
Frédéric Lang
Francesco Flammini (Eds.)

 123

LN
CS

 8
71

8

19th International Conference, FMICS 2014
Florence, Italy, September 11–12, 2014
Proceedings

Formal Methods
for Industrial
Critical Systems

Lecture Notes in Computer Science 8718
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Frédéric Lang Francesco Flammini (Eds.)

Formal Methods
for Industrial
Critical Systems
19th International Conference, FMICS 2014
Florence, Italy, September 11-12, 2014
Proceedings

13

Volume Editors

Frédéric Lang
Inria, 38330 Montbonnot, France
E-mail: frederic.lang@inria.fr

Francesco Flammini
Ansaldo STS, 80147 Naples, Italy
E-mail: francesco.flammini@ansaldo-sts.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-10701-1 e-ISBN 978-3-319-10702-8
DOI 10.1007/978-3-319-10702-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014946586

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at FMICS 2014, the 19th Interna-
tional Workshop on Formal Methods for Industrial Critical Systems, which took
place on September 11–12, 2014, in Florence, Italy.

The FMICS 2014 workshop took place during the one-week scientific event
FLORENCE 2014, which also hosted the 12th International Conference on For-
mal Modeling and Analysis of Timed Systems (FORMATS 2014), the 11th In-
ternational Conference on Quantitative Evaluation of SysTems (QEST 2014),
the 33rd International Conference on Computer Safety, Reliability and Security
(SAFECOMP 2014), and the 10th European Workshop on Performance Engi-
neering (EPEW 2014).

The aim of the FMICS workshop series is to provide a forum for researchers
who are interested in the development and application of formal methods in
industry. In particular, FMICS brings together scientists and engineers who are
active in the area of formal methods and interested in exchanging their expe-
riences in the industrial usage of these methods. The FMICS workshop series
also strives to promote research and development for the improvement of formal
methods and tools for industrial applications.

The topics of interest include, but are not limited to:

– Design, specification, code generation, and testing based on formal methods
– Methods, techniques, and tools to support automated analysis, certifica-

tion, debugging, learning, optimization, and transformation of complex, dis-
tributed, dependable, real-time systems, and embedded systems

– Verification and validation methods that address shortcomings of existing
methods with respect to their industrial applicability, e.g., scalability and
usability issues

– Tools for the development of formal design descriptions
– Case studies and experience reports on industrial applications of formal

methods, focusing on lessons learned or identification of new research di-
rections

– Impact of the adoption of formal methods on the development process and
associated costs

– Application of formal methods in standardization and industrial forums

This year we received 26 submissions. Papers had to pass a rigorous review
process in which each paper received three reports. The international Program
Committee of FMICS 2014 decided to select 13 papers for presentation during
the workshop and inclusion in these proceedings. The contributions focused on
the following main topics:

– Cyber-physical systems

VI Preface

– Computer networks
– Railway control systems
– Verification methods
– Hardware and software testing

The workshop program was therefore organized in sessions according to these
topics.

The workshop also featured invited talks by Pietro Marmo (Ansaldo STS,
Italy), and by David Parker (University of Birmingham, UK).

Following a tradition established over the past few years, the European As-
sociation for Software Science and Technology (EASST) offered an award to the
best FMICS paper. This year, the reviewers selected two contributions ex aequo:

– “Assertion-Based Monitoring in Practice — Checking Correctness of an Au-
tomotive DSI3 Sensor Interface,” by Thang Nguyen and Dejan Nickovic

– “Improving Static Analyses of C Programs with Conditional Predicates,” by
Sandrine Blazy, David Bühler and Boris Yakobowski

We would like to thank the FLORENCE 2014 general chair Enrico Vicario
(University of Florence) for taking care of all the local arrangements in Florence
and the FMICS 2014 local organization chair Alessandro Fantechi (University
of Florence) for liaising between FMICS and FLORENCE 2014 organizations.
We also thank the FMICS 2014 publicity chair Wendelin Serwe (Inria and LIG,
France) and the webmasters Marco Paolieri and Simone Mattolini (University
of Florence) for contributing to the international visibility of the workshop. Fi-
nally, we thank the ERCIM FMICS working group coordinator Radu Mateescu
(Inria Grenoble and LIG) for his help, EasyChair for supporting the review pro-
cess, Springer for the publication, all Program Committee members and external
reviewers for their substantial reviews and discussions, all authors for their sub-
missions, and all attendees of the workshop. Thanks to all for your contribution
to the success of FMICS 2014.

September 2014 Frédéric Lang
Francesco Flammini

Organization

Program Committee

Maria Alpuente Universitat Politècnica de Valencia, Spain
Alvaro Arenas IE University, Spain
Jiri Barnat Masaryk University, Czech Republic
Cinzia Bernardeschi University of Pisa, Italy
Simona Bernardi Centro Universitario de la Defensa, AGM,

Zaragoza, Spain
Jean-Paul Blanquart Astrium Satellites, France
Eckard Böde Offis, Germany
Rocco De Nicola IMT Lucca, Italy
Michael Dierkes Rockwell Collins, France
Susanna Donatelli University of Turin, Italy
Cindy Eisner IBM Research - Haifa, Israel
Alessandro Fantechi Università di Firenze, Italy
Jérôme Feret CNRS and ENS and Inria, France
Francesco Flammini Ansaldo, Italy
Wan Fokkink Vrije Universiteit Amsterdam and CWI,

The Netherlands
Andrew Gacek Rockwell Collins, USA
Stefania Gnesi ISTI-CNR, Italy
Matthias Güdemann Systerel, France
Keijo Heljanko Aalto University, Finland
Jan Jurjens TU Dortmund and Fraunhofer ISST
Frederic Lang Inria and LIG, France
Tiziana Margaria University of Potsdam, Germany
Pedro Merino University of Málaga, Spain
Benjamin Monate TrustInSoft, France
Gethin Norman University of Glasgow, UK
David Parker University of Birmingham, UK
Charles Pecheur Université catholique de Louvain, Belgium
Ralf Pinger Siemens AG, Germany
Wendelin Serwe Inria and LIG, France
Hans Svensson Quviq, Sweden
Jaco van de Pol University of Twente, The Netherlands
Valeria Vittorini University of Naples Federico II, Italy
Angela Vozella CIRA, Italy

VIII Organization

Additional Reviewers

Ballis, Demis
Bauch, Petr
Ferrari, Alessio
Houtmann, Clément
Isberner, Malte

James, Phillip
Kuismin, Tuomas
Margheri, Andrea
Romero, Daniel
Tinacci, Marco

Abstracts of Invited Talks

20 Years Past and (Hopefully) 20 Years

to Come: My Experience in Ansaldo STS
with Formal Methods and Railways

Pietro Marmo*

Ansaldo STS, Italy
Mailsa

Abstract. On next November, 20 years will have passed since the first
time I used a “formal method” for a real job in my company. Actually it
was a Petri Net model used to evaluate the safety of a two out of three
system. Since then, I have experimented a whole set of formal methods
(formal languages, model-checking, Theorem Proving, stochastic nets,
etc.), either for ad hoc studies with universities and research centers, or
for European research projects. Many of them aimed at providing a fully
automatic environment with the power of mathematics and the ease of
use of a toy but few have found real applications with valuable results.
All those years have brought many improvements and more and more
utilizations of formal methods are now possible in industry. In this talk
we present the challenges that are required to formal methods in rail-
ways, where they have won and where they have lost in the past, together
with a glance at what will be required and with what possible results in
the next twenty years (or so).

Keywords: Formal Method, Petri Net, Railway, AnsaldoSTS.

* Contact Author

Quantitative Verification:

Formal Guarantees for Timeliness,
Reliability and Performance

David Parker

School of Computer Science,

University of Birmingham, UK

Abstract. Quantitative verification is a technique for analysing quan-
titative aspects of a system’s design, such as timing, probabilistic be-
haviour or resource usage. It provides a means of automatically deriving
formal guarantees on a wide range of system properties, such as time-
liness, reliability or performance, for example, “the airbag will always
deploy within 20 milliseconds after a crash” or “the probability of both
sensors failing simultaneously is less than 0.001”. Recent years have seen
significant advances in the underlying theory, verification techniques and
tool support in this area, and these methods have been applied to an im-
pressive array of systems, from wireless networking protocols to robotic
systems to cardiac pacemakers.

This talk will give an overview of the state-of-the-art in quantita-
tive verification, focusing in particular on probabilistic model checking,
a quantitative verification technique for the analysis of systems with
stochastic behaviour. The talk will explain the key ideas behind the ap-
proach, highlight some of the application areas where it has been success-
ful, with particular emphasis on case studies with industrial involvement,
describe a few of the current research directions in the area and discuss
some of the challenges which remain.

Table of Contents

Formal Verification of Steady-State Errors in Unity-Feedback Control
Systems . 1

Muhammad Ahmad and Osman Hasan

Assertion-Based Monitoring in Practice – Checking Correctness of an
Automotive Sensor Interface . 16

Thang Nguyen and Dejan Ničković

Analysis of Real-Time Properties of a Digital Hydraulic Power
Management System . 33

Pontus Boström, Petr Alexeev, Mikko Heikkilä, Mikko Huova,
Marina Waldén, and Matti Linjama

Formal Analysis of a Fault-Tolerant Routing Algorithm for a
Network-on-Chip . 48

Zhen Zhang, Wendelin Serwe, Jian Wu, Tomohiro Yoneda,
Hao Zheng, and Chris Myers

Formal Specification and Verification of TCP Extended with the
Window Scale Option . 63

Lars Lockefeer, David M. Williams, and Wan J. Fokkink

Learning Fragments of the TCP Network Protocol 78
Paul Fiterău-Broştean, Ramon Janssen, and Frits Vaandrager

On the Validation of an Interlocking System by Model-Checking 94
Andrea Bonacchi and Alessandro Fantechi

Deadlock Avoidance in Train Scheduling: A Model Checking
Approach . 109

Franco Mazzanti, Giorgio Oronzo Spagnolo,
Simone Della Longa, and Alessio Ferrari

An Open Alternative for SMT-Based Verification of Scade Models 124
Henning Basold, Henning Günther, Michaela Huhn, and
Stefan Milius

Improving Static Analyses of C Programs with Conditional
Predicates . 140

Sandrine Blazy, David Bühler, and Boris Yakobowski

XIV Table of Contents

Detecting Consistencies and Inconsistencies of Pattern-Based
Functional Requirements . 155

Christian Ellen, Sven Sieverding, and Hardi Hungar

Test Specification Patterns for Automatic Generation of Test
Sequences . 170

Ugo Gentile, Stefano Marrone, Gianluca Mele,
Roberto Nardone, and Adriano Peron

Randomised Testing of a Microprocessor Model Using SMT-Solver
State Generation . 185

Brian Campbell and Ian Stark

Author Index . 201

Formal Verification of Steady-State Errors

in Unity-Feedback Control Systems

Muhammad Ahmad and Osman Hasan

School of Electrical Engineering and Computer Science (SEECS),
National University of Sciences and Technology (NUST),

Islamabad, Pakistan
{muhammad.ahmad,osman.hasan}@seecs.nust.edu.pk

Abstract. The meticulousness of steady-state error analysis of unity-
feedback control systems has always been of vital significance as even a
trifling glitch in this analysis may result in grievous penalties. To ensure
a rigorous steady-state error analysis, this paper presents the formal
verification of a generic relationship that is applicable to all kinds of
inputs and types of unity-feedback control systems. This formalization
builds upon the multivariate calculus theories of HOL-Light and our
prior work on developing formal models of feedback control systems.
To illustrate the usefulness of this result, the paper presents the formal
steady-state error analysis of a Pulse Width Modulation (PWM) push-
pull DC-DC converter, which is an extensively used component in various
power-electronics and aerospace applications.

1 Introduction

Control systems [18] form an integral part of all automated systems used in a
wide range of safety-critical applications, including industrial automation, sur-
gical robots, automobiles and aerospace systems. These control systems work
along with the given systems (plants) and are designed in such a way that they
ensure the desired behavior of their corresponding systems while adhering to the
stability constraints and allowable error margins.

Control systems can be configured in an open or a closed loop topology [18].
In open-loop systems, the controller generates the control signals based on a
reference or input signal R(s), as shown in Fig. 1.a . A disadvantage of this
kind of configuration is that the controller has no information about the output
of the plant (with open-loop transfer function G(s)) and thus cannot cater for
unexpected disturbances. To overcome this limitation, control systems are often
configured in a feedback or closed loop pattern where the output of the plant
C(s) is measured and compared with a reference or an input signal R(s), as
shown in Fig. 1.b. This error signal E(s) is then used for decision making in
the controller to compensate for disturbances. A unity-feedback is a frequently
used closed-loop system where the output of the system is compared with the
reference input signal as is, i.e., without any gain or loss in the feedback path.

F. Lang and F. Flammini (Eds.): FMICS 2014, LNCS 8718, pp. 1–15, 2014.
c© Springer International Publishing Switzerland 2014

2 M. Ahmad and O. Hasan

The quality of the control system is judged based on its steady-state response
[19], i.e., the response of the system when a large number of iterations in the
closed-loop have taken place and the steady-state conditions have been attained.
Steady-state error gives a parametric measure for the controllability of system
and how well the system will respond to certain disturbances.

The steady-state analysis of unity-feedback control systems is performed in
the Laplace domain because this choice allows us to model the main system in
terms of the transfer functions of its sub-systems, as a block diagram. The overall
transfer function of the plant G(s) is then expressed as follows by manipulating
the transfer functions of its subsystems using a set of predefined rules[18]:

G(s) =
1

sb
Y (s)

Z(s)
(1)

where the integer variable b : 0, 1, 2 · · · categorizes the system type or the number
of integrators in the forward path[18], and Y (s) and Z(s) represent the zeros and
poles of G(s) apart from 1

sb
. Now, the net transfer function for unity-feedback

error model is mathematically expressed as[18]:

E(s) =
R(s)

1 +G(s)
(2)

where R(s) models the input to our system, which in the case of steady-state
error analysis is traditionally taken to be as the unit step (1s), ramp (1

s2) and
parabola (1

s3) functions. The steady-state error is measured at a very large time,
i.e., when the time t tends to infinity. Thus, it can be defined in the Laplace
domain by applying the Final Value Theorem to the error model:

e∞ = lim
s→0

sE(s) (3)

Traditional methods, like paper-and-pencil proof methods and computer simu-
lations and numerical methods, cannot guarantee the accuracy of the above-
mentioned steady-state error analysis. The paper-and-pencil based analysis
methods are error prone due to the human involvement.Moreover, it is quite often
the case that many key assumptions of the results obtained of sub-system using

Fig. 1. Control System Configurations

Formal Verification of Steady-State Errors 3

paper-and-pencil proof methods are not documented, which may lead to to erro-
neous systems. Computer simulations and numericalmethods, such asMathWorks
Simulink [17], cannot guarantee accurate results while dealing with feedback-
control systems mainly due to their inherent non-exhaustive nature coupled with
the imprecision of computer arithmetics. The mathematical models of control sys-
tems can also be analyzed in computer algebra systems (CAS), such asMathemat-
ica [15]. CAS are very efficient for computing mathematical solutions symbolically,
but are also not completely reliable due to the presence of unverified huge symbolic
manipulation algorithms.

In order to overcome the above-mentioned limitations, the usage of formal
methods in the safety-critical domain of control system analysis is increasingly
being investigated [20,3]. However due to the continuous nature of the steady-
state error analysis, automated theorem provers and model checking tools cannot
ascertain absolute precision of analysis. Higher-order logic theorems provers have
shown some promising results and a detailed review of the literature will be
presented in the next section. One of the most interesting contributions, related
to the formal steady-state analysis of control systems, is the higher-order-logic
formalization of the basic building blocks[12], like forward transfer functions,
summing junctions, feedback loops and pickoff points, of control systems using
the multivariate analysis theories available in the HOL-Light theorem prover.
These foundations can be built upon to formally specify a wide range of control
systems in higher-order logic and reason about their steady-state errors within
the sound core of a theorem prover. The process involves the verification of the
error function for the given system based on its structure and the behavior its
sub-blocks. This is followed by the verification of the limit of the error function
of the given system, according to Equation (3), using the multivariate analysis
libraries of HOL-Light. The approach was illustrated by verifying the steady-
state error of a solar tracking control system. However, the reasoning process
about the steady-state error model with closed loop transfer function T(s), shown
in Fig. 2, is very cumbersome, the reason being the extensive user interaction
requirement in verifying the limiting behavior, expressed in Equation (3), for the
net expression for the error model of the given system. Moreover, this reasoning
process has to be repeated all over again if the steady-state for a different type
of input (unit step, ramp or parabola) is required for the same system, which is
a very common occurrence in steady-state error analysis.

The main scope of this paper is to overcome the above mentioned issues. We
build upon the formalization of the control system blocks of [12] to formalize
the error model for the unity-feedback control systems. Moreover, we formally

Fig. 2. Steady-State Error Model

4 M. Ahmad and O. Hasan

verify a generic expression for the steady-state error of unity-feedback control
systems using the multivariate analysis theories of HOL-Light. The unique fea-
ture of this expression is that it can be used to reason about the steady-state
error of any system type and input. Moreover, it facilitates reusability when rea-
soning about the state-state error of the same system while considering different
inputs. The quest for minimizing the user interaction in the higher-order-logic
theorem-proving based analysis for steady-state errors led us to develop this use-
ful relationship, which to the best of our knowledge has not been reported in the
control systems literature before. In order to illustrate the utilization and practi-
cal effectiveness of our formalization for verifying real-world control systems, we
use it to conduct the steady-state error analysis of the Pulse Width Modulation
(PWM) push-pull DC-DC converters[8], which is a widely used component in
power electronics and many safety-critical aerospace applications. In order to
evaluate the usefulness of our work for control system engineers, we engaged a
domain expert; trained her with basic theorem proving abilities in a couple of
weeks and assigned her the task to use our formalization for analyzing the PWM
push-pull DC-DC converter and her experiences are also shared in this paper.

2 Related Work

ClawZ [4] allows us to translatemodels of control systems developed inMathWorks
Simulink into Z language specifications, which are then verified by proving the
equivalence of the controller implementation using Ada in ProofProver. Another
similar approach is presented in [1] in which the author translates the discrete-
time Simulink model to Circus notations, which combines Z language and refine-
ment calculus and then compares a parallel Ada implementation. An interesting
methodology adopted in [7] calls for using the Timed Interval Calculus (TIC) li-
brary to capture the behavior of Simulink blocks, which could be verified in a theo-
rem prover. A similar approach was adapted byMahony, and modeling and analy-
sis of feedback control systems was introduced using the DOVE environment [16].
Model checking has also been successfully used to analyze dynamic systems by ab-
stracting the behavior of the system to a state-space model [22]. Herencia-Zapana
[13] proposed to formally analyze control software properties by first expressing
the stability proofs as C code annotations and then translating them to PVS proof
obligations and automatically verifying them. All these pioneering frameworks are
based on automatic formal verification tools and thus require some sort of abstrac-
tionmechanism tomodel the exact behavior of real-world control systems and their
environments, which are always continuous in nature.

In order to formally model and analyze continuous models of control systems,
Boulton et al. provided some reasoning support for verifying frequency response
of continuous-time control systems using Hoare logic using the HOL98 theorem
prover [6]. The main idea is to reason about the gain and phase relationships
of a control system using the gain and phase relationships of its subsystems in
the block diagram. This framework does not provide generic functions to model
arbitrary block diagrams for control systems and also lacks reasoning support

Formal Verification of Steady-State Errors 5

for complex number analysis principles, such as limits and summation, which are
essential to reason about many control system design related parameters, such
as steady-state errors and stability. In order to overcome these shortcomings,
Boulton et al [5] proposed to use automated symbolic methods to replace the
classical graphical charts, such as Nichole and Bode plots along with their formal
models. Based on this principle, the authors developed a prototype tool using
Maple and the PVS system. Maple is used to compute the verification conditions
for the given control system and PVS is used to discharge these conditions using
theorem proving principles. Due to the usage of Maple, the accuracy of the
analysis is again somewhat compromised as has been mentioned above.

The foremost foundation of analyzing the steady-state error of control systems
is the formalization of complex number analysis theories. The multivariate cal-
culus theories of HOL-Light theorem prover [11] fulfill this requirement. These
theories have been recently used to formalize the basic building blocks of control
systems [12] and the Laplace theory [21], which are the most relevant contribu-
tions to our work. We build upon and enhance the results reported in [12] to
analyze steady-state errors of unity-feedback control systems and facilitate the
formal reasoning process by verifying a generic expression for steady-state error
in this paper. The recent formalization of Laplace theory[21] opens up many
interesting research directions in the context of our work since now we can link
our formalization to the time-domain as well.

3 Preliminaries

In this section, we give a brief introduction to the multivariate analysis theories
in the HOL-Light theorem prover and the block diagram formalization of [12].
The intent is to provide some preliminaries to make the paper self contained
and thus facilitate its understanding for a wider audience, including both formal
methods and control communities.

3.1 Multivariate Calculus Theories in HOL-Light

A n-dimensional vector is represented as a Rn column matrix of real numbers
in HOL-Light. All of the vector operations are then handled as matrix manip-
ulations. This way, complex numbers can be represented by the data-type R2,
i.e, a column matrix having two elements [9]. In this formalization of complex
numbers, the first real number represents the real part and the second real num-
ber represents the imaginary part of the given complex number[10]. The main
advantage of this choice is that all the topological and analytic formalization
developed for vectors is inherited by the complex numbers.

Definition 1: Complex Number

� ∀ x y. complex (x,y) = vector [x; y]

The following mappings allow us to obtain the real and imaginary components
of a complex number:

6 M. Ahmad and O. Hasan

Definition 2: Real and Imaginary Components of a Complex Number

� ∀ z. Re z = z$1

� ∀ z. Im z = z$2

Here the notation z$n represents the nth component of a vector z. A real number
a can be converted to an equivalent complex number as follows:

Definition 3: Cx

� ∀ z. Cx(a) = complex(a,&0)

The normalization of a complex number is also a widely used phenomena and
has been formalized in HOL-Light [10] as follows:

Definition 4: Normalization of a Complex Number

� ∀ z. norm z = sqrt (Re z pow 2 + Im z pow 2)

where sqrt represents the HOL-Light square root function for real numbers.
The concept of limit of a function is used in our formalization to model the

steady-state error and is formalized in HOL-Light as follows:

Definition 5: Limit of a function

� ∀ f net. lim net f = (@l. (f → l) net)

The function lim is defined using the Hilbert choice operator @ in the functional
form. It accepts a net with elements of arbitrary data-type A and a function f,
of data-type A → Rm, and returns l:Rm, i.e., the value to which the function f
converges to at the given net.

Similarly, we also use the following theorem in our development:

Theorem 1: Sum of a geometric Progression

� ∀ z. norm z < &1 ⇒
((λk.z pow k) sums z pow n / (Cx(&1) - z)) (from n)

Where the function f sums k (from n) ensures that the infinite summation of
a multivariate sequence f is equal to k with n as the starting point.

3.2 Formalization of Block Diagrams in Control Systems

This section provides a set of formal definitions [12] of the basic building blocks
of control systems, given in Fig. 3. These definitions can in turn be used to
formalize a wide range of control systems in higher-order logic. The net transfer
function of n subsystems connected in cascade is the product of their individual
laplace transfer functions (Fig. 3.a).

Definition 6: Cascaded Subsystems

� series [] = Cx (&1) ∧ (∀ h t. series (CONS h t) h * series t)

The function series accepts a list of complex numbers, corresponding to the
transfer functions of all the given subsystems, and recursively returns their prod-
uct. Here two type injections & and Cx are used to transform a positive integer
to its corresponding real and complex number, respectively.

Formal Verification of Steady-State Errors 7

Fig. 3. Basic Building Blocks of a Control System

Fig. 3.b depicts a summation junction of transfer functions where the net
transfer functions of a set of incoming branches is formed by adding their in-
dividual transfer functions. The formalization of this behavior accepts a list of
complex numbers and returns their sum.

Definition 7: Formalization of Summation Junction

� sum junction [] = Cx (&0) ∧
(∀ h t. sum junction(CONS h t) h + sum junction t)

The pickoff point represents a subsystem connected to a network of parallel
branches of subsystems (Fig. 3.c):

Definition 8: Formalization of Pickoff point

� ∀ A h t. pickoff A [] = [] ∧
pickoff A (CONS h t) = CONS (h * A) (pickoff A t)

The function pickoff, accepts a complex number a, corresponding to the trans-
fer function of the first subsystem, and a list of complex numbers, corresponding
to the transfer functions of the subsystems in the branches, and returns a list of
complex numbers corresponding to the equivalent block diagram.

8 M. Ahmad and O. Hasan

The feedback block (Fig. 3.d), is the foremost element required to model
closed-loop control systems. Due to the feedback signal, it primarily represents
an infinite summation of branches that comprises of serially connected subsys-
tems.

Definition 9: Branch of a Feedback Loop

� ∀ a b n. feedback branch a b 0 = Cx (&1) ∧
feedback branch a b (SUC n) = series [a; b] *

(feedback branch a b n)

The function feedback branch accepts the forward path transfer function a, the
feedback path transfer function b and the number of the branches n. It returns
the net transfer function for n branches of a feedback loop as a single complex
number. Now, the infinite summation of all branches of the feedback loop can
be modeled as the following HOL-Light function:

Definition 10: Feedback Loop

� ∀ a b. feedback loop a b = (infsum (from 0)

(λk. feedback branch a b k))

The HOL-Light function infsum (from n) f above provides the infinite sum-
mation a multivariate sequence f with n as the starting point. Now, we can
model the behavior of the feedback loop in HOL-Light as follows:

Definition 11: Feedback

� ∀ a b. feedback a b = series [a; (feedback loop a b)]

The function feedback accepts the forward path transfer function a and the
feedback path transfer function b and returns the net transfer function by form-
ing the series network of the summation of all the possible infinite branches
and the final forward path transfer function, since the output is taken after the
forward path a.

