fr+ f + q− t− 1 where q− t ≤ f ≤ q− 1. Hence x+ m+1
2

+ fr+ f + q− t− 1 ∈ Y2.
If x = qr + 2q − t− 1, then

x+ m+1
2

= qr + 2q − t− 1 + (qr + 2q − t}
= 2q(r + 1) + (2q − 2t)− 1

= k(r + 1) + k − 1 = k(r + 1) + s = m+ 0 ∈ Y.

Thus each element in component set W ⊆ D has adjacent element in cutset Y ⊆ B.
Therefore the cardinality of cutset A is equal to rk + 1 and number of components,
ω(Gm

n − A) = k and the largest component τ(Gm
n − A) = 2. �

Theorem 5: Let Gm
n be the graph with n = 2r + 1,m odd, k even, k > 2, 1 < s < r + 1

and s < k. Then

r + 2
k
≤ T (Gm

n ) ≤ r + 3
k
.

Proof: By Theorem 4, we have r + 2
k
≤ T (Gm

n ). By Lemma 5, A is a cutset with kr+1

elements, | A |= kr + 1, τ(Gm
n − A) = 2, and ω(Gm

n − A) = k. Hence |A|+τ(G
m
n −A)

ω(Gm
n −A)

=
kr+1+2

k
= r + 3

k
. Therefore r + 2

k
≤ T (Gm

n ) ≤ r + 3
k
. �
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