A couple of simplification theorems used in this paper, are as follows:

Theorem 2: Feedback loop simplification

� ∀ a b. norm (a * b) < &1 ⇒ feedback a b = a / (Cx(&1) - a * b)

The proof of Theorem 2 is primarily based on the infinite summation of a geo-
metric series [10], given in Theorem 1.

Similarly, the equivalence relationship between the block diagrams, shown in
Fig. 4, has been formally verified as follows:

Theorem 3: Feedback loop simplification

∀ a b c. (norm (a*b) + norm (a*c)) < &1⇒
feedback a (sum junction (pickoff Cx(&1) [b;c])) =

feedback (feedback a b) c

The proof of Theorem 3 utilizes Theorem 2 along with some complex arithmetic
reasoning. We use this theorem to convert any non-unity-feedback control system
into a unity-feedback control system required for steady-state error analysis.

Formal Verification of Steady-State Errors 9

Fig. 4. Multiple Feedback Simplification Rule

4 Steady-State Error Analysis

We now present the formal verification of a generic expression that can be used
to reason about the steady-state error of any unity-feedback system (Fig. 5),
irrespective of its type and input. We proceed in this direction by first formalizing
a generalized representation of the transfer function according to Equation (1).

Definition 12: General Transfer function

� ∀ Y Z a. general tf Y Z b = (λs. Y s / (s pow b * Z s))

The function general tf accepts two complex functions Y and Z of data type
R2 → R2 along with a complex number b and returns the transfer function using
the lambda abstraction format.

Now, the error model of unity-feedback systems in terms of the generalized
representation of G(s), according to Equation (2), is as follows:

Definition 13: Steady-state-error-model

� ∀ G a. uf error model G a =

(λs. series [Cx (&1) /s pow a; feedback loop (G s) (--Cx(&1))])

The function uf error model accepts a variable G : R2 → R2, which represents
the general transfer function, and a complex number a : R2, which generalizes
the input type, i.e., if the input is a unit step then a = 1 and similarly a = 2
and a = 3 for the ramp and parabola inputs, respectively. The function uses
the functions series and feedback to capture the structure of the error model
of the unity-feedback system, depicted in Fig. 5, and returns its net transfer
function with data type R2 → �

2.
Now, the steady-state error can be formally defined as the limit of the net

transfer function of the error model, as given in Equation (3),

Definition 14: steady-state-error

� ∀ E. steady state error E = lim (at (Cx(&0))) (λs. s (E s))

where the function lim(at(vec i))(λx.f x), represents the limit of a function
f at point i, i.e., limx→i f(x) in HOL-Light. The function steady state error

accepts a variable E : R2 → R2, which represents the net transfer function of
the error, and returns its corresponding steady-state error as a complex value.

Now, based on the above definitions, we verified our generic expression as the
following theorem

10 M. Ahmad and O. Hasan

G(s)
R(s) E(s) C(s)

-

+

Fig. 5. Steady-State Error of Unity-Feedback Systems

Theorem 4: Unity-feedback steady-state error

� ∀ Y Z a b l m. (∀ s. Z continuous at s) ∧ ¬(l = Cx(&0)) ∧
¬(m + l = Cx(&0)) ∧ 0 ≤ b ∧ 1 ≤ a ∧ a ≤ b+1 ∧ (Y → l)

(at Cx(&0)) ∧ (Z → m) (at Cx(&0)) ∧ ¬(Z (Cx(&0)) = Cx(&0)) ∧
(?k. &0<k ∧ (∀s. norm s<k ⇒ norm (Y s /(s pow b * Z s)) < &1))

⇒ steady state error (uf error model (general tf Y Z b) a) =

(if b = 0 then m / (m+l) else if a = b+1 then m / l

else Cx(&0))

The first three assumptions are used to avoid singularities. The next two
assumptions declare the allowable ranges of the system type and input charac-
terization variables, respectively. The next assumption (a ≤ b+1) defines the
upper bound of the input type based on the type of the system. The next two
assumptions ensure that the variables, l and m, represent the limiting values of
the functions Y and Z at point 0, respectively. The last assumption is required
for the feedback simplification. To the best of our knowledge, this relationship
between the type of the system and its allowable input, given in Theorem 4, is not
mentioned in most of the control systems literature. To ascertain our finding, we
consulted some control systems experts and they confirmed our results. Missing
such corner cases is a common problem in paper-and-pencil based mathematical
analysis and simulation and is one of the major causes for faulty system designs.
The proof of Theorem 4 is based on various properties of limit of a complex
function and complex arithmetic reasoning.

The formalization presented so far in this section consumed about 300 man-
hours, which are mainly spent in the user guided verification due to the unde-
cidable nature of the higher-order logic. Our proof script is available at [2]. The
main benefit of this development, however, is that it greatly facilitates the for-
mal reasoning about unity-feedback control system properties by reducing the
human interaction in such proofs, as will be illustrated in the next section.

It is important to note that the universal quantification over the variables
Y , Z, a and b in Theorem 4 allows us to use this result for reasoning about
steady-state error of any unity-feedback control system irrespective of its type,
input and behavior. To the best of our knowledge, such a generic relationship
for the steady-state error for unity-feedback systems has not been reported in
the control systems literature.

Formal Verification of Steady-State Errors 11

Now, we outline the step-wise process for reasoning about the steady-state er-
ror of unity-feedback systems using Theorem 4. The first step is to use the formal
definitions, given in Section 3, to develop a formal model of the given system
using its structural description. Next, we verify the equivalence of this model
and the expression general tf Y Z b, by choosing appropriate assignments of
the functions Y and Z and the variable b. Next, we express the theorem for
the steady-state error of the given unity-feedback system: steady state error

(uf error model (<transfer function of the given system>) a) =

<steady state error>. Now, using Theorem 4 along with the fact that all of
its assumptions hold for the given values of Y , Z, a and b, we can conclude
the proof of steady-state error of the given unity-feedback system. In order to
illustrate the effectiveness and practical utilization of Theorem 4 and the above
mentioned process, we analyze a real-world control system in the next section.

5 Application: Pulse Width Modulation (PWM)
push-pull dc-dc Converter

The Pulse Width Modulation(PWM) push-pull dc-dc converters are widely used
to step down dc voltages and thus have many applications in areas, like aerospace
applications, where dc voltage is produced and consumed. The steady-state re-
sponse of this electronic device is of utmost importance and thus has been exten-
sively studied [14,8]. A commonly used model [8] for steady-state error analysis
of the PWM push-pull dc-dc converter is given in Fig. 6.

In this section, we share the experiences of a control system specialist in veri-
fying the steady-state error relationship for the PWM push-pull dc-dc converter
using our formalization. This person is a graduate student of Electrical Engi-
neering and her research interests are in the area of mathematical analysis of
control systems. The person had taken academic courses on discrete mathemat-
ics, programming languages and calculus but had no background about formal
methods. We provided a two week HOL-Light extensive training to the person
with major focus on formal reasoning about complex arithmetic and limits. Dur-
ing the course of the training as well as the case study, the person struggled in
understanding the syntactical and type checking errors of HOL-Light and thus
was significantly assisted in this regard.

The person initiated the exercise by developing the following higher-order-
logic model for the block diagram, given in Fig. 6. Initially, she got confused in
defining multiple feedback paths while using the function pickoff and mistak-
enly used the transfer function of 1/s instead of 1 in the pre-fan-out block. She
caught this mistake herself during the second step of our proposed approach,
where the equivalence of the formal model is verified with the one obtained via
the general tf function and the correct definition is given below:

12 M. Ahmad and O. Hasan

Fig. 6. Steady-State Error Model of PWM push-pull dc-dc converters

Definition 15: PWM push pull dc-dc converter

∀ L C r rc Ky Kv Ki s.

dc dc converter L C r rc Ky Kv Ki s =

series [Cx(&1)/s ; Ky ; feedback (series [Cx(&1)/L;

feedback (Cx(&1)/s) (--sum junction (pickoff (Cx(&1))

[(r+rc)/L; series [Cx(&1)/s; Cx(&1)/C; Cx(&1)/L]]))])

(--sum junction (pickoff (Cx(&1)) [Ki;

series [Kv; Cx(&1)/s; Cx(&1)/C]])); sum junction [rc;

series [Cx(&1)/s; Cx(&1)/C]]]

Where the -- symbol represents the minus operator in HOL-Light. The vari-
ables L, C, r and rc donate inductor, capacitor, the equivalent resistance in
series with an inductor and the equivalent resistance in series with a capacitor,
respectively. While kv, ki and ky are the voltage, current and feedback loop
gains, respectively. None of these variables can be zero for the correct opera-
tion of the dc-dc converter. A subgoal of the equivalence theorem is given below,
where the structure of the PWN push pull dc-dc converter is simplified to obtain
its corresponding characteristic equation given in [8]:

Formal Verification of Steady-State Errors 13

Theorem 5: dc-dc converter Transfer function simplification

� ∀ L C s r rc Ky Kv Ki.

¬(C * L * r * rc * Ki * Kv * Ky = Cx (&0)) ∧ ¬(s = Cx (&0)) ∧
¬(s pow 2 *C *L + s*C*(r + rc) +Cx(&1) = Cx(&0)) ∧
norm (inv s * --((r+rc) * inv L + inv (s*C*L))) < &1 ∧
norm ((s * C) / (s pow 2 * C * L + s * C * (r + rc) +

Cx(&1)) * --(Ki + Kv * inv (s *C))) < &1

⇒ dc dc converter L C r rc Ky K Ki s =

(Ky * (s*C*rc +Cx(&1))) / (s pow 3 * C* L + s pow 2 *

C * (r+rc+Ki) + s (Cx(&1)+Kv))

Note that none of the physical values in the model can be zero and this is
ensured by the first assumption. The next two assumptions are used to avoid
singularities and the last two assumptions are required for solving the feedback
paths. Our control engineer was not able to guess the right set of assumptions
upfront and thus added the missing assumptions during the reasoning process
based on the feedback she got from the generated subgoals. Thus, it was clearly
observed in this exercise that interactive theorem provers do guide their users
to find the right set of assumptions.

Since our given model is a Type 1 system, therefore its steady-state-error for
the unit step input should be zero[14]. The result is verified as:

Theorem 6: Steady-State Error for step input

� ∀ L C r rc Ky Kv Ki.

¬(C * L * r * rc * Ki * Kv * Ky = Cx (&0)) ∧
¬(Cx (&1) + Kv = --Ky) ∧
¬(Cx (&1) + Kv = Cx (&0)) ∧
(?k. &0 < k ∧
(∀s. norm s < k

⇒ norm ((Ky * (s * C * rc + Cx (&1))) /

(s pow 1 * (C * L * s pow 2 + s * C * (r + rc + Ki) +

Cx (&1) + Kv))) < &1))

⇒ steady state error (uf error model (general tf

(λs.Ky * (s*C*rc + Cx(&1))) (λs.C*L* s pow 2 +

s*C*(r+rc+Ki) + Cx(&1) + Kv) 1) 1) = Cx(&0)

The first assumption ensures that none of the component in the dc-dc con-
verter has a zero value and the next three assumptions are uesd to avoid singu-
larities. The last assumption is for the feedback simplification.

The verification of the above theorem involves the equivalence theorem, as
described in the previous section, along with Theorem 4. Besides the above
theorem, the control engineer also verified the relationship of the steady-state
error for ramp input. The theorem is described below:

Theorem 7: Steady-State Error for ramp input

� ∀ L C r rc Ky Kv Ki.

¬(C * L * r * rc * Ki * Kv * Ky = Cx (&0)) ∧

14 M. Ahmad and O. Hasan

¬(Cx (&1) + Kv = --Ky) ∧
¬(Cx (&1) + Kv = Cx (&0)) ∧
(?k. &0 < k ∧
(∀s. norm s < k

⇒ norm ((Ky * (s * C * rc + Cx (&1))) /

(s pow 1 * (C * L * s pow 2 + s * C * (r + rc + Ki) +

Cx (&1) + Kv))) < &1))

⇒ steady state error (uf error model (general tf

(λs. Ky * (s*C*rc + Cx(&1))) (λs. C*L* s pow 2 +

s*C*(r+rc+Ki) + Cx(&1) + Kv) 1) 2) = (Cx(&1) + Kv) / Ky

The reasoning process was very similar to the one used for Theorem 6 since
the same values for the functions Y and Z are used in these theorems. Further
details about its verification can be found in our proof script[2].

The exercise of involving a control systems engineer for conducting these proofs
was quite a learning experience for us as well. Some of the feedback that we got is
shared here. The user faced many issues in interpreting the type checking and syn-
tactical error messages generated by HOL-Light and this was the most frustrating
issue for him. Thus, this is an area that can be improved. Moreover, the person
was not too comfortable with the text-based interface of the theorem prover and
suggested to bring in a more user-friendly graphical interface, specially for control
system analysis. On the other hand, the user was quite amazed at the feedback she
got from the theorem prover in understanding the behavior of the control system
model and the requirement of an exhaustive set of assumptions to verify any theo-
rem. She felt that this sort of rigorous analysis is a dire need in the case of safety-
critical control system design. It was quite encouraging for us that the engineer was
able to verify the goals with the basic understanding of limits and complex numbers
inHOL-Light. This fact also demonstrates the effectiveness of our generic theorem.

6 Conclusions

This paper presents a formal framework to reason about the net transfer func-
tions and steady-state errors of unity-feedback control systems within the sound
core of a theorem prover HOL-Light. The main contribution of the paper is the
formal verification of a generic theorem that facilitates in the formal reasoning
about any kind of unity-feedback system. For illustration purposes, we presented
a formal analysis of a PWM push pull dc-dc converter. Some of the interesting
future directions of our work are to formally analyze the stability of control sys-
tems and establishing a link between the formalized Laplace transform theory[21]
to be able to link time and Laplace domain models of a control system.

References

1. Clayton, P., Cavalcanti, A., O’Halloran, C.: From Control Law Diagrams to Ada
via Circus. Formal Aspects of Computing 23(4), 465–512 (2011)

Formal Verification of Steady-State Errors 15

2. Ahmad, M.: Formal Verification of Steady State Errors in Unity-Feedback Control
Systems (2014), http://save.seecs.nust.edu.pk/students/ahmad/
sseufcs.html

3. Alur, R.: Formal Verification of Hybrid Systems. In: Embedded Software, pp. 273–
278 (2011)

4. Arthan, R., Caseley, P., O’Halloran, C., Smith, A.: ClawZ: Control Laws in Z. In:
Formal Engineering Methods, pp. 169–176 (2000)

5. Boulton, R.J., Gottliebsen, H., Hardy, R., Kelsey, T., Martin, U.: Design Verifica-
tion for Control Engineering. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM
2004. LNCS, vol. 2999, pp. 21–35. Springer, Heidelberg (2004)

6. Boulton, R.J., Hardy, R., Martin, U.: A Hoare Logic for Single-Input Single-Output
Continuous-Time Control Systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003.
LNCS, vol. 2623, pp. 113–125. Springer, Heidelberg (2003)

7. Dong, J.S., Chen, C., Sun, J.: A Formal framework for Modeling and Validating
Simulink diagrams. Formal Aspects of Computing 21(5), 451–483 (2009)

8. Czarkowski, D., Pujara, L.R., Kazimierczuk, M.K.: Robust Stability of State-
Feedback Control of PWM DC-DC push-pull Converter. IEEE Transaction on
Industrial Electronics 42(1), 108–111 (1995)

9. Harrison, J.: A HOL Theory of Euclidean Space. In: Hurd, J., Melham, T. (eds.)
TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005)

10. Harrison, J.: Formalizing Basic Complex Analysis. Studies in Logic, Grammar and
Rhetoric 10, 151–165 (2007)

11. Harrison, J.: The HOL Light Theory of Euclidean Space. Journal of Automated
Reasoning 50(2), 173–190 (2013)

12. Hasan, O., Ahmad, M.: Formal analysis of steady state errors in feedback control
systems using HOL-light. In: Proceedings of the Conference on Design, Automation
and Test in Europe, DATE 2013, pp. 1423–1426 (2013)

13. Herencia-Zapana, H., Jobredeaux, R., Owre, S., Garoche, P.-L., Feron, E., Perez,
G., Ascariz, P.: PVS Linear Algebra Libraries for Verification of Control Software
Algorithms in C/ACSL. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS,
vol. 7226, pp. 147–161. Springer, Heidelberg (2012)

14. Hote, Y.: A New Approach to Time Domain Analysis of Perturbed PWM push-
pull DC-DC Converter. Journal of Control Theory and Applications 10(4), 465–469
(2012)

15. Lutovac, M.D., Tošic, D.V.: Symbolic Analysis and Design of Control Systems
using Mathematica. International Journal of Control 79(11), 1368–1381 (2006)

16. Mahony, B.: The DOVE approach to the Design of Complex Dynamic Processes.
In: Workshop on Formalising Continuous Mathematics, pp. 167–187. NASA Con-
ference Publication (2002)

17. MathWorks Simulink (2012), http://www.mathworks.com/products/simulink
18. Nise, N.S.: Control System Engineering. Wiley and Sons (2003)
19. Ogata, K.: Modern Control Engineering. Prentice-Hall (1997)
20. Pike, L.: Pervasive Formal Verification in Control System. In: Formal Methods in

Computer-Aided Design. Panel Discussion (2011)
21. Taqdees, S.H., Hasan, O.: Formalization of Laplace Transform Using the Multivari-

able Calculus Theory of HOL-Light. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR-19. LNCS, vol. 8312, pp. 744–758. Springer, Heidelberg (2013)

22. Tiwari, A., Khanna, G.: Series of Abstractions for Hybrid Automata. In: Tomlin,
C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer,
Heidelberg (2002)

http://save.seecs.nust.edu.pk/students/ahmad/sseufcs.html
http://save.seecs.nust.edu.pk/students/ahmad/sseufcs.html
http://www.mathworks.com/products/simulink

Assertion-Based Monitoring in Practice –

Checking Correctness
of an Automotive Sensor Interface

Thang Nguyen1,� and Dejan Ničković2

1 Infineon Technologies AG, Austria
Thang.Nguyen@infineon.com

2 AIT Austrian Institute of Technology GmbH, Vienna, Austria
dejan.nickovic@ait.ac.at

Abstract. In this paper, we evaluate the assertion-based monitoring
technology for mixed-signal systems by applying it to real-world case
study from the automotive domain.

We first motivate the case study by presenting the state-of-the-practice
verification and validation work-flow typically used in the automotive
industry. We identify the shortcomings of this work-flow, and propose
a more rigorous and automated methodology based on monitoring cor-
rectness of simulated mixed signal designs with respect to assertions,
which formalize in Signal Temporal Logic (STL) the requirements from
the design specification.

We apply the assertion-based monitoring framework for mixed signal
designs to check the correctness of Distributed System Interface (DSI3) in
a modern airbag system-on-chip application. We present all the relevant
steps in our proposed work-flow, evaluate the results and discuss the
framework’s benefits as well as its identified missing features.

1 Introduction

A modern car is a system-of-systems (SoS) that merges a number of embed-
ded elements that are often developed independently. The systems in a car are
heterogeneous, combining digital controllers with analog sensors and actuators.
They interact with their physical environment and are interconnected through
the vehicle physics, as well as communication protocols. This results in complex
interactions generating emergent behaviors that are not predictable in advance.
Many components in a car, such as the airbag systems, are safety critical. Hence,
correct system integration in the automotive domain is crucial to achieve high
standards with respect to safety.

Due to the heterogeneity and the complexity of components and sub-systems
in modern cars, verification and validation (V&V) poses a major challenge in the

� The research leading to these results has received funding from the ARTEMIS Joint
Undertaking under grant agreement Nr. 295311 and the Austrian Research Promo-
tion Agency FFG under the program ”Forschung, Innovation und Technologie fr
Informationstechnologien (FIT-IT).

F. Lang and F. Flammini (Eds.): FMICS 2014, LNCS 8718, pp. 16–32, 2014.
c© Springer International Publishing Switzerland 2014

Assertion-Based Monitoring in Practice 17

automotive domain and represents the main bottleneck in the design process.
Verification by simulation and manual testing are the dominant methods used
in the V&V practice of the automotive industry. However, these techniques have
the weakness of being ad-hoc, inefficient and prone to human errors.

The research community has investigated a number of approaches that address
V&V issues for mixed-signal systems. Formal verification of systems combining
continuous and discrete dynamics has been mainly studied by the hybrid sys-
tems [18,2] community. It consists in computing over-approximations of reach-
able sets of states of the circuit, modeled as a hybrid automaton (differential
equations with mode switching). Despite the important progress achieved in
this research field in recent years [13], such technique [6,14,17,24,1] still cannot
scale up to the size and complexity of transistor-level circuit models. In addition
to hybrid system verification, there are other orthogonal analytical approaches
to study similar systems. For instance, static analysis and abstract interpretation
were used to develop a framework for inferring continuous time properties of sys-
tems consisting of synchronous components that interact by quasi-synchronous
composition [5].

Assertion-based monitoring is a promising technology for verification of analog
and mixed-signal (AMS) designs, i.e. designs that consist of interacting digital
and analog components. It successfully exports some well-established ingredients
from digital verification to the AMS domain, while retaining the relative sim-
plicity and scalability of the simulation-based verification. In essence, assertion-
based monitoring frameworks consist of an assertion language used to formalize
the requirements that describe the correct interaction between analog and digi-
tal components, including timing constraints due to the communication delays.
The formal assertions are then automatically translated into monitors, programs
that read simulation traces of the design-under-test and check for the assertion
satisfaction/violation.

Signal Temporal Logic (STL) [19,20] is an assertion language extending Lin-
ear Temporal logic (LTL) [22]. LTL enables declarative, formal and compact
specification of reactive system requirements. Its original use was for evaluating
sequences of states and events in digital systems. A typical property stated in
temporal logic is always (req -> eventually! ack). This property says that
it is always the case that a request req eventually triggers an acknowledgment
ack. STL extends LTL to specification of properties involving both digital and
real-valued variables defined over dense time. Offline monitoring of STL was im-
plemented in the tool AMT [21]. The monitoring flow based on using STL for
formalizing assertions and monitoring them with AMT is depicted in Figure 1.
This specification language has been successfully used in the past for monitoring
in various application domains, such as analog circuits [16], biochemical reac-
tions [7], synthetic biological circuits [4] and music [11]. STL has also been ex-
tended in several other directions. In [11], the authors developed a first attempt
of time-frequency logic-based (TFL) specification, and successfully applied it to
detect music patterns. TFL expresses frequencies as atomic predicates (using
sliding FFT to evaluate the intensity of the signal around a frequency) and time

18 T. Nguyen and D. Ničković

using intervals and the classic temporal operators. The classic qualitative se-
mantics of STL was recently extended with more powerful and precise notions
of quantitative semantics [12,10,9] (or robustness degree), providing a real value
measuring the level of satisfaction or violation for a trajectory of the property of
interest. Several tools, such as BIOCHAM [23], S-TaLiRo [3] and Breach [8], are
available to perform robustness analysis on the time series collected in wet-lab
experiments or produced by simulation-based techniques.

Fig. 1. Assertion-based monitoring flow with STL assertion language and AMT tool

In this work, we apply the assertion-based monitoring framework from Fig-
ure 1 to check the correctness of a sophisticated automotive sensor interface
integration in a modern system-on-chip (SoC) airbag system, developed by In-
fineon Austria AG. The correct integration of the SoC with its sensor interface
is specified in the Distributed System Interface (DSI3) protocol standard [15].
We present the work-flow of the case study in which we use STL to formalize
DSI3 requirements and AMT tool to monitor the simulation traces. We evalu-
ate the case study results and discuss the lessons that we learned regarding the
applicability of this approach in industry.

2 Verification Flow in the Automotive Domain –
State-of-the-Practice

Figure 2 illustrates the state-of-the-practice verification work-flow by Power
Train and Safety department at Infineon Technology Austria AG. The work-
flow describes as well collaboration between Tier-1 (system developer and inte-
grator) and Tier-2+ (HW - Hardware and SW Software element developers)
teams. The work-flow starts with the requirements and specifications phase at
the Tier-1 level. In this step system functionalities and related HW/SW com-
ponents are defined. The HW requirements are provided to Tier-2 supplier, e.g.

Assertion-Based Monitoring in Practice 19

Fig. 2. Verification workflow for complex mixed signal IC development

Infineon so that HW concept and design specification can be further defined.
Right after this phase, the design and verification/validation activities will be
launched (almost in parallel). The design activities covers conceptual and de-
sign work, which including digital and firmware design, analog schematic design
and top-level integration. Most of the tasks defined during design phase are
mainly done under the Cadence Virtuoso/AMS-Designer tooling environment,
whereas for the proof-of-concept, the COSIDE (Complex System Integrated De-
velopment Environment) from Fraunhofer IIS is used. Nearly at the same time,
verification engineering team also based on the hardware requirements and de-
sign specification starts their verification and validation planning process. This
process (with the support from some planning tools, e.g.: in-house tool) results
in a verification plan which then used by verification/validation engineer for test
bench creation. The verification plan is categorized with different verification
approaches including:

Pre-silicon verification covers all type of simulation at different design level
(block, module and chip top-level) using different techniques from mixed-
signal to mixed-abstraction simulation.

20 T. Nguyen and D. Ničković

Emulation at integrated circuit (IC) and system level uses FPGA with
mixed-signal test chip as an early prototype for verifying many scenarios that
are very impractical or impossible to simulate. These scenarios are usually
long term test, stress test or sensor data transmission test over a long period
of time (e.g.: could result in data interception of million sensor message).
This approach is an innovative approach, developed by Infineon and its cus-
tomer. The approach has been recently accepted as publication in the SAE
Journal of Passenger Car - Electrical and Electronic System (SAE Society
of Automotive Engineer).

Post-silicon Verification refers to verification of the real IC in the lab. It is
an extension of those test scenarios which could not be done using emulation
system. This is due to the fact that emulation system is mainly designed to
cover certain safety critical functions (e.g.: sensor interfaces or the deploy-
ment interfaces) but not the full design functionalities. Through extensive
tests done in the lab, the post-silicon verification should maximize the test
coverage at HW component level before being delivered to the system inte-
grator Tier-1 supplier.

Finally, the rootcause analysis and bug-fix testing is considered as an unde-
sired part of the verification activities. However, when a bug is found, rootcause
analysis and bug-fix testing could significantly contribute to increase the verifi-
cation as well as the project timing and effort. This is because the bug-fix could
be a change in the design (re-design) of a modification/adaptation in the speci-
fication. In any case, this would trigger the verification regression run, meaning
cost in time and effort. Despite the fact that verification/validation activities
for mixed-signal IC development are well established, the verification work-flow
above still involves simulation and manual testing methods used in the practice
of the automotive industry. These methods consist in verification engineers creat-
ing input stimuli, executing simulation models and observing the waveforms for
correctness. They are known for the following weaknesses: ad-hoc, inefficient and
prone to human errors. In addition, it is widely accepted that for complex mixed-
signal multi-cores System-on-Chip (SoC) IC products, verification accounts for
around 60%-70% of the total development. This is especially true for automo-
tive safety critical SoC product with a high number of analogue interfaces to
the physical components, e.g.: an airbag SoC chipset in an automotive airbag
system application. As such, any approaches which could help to reduce design
and verification effort, improve time-to-market and product quality, e.g.: formal
verification, boost up verification runs using hardware acceleration platform and
verification automation are of extreme interest.

3 Signal Temporal Logic

In this section, we give a brief overview of the Signal Temporal Logic (STL) that
we use to formalize the case study requirements. For the full details regarding the
assertion language and the monitoring algorithms for STL, we refer the reader
to [20].

Assertion-Based Monitoring in Practice 21

We consider the STL logic with both future and past operators, interpreted
over a finite multi-dimensional signal w. A signal w is a partial function w : T →
Bm×Rn, where T is the interval [0, d) denoting a time domain of duration d. Let
X = {x1, . . . , xm} be the set of real valued variables and P = {p1, . . . , pn} the
set of STL propositions. We denote by w|x and w|p the projection of the signal w
to a real-valued or propositional variable x ∈ X or p ∈ P . A Boolean constraint
over X is a predicate of the form x ◦ c, where x ∈ X , ◦ ∈ {<, <=, =, >=, >} and
c ∈ Q. The syntax of an STL formula ϕ overX and P is defined by the grammar

α := p | x ◦ c
ϕ := α | not ϕ | ϕ1 or ϕ2 | ϕ1 until!I ϕ2 | ϕ since!I ϕ2

where p ∈ P , x ∈ X , c ∈ Q is a constant and I is an interval of the form
[a, b], [a, b), (a, b], (a, b), [a,∞) or (a,∞) where 0 ≤ a ≤ b are rational numbers.
As in LTL, basic STL operators can be used to derive other standard Boolean
and temporal operators, in particular the time-constrained eventually!, once!,
always, and historically operators:

eventually!I ϕ = true until!I ϕ once!I ϕ = true sinceI ϕ
alwaysI ϕ = not eventually!I not ϕ historicallyI ϕ = not onceI not ϕ

The semantics of an STL formula ϕ with respect to an n-dimensional signal
w is described via the satisfiability relation (w, t) |= ϕ, indicating that the signal
w satisfies ϕ at time t, according to the following recursive definition, where T
is the time domain.

(w, t) |= x ◦ c ↔ w|x[t] ◦ c
(w, t) |= p ↔ p[t] = 1
(w, t) |= not ϕ ↔ (w, t) �|= ϕ
(w, t) |= ϕ1 or ϕ2 ↔ (w, t) |= ϕ1 or (w, t) |= ϕ2

(w, t) |= ϕ1 until!I ϕ2 ↔ ∃ t′ ∈ (t⊕ I) ∩ T (w, t′) |= ϕ2 and
∀ t′′ ∈ (t, t′) (w, t′′) |= ϕ1

(w, t) |= ϕ1 since!I ϕ2 ↔ ∃ t′ ∈ (t� I) ∩ T (w, t′) |= ϕ2 and
∀ t′′ ∈ (t′, t) (w, t′′) |= ϕ1

(1)

A formula ϕ is satisfied by w if (w, 0) |= ϕ.

Example 1. An example of a property that can be expressed in STL is a mixed
signal stabilization property that has the following requirements:

– The absolute value of a continuous signal x is always less than 5;
– When the (Boolean) trigger rises, within 600 time units abs(x) has to drop

below 1 and stay like that for at least 300 time units.

This property is illustrated in Figure 3 and expressed in STL as:

always (abs(x) < 6 and
(rise(trigger) -> eventually![0,600] always[0,300] (abs(x) < 1)))

22 T. Nguyen and D. Ničković

Fig. 3. Example: stabilization property

4 Case Study

4.1 Case Study Description

The increasing number of airbags in a vehicle, the requirement to comply with
stricter safety requirements, while costs must be reduced has brought automo-
tive airbag system application to a new approach with SoC design, shown in
Figure 1. Consequently, verification has dramatically increasingly challenges the
design of complex mixed-signal System-on-Chip (SoC) products. This is espe-
cially true for automotive safety critical SoC products with a high number of
analogue interfaces to the physical components, e.g.: an airbag SoC chipset in
an automotive airbag system application.

(a) (b)

Fig. 4. A typical airbag system: (a) overview; (b) airbag SoC chipset top-level imple-
mentation architecture

During the operation, the sensors (buckle switches, accelerometers, pressure
sensors, etc.) mounted in key locations of the vehicle, continuously measure the
positions of impact, the severity of the collision and other variables. This in-
formation is provided to the airbag SoC chipset in form of analog signals. The
airbag SoC chipset translates the analog sensor signals into digital words. The
translated digital sensor data is reported to the main uC via the SPI (Serial
Peripheral Interface) communication. Based on this information the airbag main

Assertion-Based Monitoring in Practice 23

uC decides if, where (location) and when the airbags (e.g.: actuators) is deployed.
Accordingly, this makes the verification (computer-based simulation) and valida-
tion (lab evaluation) of the airbag SoC product, especially the sensor interfaces
become a challenging task, mainly because of:

– Verification for the airbag SoC and its sensor interfaces has to cover real-time
embedded mixed signal domains.

– Failure during the reception, decoding and processing of sensor data in the
airbag controller system can originate unexpected or false deployment events
of the airbag system putting human safety in danger.

– Most of the functionalities of sensor interfaces can only be verified at the
system level of the chip and at the system application level. Only using
classical mixed-signal simulation approach becomes a bottle neck.

– Many verification scenarios of the sensor interfaces such as long-term ver-
ification run with checking of millions sensor data frames are not suitable
using computer-based simulation.

In addition, reducing time-to-market and first time right design in automo-
tive electronics industry, which are key requirements in project to win customer
and market share, has posed a great challenge to the design and verification
team. With this case study, we are evaluating the assertion-based monitoring
methodology on the modern airbag system application with the focus on the
new airbag sensor interface using the new DSI3 standard, promoted by the DSI
consortium1. DSI3 goals are to improve performance, reduce cost and promote
open standard but still remains at the lowest cost possible compare to the cur-
rent widely used PSI5 standard. Higher performance is achieved among others,
by increased communication speed from the slave sensor to the master.

4.2 Formalization of DSI3 Discovery Mode Requirements

In this section, we formalize DSI3 discovery mode requirements, illustrated in
the highlighted section of Figure 5. In the DSI3 discovery mode, μC interacts
with the sensor interfaces via the voltage (v) and current (i) lines. It is the initial
phase of the DSI3 standard protocol and it works as follows. First, the power
apply is turned on, resulting in the voltage ramp from 0V to V high (phase (1)
in Figure 5). Then, μC issues commands for probing the presence or absence of
sensors. These commands are converted by the SoC to analog pulses carried over
the voltage lines. In Figure 5, (2) shows a discovery pulse command. A sensor
that is connected to the sensor interface responds by an inverted analog pulse
carried over the current line (shown in (3) of Figure 5). Finally, if a sensor is not
connected to the sensor interface, the discovery pulse command is not followed
by any response on the current line, as illustrated in (4) of Figure 5.

In addition to the correct ordering of events, described in the previous para-
graph, the DSI3 Bus Standard also defines a number of timing requirements that
must be met by any correct implementation of the protocol:

1 http://www.dsiconsortium.org

http://www.dsiconsortium.org

24 T. Nguyen and D. Ničković

1. The minimal time between the moment that the power is applied and the
first discovery pulse command is sent, as shown by (a) in Figure 5;

2. The maximal total duration of the discovery mode, measured between the
moment that the power is applied and the end of the sensor probing by the
μC, as illustrated by (b) in Figure 5;

3. The expected time between any two consecutive discovery pulse commands
((c) in Figure 5); and

4. The expected time between a discovery pulse command and the response by
the sensor (or its lack of response if the sensor is not connected), as shown
by (d) in Figure 5.

Fig. 5. DSI3 Discovery Mode requirements - overview

Specification of Events of Interest. In order to be able to formalize these
timing properties defined by the DSI3 Bus Standard, we first must be able to
accurately characterize and recognize the “events” corresponding to power appli-
cation, discovery pulse commands, the sensor response and its lack of response.
The graphical specification of these patterns is shown in Figure 6.

We first consider applying power to the SoC, illustrated in Figure 6 (a), which
is characterized by a ramp that goes from 0V to Vhigh. We consider that the
power is on, characterized by the event pw app, when the voltage signal goes
above Vhigh.

% Regions of interest

1: define b:v zero := a:v == 0;

2: define b:v above high := a:v >= Vhigh;

3: define b:v between high zero := a:v > 0 and a:v <= Vhigh;

% Power applied

4: define b:pw app :=

5: rise(b:v above high) and
6: (b:v between high zero since! fall(b:v zero);

A discovery pulse command is carried on the voltage line and is characterized
by its shape and duration, as shown in Figure 6 (b). The DSI3 standard requires

Assertion-Based Monitoring in Practice 25

IResp

0V

v i

iv

tDisc Pulse

tDisc Accept

tDisc Accept

(a)

(b)

(c)

(d)

tDisc Acc

pw app dsc res

dsc no resdsc pls cmd

Vhigh

Vhigh

Vlow

2IResp

IResp

2IResp

Fig. 6. Graphical specification of events of interest: (a) power applied; (b) discoverly
pulse command; (c) sensor response; and (d) sensor no response

that the distance between two consecutive discovery pulse commands is tDisc Per

(± tolerance). In order to formalize this requirement in STL (shown in the next
paragraph), we first define the regions of interest that are needed to capture a
discovery pulse command (lines 1−3). We then characterize the correct shape of
the pulse (lines 4−7) and its duration (lines 8−11), resulting in the specification
of the discovery pulse command (line 12).

% Regions of interest

1: define b:v above high := a:v >= Vhigh;

2: define b:v below low := a:v <= Vlow;

3: define b:v between high low := a:v >= Vlow and a:v <= Vhigh;

% Pulse shape

4: define b:cmd dp shape :=

5: fall(b:v above high) and
6: (b:v between high low until! b:v below low until!
7: b:v between high low until! b:v above high);

% Pulse end-to-end timing

8: define b:cmd dp e2e timing :=

9: fall(b:v above high) and
10: ((not rise(b:v above high)) until![tDisc Pulse-tol:tDisc Pulse+tol]
11: rise(b:v above high));

26 T. Nguyen and D. Ničković

% Pulse = shape + end-to-end timing

12: define b:cmd dp := b:cmd dp e2e timing and b:cmd dp shape ;

The specification of the sensor response (dsc res) and no response
(dsc no res) patterns (Figures 6 (c) and (d)) is very similar to the specification
of the discovery pulse command, and we skip their presentation due to the lack
of space.

Assertions for DSI3 Discovery Mode Requirements. After specifying
events of interest, we are ready to formalize the requirements that relate these
events and define the timing constraints between them, as described in the DSI3
bus protocol, and summarized in Figure 7.

last command pulse

v

0V

i

0A

IResp

≥ tDisc Start

≤ tDisc End

Vhigh

Vlow

tDisc Per tDisc Per

tDisc Dly

2IResp

Fig. 7. Graphical specification of DSI3 discovery mode requirements

We start with the requirement saying that between the power applied event
and the first discovery pulse command, there must be at least tDisc Start time
elapsed. We formalize this requirement with the following assertion.

% Timing between power applied and first discovery pulse commands

1: first disc cmd dly assert:
2: always (b:pw app -> (((not b:cmd dp) until![tDisc Start:inf]
3: b:cmd dp);

The second requirement says that the discovery mode has a maximum du-
ration of tDisc End. We consider that the discovery starts when the power is
applied, and that it ends tDisc Per time after the last discovery command is is-
sued. We first define the auxiliary property end disc to characterize the end of
the discovery mode, and then formalize the assertion as follows.

Assertion-Based Monitoring in Practice 27

% Discovery end

1: define b:end disc :=

2: (notb:cmd dp since![=t Disc Pulse] b:cmd dp) and
3: always not b:cmd dp ;

% Discovery mode maximum duration

4: disc duration assert:
5: always (b:pw app -> (eventually![0:t Disc End] b:end disc);

The third requirement defines the correct timing between a discovery pulse
command, and the associated sensor response when the sensor is connected (and
its lack of response when it is not connected). This requirement is dependent on
the actual configuration of the system, and we formalize the property in which
only the first sensor is connected. In order to specify this requirement, we also
need to characterize the first discovery pulse command.

% First discovery pulse command

1: define b:first cmd dp :=

2: (b:cmd dp and historically notb:cmd dp ;

% Discovery pulse command - response delay

3: cmd resp delay assert:
4: always ((b:cmd dp and b:first cmd dp ->

5: (eventually![t Disc Dly-tol:t Disc Dly+tol] b:dsc res);

% Discovery pulse command - no response delay

6: cmd resp delay assert:
7: always ((b:cmd dp and not b:first cmd dp ->

8: (eventually![t Disc Dly-tol:t Disc Dly+tol] b:dsc no res);

Finally, the last requirement says that every two consecutive discovery pulse
commands must be separated by tDisc Pulse± some tolerance, which is formalized
with the following STL assertion.

% Timing between consecutive discovery pulse commands

1: cmd disc pulse period assert:
2: always (b:cmd dp -> (((not b:cmd dp) until![tDisc Per-tol:tDisc Per+tol]
3: b:cmd dp) or (always not b:cmd dp)));

4.3 Case Study Evaluation

The design-under-test used in the case study was implemented by Infineon Tech-
nologies in VHDL (RTL) and VHDL with real number behavior. The design-
under-test represents a mixed-abstraction of RTL and behavior model, consists
of 23 different functional modules which are connected together via a complex
logic core. The simulation time for this design takes approximately between 2
and 3 hours per simulation.

The formalization of the DSI3 requirements was lead by AIT, and was done
in several iterations, involving feedback from the Infineon’s designers and engi-
neers. The tool used for monitoring the simulation traces against the formalized

28 T. Nguyen and D. Ničković

requirements was AMT [21]. The monitoring was done on a computer with Intel
Core i7 processor, 8GB of RAM and the 64-bit Ubuntu 12.04 LTS running on a
virtual machine from 64-bit Windows 7 operating system. The simulated traces
files had approximately 210MB per simulation. The assertions were checked
against the simulation traces one by one, and all the monitoring times were
lower than 20s per assertion. It follows that the monitoring presented a negligi-
ble overhead compared to the simulation time.

The monitoring results provided several interesting insights regarding the for-
malization of requirement documents. The formalization for discovery pulse com-
mands and the event when the voltage is applied proved to be sufficient to catch
these events. However, in our first iteration, we were not able to catch the sensor
response. In fact, the DSI3 standard does not specify the minimal duration of the
pulse falling (see Figure 6 (c)), but our intuition was that due to the physical con-
straints the duration must be strictly positive. We thus imposed this constraint
in our original formulation of the dsc res property. However, after clarification
from Infineon’s designers, we found out that at this given stage of development,
the design is approximated by a simpler model that allows instantaneous ramps
between values, as we can see in Figure 8.

Fig. 8. Zoom in on the simulated sensor response on the current line

The monitoring tool reported a violation of the cmd disc pulse period asser-
tion. In the formal assertion, we used the value of 125μs for tDisc Per , while the
actual distance between consecutive discovery pulse commands in the simulated
trace was close to 250μs, as shown in Figure 9. The value 125μs for tDisc Per

was taken from Table 6-2 in the standard [15]. After discussions with the Infi-
neon’s engineers, it turned out that the standard gives only an average value for
tDisc Per , while allowing the designer to choose any other value for tDisc Per as
long as all the other hard timing constraints are met. After reformulating the
assertion with the new value for tDisc Per provided by Infineon’s engineers, the
simulation traces satisfied the assertion.

Fig. 9. Zoom in on the detected discovery command pulses extracted from the simu-
lations by the monitoring tool

Assertion-Based Monitoring in Practice 29

We conclude that generally requirement documents are not always fully pre-
cise regarding parts of the specification, which makes the formalization of re-
quirements a non-trivial task. For some of the properties, interpretation freedom
is left, and one must take extreme care to make assumption which match the
intended meaning.

5 Lessons Learned and Future Directions

Requirements document often give interpretation freedom to the designer which
can result in ambiguous understanding of the desired property. Using STL to
monitor the compliance of the airbag SoC to the DSI3 standard protocol, it helps
to remove these kinds of ambiguity. In addition, when the STL is implemented
as an assertion, it strengthens the communication between different disciplinary
teams, ensuring a clear and common understanding between teams on the system
properties and requirements. We found that the monitoring itself represents a
negligible overhead to the design simulation, while automatically providing useful
debugging information to the designer as well as reducing time and error prone
due to manual inspection of the simulation results.

We identified a number of features that are still missing in the STL-based
monitoring framework and that we will investigate in the near future:

Template Specification Languages for STL: while STL is a rigorous, un-
ambiguous and powerful specification language, it is often not very intuitive
to the engineers, and especially to analog designers. Inspired by the graph-
ical specification of properties, as described in the DSI3 bus standard, we
will develop a graphical language for specifying common STL patterns, while
hiding away low-level STL details from the future.

STL Assertion Libraries: we identified that building libraries of common
STL properties for specific applications would greatly facilitate application
of this technology and would enhance the reuse of assertions across different
phases of design, various actors in the automotive value chain and different
project. For instance, an assertion library specifying the full DSI3 bus stan-
dard would be reused in every project that requires using this communication
protocol. The assertion skeletons would remain the same across the project,
and only instantiations of project-specific parameters would need to change.
In order to facilitate this goal, we need a more flexible syntax for STL that
allows declaration of variables and constants outside of the assertions. We
are currently working on adding this feature to the STL language.

Diagnostics for Assertion Violations: when an assertion is violated, it is
extremely important to be able to easily extract the reasons of the violation.
The AMT tool already provides extensive information about the assertion
violation, by computing and making visible to the user the information about
the satisfaction/violation in time of all sub-formulas in the violated asser-
tion. However, the causality analysis still needs to be done manually by the
engineer in order to gain insight into reasons for assertion violation. We are

30 T. Nguyen and D. Ničković

planing to further automate this process, by generating reports explaining
in human readable language the reasons of assertion violations.

Assertion Language Extensions: in this paper, we focused on the discovery
mode of the DSI3 protocol, in which STL can be directly used to accurately
specify needed requirements. The expressive power of STL might not be
sufficient for later phases of the protocol, when actual data is exchanged
between the sensors and the μC over the voltage and current lines. This
protocol uses multi-level source and Manchester coding for transferring data.
We will look in the future for additional features that STL may need in order
to support accurate specification of the full DSI3 bus standard and study
the necessary extensions.

Algorithms for Hardware FPGA Monitors for STL: we used in this pa-
per the offline STL monitoring tool AMT for case study evaluation. The
offline monitoring has the advantage of being indifferent about the source
(simulation, emulation or measurement) of the trace files – their provenance
does not affect the monitoring results. However, the trend of implementing
mixed-signal designs on FPGA hardware enables much longer design emu-
lations of the design, generating huge amount of data to be processed. It
follows that online hardware FPGA implementation of STL monitors, run-
ning in parallel with the design emulation, would be beneficial as they would
limit the amount of data that needs to be stored at any time and would
enable aborting emulation upon assertion violation detection.

6 Conclusions

We have evaluated the mixed-signal assertion-based monitoring methodology by
applying it to check correctness of DSI3 sensor interfaces in a modern airbag
system-on-chip application. We have demonstrated the usefulness and the po-
tential of the approach, highlighting its benefits but also identifying the features
that need to be added to the framework in order to make it mature for indus-
trial use. AIT and Infineon will continue working together to strengthen the
assertion-based monitoring technology and tailor it for its effective application
in the V&V of automotive applications.

References

1. Althoff, M., Rajhans, A., Krogh, B.H., Yaldiz, S., Li, X., Pileggi, L.: Formal ver-
ification of phase-locked loops using reachability analysis and continuization. In:
Proceedings of the International Conference on Computer-Aided Design, pp. 659–
666. IEEE Press (2010)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1), 3–34 (1995)

3. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: A tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011)

Assertion-Based Monitoring in Practice 31

4. Bartocci, E., Bortolussi, L., Nenzi, L.: A temporal logic approach to modular design
of synthetic biological circuits. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013.
LNCS, vol. 8130, pp. 164–177. Springer, Heidelberg (2013)

5. Bertrane, J.: Static analysis by abstract interpretation of the quasi-synchronous
composition of synchronous programs. In: Cousot, R. (ed.) VMCAI 2005. LNCS,
vol. 3385, pp. 97–112. Springer, Heidelberg (2005)

6. Dang, T., Donzé, A., Maler, O.: Verification of analog and mixed-signal circuits
using hybrid system techniques. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 21–36. Springer, Heidelberg (2004)

7. Donzé, A., Fanchon, E., Gattepaille, L.M., Maler, O., Tracqui, P.: Robustness anal-
ysis and behavior discrimination in enzymatic reaction networks. PLoS ONE 6(9),
e24246 (2011)

8. Donzé, A.: Breach, A toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167–170. Springer, Heidelberg (2010)

9. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013)

10. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010)

11. Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S.: On tem-
poral logic and signal processing. In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, vol. 7561, pp. 92–106. Springer, Heidelberg (2012)

12. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)

13. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

14. Frehse, G., Krogh, B.H., Rutenbar, R.A.: Verifying analog oscillator circuits us-
ing forward/backward abstraction refinement. In: DATE, pp. 257–262. European
Design and Automation Association (2006)

15. Distributed System Interface. DSI3 Bus Standard. DSI Consortium
16. Jones, K.D., Konrad, V., Nickovic, D.: Analog property checkers: a ddr2 case study.

Formal Methods in System Design 36(2), 114–130 (2010)
17. Little, S., Walter, D., Jones, K., Myers, C.: Analog/Mixed-signal circuit verification

using models generated from simulation traces. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 114–128.
Springer, Heidelberg (2007)

18. Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. In: Huizing, C., de
Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600,
pp. 447–484. Springer, Heidelberg (1992)

19. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004)

20. Maler, O., Nickovic, D.: Monitoring properties of analog and mixed-signal circuits.
STTT 15(3), 247–268 (2013)

32 T. Nguyen and D. Ničković

21. Nickovic, D., Maler, O.: AMT: A property-based monitoring tool for analog sys-
tems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763,
pp. 304–319. Springer, Heidelberg (2007)

22. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
23. Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfac-

tion of temporal logic formulae with applications to systems biology. In: Heiner,
M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 251–268.
Springer, Heidelberg (2008)

24. Steinhorst, S., Hedrich, L.: Model checking of analog systems using an analog
specification language. In: DATE, pp. 324–329. ACM (2008)

Analysis of Real-Time Properties of a Digital
Hydraulic Power Management System�

Pontus Boström1, Petr Alexeev1, Mikko Heikkilä2, Mikko Huova2,
Marina Waldén1, and Matti Linjama2

1 Åbo Akademi University, Finland
firstname.lastname@abo.fi

2 Tampere University of Technology, Finland
firstname.lastname@tut.fi

Abstract The paper presents a case study involving a Digital Hydraul-
ics Power Management System (DHPMS). The system is a cyber-physical
system, where actions need to be taken with high precision in order to
ensure that the system works safely and energy efficiently. Here high
precision actions demand very low latency of the control software. The
contribution of this paper is an approach to analyse real-time properties
of a common type of cyber-physical system. The paper also highlights
the need to carefully analyse the effects of timing errors on performance
and safety. The timing analysis is based on timed automata models and
model-checking in the TIMES tool. Some lessons learned from the case
study are also discussed.

1 Introduction

This paper reports on a case study involving a Digital Hydraulic Power Manage-
ment System (DHPMS), which is a universal flow source for hydraulic systems
[12]. Such systems are based on a digital pump-motor technology, where the
flow can be shared between several outlets with arbitrary pressure levels. The
pumping pistons of the DHPMS are controlled actively by on/off valves. This
system represents a common type of cyber-physical systems, where actions need
to be taken with high accuracy with respect to a rotation angle of an axle. Other
examples of such systems include e.g. fuel injection systems, robots powered by
(electric) motors and computer hard drives.

The software of the DHPMS is used to trigger opening and closing of valves at
the right moments in time corresponding to the selected flow direction (mode)
and position of the rotating shaft (axle). Incorrect valve timing may cause prob-
lems such as:

– Dangerous pressure peaks;
– Low efficiency of the system or cavitation;
– Premature wear-out of hydraulic components.

� The work has been partially funded by the EDiHy project (no. 139540 and no.
140003) funded by the Academy of Finland.

F. Lang and F. Flammini (Eds.): FMICS 2014, LNCS 8718, pp. 33–47, 2014.
© Springer International Publishing Switzerland 2014

34 P. Boström et al.

An initial version of the control software of the DHPMS developed earlier by the
authors from IHA, Tampere University of Technology is based on polling, i.e.,
the occurrence of the moments for triggering of valve is checked periodically. The
computational platform used in the system is an embedded single-core CPU. The
length of the polling period should be short enough to achieve good precision for
triggering of valves. Unfortunately reduction of the length of the polling period
is limited by the OS and usually cannot be less than 50-100 �s. Further reduction
of the period causes unacceptable high CPU load even for controlling of a single
valve. This can lead to deadline misses in valve triggering, which is unsafe for
the hydraulics. Hence, there is a need for a better solution. In this paper we
propose an alternative architecture for the software of the DHPMS that solves
the highlighted limitations. A FPGA or multi-core solution could be utilized
to increase computational power of the platform, but due to cost factors and
development complexity, a single-core solution is preferable.

The new software architecture presented in the paper is based on interrupts
and use of hardware timers for time-triggered tasks. Using this architecture we
were able to reduce critical latencies significantly and reduce CPU load by about
5-10 times comparing to the existing architecture. We show that the system
works in experiments and verify that it satisfies desired real-time properties.
This allows further improvements of the DHPMS, e.g., increasing the number of
pumping pistons and independent outlets or adding fault-tolerance mechanisms.

The contribution of this paper is an approach to analyse real-time properties
of cyber-physical systems. The paper highlights the need to carefully analyse
the effects of timing errors on performance and safety. It describes a method
to analyse worst-case response times based on properties of the environment,
which also takes into account the constraints found by analysing the impact of
latencies on the system. The method is based on using timed automata to model
the almost periodic (sporadic) rotation of the electric motor driving the pump.
We believe that our approach is useful for other similar systems, where events
are triggered based on certain desired positions of a rotating axle.

The rest of the paper is organized as follows. In the next section we present
the case study and the proposed software architecture. Section 3 contains a
description of tools used for timing analysis, while the following section describes
the models used in the analysis of timing. Section 5 contains the results of the
analysis. Lessons learned and topics for further research are then discussed in
Section 6. In Section 7 we conclude.

2 Case Study

For simplicity, only one pressure outlet of the DHPMS is considered, i.e, a digital
pump-motor is studied. The overall hydraulic architecture of the digital pump
motor is presented in Fig. 1. Let Nv be the total number of on/off valves in the
DHPMS. Each valve should be opened and closed exactly once in one turn of
the rotating shaft. Therefore the software of the DHPMS needs to initiate 2Nv

triggering events within one period. Let ej denote an event of opening or closing

Analysis of Real-Time Properties of a DHPMS 35

Fig. 1. The hydraulic architecture of a digital pump-motor. The figure shows three
pistons connected to a rotating shaft to the left. Each piston is connected via valves to
a high pressure line A and a tank line T.

of a valve j ∈ [0, 2Nv − 1], tje and θje denote the desired time and angle of the
rotating shaft for the event ej respectively. The angle θje and all other angles are
given relative to a fixed position on the axle. The calculation of θje depends on
factors such as desired hydraulic fluid flow direction (mode), the angular velocity
of the shaft ω, the size of the hydraulic chamber and compressibility of the fluid.
The details of the calculation of θje can be found elsewhere [11]. Only ω and tje
need to be calculated by the DHPMS, all other parameters can be considered as
input data arriving from the rest of the hydraulic system. The angular velocity
ω is defined as ω = dθ

dt , where θ denotes the current angle of the rotating shaft. If
ω is constant, the time delay before triggering of the valve tje can be estimated as
tje =

θj
e−θ
ω . Hence, estimation of both ω and tje requires measurement of the actual

angle of the rotating shaft. This task is solved with an incremental rotary encoder
presented in Fig. 2, which is commonly used for angular velocity measurement.
The measurement requires the following two sensors:

– Zero sensor that produces an impulse when θ = 0°.
– Tooth sensor that outputs an impulse when it meets with one of teeth placed

at fixed positions on the rotating shaft.

There is some angle difference between starting point of angle measurement and
teeth as shown in Fig. 2. In practice this difference cannot be eliminated due
to technological reasons. Therefore impulses from zero sensor and tooth sensor
never arrive simultaneously. In the system the shaft is attached to an electric
motor, which runs unloaded with ωmax = 25πs−1 (12.5Hz or 750rpm).

We assume that all teeth are placed absolutely uniformly at the shaft. The
discrete character of sensor signals implies that θ can be known precisely only
at the moment of arrival of a signal from either zero or tooth sensor. During
the rest of the time, θ can be estimated with an existing kinematic models, e.g.,
model of a rotating shaft with constant angle velocity. We used the following
definitions for discretisation:

36 P. Boström et al.

Fig. 2. Implementation of angle measurement of the rotating shaft (zoomed and rotated
from Fig. 1)

– N – total number of teeth placed on the rotating shaft. The studied system
has 144 teeth;

– i – index of the current tooth met by the tooth sensor, i ∈ [0..N − 1];
– θ0 – angle difference between positions of the zero sensor and the first tooth

presented in Fig. 2;
– ti – time of arrival of impulse from the tooth sensor at position i.

This allows estimation of θi and ωi at the moment of ti with (1) and (2).

θi = θ0 +
2πi

N
(1)

ω̂i =
θi − θi−1

ti − ti−1
(2)

Here θi gives the angle at the time ti, while ω̂i gives an estimate of the angular
velocity at the same moment. Calculations according to formulas (1) and (2)
are used in the proposed software architecture. This requires measuring a time
of arrival of impulses from sensors. This time can be acquired from the CPU
clock in handlers of interrupts raised by the impulses. Note that we could use
more precise estimation of ω̂i, but as discussed in Section 2.2, time delays caused
by the real-time schedule are more important for the resulting precision of the
system.

The DHPMS in the case study of the paper has three cylinders and each
cylinder has two valves, one for the pressure line and one for the tank line as
shown in Fig. 1. Let θb,k denote the angle position of the shaft that corresponds to
the position with maximum extraction (bottom-dead-centre) of piston of cylinder
k. The angle of the shaft is counted from the bottom position of piston of the
first cylinder, so that θb,1 = θ0 = 0°. Positions of pistons of other cylinders are
shifted by 120° with respect to each other, therefore θb,2 = 120° and θb,3 = 240°.
The construction of the DHPMS imposes constraints on opening and closing of
all valves as follows:

– The pressure line can be opened if θ ∈ [θb,k, θb,k + 90°) and closed if θ ∈
[θb,k + 90°, θb,k + 180°).

– The tank line can be opened if θ ∈ [θb,k + 180°, θb,k + 270°) and closed if
θ ∈ [θb,k + 270°, θb,k + 360°).

Analysis of Real-Time Properties of a DHPMS 37

Fig. 3. The proposed architecture of the software of the DHPMS

2.1 Software Architecture

The proposed architecture of the DHPMS software is presented in 3. This ar-
chitecture is based on interrupt handling and use of timer-triggered (delayed)
tasks. There are two main interrupt handlers:

– The zero sensor handler is needed to determine the moment for starting of
a new period of rotating shaft. This allows to define reference points of the
time tje and to reset tooth index (counter) i.

– The tooth sensor handler increments i, estimates θi and ω̂i with formulas
(1) and (2), and calculates both angles θje and correspondent time delays tje
for each triggering event ej .

The tooth sensor handler enables delay-based triggering of valve triggering tasks.
The task for event ej is triggered if θje is expected to be between current and
next tooth of the rotating shaft: θi ≤ θje ∧ θje < θi+1.

The proposed software architecture was examined with both simulation and
in workbench experiments. The software of the whole DHPMS was designed
in Simulink with further automated generation of the real-time software code.
This allowed to avoid manual code development and to simulate execution of
the same model before experimenting with a real hydraulics of the workbench.
The computation part of the workbench was based on a dSpace real-time hard-
ware/software platform.

2.2 Analysis

The aim of the software is to open or close the valves as accurately as possible
with respect to a given desired angle θje. To do this, we first need to analyse how
different factors influence the actual opening angle θje for an event ej . There are

38 P. Boström et al.

two sources of imprecision to consider here: the estimation error in ω and the
timing error in ej .

Estimation Error in ω. We start with analysis of the effects of timing delays in
tooth sensor readings on the estimation of ω̂i. We can divide the angular velocity
ω (t) into two components, ω (t) = ω̂ (t)+ωerr (t). Here ω̂ is the estimated velocity
and ωerr is the estimation error. Recall that the angular velocity ω̂i at a tooth
sensor is given by (2). This formula can be given as:

ω̂i =
θi − θi−1

ti,a + ti,err − (ti−1,a + ti−1,err)

where ti,a + ti,err is the time when the tooth sensor interrupt is received and
ti,err is the delay. Note that since ti,err is a delay, we have that ti,err ≥ 0. Given a
sampling period of 50μs in the initial software the timing error is bounded in the
interval −50μs ≤ ti,err − ti−1,err ≤ 50μs. Given a maximum rotation speed of
12.5Hz, ωmax = 25π ≈ 78.5s−1. Given 144 teeth, a maximum timing error gives
ω̂ = 72.1s−1. This means about 8.3% error in the angular velocity estimate.

Note that we have not considered changes in the angular velocity of the shaft.
The estimate of the angular velocity ω̂ is accurate only if ω is constant, which is
not typically the case. However, due to the short time intervals between tooth
interrupts, we can assume the variation in ω between them is negligibly small.

Worst Case Timing of ej. We can model the position error of valve openings or
closings analytically based on the angular velocity and timing error. This gives
a model of how imprecision in timing and angular velocity estimates affects
the opening and closing position of valves. Let tje,ref denote the reference valve
opening or closing time and tje the actual opening or closing time of an event ej .
Both times are relative to the time of the last tooth sensor event. We then have
that θje,ref = θi + ω̂tje,ref . We have two cases: either tje,ref ≤ tje or tje,ref > tje. In
the first case we have the position (angle) error θjerr.

θjerr =

ˆ tje

tje,ref

ω̂ (t) dt+

ˆ tje

0

ωerr (t) dt (3)

The first term takes into account only the error in time given the estimated
angular velocity. Recall we had the maximum angular velocity of ωmax = 25πs−1.
For a maximum timing error tje − tje,ref = 50μs in the initial system, according
to (3) then θjerr = 0.23°. If the angular velocity is estimated accurately then the
second term is small. For a 10% error in the velocity estimate then we get the
same position error only at tje = 500μs. This is close to the time between tooth
interrupts, and we will show that this long delays are not possible in Section 5.
The second case when tje,ref > tje is analogous.

From this analysis one can conclude that a delay in handling valve events
gives a larger error than imprecision in the estimation of ω here. Short worst-case
response times are hence important for the system to work properly. Note that

Analysis of Real-Time Properties of a DHPMS 39

for system safety, it is more important to minimise response times for opening
valves than for closing them.

3 Tools

The actions in the DHPMS are sporadic. Estimation of the worst-case response
time with classical real-time scheduling theory [5] for sporadic tasks is safe but
usually pessimistic. Therefore we have used the TIMES modelling and analysis
tool [1,2] to apply tight bounds on the worst-case response times. The TIMES
tool is based on timed automata [4] with tasks. The verification backend is based
on the Uppaal [3] model-checking framework for timed automata. This tool is
suitable to analyse schedulability on single-core processors. Several scheduling
policies, like Rate Monotonic (RM), Earliest Deadline First (EDF), FIFO and
fixed priority scheduling (FPS) are supported. It also allows verification of tasks
with precedence constraints. The tool can be used to model systems having both
sporadic and periodic tasks. The activation of sporadic (controlled) tasks can be
described using timed automata.

3.1 The TIMES Modelling Environment

A system in TIMES consists of set of concurrent processes that are described by
timed automata. Tasks represent executable code with known properties, such
as worst case execution time (WCET). The arrival pattern of tasks can be either
periodic or controlled. For each periodic task the following parameters can be
provided for the framework: initial offset, period, deadline, WCET and priority
(for schedules with fixed priorities). For controlled tasks their arrival pattern is
controlled with timed automata similar to the ones in Uppaal.

A timed automaton consists of a set of locations, a set of transitions between
locations, a set of clocks, a set of communication channels and a set of (data)
variables. Each location has an invariant, describing the possible values of clocks
in the location. A transition can have a guard, a communication on a channel and
a statement. The guard can state restrictions on both clocks and variable values.
The statements can update data variables and reset clocks. The communication
on channels is synchronous point-to-point communication. An example of timed
automaton is shown in Fig. 4.

As shown in Fig. 4, each location is shown as a rectangle with rounded corners.
Locations can be named, e.g., ZeroActive is the name of the topmost location.
The letter “c” in the top left corner of a location rectangle denotes a committed
location. While a non-committed location is active all clocks associated with
the automaton progress. All clocks in the system progress at the same rate.
Time does not progress in a committed locations, and the system cannot stay in
such a state. Tasks can be associated with locations. The task will then arrive
before the location is exited. The name of a task is displayed with bold font
within the location, e.g., Zero and Tooth are tasks in locations ZeroActive and
ToothActive respectively. Each location can be associated with an invariant on

40 P. Boström et al.

Zero

Tooth

Fig. 4. The timed automaton describing triggering of zero sensor and tooth sensor
handling tasks

the clocks of the timed automaton. The invariant of state WaitingForTooth is
tClk ≤ Tmax. If the invariant does not hold and there are no enabled transitions,
the automaton deadlocks. Sending on a channel is denoted with an exclamation
mark and receiving by a question mark. Here e.g. the transition from location
Signalling to Inc, sends a message on channel ToothSignalled. Communication
is synchronous, e.g., a message can only be sent if there is a receiver ready to
receive the message otherwise the transition is not enabled. Guards, channels
and assignments are displayed with a text close to the arrow of the transition.

4 Modelling the DHPMS

We have modelled the handling of interrupts and the triggering of valve tasks
in TIMES, to analyse the delays that can occur. The modelled system has the
architecture shown in Fig. 3. However, several valve events are handled by the
same task. In the model we have the tasks Tooth, Zero, Valve1Open,Valve2Open
and Valve1Close,Valve2Close. The task Valve1Open opens the valve on the pres-
sure lines for all cylinders and Valve2Open opens the valve on the tank line for all
cylinders. The tasks for closing valves are used analogously. This simplification is
possible, as we do not make any difference in priorities between tasks for different
cylinders. The highest priority is assigned to Zero, the second highest priority
is assigned to Tooth, while all other tasks have lower priorities. Tasks that open
valves have higher priority than tasks for closing valves. We are interested in
the worst-case response time for the different tasks. All timing properties are
measured in a given time unit, which is here 1μs. As this is a single-core system
only the Worst-Case Execution Time (WCET) is needed in the schedulability
analysis. The WCET for the tooth sensor task was estimated to 20μs, while
WCET for zero sensor and valve triggering tasks was estimated to 10μs.

Analysis of Real-Time Properties of a DHPMS 41

The model in Fig. 4 describes the arrival pattern of the task for handling
the Zero sensor and the task for handling the Tooth sensor. We make the sim-
plification that tooth 0 of the first cylinder is at θ0 of the axle. This makes the
accounting of events easier. There are 144 tooth events for every zero event. How-
ever, to make the model suitable for model-checking we need to have a model
with fewer number of teeth. We shrink the model to only consider a system with
12 teeth (N = 12). This means there are 30° between the the teeth. As each
cylinder is shifted from each other by 120° and each valve can be opened or
closed in a 90° sector, the change of which valve can be opened or closed will
also occur every 30°.

Lemma 1. The worst-case response times will occur after tooth events on a
multiple of 30 degrees.

Proof. 30 is the greatest common divisor of 120 and 90. Hence, the valve tasks
that can be released in each 30° sector are fixed. All tasks have time to run
between tooth signals. The worst case response time for a task occurs if it is
delayed by all tasks released in its sector and all tasks possible released in the
preceding sector. Interference from the preceding sector can only occur after a
tooth signal on a multiple of 30°. Hence, the worst-case response time of a valve
task can only occur after a tooth signal at a multiple of 30°.

The sporadic nature of tasks is modelled using the pattern from [15]. E.g. the
system is allowed to stay in a location WaitingForTooth until tClk > Tmax and
is enabled to leave the location via a transition after tClk ≥ Tmin. Each time
the tooth task has run then it possibly enables some valve events in all three
cylinders. This is modelled by sending a message on the channel ToothSignalled
to all cylinders. This is also done utilizing the pattern for synchronizing several
processes in [15]. Here we introduce intermediate committed locations, in order to
signal many other processes without time progressing in between. The automaton
describing each cylinder is then enabled for a given value on opInd.

The model in Fig. 5 describes the arrival pattern of tasks for triggering open-
ing and closing of valves for one cylinder. The template is instantiated three
times with different parameters for the three cylinders. One cycle in the model
describes one revolution of the shaft, where each valve can be opened and closed
in a 90° sector. In the figure, the start of a sector i is given by the tooth
tCnt = (tInd + Si) modN . The valve on the pressure line of the first cyl-
inder can be opened between teeth 0 and 3 (in the interval [θb,1, θb,1 + 90°))
and then closed between teeth 3 and 6 (in the interval [θb,1 + 90, θb,1 + 180°)).
The tank line can then be opened between teeth 6 and 9 and closed between
9 and 0. The valves actions for the second cylinder are then shifted 120° and
240° for the third cylinder. Valve tasks are triggered at some time point between
tooth events. This is modelled by introducing a non-deterministic delay of a
maximum of Dmax time units before triggering a valve task.

Note that we are interested in the error in θerr estimated with (3) for each
valve. This is not modelled here, due to scalability reasons. The desired angle is
calculated and the valve tasks scheduled in the task Tooth. Hence, if the tooth

42 P. Boström et al.

Valve1Open

Valve1Close

Valve2Open

Valve2Close

Fig. 5. The automaton describing triggering of valve tasks

task has higher priority than the valve tasks, the worst case response times
for the valve tasks can directly be used as the delay for valve. This is the case
in the model. Furthermore, as the task Tooth actually triggers the valve tasks in
the implementation, our model only correctly models the system in this case.

An example schedule of the system is shown in Fig. 6. The schedule shows
how all valve tasks are released three times in one rotation of the shaft. Note
that for readability, the times between events are shorter than in the real system.

4.1 Extension to Four Cylinders

The DHPMS will perform better with more cylinders. An extension to four
cylinders with θb,i shifted 90° in each cylinder is straightforward. By the same
reasoning as in the proof of Lemma 1, the worst case response time will occur
every 90°. The automaton for describing the releases of valve tasks in a cylinder in
Fig. 5 can be used directly here, but it is instantiated four times with appropriate

Analysis of Real-Time Properties of a DHPMS 43

Fig. 6. Example of resulting real-time schedule for three cylinders. Dashed lines denote
limits of period of the shaft, up arrows denotes release time, down arrows denote
completion time.

parameters. The goal is to extend the DHPMS to many more cylinders (more
than 10 cylinders), in order to achieve high performance. As can be seen from
the response times for four cylinders in Table 1, the approach does not scale.

4.2 Grouping Several Valve Events into the Same Task

One obvious optimisation for the control software is to have one task to
trigger several closely occurring valve events. Instead of having one task for
handling each event ej with times t + ε1, . . . , t + εn, we could have one task
that trigger them all at time t. This would create the maximum error of
max

({
|εi − td| |i ∈ [1..n]

})
, where td is the delay of the triggering task. If one

would group events ej if the difference in εj is smaller than the worst case ex-
ecution time of valve triggering tasks of 10μs, then this would clearly be an
improvement over scheduling individual tasks.

The timed automaton in Figure 7 describes the release of a task ValveTask
that handles all valve actions. Here the minimum time interval between task
releases is vTmin = 40μs. E.g., we group n tasks with release times t+ εk such
that max({εk|k ∈ 1..n}) ≤ 40μs. A number greater than the WCET of the task
Tooth and the task itself is needed for vTmin in this case in order to ensure that
the task is not released when it is already running.

5 Results

We analysed the worst case response times of all tasks. Also we checked that the
models were deadlock free in order to ensure that the response time analysis is
accurate, as deadlocks might hide delays of tasks. The obtained worst case re-
sponse times for the case of three cylinders are given in Table 1. Here C denotes
the (worst-case) computation time, priority is the fixed priority of the task and
WCRT is the worst case response time. Due to constraints on the sectors where

44 P. Boström et al.

Valve

Fig. 7. Automaton that describes the release of valve tasks when one task can handle
several valves

Table 1. Worst case response times for tasks in the system with three cylinders to the
left and for the system with four cylinders to the right

Task C (μs) Priority WCRT (μs)
Zero 10 8 10
Tooth 20 7 20
Valve1Open 10 6 30
Valve1Close 10 5 50
Valve2Open 10 6 40
Valve2Close 10 5 60

Task C(μs) Priority WCRT(μs)
Zero 10 8 10
Tooth 20 7 20
Valve1Open 10 6 30
Valve1Close 10 5 70
Valve2Open 10 6 40
Valve2Close 10 5 80
Valve3Open 10 6 50
Valve3Close 10 5 90
Valve4Open 10 6 60
Valve4Close 10 5 100

valves can be opened and closed, at most two valve tasks from other cylinders
and one task from the same cylinder can delay a task. Given these computation
times, the maximum response time is 60μs. This is not better than polling with
the period of 50μs. However, the WCRT for the valve opening tasks, which are
the most critical, is lower and the processor utilisation is significantly lower, which
releases CPU for other computations. The worst case response times for the case
of four cylinders is also given in Table 1. In this case the set of valves that can
be released are fixed in all 90 degree sectors. This means that a tasks can in the
worst case be delayed by four valve tasks left from the previous sector and four
tasks from the current sector. Note that all tasks with the same priority also have
a fixed priority among themselves in TIMES.

The result of the response time analysis for the case when only one task is
used to handle all valve actions is shown in Table 2. The minimum time between
task releases is 40μs. If all valve actions handled by a task with release time tr

Table 2. Worst case response times when only one task is used to handle valve actions

Task C (μs) Priority WCRT (μs)
Zero 10 8 10
Tooth 20 7 20
ValveTask 20 6 40

Analysis of Real-Time Properties of a DHPMS 45

have times t within the interval [tr, tr+40]μs then the maximum delay te is 40μs.
Hence, this approach can lead to significant reductions in latency especially if
there are many events that can occur simultaneously, as in this system.

From a scalability point of view, the main challenge in the analysis is to verify
deadlock freedom. TIMES support queries in TCTL like Uppaal and the query
“A[] not deadlock” can be used to verify deadlock freedom. However, checking
deadlock freedom is very expensive and the models had to be carefully crafted
to verify this property. The models of the systems discussed above can now be
checked using over approximation in a few seconds. Response time analysis seems
to scale much better to larger models.

6 Discussion and Lessons Learned

TIMES is a powerful and easy to use tool for schedulability analysis. However,
there are some limitation in TIMES when modelling the type of systems in the
paper. A process controlling sporadic tasks cannot synchronise on a channel in
a state where a task is also released, as that can result in a deadlock. This is due
to how task release is encoded in the verifier. The verifier can also not handle
tasks that are scheduled while they are already running, which is probably also
due to the encoding. However, in both cases the tool can still calculate WCRT
for tasks (which are potentially meaningless due to deadlocks). The TIMES
tool cannot be used for multi-processor systems. A framework for schedulability
analysis exists for Uppaal that can be used also in this case [9]. This framework
could be used here also, but TIMES handles scheduling of tasks automatically,
while it would have to be modelled manually following the patterns in the Uppaal
schedulability framework. However, when manually modelling the system, we can
also workaround the limitation in TIMES mentioned above. SymTA/S [14,10]
is a tool for symbolically analysing timing properties of systems that could also
be used. However, it is more aimed at analysing component interactions, where
the scheduling on individual components is handled using classical real-time
scheduling techniques [5]. Real-time scheduling of periodic and semi-periodic
tasks on uni-processor systems have been studied extensively [5]. For systems
like ours where tasks have complex arrival patterns, the methods are difficult to
apply and might yield unnecessarily pessimistic results.

Scalability of the verification is an issue and we have analysed the problem in
order to allow simpler models, while still verifying that the properties of interest
hold. Obtaining a model that can be efficiently checked and where worst-case
response times that are not too pessimistic can be challenging. Here we first
analysed how latencies would impact the system, we did not model those effects.
Additionally the continuous time dynamics was abstracted so that events can
occur non-deterministically at any time within the given boundaries. Then we
also decreased the number of teeth while preserving the worst-case behaviour.
This makes the model tractable for model checking, although the results can be
more pessimistic than necessary. The same style of modelling and verification
seems applicable for other similar systems.

46 P. Boström et al.

Some deadline misses can be tolerated in the system as long as they do not
occur too often. Using statistical model checking (SMC) of timed systems [8,7,6]
we can statistically analyse the probability of events to occur, which allows
handling soft real-time systems where deadlines are allowed to be missed as long
as the probability that it occurs is sufficiently small. However, for reliable analysis
results, the inputs to the model need to be representative of the real workload of
the system. Additionally, e.g., execution times need to be represented by suitable
probability distribution. In [7,6] only uniform and exponential distributions are
supported, neither provides accurate representations. This could lead to results
that are not realistic. In [7] schedulability analysis in this setting using duration
probabilistic automata (PDA) [13] is considered. However, PDA only seem to
concern acyclic behaviour or periodic systems where the period is fixed. Deadlock
freedom, which is also the most computationally heavy property to verify in our
model, need to hold always in order for the model to be valid. This suggests
that it would still be necessary to ensure that certain properties such as, e.g.,
deadlock freedom and non-Zenoness hold for sure.

The system in this case study is a hybrid system where the scheduling of tasks
is dependent on the physical process. However, the only continuous behaviour
in timed automata is the progress of time. We would need to express more
complex dynamics to model the system accurately. The model-checking approach
in [8,7] only supports priced timed automata. Even in that case most verification
problems become undecidable or intractable [8,7,6]. Statistical model checking
allows complex continuous dynamics than clocks [16]. However, they analyse
systems over finite time intervals and it is not clear how this would be directly
used for analysing response times in an accurate way.

7 Conclusion

This paper presented timing analysis for the control software of a Digital Hy-
draulic Power Management System (DHPMS). We first analysed how different
delays affect the performance and safety of the system. Based on this informa-
tion we modelled the timing of tasks in TIMES, and analysed their worst-case
response times. We showed how the functionality of the system can be extended
while preserving desirable timing properties.

Timed automata based schedulability analysis and analysis of other real-time
properties have been applied in many case studies earlier. The Uppaal web-
site lists case studies from diverse application domains such as communication
protocols and robotics applications. However, none of the case studies have con-
sidered schedulability analysis of sporadic tasks in cyber-physical systems, where
properties of the system need to be considered in the analysis. As computer con-
trolled systems become more prevalent, this is becoming more common. The
paper addresses these issues in one important class of systems. We believe that
our approach used for the case study can be a good inspiration when solving
other similar problems.

Analysis of Real-Time Properties of a DHPMS 47

References

1. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES - A tool for
modelling and implementation of embedded systems. In: Katoen, J.-P., Stevens, P.
(eds.) TACAS 2002. LNCS, vol. 2280, pp. 460–464. Springer, Heidelberg (2002)

2. Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES: a tool
for schedulability analysis and code generation of real-time systems. In: Larsen,
K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 60–72. Springer,
Heidelberg (2004)

3. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

4. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004)

5. Buttazzo, G.C.: Hard Real-Time Computing Systems. Springer (2011)
6. David, A., Larsen, K.G., Legay, A., Mikučionis, M.: Schedulability of Herschel-

Planck revisited using statistical model checking. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2012, Part II. LNCS, vol. 7610, pp. 293–307. Springer, Heidelberg
(2012)

7. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., van Vliet, J.,
Wang, Z.: Statistical model checking for networks of priced timed automata. In:
Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96.
Springer, Heidelberg (2011)

8. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011)

9. David, A., Illum, J., Larsen, K.G., Skou, A.: Model-based framework for schedulab-
ility analysis using UPPAAL 4.1. In: Nicolescu, G., Mosterman, P.J. (eds.) Model-
Based Design for Embedded Systems. CRC Press (2010)

10. Hamann, A., Henia, R., Racu, R., Jersak, M., Richter, K., Ernst, R.: SymTA/S
- symbolic timing analysis for systems. In: WIP Proc. Euromicro Conference on
Real-Time Systems 2004 (ECRTS 2004). IEEE Computer Society (2004)

11. Heikkilä, M., Tammisto, J., Huova, M., Huhtala, K., Linjama, M.: Experimental
evaluation of a piston-type digital pump-motor-transformer with two independent
outlets. In: Bath/ASME Symposium on Fluid Power and Motion Control (2010)

12. Linjama, M., Huhtala, K.: Digital pump-motor with independent outlets. In: The
11th Scandinavian International Conference on Fluid Power, SICFP 2009 (2009)

13. Maler, O., Larsen, K.G., Krogh, B.H.: On zone-based analysis of duration probab-
ilistic automata. In: INFINITY 2010. EPTCS, vol. 39 (2010)

14. Richter, K., Racu, R., Ernst, R.: Scheduling analysis integration for heterogeneous
multiprocessor SoC. In: Proceedings of the 24th International Real-Time Systems
Symposium (RTSS 2003). IEEE Computer Society (2003)

15. The DARTS team: Modelling tips for TIMES (2004), http://www.it.uu.se/
edu/course/homepage/realtid/H04/ass3/modellingtips.pdf

16. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with ap-
plication to Stateflow/Simulink verification. Formal Methods in System Design 43
(2013)

http://www.it.uu.se/edu/course/homepage/realtid/H04/ass3/modellingtips.pdf
http://www.it.uu.se/edu/course/homepage/realtid/H04/ass3/modellingtips.pdf

Formal Analysis of a Fault-Tolerant Routing

Algorithm for a Network-on-Chip�

Zhen Zhang1, Wendelin Serwe2, Jian Wu3,
Tomohiro Yoneda4, Hao Zheng5, and Chris Myers1

1 Dept. of Elec. & Comp. Eng., Univ. of Utah, Salt Lake City, UT, USA
zhen.zhang@utah.edu, myers@ece.utah.edu,

2 INRIA & Univ. of Grenoble, LIG, Grenoble, France
Wendelin.Serwe@inria.fr

3 Marvell Technology Group Ltd., Santa Clara, CA, USA
jianwu@marvell.com

4 National Institute of Informatics, Tokyo, Japan
yoneda@nii.ac.jp

5 Dept. of Comp. Sci. and Eng., Univ. of S. Florida, Tampa, FL, USA
zheng@cse.usf.edu

Abstract. A fault-tolerant routing algorithm in Network-on-Chip
architectures provides adaptivity for on-chip communications. Adding
fault-tolerance adaptivity to a routing algorithm increases its design com-
plexity and makes it prone to deadlock and other problems if improp-
erly implemented. Formal verification techniques are needed to check
the correctness of the design. This paper performs formal analysis on an
extension of the link-fault tolerant Network-on-Chip architecture intro-
duced by Wu et al that supports multiflit wormhole routing. This paper
describes several lessons learned during the process of constructing a for-
mal model of this routing architecture. Finally, this paper presents how
the deadlock freedom and tolerance to a single-link fault is verified for a
two-by-two mesh version of this routing architecture.

Keywords: LNT, process algebra, fault-tolerant routing, Network-on-
Chip, formal verification.

1 Introduction

Cyber-physical systems (CPS) nowadays have ubiquitous applications in many
safety critical areas such as avionics, traffic control, robust medical devices, etc.
As an example, the automotive industry makes active use of CPS: modern vehi-
cles can have up to 80 electronic control units (ECUs), which control and operate
everything from the engine and breaks to door locks and electric windows. Cur-
rently, each ECU is statically tied to its specific sensors and actuators. This

� This work is supported by the National Science Foundation under Grants CNS-
0930510 and CNS-0930225. Part of this work was performed during a visit of the
first author at INRIA Grenoble Rhône-Alpes.

F. Lang and F. Flammini (Eds.): FMICS 2014, LNCS 8718, pp. 48–62, 2014.
c© Springer International Publishing Switzerland 2014

Formal Analysis of a Fault-Tolerant NoC Routing Algorithm 49

means that processing power between different ECUs cannot be shared, which
degrades the performance of the chip due to imbalanced workload on each ECU.
More importantly, this structure is susceptible to faults in that if an ECU fails,
it causes a malfunction in the corresponding sensor and/or actuator. With the
advances in semiconductor technology, it is now possible to have multiple cores
on a single chip which communicate using a Network-on-Chip (NoC) paradigm.
A NoC approach allows flexible mapping between ECUs and sensors/actuators,
which makes it possible for ECUs to share processing power and tolerate faults
by having spare units. Some example fault-tolerant NoC architectures currently
being developed include those described in [1] and [2].

This paper presents the verification of a NoC architecture that supports the
link-fault tolerant routing algorithm [3] extended to a multiflit wormhole rout-
ing setting. In particular, deadlock freedom and single link-fault tolerance are
formally verified using the CADP toolbox. This paper also presents several key
lessons that are learned during the evolution of the model of the NoC architec-
ture. Finally, this paper describes several remaining challenges to the verification
of this and similar systems.

This paper is organized as follows. Section 2 surveys related work. Section 3 de-
scribes the extended NoC architecture and routing algorithm. Section 4 presents
several case studies of the process that led to the final NoC model. Section 5
presents verification results for deadlock freedom and the single-link fault toler-
ance property. Section 6 discusses the insights obtained from using model check-
ing in the design of the NoC behavior and some future research directions.

2 Related Work

A fully functional NoC system has to be fault-tolerant and free of deadlocks. A
variety of approaches have been proposed for fault-tolerant NoC routing. One
approach is to use a reconfigurable routing table in which pre-computed routes
are stored to avoid faulty links [4]. This method, however, is not adaptive, so it
can only avoid permanent faults. An example of a dynamic faulty link detection
mechanism is described in [5], but this method only avoids deadlocks rather than
ensuring they cannot occur. The Glass/Ni fault-tolerant routing algorithm, on
the other hand, guarantees deadlock freedom by disallowing certain turns in the
network [6], so that communication cycles cannot occur. This algorithm, how-
ever, uses the node-fault model, where a fault in an incoming link is interpreted
as the complete node failing. Not only does this mean losing the ability to route
to an otherwise functional node, but if the node does not actually stop oper-
ating, it can potentially introduce deadlock in the network. A modified version
proposed in [7] achieves one link-fault tolerance by introducing a mechanism to
forward link fault locations to a neighboring routing node allowing for a route
selection that avoids the faulty link. This fault forwarding method though can
still result in a deadlock at the edges of the mesh network, so in these cases, it
must revert to the node-fault model. An improvement proposed in [3] is capable
of handling link faults anywhere in the network. Potential deadlock is avoided by

50 Z. Zhang et al.

allowing a router to drop a packet to prevent the occurrence of a communication
cycle, and it is an extended version of this algorithm that this paper attempts
to formally verify.

Concerning NoC verification, [8] proposed GeNoC (Generic Network-on-Chip),
a formal NoC model implemented in the ACL2 theorem prover. Its extension
in [9] verifies a non-minimal adaptive routing algorithm. These techniques, how-
ever, require user assistance on writing proof obligations. On the other hand,
to facilitate the use of model checking techniques, automatic translations are
developed from the asynchronous hardware description language CHP (Commu-
nicating Hardware Processes) to networks of automata [10] and to the process
algebraic language LOTOS [11,12]. The latter approach is applied to verify two
complex asynchronous designs, one of which is an input controller of an asyn-
chronous NoC [13] that implements a deadlock-free routing algorithm based on
the odd-even turn model [14]. However, this NoC does not handle failures.

3 Network-on-Chip Architecture and Routing Algorithm

Figure 1 shows an architecture for a two-by-two mesh composed of four corner
routing nodes, all with a similar structure. This architecture implements an
extended version of the routing algorithm described in [3]. The original algorithm
assumed single-flit packets and that each node could route only a single packet
at a time, while this modified architecture allows each node to potentially have
multiple multi-flit packets in flight at a time. For example, node 00 may be
routing a packet from node 01 to node 10, while simultaneously routing a packet
from node 10 to node 01. These extensions though complicate the algorithm, so
it is desirable to be able to prove that this extended architecture is still deadlock-
free and continues to achieve fault tolerance to a single-link failure, which is the
goal of this paper.

The routing algorithm works as follows. Each node communicates with its
corresponding processing element (PE), and when a PE xy wishes to send a
packet to another node x′y′, it injects that packet into the network via its router
(r PE xy). Based upon the intended destination of the packet, the router de-
termines a direction to forward the packet. To guarantee deadlock freedom, the
routing algorithm disallows certain turns in the network. Namely, a packet that
is moving north in the network is not allowed to turn to the west, and a packet
moving east in the network is not allowed to turn to the south. Hence, in order
to avoid “illegal turns”, each router sends packets south and west, as needed,
before sending them north and east. After selecting a direction, the router at-
tempts to communicate with the arbiter in charge of the desired link. At this
point, one of three things can occur. First, the link may be busy, and the router
must wait its turn to use the link. Second, the link may be faulty, and the router
is instructed to find an alternate route. Finally, the link may be free, and the
arbiter may non-deterministically select to communicate with this router over
any other routers that may be trying to obtain this link. The arbiter then for-
wards the packet one flit at a time to the succeeding router (i.e., the router the

Formal Analysis of a Fault-Tolerant NoC Routing Algorithm 51

Fig. 1. Architecture of the four routing nodes in a two-by-two mesh

output of the arbiter is connected to), which then executes the same algorithm.
Once a packet reaches its destination x′y′, the packet is absorbed by the arbiter
connected to its PE (arb PE x′y′).

Assuming there is at most one link-fault, an alternate route always exists, but
it may require an illegal turn. For example, assume that node 10 wishes to send
a packet to node 01. In this case, a west then north route is desired, but let us
assume that arb W 10 reports a fault on its link to r E 00. In this case, r PE 10
must communicate with arb N 10 instead. Once the packet reaches r S 11, this
router must make the illegal turn and route the packet west through arb W 11.
However, arb W 11 may be busy routing a packet from node 11 to node 00. This
packet though may be blocked because arb S 01 is busy routing a packet from
node 01 to node 10. Similarly, this packet may be blocked because arb E 00 is
busy routing a packet from node 00 to node 11. Finally, this packet is blocked
because arb N 10 is busy due to the packet from node 10 to node 01. Therefore,
there is a communication cycle causing a deadlock. In this case, arb W 11 sends
a negative acknowledgement to r S 11 to tell this router to drop the incoming
packet, which removes the communication cycle and the potential for deadlock.

52 Z. Zhang et al.

Fig. 2. A counterclockwise routing model

4 Formal Models of NoCs

This section describes the challenges in developing a formal model of the two-by-
two mesh shown in Figure 1. Our initial informal model of the two-by-two mesh
uses asynchronous channels implemented in a VHDL package [15] which had to
be translated into a formal model in the process algebraic language LNT [16] to
enable verification using the CADP toolbox [17].

4.1 One Direction Routing

The first model developed and verified is the simple one direction routing model
shown in Figure 2. It is advantageous to construct a model with one complete
cycle consisting of partial components from each node, since the model is simple
enough for testing asynchronous communications between any two components.
Also, the resultant state space is manageable, which enables the efficient checking
for deadlock and packet loss without having to abstract the model. Since this
model only has the counterclockwise routing direction, there are no alternative
routes available, avoiding the need to model route forwarding computation in
each router. Having only the counterclockwise routing direction also forces the
north-to-west illegal turn to occur on the northeast node. In this first model,
each PE router only generates one single-flit packet destined to the node in its
diagonal direction. For example, the PE connected to node 01 sends a packet
to node 10. After emitting one packet, each PE router becomes inactive. No
components absorb any packets and it is assumed that no link fault exists in
the network. The expected behavior is that the packet from node 10 to node 01
gets dropped due to deadlock avoidance, and the remaining three packets keep
cycling through nodes in the network forever, and no deadlock exists.

The arbiter, arb W 11, on the northeast corner is responsible for detecting the
potential deadlock by checking availability of its succeeding router r E 01. To
avoid deadlock, it informs its preceding router r S 11 to drop the packet when
router r E 01 is not available. The LNT descriptions of arb W 11 and r S 11
are shown in Figure 3. The three gates “PEr_Wa_11”, “Sr_Wa_11”, and “n11_n01”

Formal Analysis of a Fault-Tolerant NoC Routing Algorithm 53

(between square brackets) of the “arbiter_nack” process correspond to the three
links (r PE 11 → arb W 11), (r S 11 → arb W 11), and (arb W 11 → r E 01)
in Figure 2, respectively. The contents of each flit is represented by a natural
number, and the arbiter process uses the variable “one_flit” of type Nat to store
the flit travelling through it. The behavior of this process is a non-terminating
loop with two nested choices (select1). The outer choice decides whether the
arbiter is ready to receive a packet2: if its preceding router r E 01 confirms its
availability by synchronizing on the “n11_n01” gate with the arbiter, then it
starts to receive the packet; or the arbiter issues a negative acknowledgement
“Sr_Wa_11(false)” to r S 11 indicating that its output is blocked by another
packet. If both options are available, one is chosen nondeterministically. When
the arbiter is ready to receive a packet, it nondeterministically chooses between
the PE router, r PE 11, and the south router, r S 01. Since taking a packet from
r S 01 effectively makes an illegal turn, this arbiter first sends an acknowledge-
ment “Sr_Wa_11(true)” to r S 11. The router r S 11 (represented by the LNT
process “router_drop_pkt”) checks the received status of arb W 11, and a false
status leads to a packet drop: r S 11 is ready to receive the next packet which
overwrites the current one that needs to be dropped.

The generated state space for the counterclockwise routing model contains
terminal states, indicating deadlocks in the model. Analysis of the diagnostic
sequences of transitions reveals that all four packets can get dropped by the
r S 11 router, which is an unexpected behavior. According to the routing proto-
col, r S 11 should drop a packet when arb W 11 returns a false status, and the
arbiter should do so only when its output, r E 01, is busy serving other packets.
As mentioned previously, it is possible that one packet is dropped for this reason,
but the remaining three should stay in the network as the network is not con-
gested anymore. Analysis of the outer choice on the arbiter’s specification shows
that there always exists a path where it sends a negative acknowledgement to
tell the router r S 11 to drop its packet. The nondeterministic choice enables
sending both, a true and a false acknowledgement to the router, and as long as
the gate rendezvous for sending a false acknowledgement is possible, it gets a
chance to occur. Therefore, arb W 11 can always send a false acknowledgment
regardless of potential deadlocks.

One possible improvement is to have a prioritized choice: the option of sending
a positive acknowledgement is always the preferred one. Ideally, availability of
the preferred positive option should prevent the option of sending the negative
acknowledgement. To implement this priority would require that the “select”
operator could probe the possibility of a gate rendezvous on the preferred choice.
Implementing the priority choice in LNT requires additional processes [18], which
may lead to state explosion. Even if it can be verified, the packet leakage path

1 The LNT construction “select A [] B end select” is a non-deterministic choice
between A and B.

2 In LNT, comments start with “--” and extend to the end of the line.

54 Z. Zhang et al.

process arbiter_nack [PEr_Wa_11 , Sr_Wa_11 , n11_n01 : any] is

var one_flit : Nat in loop

select

n11_n01 ; -- Router r_E_01 is ready to accept packet

select

PEr_Wa_11 (? one_flit); -- Receive packet from r_PE_11

n11_n01 (one_flit) -- Send packet to r_E_01

[] Sr_Wa_11 (true); -- Send positive ack. to r_S_11

Sr_Wa_11 (? one_flit); -- Receive packet from r_S_11

n11_n01 (one_flit) -- Send packet to r_E_01

end select

[] Sr_Wa_11 (false) -- Send negative ack. to r_S_11

end select

end loop end var end process

process router_drop_pkt [n10_n11 , Sr_Wa_11 : any] is

var status : Bool , one_flit : Nat in loop

n10_n11 ; -- Ready to accept packet from arb_N_10

n10_n11 (? one_flit); -- Receive packet from arb_N_10

Sr_Wa_11 (?status); -- Request arb_W_11 ’s status

-- Send packet to arb_W_11 ONLY on TRUE status

if status then Sr_Wa_11 (one_flit) end if

end loop end var end process

Fig. 3. The LNT processes for arb W 11 and r S 11

may not get removed due to the timing of when the probes are executed. An-
other option is to prune the unwanted execution paths from the generated state
space using the priority operator in EXP.OPEN/SVL [19]. However, since the
state space of the entire model is generated compositionally using branching
bisimulation, which is not a congruence for the priority operator [20].

4.2 Removing Arbiter’s Buffering Ability

After all components on the two-by-two mesh are built and connected as shown
in Figure 1, the state space generation quickly becomes a challenge due to the
state explosion problem. After only 10 of the 24 LNT processes are composed
during verification, the state space already has reached 679,284 states, and then
adding one more process leads to a state space in excess of 3 million states.
Clearly, this state space growth is unmanageable. As mentioned previously, this
new architecture allows multiple packets to go through one node at the same
time, and the interleavings of gate rendezvous among different routing nodes
is a major contributor to the exponential increase of state count. Moreover, in
most cases, gate rendezvous happens with offers, which are the concrete data
packets. Since there are four different packet data values, each representing the
destination location information as described in Section 4.1, interleaving of gate
rendezvous is a significant source of this state explosion.

Formal Analysis of a Fault-Tolerant NoC Routing Algorithm 55

One improvement investigated to alleviate the state explosion problem is to
reduce gate rendezvous between arbiters and routers in each node. This means
that on the LNT model level, routers and arbiters in one node are merged into
one process, removing the need for gate rendezvous between them. The resultant
northwest routing node has the following behavior. It nondeterministically selects
one among the following three operations: generating its own packet, receiving a
packet from the northeast node, or receiving one from the southeast node. Once
the node has a packet, based on the packet’s destination, it attempts to send
out the packet to the first choice of route, and tries alternative routes if the first
one is not available. All the other three nodes have a similar behavior.

This simplification of the routing nodes indeed helps to reduce the state space.
However, it removes the buffering capacity in each arbiter, and consequently causes
deadlocks. A typical deadlock scenario is that initially the four routing nodes gen-
erate their own packets at the same time, between the northwest and southwest
nodes, and between the northeast and southeast nodes, the packet in one node tries
to go the other. No nodes can make progress in this situation. To send a packet, a
node needs its neighboring node to communicate on the same gate. It is required
because the node’s own arbiter, which connects to the neighboring node, cannot
store anything, and only the neighboring node has the storing capacity. However,
if the neighboring node is trying to do the same thing to this node in the mean
time, neither one can succeed in delivering packets because both are waiting for
the other to accept their own packets. Removal of the arbiter’s buffering ability
also renders it impossible for one node to have multiple packets passing through it
at the same time.

From this experiment, we conclude that arbiters in the network need storage
capacity in order to relay a packet, freeing up their corresponding routing nodes
to handle other communications. It also implies that simplifications on the node
architecture without modifying the routing algorithm can introduce deadlocks
in the system behavior. Therefore, removing interleavings of gate rendezvous on
the LNT models is unsuccessful.

4.3 Finding Proper Data Abstractions

As mentioned earlier, another major contributor to the large state space is the
existence of many data values in the model. The previous experiments do not
consider data abstraction of a packet’s content, because a router requires the
packet’s destination to decide its next forwarding direction: it is impossible for
a router to perform routing computation without the destination information,
although this information is only needed by the routers. In theory, all except the
PE routers can receive packets destined to all node locations in a mesh. Since our
link-fault tolerant routing algorithm allows illegal turns (c.f. Section 3), it means
that a router may potentially direct packets to all of its viable directions. The
idea is, thus, to abstract the routing algorithm using nondeterministic choice.
In other words, after receiving a packet, a router nondeterministically selects
either its own node, indicating that the packet has reached its destination, or
one of the (many) forwarding directions for the packet, without the need to

56 Z. Zhang et al.

examine the packet’s destination. This abstraction enables us to eliminate a
packet’s destination information. Moreover, since every packet is provided with
a preferred route and at least one alternative route for the purpose of fault-
tolerance, the router’s model should provide, in the non-deterministic choice, the
possibility for every forwarding direction as the preferred route for a randomly
destined packet, assuming the router does not perform an illegal turn. From the
analysis of the routing algorithm, it is obvious that making an illegal turn is
never a preferred choice for a route unless all forwarding routes of a router are
illegal. For example, the north-to-east legal turn is always a preferred choice over
the illegal north-to-south turn at router r S 01 in Figure 1.

In a two-by-two mesh, there are three types of routers. First, there are routers
r S 11 and r W 11 that can make two illegal turns (RI2). Next, there are routers
r W 10 and r S 01 which can make one illegal turn (RI1). Finally, there are
all other routers which never make illegal turns. Since routers in each of the
three categories have the same abstract behavior, the rest of this section uses
representatives, i.e., RI2, RI1, and RI0, to refer to routers in each category.

The next question is whether packets need to be modeled at all. Our first
experiment shows that the model without packet information exhibits the packet
leakage problem. As discussed in Section 4.1, the reason is an intrinsic feature
of RI2, which has a nondeterministic choice where to send a packet: either to
RI2 itself or to an illegal forwarding direction. Without any packet information,
taking an illegal forwarding direction is always possible, regardless of deadlock
avoidance, effectively creating a leakage path. To fix this problem, an abstraction
of a packet has to be included such that an illegal turn in RI2 is not always
possible. An important feature of the routing pattern is that a packet takes an
illegal turn only after its attempt to the preferred route fails due to a failure
on the route. In other words, when a packet makes an illegal turn, it must have
been diverted at least once before. Thus, a packet can be modeled as a single-bit
Boolean variable, indicating whether the packet has been diverted or not. In
the LNT process “router_two_illegal” modeling RI2 shown in Figure 4, only a
diverted packet can take illegal turns. This restriction rules out the possibility
of dropping packets which have not taken an alternate route yet.

Comparing the precise routing decision computation with the nondeterminis-
tic choice in the abstract model, a packet destined to one forwarding direction in
the concrete model has the possibility to be forwarded to any routing direction in
the abstract model. Therefore the abstraction is conservative in that it preserves
all transition sequences in its corresponding concrete model. One subtle differ-
ence introduced in the abstract model is the notion of a diverted packet, which
does not exist in the concrete model. It is, however, a feature that implicitly
exists in the concrete model’s routing behavior.

There are also three categories of arbiters, corresponding to the router cate-
gories. Figure 5 shows the arbiter corresponding to RI2. It selects between its
PE router and two routers, flits from which may just have made an illegal turn.
For each option the arbiter takes, after receiving a flit, it keeps rejecting re-
quests from RI2 routers until it delivers the flit. When receiving rejections on

Formal Analysis of a Fault-Tolerant NoC Routing Algorithm 57

process router_two_illegal [input , out_arb_PE , out1_illegal ,

out2_illegal , drop : any] is

var one_flit , arb_status : Bool in loop

input(? one_flit);

select

out_arb_PE (one_flit)

[]

if one_flit == true then -- packet is diverted

-- first try out1_illegal , then out2_illegal

out1_illegal (? arb_status);

if arb_status == true then

out1_illegal (one_flit)

else

out2_illegal (? arb_status);

if arb_status == true then

out2_illegal (one_flit)

else

drop -- both illegal turns impossible

end if

end if

end if

end select

end loop end var end process

Fig. 4. The LNT process for the RI2 router

all its illegal forwarding routes, RI2 drops the packet to prevent potential dead-
lock. The complete LNT specification for the two-by-two NoC is available at
http://www.async.ece.utah.edu/~zhangz/research/lnt_modeling/.

5 Verification Results

Verification of the NoC model consists of two steps: generating the Labeled Tran-
sition System (LTS) from the LNT specification, and then analyzing the LTS
to verify properties of interest. The LTS for each investigated model is gener-
ated compositionally, i.e., by generating and minimizing the LTSs for each pro-
cess separately before combining them to the LTS of the complete system. For
the combination steps, our verification applied smart reduction [21], which uses
heuristics to find an optimal ordering of composition and minimization steps to
keep the intermediate state spaces manageable. Minimization is performed with
respect to divergence-sensitive branching bisimulation equivalence [22]. Thus,
any livelocks found are preserved during composition, whereas using standard
branching bisimulation would collapse every livelock into a deadlock. In other
words, divergence-sensitive branching bisimulation can reveal true deadlock sce-
narios. The three properties of interest are: (1) the link-fault tolerant routing
algorithm is free of deadlocks; (2) given at most one failure link, it is never the

http://www.async.ece.utah.edu/~zhangz/research/lnt_modeling/

58 Z. Zhang et al.

process arbiter_nack_2 [in_PE_router , in1_illegal ,

in2_illegal , arb_out : any] is

var one_flit : Bool in loop

select

in_PE_router (true); in_PE_router (? one_flit);

loop L1 in select

arb_out (one_flit); break L1

[] in1_illegal (false)

[] in2_illegal (false)

end select end loop -- L1

[]

in1_illegal (true); in1_illegal (? one_flit);

loop L2 in select

arb_out (one_flit); break L2

[] in1_illegal (false)

[] in2_illegal (false)

end select end loop -- L2

[]

in2_illegal (true); in2_illegal (? one_flit);

loop L3 in select

arb_out (one_flit); break L3

[] in1_illegal (false)

[] in2_illegal (false)

end select end loop -- L3

end select

end loop end var end process

Fig. 5. The LNT process for the arbiter corresponding to RI2

case that a router is unable to route a packet; and (3) given at most one failure
link, a packet never gets dropped when there is only one packet in the network.

Table 1 shows the LTS information for nine two-by-two mesh models: the first
row represents a mesh without any link failure, and the remaining eight rows
each represent the same NoC with one failure link whose location is shown in
the first column. The columns under “Intermediate LTS” show the number of
states and transitions of the largest intermediate LTS, and the columns under
“Final LTS” show those of the final LTS. The two columns under “Performance”
display the maximal amount of allocated virtual memory (in MB) and the total
execution time (in s) to generate each LTS. A desktop machine with a CPU of
eight 3.60 GHz cores and 16GB of available RAM is used to generate the results
listed in this table. One core is used at any time for the parallel composition and
state minimization steps. The last column shows the labels of each LTS.

The final LTS for each model is generated by hiding all gates that represent
the links between the routers and the arbiters. The only two visible types of gates
are the route-failure gates and the packet-drop gates. Rendezvous on the former
happen when a router has exhausted all options to forward a packet; rendezvous
on the latter occur when a router drops a packet. These gates are left visible to

Formal Analysis of a Fault-Tolerant NoC Routing Algorithm 59

Table 1. LTS’s for two-by-two NoCs

Failure Interm. LTS Size Final LTS Performance Labels
Link States Transitions St. Tr. RAM Time

none 6,295,773 83,386,208 1 1 32,945 5,976 i

01 → 00 20,340 193,726 41 224 111 83 i, drop Sr 11, drop Wr 11

01 → 11 1,369,068 18,221,153 1 3 4,039 499 i, drop Sr 01, drop Sr 11

00 → 10 6,560 50,688 21 104 111 80 i, drop Sr 11, drop Wr 11

00 → 01 6,560 50,688 21 104 111 81 i, drop Wr 11, drop Sr 11

10 → 11 122,724 1,269,981 1 3 111 89 i, drop Wr 10, drop Wr 11

10 → 00 20,340 193,726 41 224 111 80 i, drop Wr 11, drop Sr 11

11 → 01 367,200 4,172,652 1 3 111 106 i, drop Sr 11, drop Wr 11

11 → 10 367,200 4,172,652 1 3 111 105 i, drop Sr 11, drop Wr 11

facilitate the verification tasks (2) and (3) described above. To model a single
link fault in LNT, a working arbiter process is replaced by an arbiter that sends
false status to all its connected input routers.

The final LTSs show similarities between the following pairs: (01 → 00, 10 →
00),(01 → 11, 10 → 11), (00 → 10, 00 → 01), (11 → 01, 11 → 10). All visible
labels on these LTSs are packet-drop labels. Based on the three types of the
router introduced previously, renaming these labels to “drop-at-RI2”, and “drop-
at-RI1” produces bisimilarity between the two LTSs in each pair.

Since deadlock freedom is a global property and is not always possible to
be inferred from local LTS states, generating the global LTS is necessary. A
system has a deadlock if its LTS contains a state/transition sequence that starts
from the initial state and ends in a terminal state, i.e., a state without outgoing
transitions. Deadlock detection then becomes a search for such states in the LTS.
Using the CADP toolbox, it is found that no such sequence exists in any NoC’s
LTS in Table 1. Since the entries in this table cover all possible one-link fault
configurations, we can conclude that the link-fault tolerant algorithm is free of
deadlock for a two-by-two mesh.

To prove that a router is always able to route a packet, it is necessary to
verify that no route-failure gate rendezvous occurs. Since these gates are not
hidden during parallel composition, it is straightforward to check their existence
in each LTS. Table 1 shows that no transitions are labeled with route-failure
labels, which proves verification task (2).

The transition labels in Table 1 show that with one failure link in the net-
work, packets may be dropped, namely when the attempt to make an illegal turn
potentially could cause a deadlock. Therefore, in a highly congested network,
dropping packets is likely to happen. On the other hand, the routing algorithm
should not drop any packets if making an illegal turn is safe. One simplification
for checking this property is to have only one node generate only one packet, and
verify that no packet-drop labels exist on each model’s LTS. For each link failure
location shown in Table 1, the packet can be generated in any of the four nodes.

60 Z. Zhang et al.

Therefore, this property is thoroughly checked in all 36 possible models. No
drop-packet label is found in all LTS’s, which proves that no packet is dropped
when there is only one packet in the network.

6 Discussion

The construction and refinement of the two-by-two NoC model taught us several
valuable lessons. The counterclockwise routing example reveals a packet leakage
path in the arbiters that instructs their preceding routers to drop the packet. This
leakage stems from the arbiter’s specification, in that each arbiter must check its
succeeding router’s availability before it can receive a packet from another router.
For example, arb W 11 must check with r E 01 before it receives a packet from
either r PE 11 or r S 11. Otherwise, if the arbiter does not receive its succeeding
router’s acknowledgement, it sends a “drop” signal to its preceding router. This
option is modeled simply as the arbiter sending back the “drop” signal, which
opens the path for packet leakage. The second lesson is that it is necessary for
an arbiter to have a buffering capacity for the proposed routing architecture
because an arbiter does not need to guarantee the availability of its succeeding
router before it receives a packet. It is this idea that leads us to redesign the
arbiters, such as the one shown in Figure 5. Without formal analysis, it would
have been very challenging to discover the diagnostic information that shows
these flaws in our arbiter design.

The state explosion problem encountered during the evolutions of our NoC
models inspired us to come up with an adequate data abstraction. This process
provided us with a deeper understanding of the routing algorithm. The resultant
changes on the router and arbiter models show interesting symmetries that we
thought did not exist before. Previous attempts to find symmetries between two
nodes did not succeed due to the mismatch in terms of illegal turns made in
different nodes. With the data abstraction, routers can be categorized into RI0,
RI1, and RI2, as described previously, and each category corresponds to one
type of arbiter, as well. The relative positions and connections between these
routers and arbiters in Figure 1 show strong symmetries between the clockwise
and counterclockwise cycles. Experiences gained in this process may help us to
develop heuristics to automate the search for symmetries in the LNT model
description so that the model checking effort can be reduced by focussing on
representatives from each symmetry group. Efficient state reduction techniques
can potentially allow us to perform model checking on larger-scale networks.

With the data abstraction presented in this paper, our results verify deadlock
freedom and one-link-fault tolerance of the proposed routing algorithm, demon-
strating its robustness. As for its efficiency, our results prove that a packet never
gets dropped when it is the only one in the network. Our preliminary experi-
ments show that even when one node generates only two packets, it is possible
that the first packet occupies the output link of the second, which attempts to
make an illegal turn and gets dropped due to deadlock avoidance. Therefore, it
is a challenging task to justify the performance of the routing algorithm in terms

Formal Analysis of a Fault-Tolerant NoC Routing Algorithm 61

of packet drop rate due to deadlock avoidance in the current setting. Since it is
directly related to the link failure probability, performance evaluation requires
annotations of link failure probability in the model and stochastic model check-
ing techniques are needed to provide a quantitative measure of its performance.
Another challenge is that with the current data abstraction, proving delivery of
every packet is difficult, since it is possible that some, if not all, packets pro-
duced get continuously dropped in the network. A simple solution would be to
allocate a unique identifier to each packet and check them on both the pro-
duction and absorption ends, but the resultant state space is likely to become
unmanageable. A more suitable data abstraction scheme and more advanced
state reduction techniques, such as on-the-fly model checking [23], are needed to
meet this challenge.

References

1. Vivet, P., Lattard, D., Clermidy, F., Beigne, E., Bernard, C., Durand, Y., Du-
rupt, J., Varreau, D.: Faust, an asynchronous network-on-chip based architecture
for telecom applications. In: Proc. 2007 Design, Automation and Test in Europe,
DATE 2007 (2007)

2. Hoskote, Y., Vangal, S., Singh, A., Borkar, N., Borkar, S.: A 5-ghz mesh intercon-
nect for a teraflops processor. IEEE Micro 27(5), 51–61 (2007)

3. Wu, J., Zhang, Z., Myers, C.: A fault-tolerant routing algorithm for a network-on-
chip using a link fault model. Virtual Worldwide Forum for PhD Researchers in
Electronic Design Automation (2011)

4. Fick, D., DeOrio, A., Chen, G., Bertacco, V., Sylvester, D., Blaauw, D.: A Highly
Resilient Routing Algorithm for Fault-tolerant NoCs. In: Proceedings of the Con-
ference on Design, Automation and Test in Europe, pp. 21–26. European Design
and Automation Association (2009)

5. Hosseini, A., Ragheb, T., Massoud, Y.: A fault-aware dynamic routing algorithm
for on-chip networks. In: ISCAS, pp. 2653–2656. IEEE (2008)

6. Glass, C.J., Ni, L.M.: Fault-tolerant wormhole routing in meshes. In: FTCS, pp.
240–249. IEEE Computer Society (1993)

7. Imai, M., Yoneda, T.: Improving dependability and performance of fully asyn-
chronous on-chip networks. In: Proceedings of the 2011 17th IEEE International
Symposium on Asynchronous Circuits and Systems, ASYNC 2011, pp. 65–76. IEEE
Computer Society (2011)

8. Borrione, D., Helmy, A., Pierre, L., Schmaltz, J.: A formal approach to the verifi-
cation of networks on chip. EURASIP J. Embedded Syst. 2009, 2:1–2:14 (2009)

9. Helmy, A., Pierre, L., Jantsch, A.: Theorem proving techniques for the formal ver-
ification of NoC communications with non-minimal adaptive routing. In: DDECS,
pp. 221–224. IEEE (2010)

10. Borrione, D., Boubekeur, M., Mounier, L., Renaudin, M., Siriani, A.: Validation
of asynchronous circuit specifications using IF/CADP. In: Glesner, M., Reis, R.,
Indrusiak, L., Mooney, V., Eveking, H. (eds.) VLSI-SOC: From Systems to Chips.
IFIP, vol. 200, pp. 85–100. Springer, Boston (2006)

11. Salaün, G., Serwe, W.: Translating Hardware Process Algebras into Standard Pro-
cess Algebras: Illustration with CHP and LOTOS. Technical Report RR-5666,
INRIA (September 2005)

62 Z. Zhang et al.

12. Salaün, G., Serwe, W., Thonnart, Y., Vivet, P.: Formal verification of CHP spec-
ifications with CADP illustration on an asynchronous Network-on-Chip. In: 13th
IEEE International Symposium on Asynchronous Circuits and Systems, ASYNC
2007, pp. 73–82 (March 2007)

13. Beigné, E., Clermidy, F., Vivet, P., Clouard, A., Renaudin, M.: An Asynchronous
NOC Architecture Providing Low Latency Service and Its Multi-Level Design
Framework. In: ASYNC, pp. 54–63. IEEE Computer Society (2005)

14. Chiu, G.M.: The odd-even turn model for adaptive routing. IEEE Trans. Parallel
Distrib. Syst. 11(7), 729–738 (2000)

15. Myers, C.J.: Asynchronous circuit design. Wiley (2001)
16. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., McKinty, C., Powazny, V.,

Lang, F., Serwe, W., Smeding, G.: Reference manual of the LNT to LOTOS trans-
lator (version 6.0). INRIA/VASY/CONVECS (June 2014)

17. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. STTT 15(2), 89–107 (2013)

18. Garavel, H., Salaün, G., Serwe, W.: On the Semantics of Communicating Hardware
Processes and their Translation into LOTOS for the Verification of Asynchronous
Circuits with CADP. Science of Computer Programming (2009)

19. Garavel, H., Lang, F.: SVL: a Scripting Language for Compositional Verification.
In: Proceedings of the 21st IFIP WG 6.1 International Conference on Formal Tech-
niques for Networked and Distributed Systems, FORTE 2001, pp. 377–392. Kluwer
Academic Publishers (August 2001); Full version available as INRIA Research Re-
port RR-4223

20. Gazda, M., Fokkink, W.: Congruence from the operator’s point of view: Composi-
tionality requirements on process semantics. In: SOS. EPTCS, vol. 32, pp. 15–25
(2010)

21. Crouzen, P., Lang, F.: Smart Reduction. In: Giannakopoulou, D., Orejas, F. (eds.)
FASE 2011. LNCS, vol. 6603, pp. 111–126. Springer, Heidelberg (2011)

22. van Glabbeek, R.J., Luttik, B., Trcka, N.: Branching bisimilarity with explicit
divergence. Fundam. Inform. 93(4), 371–392 (2009)

23. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing
systems. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 148–164.
Springer, Heidelberg (2008)

Formal Specification and Verification

of TCP Extended with the Window Scale Option

Lars Lockefeer, David M. Williams, and Wan J. Fokkink

VU University Amsterdam, The Netherlands
info@larslockefeer.nl,

{d.m.williams,w.j.fokkink}@vu.nl

Abstract. We formally verify that TCP satisfies its requirements when
extended with the Window Scale Option. With the aid of our μCRL
specification and the ltsmin toolset, we verified that our specification of
unidirectional TCP extended with the Window Scale Option does not
deadlock, and that its external behaviour is branching bisimilar to a
FIFO queue for a significantly large instance. Finally, we recommend a
rewording of the specification regarding how a zero window is probed,
ensuring deadlocks do not arise as a result of misinterpretation.

1 Introduction

The Transmission Control Protocol (TCP) plays an important role in the inter-
net, providing reliable transport of messages through a possibly faulty medium
to many of its applications. The original protocol (RFC 793 [17]), specified in
natural language, required improvement to clarify various ambiguities and iden-
tify and address several issues resulting in the publication of a supplemental
specification (RFC 1122 [8]), which also refers to numerous other documents.

Our primary contribution is the formal verification of TCP extended with the
Window Scale Option, addressing the lack of consideration paid to this option
in earlier verification efforts. We take care to extract our formal specification
directly from the original specifications of TCP and the Window Scale Option,
i.e., RFCs 793, 1122 and 1323. This work was initially triggered by a concern
of Dr. Barry M. Cook, CTO at 4Links Limited, regarding the Window Scale
Option proposed in RFC 1323 [14]. Specifically, he was worried that the window
size being reportable only in units of 2n bytes may conflict with a requirement
that the receive buffer space available should not change downward.

We adopt the process algebra μCRL as our formal specification language.
Based on ACP, μCRL is enriched with the algebraic specification of abstract
data types. We found μCRL’s treatment of data as a first class citizen essential
for specifying TCP, and were encouraged by its previous success in verifying the
Sliding Window Protocol [1, 2]. We utilise the μCRL toolset and ltsmin [7] to
explicitly generate the statespace and perform the automated verification.

Section 2 relates our verification effort to those that precede it. Section 3 aims
to bridge the gap between the RFCs and our μCRL specification. The structure

F. Lang and F. Flammini (Eds.): FMICS 2014, LNCS 8718, pp. 63–77, 2014.
c© Springer International Publishing Switzerland 2014

64 L. Lockefeer, D.M. Williams, and W.J. Fokkink

Table 1. Comparison of earlier verifications of TCP

Authors R
F
C

7
9
3

R
F
C

1
1
2
2

R
F
C

1
3
2
3

O
th

e
r
e
x
te

n
s
io

n
s

C
o
n
n

m
a
n
a
g
e
m

e
n
t

D
a
ta

tr
a
n
s
fe
r

M
e
s
s
a
g
e
L
o
s
s

D
u
p
li
c
a
ti
o
n

R
e
o
r
d
e
r
in

g

M
e
s
s
a
g
e

d
ir
e
c
ti
o
n

C
o
n
n

in
c
a
r
n
a
ti
o
n
s

W
in

d
o
w

S
c
a
le

Murphy & Shankar [16]
√ √ √ √ √ ⇔ n

Smith [21, 22], Smith & Ramakrishnan [20]
√ √ √ √ √ √ √ ⇒ n

Schieferdecker [19]
√ √ √ √ √ ⇔ 2

Billington & Han [4, 11–13]
√ √ √ √ √ √ ⇔ 1

Bishop et al. [5], Ridge et al. [18]
√ √ √ √ √ √ √ √ √ ⇔ n

Our verification
√ √ √ √ √ √ √ ⇒ 1

√

of Section 3 mirrors the structure of the μCRL process, which is illustrated
more prominently in Figures 1 and 2. We describe our verification approach
in Section 4 and conclude that the Window Scale Option does not adversely
impact TCP. However, using μCRL we identified deadlocks that may arise due
to the ambiguous formulation of how to probe zero windows in RFC 793. Finally,
we give a recommendation how this RFC could be reformulated to avoid such
misinterpretations.

2 Related Work

Our formal verification of TCP shall address the lack of consideration paid to the
Window Scale option in earlier verification efforts. Several publications aim to
formally specify and verify the correctness of TCP; Table 1 shows an overview.
Murphy & Shankar [16] specified a protocol with a similar service specification
to TCP as defined in RFC 793. By a method of step-wise refinement, a pro-
tocol specification is defined while maintaining several correctness properties.
The need for a three-way handshake and strictly increasing incarnation numbers
becomes apparent with the introduction of each fault in the medium, explicitly
showing why these facilities are present in TCP. Similarly, by means of a refine-
ment mapping, Smith [21,22] has shown that the protocol specification satisfies
the specification of the user-visible behaviour. Selective acknowledgements were
added in [20]. Schieferdecker [19] shows that there is an error in TCP’s handling
of the ABORT call. After stating a possible solution, a LOTOS specification of TCP
is given and several μ-calculus properties verified using CADP. Bishop et al. [5]
considered whether execution traces generated from real-world implementations
of TCP, were accepted by a protocol specification of TCP in Higher Order Logic
(HOL), which includes PAWS, the window scale option and congestion control
algorithms. Of the test traces generated, the specification accepted 91.7%.

Billington & Han have studied TCP extensively considering both RFC 793
and RFC 1122 using Coloured Petri Nets. A concise overview of their TCP
service specification is given in [4] and includes connection establishment, normal

Formal Specification and Verification of TCP 65

data transfer, urgent data transfer, graceful connection release and abortion of
connections. In [11], they give a model of the connection management service,
which is further refined in [12]. This revised specification is used as a basis
for a verification of connection management [13] considering a model without
retransmissions and a model with retransmissions. As a result of their verification
efforts, Billington & Han find several issues within connection management. For
example, a deadlock may occur when one entity opens the connection passively
and, after receiving and acknowledging a connection request, immediately closes
the connection again. However, the work by Billington & Han on data transfer
has not yet led to a verification.

As the Sliding Window Protocol (SWP) underlies TCP (see Section 3) we
also compare our verification to those of SWP. We, like Bezem & Groote [3]
and Badban et al. [1], use μCRL for our specification. Bezem & Groote and
Badban et al. consider bidirectional communication across a medium that can
lose but not duplicate nor reorder messages. Our verification considers a medium
that can lose, duplicate and reorder messages, but does so only in a unidirectional
setting. Whereas we, like Bezem & Groote, consider a finite window size (namely
22), Badban et al. performed the verification on an arbitrarily large window.
Madelaine & Vergamini [15] modelled and verified SWP using LOTOS and AUTO.
They, like us, consider the unidirectional case across a medium that can lose,
duplicate and reorder messages. Finally, Chkliaev et al. [9] specify an amended
version of SWP, in which the sender and receiver need not synchronise on the
sequence number initially.

3 Specification

In this section we present the overall structure of our μCRL specification of
TCP, which includes the core functionality specified in RFCs 793, 1122 and
1323, extended to include the window scale option. It is the aim of this section to
relate the RFCs to the μCRL specification1, assisting the reader in bridging the
gap between the two. Although our μCRL specification incorporates Connection
Teardown we omit discussion of this procedure for brevity. For an overview of
the most prominent formal verification techniques for communication protocols
using μCRL, the reader is referred to [10].

TCP receives data from some application and packages this into segments
to be handed to the network layer. The TCP instance of the receiver receives
segments from the network layer and should ensure the data is delivered to the
receiver’s application in the same order as it was sent. The purpose of a segment
is twofold: (i) a segment may contain zero or more octets of data that the sender’s
application wishes to relay to an application at the receiver; and, (ii) a segment
communicates control information between the two entities.

1 The complete μCRL specification can be found in the Master’s thesis entitled Formal
Specification and Verification of TCP Extended with the Window Scale Option by
L. Lockefeer, VU University Amsterdam, 2013, available at
http://www.cs.vu.nl/~wanf/theses/lockefeer.pdf

http://www.cs.vu.nl/~wanf/theses/lockefeer.pdf

66 L. Lockefeer, D.M. Williams, and W.J. Fokkink

TCP begins by establishing a connection with both entities reaching agree-
ment on the configuration to use for the connection that is stored in their Trans-
mission Control Block (TCB). This data includes the initial sequence number
that the entity will use for outgoing data (ISS), the size of the send window
for the entity (SND.WND), indicating the maximum number of octets that it may
send at once, and the size of the receive window for the entity (RCV.WND), in-
dicating the maximum number of octets that it is prepared to accept at once.
We shall take as the initial state of our model, the ESTABLISHED state. We en-
courage readers unfamiliar with the TCP specifications to refer to Page 23 of
RFC 793 and the amendments thereof on Page 86 of RFC 1122, which provides
an illustration of all possible states of TCP. Such states include the CLOSE_WAIT,
FIN_WAIT_1 and FIN_WAIT_2 states discussed in Section 3.1.

TCP uses the Sliding Window Protocol (SWP) for its data transfer. Both
sender and receiver maintain a window of n sequence numbers, ranging from 0
to n− 1, that they are allowed to send or receive, respectively. The sender may
send as many octets as the size of its window before it has to wait for an acknowl-
edgement from the receiver. Once the receiver sends an acknowledgement for m
octets, its window slides forward m sequence numbers. Likewise, the sender’s
window slides m sequence numbers if this acknowledgement arrives. To function
correctly over mediums that may lose data, the maximum size of the window is
n
2 [23]. In the implementation of SWP underlying TCP, octets may be acknowl-
edged before they are forwarded to the application layer (AL) and therefore still
occupy a position in the receive buffer. In this case, the receiving entity reduces
the window size by returning an acknowledgement segment, ensuring the sending
entity does not send new data that will overflow its buffer. Once the octets are
forwarded to the application layer, it may reopen the window.

The receiver may adjust the size of the sender’s window at any time, through
the value of SEG.WND set in acknowledgement segments. As the size of this field is
limited to 16 bits, TCP can send at most 216 octets into the medium before hav-
ing to wait for an acknowledgement and, if the medium can hold octets, unneces-
sary delay will be incurred. To resolve this, RFC 1323 [14] proposes the Window
Scale Option. If implemented, the send and receive windows are maintained as
32-bit numbers in the TCB of the sender and receiver, which is also extended
to include variables SND.WND.SCALE and RCV.WND.SCALE. Whenever an entity
receives an acknowledgement, it left-shifts the value of SEG.WND by the value of
SND.WND.SCALE before it updates its send window. Likewise, whenever an entity
sends an acknowledgement it sets the window field of the outgoing segment to
the size of its receive window, right-shifted by the scale factor RCV.WND.SCALE.

We do not validate Connection Establishment, firstly because it has been well
studied in the literature as discussed in Section 2 and, secondly, RFC 1323 adds
no functionality to connection establishment that we expect to refute earlier ver-
ification efforts concerning this phase. We instead specify data transfer, taking
care to include the core TCP functionality as well as any peripheral functionality
that is potentially influenced by the Window Scale Option, in which two TCP
instances (TCP1 and TCP2) communicate data over a possibly faulty medium.

Formal Specification and Verification of TCP 67

In this section we shall focus most of our attention on the process modelling
the TCP instance as this was the primary exercise in modelling TCP. Although
our μCRL specification also incorporates Connection Teardown we have omit-
ted discussion of this procedure for brevity. In any case, in order to keep the
verification tractable, the actions included to model Connection Teardown are
encapsulated before instantiating the statespace in Section 4. Likewise, although
we specify a generic TCP process that executes the responsibilities of the sending
and receiving instances, when we come to compose our model of unidirectional
TCP, including processes modelling the Application and Network layers, some
actions must be encapsulated in TCP1 and TCP2 to instantiate them as the
sending and receiving entities, respectively.

3.1 The TCP Instance

To avoid discussing abstract notions such as connections (at the TCP level) and
sessions (at the application level) that are rather detached from their contexts of
sending and receiving entities in a network, we will take the point of view that we
have modelled a TCP instance which only has one connection with one remote
entity. This TCP instance maintains the state of the connection and the TCB.
To manage its window, the sender maintains the variables SND.UNA, SND.NXT and
SND.WND in the TCB. SND.UNA holds the sequence number of the first segment
in the sequence number space that was sent, for which an acknowledgement has
not yet been received. SND.NXT holds the sequence number of the next segment
that the sender will send. Finally, SND.WND holds the number of octets that TCP
may send at most before it should wait for an acknowledgement.

Some ambiguity surrounds the specification of the sequence number, as both
octets and segments are assigned one. In principle, TCP numbers each octet
with a unique sequence number, modulo the size of the sequence number space.
A segment inherits its sequence number from the first octet it contains. However,
a segment containing no octets still requires a sequence number. Here, it is still
numbered with the sequence number maintained in SND.NXT, but SND.NXT is not
updated. Henceforth, we adopt the convention of denoting SND.NXT as SND_NXT
in μCRL, and likewise for other variables/states of the RFCs.

AL Calls SEND. The first call discussed in [17], SEND, may only be issued
if the connection is in the ESTABLISHED or CLOSE_WAIT state. As long as there
remains capacity in the send buffer, the TCP instance accepts SEND calls from
the application layer via the tcp_rcv_SND event, adding its octets to the buffer.

Octets in Send Buffer? If the connection is in the ESTABLISHED or CLOSE_WAIT
state and TCP is allowed to send one or more octets, a segment containing
the eligible to be sent octets is passed to the network layer by issuing the call
tcp_call_SND. This segment is labelled with the next sequence number to be
used as maintained in SND_NXT. After the sequence number, the acknowledge-
ment number and advertised window are included, followed by the number of

68 L. Lockefeer, D.M. Williams, and W.J. Fokkink

Event

Decision

Action

Action and recurse

Subfigure

Start

Segment
arrives

Octets in
send

buffer?

Send
allowed?

Retransmission
Timeout

AL calls
RECEIVE

Send
segment

Zero
Window?

τ

Process
segment

Octet in
receive
buffer?

Update
RTQ

Retransmit
head of
RTQ

AL calls
SEND

Send
buffer
full?

Forward
octet
to AL

Block AL

Block AL

Update
Send
Buffer

Update
RCV.RD.NXT

yes

no

yes

no

no

yes

yes

no

yes

no

Fig. 1. Abstract overview of our specification of TCP Data Transfer

octets included in the segment and the values of the ACK and FIN flag. The actual
number of octets that TCP can send at a certain time is calculated by taking the
difference m between SND.UNA and SND.NXT. If m < SND.WND, TCP may package
any number of octets n ≤ m into a segment and send it into the medium. Note
that the receive window size relayed in the segment is calculated by applying
the scale factor RCV.WND.SCALE to the actual receive window size. Subsequently,
the octets included in the segment are removed from the send buffer and the
segment is added to the retransmission queue (rtq). Finally, SND_NXT is updated
to reflect the next sequence number to be used.

In our model, the ACK flag will always be set to false in segments carrying
data octets and therefore, the value of the acknowledgement field in the segment
will not be processed by the receiver of the segment. The specification dictates
that the ACK flag is always set to true and that the latest acknowledgement
information is always included in each data segment. However, this would greatly
complicate the processing of incoming segments in our model and would only be
of use in case of a bidirectional connection, that we do not consider to limit the
size of our state space. In a unidirectional setting, the sender’s value of RCV_NXT
will always be the same since it never receives data. Likewise, the receiver’s
values of SND_NXT and SND_UNA will remain constant since it never sends data.
Hence, at all times during the execution of the protocol, if we have a sender
A and a receiver B that have agreed on initial sequence number x, it will hold
that ARCV_NXT = BSND_NXT ∧ BSND_NXT = BSND_UNA = x. Acknowledgement
processing will not take place since ¬(BSND_UNA < ARCV_NXT).

More can be said about the octets that are eligible to be sent. If it holds that
SND_UNA ≤ SND_NXT < (SND_UNA + SND_WND), then the sender is allowed to send

Formal Specification and Verification of TCP 69

x = (SND_UNA + SND_WND)−SND_NXT octets. To this end, we specified a function
can send that returns x if the length of the buffer is greater than x, or the
length of the buffer otherwise. No octets may be sent if ¬(SND_UNA≤SND_NXT<
(SND_UNA+SND_WND)). From a modelling perspective, this solves an ambiguity
in [17], namely that TCP may send octets at its own will.

A TCP instance must regularly transmit something to the remote entity if the
variable SND_WND is set to 0 to prevent a potential deadlock. If the send window
is 0 and the retransmission queue is empty, but octets are available in the send
buffer, the sender will send a segment containing one octet. This segment is
taken from the send buffer, put on the retransmission queue and the variable
SND_NXT is updated. Note that this is the only major difference between our
model and the behaviour specified in RFC 793; we delay further explanation
and justification of this important revision until Section 4.

AL Calls RECEIVE. The second call from the application layer that the
TCP instance must process is RECEIVE [17]. By issuing a tcp_rcv_RECEIVE call,
parameterised with the octet pointed at by RCV_RD_NXTmaintained in the TCB,
that octet is offered to the application layer. The octet is removed from the
receive buffer and RCV_RD_NXT is incremented. The call may only be issued if the
connection is in an ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2 or CLOSE_WAIT state,
if (RCV_NXT−RCV_RD_NXT) mod n > 0 and if the octet with sequence number
RCV_RD_NXT is available in the receive buffer. The variable RCV_RD_NXT is not
mentioned in [17]. Instead, the size of the receive window, stored as RCV_WND

in the TCB, is updated every time the receive buffer is manipulated. However,
page 74 strictly requires the total of RCV_WND and RCV_NXT not to be reduced. It
is unclear whether the total may not be reduced when an incoming segment is
processed, or not at all. Either way, we believe that it relates to the requirement
that the right edge of the window should never be moved to the left. To simplify
the implementation but ensure this requirement we maintain RCV_WND at its
initial value, and introduce the variable RCV_RD_NXT that is always the sequence
number of the next octet to be forwarded to the application layer. At all times
it holds that RCV_NXT ≤ RCV_RD_NXT ≤ (RCV_NXT + RCV_WND).

Segment Arrives. A segment received from the network layer is deemed ac-
ceptable in the following situations [17]:

1. If the segment does not contain data octets:
(a) If RCV.WND=0, it is required that SEG.SEQ=RCV.NXT

(b) If RCV.WND>0, it is required that RCV.NXT≤SEG.SEQ<RCV.NXT+RCV.WND

2. If the segment does contain data octets
(a) If RCV.WND=0, the segment is not acceptable.
(b) If RCV.WND>0, it is required that

– Either RCV.NXT≤SEG.SEQ<RCV.NXT+RCV.WND
– Or: RCV.NXT≤SEG.SEQ+SEG.LEN−1<RCV.NXT+RCV.WND

70 L. Lockefeer, D.M. Williams, and W.J. Fokkink

Event

Decision

Action

Action and recurse

Subfigure

Segment
arrives

Segment
accept-
able?

Drop
segment

Send ACKACK?

Ack ac-
ceptable?

Update
SND.UNA

Drop ACK

Update
RTQ

SEG.ACK >
SND.NXT

Send ACK
Update
window

τ

FIN?

Send ACK

Update
state

Buffer
octets

Update
RCV.NXT

no
no

yes

yes

yes

no

yes

no

no

yes

Fig. 2. Abstract overview of our specification of TCP Segment Processing

RFC 793 states that segments arriving out of order may be dropped by the
receiver or suggests, to improve performance, that these segments are held in a
special buffer to be processed regularly as soon as their turn arrives. In our model
an unacceptable segment is dropped and an acknowledgement is sent to the
sender containing the current value of RCV.NXT; from a modelling point of view, it
makes no significant difference whether the segment is later taken from a special
buffer or it is received again. Otherwise, segments continue to be processed in
order of their sequence numbers. An acknowledgement is constructed including
the sequence number of the octet that the TCP instance expects to receive next,
the acknowledgement number and the advertised window. The ACK-flag of the
acknowledgement segment is set to T while the FIN-flag is set to F.

We already stated that, in our model, a segment that carries data always has
the ACK flag set to false. Additionally, we specify FIN segments to not contain
acknowledgement information or data. We distinguish between segments carry-
ing data, carrying acknowledgement information and carrying FIN information;
we determine the type of a segment using functions is ack and fin flag set.

If the incoming segment m is an acknowledgement, the TCP instance first
checks that it is acceptable. This is done by verifying whether the acknowl-
edgement number extracted from the segment is strictly between SND_UNA and
SND_NXT, or indeed equal to SND_NXT. If so, SND_WND is updated to be the

Formal Specification and Verification of TCP 71

size of the window contained in the segment, multiplied by the scale factor,
SND_WND_SCALE. Moreover, SND_UNA is updated and segments containing octets
with a sequence number of at most i are removed from the retransmission queue,
where i is strictly between SND_UNA and the acknowledgement number extracted
from the segment, or equal to SND_UNA. Note that, in [14] the scale factor is
defined as n, resulting in integer division/multiplication by 2n via bit shifting,
whereas we maintain the scale factor as 2n and apply scaling using division and
multiplication. Where a scale factor of 1 is stated in [14], we write 2 = 21.

Finally, if the acknowledgement is not acceptable it is dropped and the TCP
instance remains in the same state. The official specification states that in re-
sponse to an unacceptable acknowledgement an acknowledgement must be sent
back if SEG.ACK > SND.NXT. In a unidirectional setting, such a situation will
never occur so we exclude such behaviour from our model.

If the incoming segment is acceptable, for which (SEG_SEQ=RCV_NXT), and for
which both is ack and fin flag set return false, it is processed as a data segment.
Its octets are added to the receive buffer and RCV_NXT is updated to reflect
the next sequence number that the receiver expects to receive. Furthermore,
the RCV_ACK_QUEUED flag in the TCB, which indicates that an acknowledgement
should be sent, is set to true. This sets the SWP implementation of TCP apart,
as an acknowledgement is sent while the octets may not yet be forwarded to the
application layer and therefore occupy a position in the receive buffer. Therefore,
the size of the window that is reported back represents the available capacity in
the receive buffer if less than the difference between RCV.NXT and the size of the
receive window that was originally agreed upon.

In [8], it states: “a host [...] can increase efficiency [...] by sending fewer
than one ACK (acknowledgement) segment per data segment received”. We in-
clude this behaviour by setting a flag that an acknowledgement should be sent.
We then enable the TCP instance to send an acknowledgement whenever the
RCV_ACK_QUEUED flag in the TCB is set to true. To prevent sending an acknowl-
edgement multiple times, this flag is then set to false again.

Retransmission Timeout. For each segment the TCP instance puts on the
retransmission queue, it starts a timer. When a timer expires, its segment must
be retransmitted. To avoid modelling time explicitly, we allow a TCP instance to
retransmit the first element on the retransmission queue at its own convenience.

3.2 The Complete System

We obtain the complete system by putting two TCP instances in parallel with
additional processes modeling the Application and Network Layers. The appli-
cation layer continuously offers octets to the TCP instance by issuing the call
al_call_SEND. Receiving data is modelled by having the application layer call
al_call_RECEIVE for an arbitrary octet. Finally, we specify a network layer
that may duplicate, reorder and lose data. General action names are renamed
into action names specific for each component. We assume the variables to be set

72 L. Lockefeer, D.M. Williams, and W.J. Fokkink

as a result of the connection establishment procedure including the scale factor
that each of the TCP instances will apply to their outgoing segments.

When instantiating processes for unidirectional TCP, we encapsulated (i.e.,
blocked) both AL2_call_SEND and TCP2_rcv_SEND to prevent AL2 from issu-
ing the SEND call. Similarly, AL1_call_RECEIVE and TCP1_rcv_RECEIVE were
encapsulated to prevent AL1 from issuing the RECEIVE call. The approach to ex-
clude connection termination from our model is similar: by encapsulating actions
AL1_call_CLOSE, AL2_call_CLOSE, TCP1_rcv_CLOSE and TCP2_rcv_CLOSE, we
ensured that they will not be called in our model. Taken together, these modifica-
tions ensured that we were able to obtain a non-terminating model TCP→ of the
data-transfer phase for a unidirectional TCP connection from our specification.

We also had to prevent deadlocks and undesired behaviour as a result of the
reuse of sequence numbers. Whilst the introduction of PAWS [14] helps alleviate
this problem when networks get faster (by increasing the size of the sequence
number space) no protection is proposed other than to assume a limit on the time
a segment can reside in the medium, namely the Maximum Segment Lifetime
(MSL). Strictly speaking, this means that TCP cycles through all of its sequence
numbers, waits until all segments have been acknowledged and all duplicates have
drained from the network and starts a new run. The only reason that in practice
there is no actual waiting period, is that data transfer speeds are guaranteed to
be so ‘slow’ that it takes more than the MSL to send out octets with sequence
numbers i + 1 . . . (i + (n − 1)) mod n after an octet with sequence number i
is sent. Likewise, we ensure our specification does not get overly complex due
to the addition of timing restrictions, by limiting our verification to one run of
sequence numbers. We may still start anywhere in the sequence number space,
since all calculations are defined modulo the size of this space.

However, the following problem remains. Assume a sequence number space
ranging from m. . . n. The receiving TCP instance will still accept an octet with
sequence number m after receiving the octet with sequence number n. Hence, if
such an octet is still in the medium as the result of duplication or retransmission,
it will be accepted by the receiving TCP instance upon receipt and subsequently
delivered to the application layer. Given that the assumption on the MSL holds,
such behaviour cannot occur in a real-world situation. To model this we ensure
that the global variable maintaining the total number of sequence numbers is
greater than the number of octets, as the sequence number space is guaranteed
to be larger than the number of octets sent and the problem will not occur.

4 Verification

Our verification focused on two aspects of our model: (i) we verified that its
state space is deadlock free, and (ii) we compared the external behaviour of our
model, defined in terms of the SEND and RECEIVE calls issued by the application
layers, to the external behaviour of a FIFO queue. One can consider the SEND

call of TCP as putting something into a queue and RECEIVE as taking some-
thing from it: the sender puts data elements into the transport medium and the

Formal Specification and Verification of TCP 73

Table 2. Statistics of the state space generation for our model

Octets Window Window Medium Levels States Transitions Exploration
Sent Size Scale Capacity Time

4 2 1
2 36 881.043 3.910.863 21 sec
3 40 11.490.716 53.137.488 104 sec
4 44 91.821.900 434.372.541 7.5 min

8
2 1

2 54 16.126.380 76.356.475 3 min
3 58 823.501.590 4.031.264.559 49 min

4 2
2 49 98.697.902 473.332.511 15 min
3 56 3.505.654.685 Buffer Overflow 3 hrs, 40 min

16 4 2 2 77 3.255.174.492 3.444.088.224 4 hrs, 40 min

receiver takes them all out of this medium in precisely the same order. We
first specified a behavioural specification B, then we generated an LTS from
both B and TCP→. All actions in TCP→, other than SEND and RECEIVE, were
defined as internal behaviour. We minimised the LTS of TCP→ and verified it
was branching bisimilar to the LTS of B: TCP→ �B B. Note that a fairness
assumption is enforced by the minimisation algorithm; τ -loops from which an
‘exit’ is possible were eliminated from our minimised state space. Such τ -loops
arise from segments that are continuously dropped by the network layer or a
sequence of repeated retransmissions, behaviour that we can safely abstract from.

For both TCP→ and B, we generated a state space using the distributed
state space generation tool lps2lts-dist of the ltsmin toolset [7]. By using the
--deadlock option, absence of deadlocks could be checked during state space
generation. In addition, we used the --cache option to speed up state space gen-
eration. State space generation was run on the DAS-4 cluster, more specifically
on 8 nodes equipped with an Intel Sandy Bridge E5-2620 processor clocked at
2.0 GHz, 64 gigabytes of memory and a K20m Kepler GPU with 6 gigabytes of
on-board memory. At each node, we utilised only 1 core to prevent the process
from running out of memory. Table 2 shows some benchmarks of the state space
generation for TCP→ for several different parameterisations. Subsequently, the
state space of TCP→ was minimised with the lts-reduce-dist tool of the
ltsmin toolset, which uses the distributed minimisation algorithm as described
in [6]. Finally, the ltsmin-compare was used to verify that TCP→ �B B.

As illustrated in Table 2, the capacity of the medium significantly impacts the
size of the state space. We settled for a medium capacity of two segments. Since
one segment may contain at most as many segments as the size of the window, a
medium capacity of 2 means that a TCP instance can send at most two windows
of data segments into the medium before it must ‘wait’ for the medium to either
lose or deliver a segment. For the window scaling to be non-trivial, the size of
the window should be at least 22 with a scale factor of 21 allowing three possible
window sizes: zero, two and four that allow for interesting scenarios where the
reported size of the window is shrunken to half of its original size.

We performed our verification assuming a sequence number space of size 23+1,
a window size of 22, a scale factor of 21 and a medium capacity of 21 segments,
in which the sending TCP sends 23 octets. With these parameters, we obtained

74 L. Lockefeer, D.M. Williams, and W.J. Fokkink

a model that was small enough to verify within reasonable time, with charac-
teristics that are representative for a real-world implementation of TCP. If the
size of the model increases, all relevant buffers and calculations will simply scale
with this increase; it is unlikely that errors are introduced as a result.

Correctness of the Window Scale Option. Our initial hypothesis was that
as the size of the window could only be reported in units of 2n, problems could
arise when a single octet is sent and the window that the receiving TCP entity
reports must be adapted. Conceivably, situations could arise where a sending
entity has a view of the size of the window at the receiving end that exceeds
the maximum buffer space available. With the aid of our formal specification, we
find that this is not the case. Both entities maintain the send and receive window
as 32-bit numbers and maintain a scale factor by which they right/left-shift the
value reported in/taken from an acknowledgement segment. Note that this shift
by a factor k, has the same effect as a floored division or multiplication by a
factor 2k. Assume a receive buffer of capacity 2n+1 and, therefore, a window
size of at most 2n and a scale factor k, where 0 < k ≤ (n − 1), resulting in a
division or multiplication by 2k. Now, if the receiver receives a segment carrying
0 < m ≤ 2n bytes, two scenarios may occur: (i) the reduced buffer space (receive
window) is reported in the acknowledgement segment; or, (ii) the old buffer
space is reported. If (i), then the reported window size is �(2n − m)/2k� <
2n−k < 2n else if (ii) then nothing changes and therefore the reported window
size is �2n/2k� ≤ 2n−k < 2n. The reported buffer size is always ≤ 2n−k and can
never become greater than 2(n−k)+k = 2n when it is left-shifted at the remote
end. Hence, a sending entity never views the receive buffer space available at a
receiving entity to exceed the maximum buffer space available.

A second conceivable problem relates to the explicit statement in [17] that a
TCP instance should not ‘shrink’ its receive window, meaning that the buffer
capacity is reduced, i.e., the right edge of the window is moved to the left.
Assume a sender and receiver have agreed upon a window size of 4. The sender
sends two octets and immediately then sends another two octets. By the arrival
of the first segment at the receiver, the octets are put in its receive buffer and,
unfortunately, at the same time the capacity of the buffer is also reduced by
one octet, causing the receiving entity to report a window of size 1 to the sender
rather than 2. As the second segment, carrying two octets, is already in transit it
will be discarded upon arrival at the receiver because it contains more octets than
the receiver may accept. The sender will keep retransmitting this segment and it
will be discarded as long as no octets are taken from the receive buffer. If window
sizes get bigger, the delay incurred may significantly impact the performance of
the protocol. Eventually, however, the octet will be accepted when buffer space
becomes available as octets that arrived earlier are taken from the receive buffer.

When window scaling is in effect, one might expect such a scenario to occur
every time an odd number of bytes is sent, due to the size of the window being
reported only in multiples of 2n. However, in this case the actual capacity of the
receive buffer is not reduced and the receiver maintains the window size as a
32-bit not a 16-bit number. Therefore, the second segment that may have been

Formal Specification and Verification of TCP 75

in transit already, will still be accepted and an acknowledgement containing the
latest size of the window will be sent back within reasonable time. In a situation
where the segment was not yet sent, the difference in the number of octets that
may be sent is only 1, causing a performance rather than a correctness issue.

Recommended Revision of RFC 793. During our verification using μCRL,
we identified a possibility of deadlock when strictly following the RFC 793 specifi-
cation as we will show below. Therefore, we recommend revising the specification
in its dealing with zero windows; requiring that whenever the sender (i) has data
on its send buffer, (ii) has a zero window and (iii) has an empty retransmission
queue, a segment is sent to probe the zero window containing at least one octet
of data from the send buffer. This behaviour was included in our model as stated
in Section 3.1 but we withheld explanation and justification until now.

Instead, the current specification states on page 42 that: “The sending TCP
must be prepared to accept from the user and send at least one octet of new data
even if the send window is zero. The sending TCP must regularly retransmit
to the receiving TCP even when the window is zero. [...] This retransmission is
essential to guarantee that when either TCP has a zero window the re-opening of
the window will be reliably reported to the other.” The latter part of this state-
ment is confusing. It is not the retransmission that is essential, but rather the
transmission of a segment (whether taken from the send buffer or the retrans-
mission queue) when the send window is zero.

To see why, suppose that the sender has two octets on its send buffer and sends
only the first of these. The receiver then acknowledges this octet, but does not yet
take it from its buffer. As a result of this, both the send and receive window are
now 0. In this scenario, there is still data to be sent, but the retransmission queue
is empty. If the requirements above are strictly followed, the zero window will
never be probed as long as the user does not provide new data for the sender to
accept and send at least one octet of and therefore leads to deadlock. Implicitly,
the reader may expect data on the send buffer to be sent in this case, regardless.
However, this is certainly contradicted by the suggestion to “avoid sending small
segments by waiting until the window is large enough before sending data”. Note
that care should be taken when implementing this feature, since as a result of
waiting to send something, no new acknowledgements will arrive to update the
window information, again leading to deadlock.

Requiring the sender to be prepared to send at least one octet of new data
even when the retransmission queue is non-empty also ensures that the window
will be reopened, but not how one would expect. The new data is sent to the
receiver, which will reject the segment since it is out of sequence. However, as a
result of this rejection, the receiver sends an acknowledgement containing up-to-
date window information, potentially reopening the window. Our proposed revi-
sion intentionally does not attend to the case of the retransmission queue being
non-empty; it is already covered by the requirement that “if the retransmission
timeout expires on a segment in the retransmission queue, send the segment at
the front of the retransmission queue again, reinitialize the retransmission time
and return” on page 77. As an advantage, whenever the retransmission queue is

76 L. Lockefeer, D.M. Williams, and W.J. Fokkink

non-empty an in-sequence segment will be sent and therefore accepted while its
acknowledgement may also reopen the window. Only if the retransmission queue
is empty, a segment containing new data probes the zero window. This segment
is then guaranteed to be accepted if the receiver has reopened its window.

It may be that our revision matches the interpretation intended of the original
specification, but we have shown that the wording of the specification can lead
to implementations where deadlocks occur. A formal specification, given here in
μCRL, leaves less scope for erroneous implementations due to misinterpretation.

5 Conclusion

TCP plays an important role in the internet, providing reliable transport of
data over possibly faulty networks. The protocol is complex and its specification
consists of many documents that mainly describe the proposed functioning of
the protocol in natural language. We set out to formally specify TCP extended
with the Window Scale Option and verify its correctness, redressing the lack of
consideration paid to this option in earlier verification efforts.

Whilst formally specifying TCP, we traversed several ambiguities in RFC 793;
the modelling decisions we made in this regard were stated in Section 3. Due to its
formal nature, our specification may serve as a useful reference for implementors
of the protocol. Moreover, our recommendation for revising RFC 793 brings
attention to the potential misinterpretations of how and when to probe the zero
window, which we have shown may lead to deadlock.

The process algebra that we used for our specification, μCRL, turned out to
be powerful enough to mimic the required features. The size of the state space,
however, was a limiting factor that forced us to split our verification efforts into
a verification of TCP data transfer and a separate verification of connection
teardown; the latter was omitted from this paper.

Using the ltsmin toolset, we were able to formally verify that our μCRL
specification of unidirectional TCP extended with the Window Scale Option does
not contain deadlocks, and that its external behaviour is branching bisimilar to
a FIFO queue for a significantly large instance. In addition, we believe that the
specification is general enough to make the introduction of errors as parameters
are increased highly unlikely. Whilst our specification also supports bidirectional
data transfer, only unidirectional instances were verified to avoid intractable
state space explosion; a point we aim to redress in subsequent work.

Acknowledgments. The authors are indebted to Dr. BarryM. Cook, for posing
the initial research question, and Dr. Kees Verstoep, for essential support in us-
ing the DAS-4 cluster. We also thank the anonymous reviewers for their insightful
suggestions.

References

1. Badban, B., Fokkink, W.J., Groote, J.F., Pang, J., van de Pol, J.: Verification of a
sliding window protocol in μCRL and PVS. Formal Aspects of Computing 17(3),
342–388 (2005)

Formal Specification and Verification of TCP 77

2. Badban, B., Fokkink, W.J., van de Pol, J.: Mechanical verification of a two-way
sliding window protocol. In: CPA. CSE, vol. 66, pp. 179–202. IOS Press (2008)

3. Bezem, M., Groote, J.F.: A correctness proof of a one-bit sliding window protocol
in μCRL. The Computer Journal 37(4), 289–307 (1994)

4. Billington, J., Han, B.: On defining the service provided by TCP. In: ACSC. CR-
PIT, vol. 16, pp. 129–138. ACS (2003)

5. Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M., Wansbrough, K.:
Rigorous specification and conformance testing techniques for network protocols,
as applied to TCP, UDP, and sockets. In: SIGCOMM, pp. 265–276. ACM (2005)

6. Blom, S., Orzan, S.: Distributed state space minimization. Software Tools for Tech-
nology Transfer 7(3), 280–291 (2005)

7. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359.
Springer, Heidelberg (2010)

8. Braden, R.: Requirements for Internet hosts-communication layers. RFC 1122
(1989)

9. Chkliaev, D., Hooman, J., de Vink, E.P.: Verification and improvement of the
sliding window protocol. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 113–127. Springer, Heidelberg (2003)

10. Fokkink, W.J.: Modelling Distributed Systems. Texts in theoretical computer sci-
ence, An EATCS Series. Springer (2007)

11. Han, B., Billington, J.: Validating TCP connection management. In: SEFW, pp.
47–55. ACS (2002)

12. Han, B., Billington, J.: Experience using coloured Petri nets to model TCP’s con-
nection management procedures. In: CPN, pp. 57–76 (2004)

13. Han, B., Billington, J.: Termination properties of TCP’s connection management
procedures. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536,
pp. 228–249. Springer, Heidelberg (2005)

14. Jacobson, V., Braden, R., Borman, D.: TCP extensions for high performance. RFC
1323 (1992)

15. Madelaine, E., Vergamini, D.: Specification and verification of a sliding window
protocol in LOTOS. In: FORTE. IFIP Trans., vol. C-2, pp. 495–510 (1991)

16. Murphy, S.L., Shankar, A.U.: Service specification and protocol construction for
the transport layer. In: SIGCOMM, pp. 88–97. ACM (1988)

17. Postel, J.: Transmission control protocol. RFC 793 (1981)
18. Ridge, T., Norrish, M., Sewell, P.: A rigorous approach to networking: TCP, from

implementation to protocol to service. In: Cuellar, J., Sere, K. (eds.) FM 2008.
LNCS, vol. 5014, pp. 294–309. Springer, Heidelberg (2008)

19. Schieferdecker, I.: Abruptly terminated connections in TCP - a verification exam-
ple. In: Applied Formal Methods in System Design, pp. 136–145 (1996)

20. Smith, M.A.S., Ramakrishnan, K.K.: Formal specification and verification of safety
and performance of TCP selective acknowledgement. Trans. on Networking 10(2),
193–207 (2002)

21. Smith, M.A.S.: Formal verification of communication protocols. In: FORTE. IFIP
Conf. Proc., vol. 69, pp. 129–144. Chapman & Hall (1996)

22. Smith, M.A.S.: Formal verification of TCP and T/TCP. PhD thesis, Massachusetts
Institute of Technology (1997)

23. Tanenbaum, A.S.: Computer Networks, 4th edn. Prentice Hall (2002)

Learning Fragments

of the TCP Network Protocol

Paul Fiterău-Broştean�, Ramon Janssen, and Frits Vaandrager

Institute for Computing and Information Sciences
Radboud University Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
{P.FiterauBrostean,f.vaandrager}@cs.ru.nl, ramon.janssen@student.ru.nl

Abstract. We apply automata learning techniques to learn fragments of
the TCP network protocol by observing its external behaviour. We show
that different implementations of TCP in Windows 8 and Ubuntu induce
different automata models, thus allowing for fingerprinting of these im-
plementations. In order to infer our models we use the notion of a mapper
component introduced by Aarts, Jonsson and Uijen, which abstracts the
large number of possible TCP packets into a limited number of abstract
actions that can be handled by the regular inference tool LearnLib. In-
spection of the learned models reveals that both Windows 8 and Ubuntu
13.10 violate RFC 793.

1 Introduction

Our society has become reliant on the security and application of protocols,
which are used for various operations. Standards describing these protocols typ-
ically fail to specify what an agent should do in case another agent does not
follow the rules of the protocol, which can result in exploits by hackers. More-
over, implementations of these standards can differ, and may deviate slightly
from the official standard, resulting in security vulnerabilities. Automata learn-
ing techniques can help expose and/or mitigate such problems through tools
that help generate state models for these systems.

Learning techniques enable the inference of state models for systems available
as black boxes. Inferring such models is important not only for understanding
these systems, but also for model checking and model based testing. To this
end, several learning algorithms and tools have been developed, such as those
presented in [4,19,17,2,20,12].

Whereas learning algorithms such as L* [4], work for systems with limited
numbers of abstract inputs and outputs, many protocols make use of messages
with parameters, for instance sequence numbers or flags. Moreover, network
protocols may have variables. As an example, the TCP protocol maintains several
variables for connection initialization and synchronization. Efforts have been

� Supported by NWO project 612.001.216: Active Learning of Security Protocols
(ALSEP).

F. Lang and F. Flammini (Eds.): FMICS 2014, LNCS 8718, pp. 78–93, 2014.
c© Springer International Publishing Switzerland 2014

Learning Fragments of the TCP Network Protocol 79

made to develop techniques to learn these more complex systems. In particular,
building on the extension of the L* algorithm used to learn Mealy machines
(Niese [11]), F. Aarts et al. describe in [3] a methodology for learning systems via
abstraction. This method entails introducing a mapper component in-between
the protocol and the learner. The mapper reduces the parameters and state
variables implied by the protocol to a small number of abstract values, on which
learning algorithms can then be applied. By using this technique, they were able
to infer state models of simulated versions of the Transmission Control Protocol
(TCP) and the Session Initiation Protocol (SIP).

In this work we use abstraction to learn implementations of the TCP-protocol
for different operating systems. We then highlight a situation where these im-
plementations do not adhere to the standard. We use the abstraction based on
the approach described in [22], but extend it to include the increment opera-
tor which is needed to learn the TCP protocol. While the learning setup used
specifically targets TCP, it can be adapted to learn other protocols.

Related Work. In recent years, there have been many applications of automata
learning to protocol analysis. We mention here only a few selected references
and refer to these works for a more extensive overview of the literature. In [21],
automata learning was used to establish that implementations of SSH violate
the standard. In [6], automata learning was used to reproduce a widely publi-
cized mistake in a protocol for electronic banking. The methodology described
by Aarts et al. [3] was also used to infer state diagrams of banking cards in [1].
Dawn Song et al. [7] developed techniques to learn the state diagram of a net-
work protocol used to control botnets. Learning techniques were also used to
automatically infer HTTP interaction models for web applications, as part of
the SPaCIoS Project [5].

Organization. The paper is structured as follows: Section 2 gives a brief descrip-
tion of the TCP network protocol, Section 3 sets the context of regular inference
with abstraction. Section 4 presents the framework we implemented to learn the
TCP network protocol. Section 5 explains how the setup implements abstraction.
Section 6 explains difficulties encountered and how we managed them. Section 7
presents experiments carried out to learn TCP. Section 8 outlines conclusions
and future work.

2 The TCP Network Protocol

The transmission control protocol [16], or TCP, is a connection-based network
protocol that allows two application programs to transfer data bidirectionally in
a reliable and orderly manner. The programs can run on the same or on sepa-
rate machines. TCP supports data transfer through the connection abstraction
where a connection comprises two endpoints associated with each of the two
programs. A connection progresses from one state to the next following events.
Possible events are user actions, receipt of TCP segments, which are network
packets containing flags and register data, and timeouts. Connection progres-
sion is depicted in Figure 1.

80 P. Fiterău-Broştean, R. Janssen, and F. Vaandrager

CLOSED

LISTEN

SYN SENTSYN RCVD

ESTABLISHED

FIN WAIT 1

FIN WAIT 2

CLOSE WAIT

CLOSING
LAST ACK

TIME WAIT

Passive open Close

SYN/SYN + ACK Send/SYN

Timeout/RST
Close

Active open/SYN

SYN/SYN + ACK

Close/FIN

ACK/- SYN + ACK/ACK

Close/FIN FIN/ACK

ACK

ACK/-

FIN +
ACK/ACK

FIN/ACK

ACK/-

Close/FIN

ACK

Timeout after two max-
imum segment lifetimes

Fig. 1. A state diagram describing TCP1

We give a brief example of how the protocol functions from connection ini-
tiation to termination. For brevity, we use flags-segment as shorthands for
segments having the mentioned control flags activated.

The two systems communicating through TCP have different roles: one system
acts as a server and the other as a client. Connection between server and client
is established through the three-way handshake. Assuming the server is in the
listen-state, waiting for a client to connect to it, the client sends a syn-segment
on an Active open-action and transitions to the syn sent-state. On receiving
this segment, the server responds with a syn+ack-segment, transitioning to
the syn rcvd-state. The client then acknowledges the server ’s segment with
an ack-segment and transitions to the established-state. On receiving this
segment, the server also transitions to the established-state, connection is es-
tablished and data can be transferred, thus concluding the three-way handshake.

When either side has finished sending data, that side sends a segment with
a fin-flag on an Active close-action, signaling that it has no more data left
to send. This can be acknowledged with a fin+ack-segment if the other device
also wants to close the connection, or with a ack-segment if that device still
wants to send data. Once the device has sent all data, it sends a fin-message,
closing the connection.

Notice that the state diagram in Figure 1 does not fully specify the behaviour
of the TCP-implementation. More specifically, the model does not reveal what
response is given in case either side receives a segment for which no transition
is defined (for instance, if a rst-segment is received in the syn rcvd-state).

1 Retrieved from http://www.texample.net/tikz/examples/tcp-state-machine/.
Copyright 2009 Ivan Griffin. Reprinted under the LaTeX Project Public License,
version 1.3.

http://www.texample.net/tikz/examples/tcp-state-machine/

Learning Fragments of the TCP Network Protocol 81

Moreover, the model abstracts away from register data such as the sequence
and acknowledgment numbers found in TCP packets. Many of these details can
be inferred from the protocol standard. There are, however, some details which
are implementation specific, with each operating system providing its own TCP
implementation. Moreover, such implementations do not always adhere to the
prescribed standards. Such was the case for HTTP, as shown in [15]. Hence,
inferring models of these TCP implementations represents a valuable asset in
analyzing their concrete behavior.

3 Regular Inference Using Abstraction

In this section, we recall the definition of a Mealy machine, the basic ideas of
regular inference in Angluin-style, and the notion of a mapper which allows us
to learn “large” models with data parameters.

3.1 Learning Mealy Machines

We will use Mealy machines to model TCP protocol entities. A Mealy machine
M is the tuple M = 〈I, O,Q, q0,→〉, where

– I, O, and Q are nonempty sets of input symbols, output symbols, and states,
respectively,

– q0 ∈ Q is the initial state, and
– →⊆ Q× I ×O ×Q is the transition relation.

Transitions are tuples of the form (q, i, o, q′) ∈→. A transition implies that,
on receiving an input i ∈ I, when in the state q ∈ Q, the machine jumps to the
state q′ ∈ Q, producing the output o ∈ O. Mealy machines are deterministic if
for every state and input, there is exactly one transition. A Mealy machine is
finite if I and Q are finite sets.

Angluin described L* in [4], an algorithm to learn deterministic finite au-
tomata. Niese [11] adapted this algorithm to learning deterministic Mealy ma-
chines. Improved versions of the L* algorithm were implemented in the LearnLib
tool [17,13]. A graphical model of the basic learning setup is given in Figure 2.

Fig. 2. Overview of the learner and the SUT

We assume an implementation, or System Under Test (SUT), and postu-
late that its behaviour can be described by a deterministic Mealy Machine M.
The learner, connected to the SUT, sends inputs (or queries) to the SUT and

82 P. Fiterău-Broştean, R. Janssen, and F. Vaandrager

observes resulting outputs. After each observation, the learner sends a special
reset message, prompting the reset of the implementation. Based on the obser-
vation of the outputs, it builds a hypothesis H. The hypothesis is then tested
against the implementation. Testing involves running a number of test sequences
which determine whether the hypothesis conforms to the SUT. The hypothesis
is returned if all test sequences show conformation, otherwise it is further re-
fined on the basis of the new counterexample. This process is repeated until all
equivalence queries are passed.

3.2 Inference Using Abstraction

Existing implementations of inference algorithms only proved effective when ap-
plied to machines with small alphabets (sets of input and output symbols). Prac-
tical systems like the TCP protocol, however, typically have large alphabets, e.g.
inputs and outputs with data parameters of type integer or string.

A solution to this problem was proposed by Aarts et al in [3]. In this work,
the concrete values of every parameter are mapped to a small domain of abstract
values in a history-dependent manner. A mapper component is placed in-between
the learner and the SUT. The learner sends abstract inputs comprising abstract
parameter values to this component. The mapper component then turns the
abstract values into concrete values (by taking the inverse of the abstraction
function), forming concrete inputs, and sends them to the SUT. The concrete
outputs received from the SUT are subsequently transformed back to abstract
outputs and are returned to the learner. Reset messages sent by the learner to
the SUT also reset the mapper component. A graphical overview of the learner
and mapper component is given in Figure 3.

Fig. 3. Overview of the learner, the mapper and the SUT

Formally, the behaviour of the intermediate component is fully determined
by the notion of a mapper A, which essentially is just a deterministic Mealy
machine. A mapper encompasses both concrete and abstract sets of input and
output symbols, a set of states, an initial state, a transition function that tells
us how the occurrence of a concrete symbol affects the state, and an abstraction
function which, depending on the state, maps concrete to abstract symbols. Each
mapper A induces an abstraction operator αA, which transforms a concrete
Mealy machine with concrete inputs I and outputs O into an abstract Mealy
machine with abstract inputs X and outputs Y . If the behaviour of the SUT
is described by a Mealy machine M then the SUT and the mapper component
together are described by the Mealy machine αA(M). Dually, each mapper also

Learning Fragments of the TCP Network Protocol 83

induces a concretization operator γA, which transforms an abstract hypothesis
Mealy machine H with inputs X and outputs Y into a concrete Mealy machine
with inputs I and outputs O. A key result proved by Aarts et al [3] is that
αA(M) ≤ H implies M ≤ γA(H), where ≤ denotes behavioural inclusion of
Mealy machines. This result allows us to transform an abstract modelH, inferred
through interaction with a mapper component, into a concrete model that over-
approximates the behaviour of the SUT.

4 Learning Setup

In the case of TCP, the SUT is the server in the TCP communication. On
the other side, the learner and mapper simulate the client. On the client side
we also introduce the adapter, a component that performs a 1 to 1 translation
of messages to segments sent over the network. More specifically, it builds re-
quest segments from concrete inputs, sends them to the server, retrieves the
response segments and infers the respective concrete outputs, which it delivers
to the learner -mapper assembly. The adapter is also responsible for detecting
system timeouts. It is important to make distinction between the mapper and
adapter. Whereas the mapper implements mapping between abstract and con-
crete messages, the adapter transforms these concrete messages to a format that
is readable by the SUT.

With that said, we present in Figure 4 the framework implemented to learn
fragments of the TCP implementation. On the learner side, we use LearnLib [17]
and Tomte [22], two Java based learning tools. LearnLib provides the Java im-
plementation of the L* based learning algorithm, while we use some of Tomte’s
libraries to connect the learner to a Java based mapper via direct method calls.
A Python adapter based on Scapy [18] is used to craft, send request packets and
retrieve response packets. Communication between the mapper and adapter is
done over sockets.

We conducted our experiments on both a single and on two separate machines.
The client and server reside in separate operating systems. The model which is
inferred via learning describes the TCP implementation for the operating system
on which the server resides. Each operating system enables the user to configure
parameters involved in TCP. These parameters can also have an influence over
the resulting model. We used Wireshark to monitor communication between
client and server.

The experiments were carried out with the server deployed on Windows 8 and
Ubuntu 13.10 respectively. The server passively listens for incoming connections
on a port while the learner, acting as a ”fake client”, sends messages to the server
through its own port. The source code of the learning setup, along with some
documentation on usage, is available at [10]. With virtualization, the experiments
can be run on a personal PC.

84 P. Fiterău-Broştean, R. Janssen, and F. Vaandrager

Fig. 4. Overview of the experimental setup

5 Messages and Abstraction

5.1 Mapper Description

As mentioned previously, the mapper component translates abstract input mes-
sages into concrete input messages, and concrete output messages into abstract
output messages. More specifically, parameters contained in messages are mapped
from a concrete to an abstract domain, and vice versa. Figure 5 shows the con-
crete and abstract parameters used in learning. Also shown is how the concrete
parameters are then associated with fields within TCP segments by the adapter.
Our message selection is based on the work of Aarts et al. in [3]. Like in their
work, both inputs and outputs are generated based on the sequence number,
acknowledgement number and flags found in each TCP segment.

Both the concrete and the abstract alphabets comprise Request inputs and
Response outputs. Each of these inputs and outputs takes 3 parameters corre-
sponding to the sequence number, acknowledgment number and the TCP flags.
The concrete parameters SeqNr and AckNr are defined as 32 bit unsigned inte-
gers, while their corresponding abstract parameters SeqV and AckV are either
valid or invalid . The Flags parameter can have the values ack, syn, fin, rst,
or any valid combination as listed in Figure 5. These flags correspond to bitfields
of the control register in the TCP-frame, in which flags are either set or unset.
In other words, each element of flags defines which flags have been set: all flags
mentioned are set, all other flags are not.

We abstract away from the sequence and acknowledgement numbers sent to
the server by way of validity. We define validity based on whether the sequence
and acknowledgement numbers comply to the standard TCP flow. Here the
sequence number sent is equal to the last acknowledgement number received
while the acknowledgement number sent is equal to the last sequence number
received (the server sequence number) plus the length of the data that the client
expects to receive (which in our case is 0, no data is transferred) plus 1 in case
the segment carries a syn or a fin flag. ack flags do not lead to any increase.

Learning Fragments of the TCP Network Protocol 85

{SERVERPORT, CLIENTPORT}

SeqV, AckV {V,INV}

SeqAbs,
AckAbs

{FRESH, SVSN,
SVSN+1, CLSN,

CLSN+1, LSS, LAS,
ZEROERO}

SeqNr [0 , 232-1]

AckNr [0 , 232-1]

Flags {SYN, SYN+ACK,
ACK, FIN,
FIN+ACK,

RST, RST+ACK}

Request(Flags,SeqV,AckV) Request(Flags,SeqNr,AckNr)

Response(Flags,SeqNr,AckNr)Response(Flags,SeqAbs,AckAbs)

Source port Destination port

Sequence number

Acknowledgment number

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

URG ACK PSH RST SYN FIN

Mapper

Fig. 5. Message scheme

Numbers that comply to this standard are valid, those that do not are invalid.
We except from this rule whenever the server is in the listening-state with
no connection set up. In this case, fresh sequence numbers are generated by a
number generation algorithm. We abstract away from this algorithm by deeming
all generated numbers valid and none invalid at this stage. Consequently, we
surpress any messages containing invalid parameters that the learner generates
at this point. (we do not create nor send segments for these inputs)

We abstract away from the sequence and acknoweldgement numbers received
from the server by comparing them with values encountered in the communi-
cation up to that point. These values are stored in state variables which are
maintained by the mapper. We also define the abstract output timeout for the
case when no response segment is received.

In order to map between abstract and concrete the mapper maintains the
following state variables:

– {lastFlagSent,lastAckSent,lastSeqSent} store the last flag, acknowledgement
and sequence numbers sent by the client

– {lastAbsSeq,lastAbsAck} store the last sequence and acknowledgement ab-
stractions sent by the client

– valClientSeq stores the last valid sequence number sent by the client
– InitServSeq stores the server’s initial sequence number
– INIT records whether the server is in its initial state.

Variables lastSeqSent, lastAckSent, lastFlagSent, lastAbsSeq, lastAbsAck and
InitServSeq store the first or most recent occurrence of certain message param-
eters. Variable valClientSeq stores the last valid sequence number: its definition

86 P. Fiterău-Broştean, R. Janssen, and F. Vaandrager

is based on knowledge of the protocol. Variable INIT records whether the server
is in the initial state.

On the basis of these variables, we define below the functions for Request
transmission, Response receipt, and Timeout . For symmetry, we use SeqAbs and
AckAbs as notations for both abstract input and abstract output parameters.

function Request(Flags, SeqNr, AckNr)
lastFlagSent ← Flags
if INIT ∨ SeqNr == valClientSeq then

SeqAbs ← valid
valClientSeq ← SeqNr

else
SeqAbs ← invalid

end if
lastSeqSent ← SeqNr
lastAbsSeq ← SeqAbs
if INIT ∨ AckNr == InitServSeq+ 1 then

AckAbs ← valid
else

AckAbs ← invalid
end if
lastAckSent ← AckNr
lastAbsAck ← AckAbs
return Request(Flags, SeqAbs,AckAbs)

end function

In the context of Response outputs, we compare values found in server re-
sponses to a set of reference values. Note the similarity between the conditions
we chose and the conditions used in nmap [14] to perform OS fingerprinting.
Also note that we assume no collision between different reference values. It is
indeed possible that the client sequence number is equal to the server sequence
number. However, the likelihood is very low due to the extended range these
numbers can take values in.

function Response(Flags, SeqNr, AckNr)
if INIT then

SeqAbs ← FRESH
InitServSeq ← SeqNr

else
SeqAbs ← Abstract(SeqNr)

end if
AckAbs ← Abstract(AckNr)
if AckAbs == CLSN+ 1 then

InitServSeq ← SeqNr
end if
INIT ← IsInitial()
return Response(Flags, SeqAbs,AckAbs)

end function

Learning Fragments of the TCP Network Protocol 87

function Abstract(concVal)
if concVal == valClientSeq + 1 then

absVal ← CLSN+ 1
else if concVal == valClientSeq then

absVal ← CLSN
else if concVal == InitServSeq then

absVal == SVSN
else if concVal == InitServSeq+ 1 then

absVal ← SVSN+ 1
else if concVal == lastSeqSent then

absVal ← LSS
else if concVal == lastAckSent then

absVal ← LAS
else if concVal == 0 then

absVal ← ZERO
else

absVal ← INV
end if
return absVal

end function

function Timeout

INIT ← IsInitial()
end function

5.2 Initial State Detection

One important aspect is the detection of the initial state (ie. the listening-state
in the TCP protocol, INIT in the mapper definition). This is necessary in order to
follow the TCP flow, wherein transitions from this state imply that new sequence
numbers are generated for both client and server. The server and client sequence
number variables (clientSN and serverSN) must be updated accordingly. For this
purpose, we defined an oracle which tells whether the system is in the initial state.
We found that such an oracle forWindows 8 can be implemented by a function over
the state variables stored in the mapper and the output parameters. For Ubuntu
13.10, definition of such a functionwasmadedifficult by the fact that, depending on
the system’s current state, the abstract input Request(ack+rst, valid, invalid)
either resets the system or is ignored. If the oracle is defined via a function, defi-
nition of this function depends on the operating system for which TCP is learned.
We show the definition of INIT for Windows 8 below.

function IsInitial

if IsResponse then
INIT ← RST ∈ Flags ∧ SeqAbs = valid ∧ SY N ∈ lastFlagSent

else if IsT imeout then
INIT ← INIT ∨ (lastAbsSeq = valid ∧RST ∈ lastFlagSent)

end if
end function

88 P. Fiterău-Broştean, R. Janssen, and F. Vaandrager

Obviously, such a function would have to be inferred manually for every im-
plementation of TCP that is learned. To circumvent this, we implemented a
mechanism that automatically checks whether a trace (sequence of inputs) trig-
gers a return to the initial state. This verification relies on distinguishing inputs
to signal whether the listening-state is reached and consequently, whether fresh
values can be accepted by the mapper. For TCP, we assume, based on the pro-
tocol specification, that a syn-segment with fresh register values is a distin-
guishing input for the initial state, as only in the listening-state state does a
syn-segment yield a syn+ack-segment which acknowledges the sequence num-
ber sent. A valid implementation of TCP should always adhere to this condition,
otherwise connections could easily be interrupted by spurious syn-segments. Ad-
dition of this automatic mechanism enables us to learn TCP implementations
without changing the mapper to fit the operating system.

This mechanism is embedded into the learning process as follows: for each
input sent, we check if the trace leading up to and including that input, is
a resetting trace, that is, it prompts the transition to the initial state. This
information is then fed to the IsInitial() function, for proper update of the
mapper. After each check, the SUT must return to the state it had previously
to the check being done. In the case of TCP, this can only be done by re-running
the whole trace. Information accumulated on the resetting property of traces
is stored after each check, so next time the same trace is checked, we have a
direct result and do not have to reapply the whole trace. There is of course,

considerable overhead since a trace of n inputs now entails feeding (n+1)∗(n+2)
2

inputs. This number grows if we consider the additional rst-segments we have
to send. But such overhead is acceptable in a setting where a small maximum
trace length is still adequate for learning.

6 Complications Encountered

To learn the system, several issues had to be addressed. Firstly, we had to im-
plement resetting mechanisms that would prompt the TCP connection to return
to the start state. We implemented two approaches, one by opening a new con-
nection to the server on a different port each time we started a new query, the
other by resetting the connection via a valid rst-segment. In the first case, we
were hit by thresholds on the number of connections allowed. For Ubuntu, each
connection is associated with a file descriptor. Not closing the file descriptor on
the server side as not to interfere with learning means that the default limit,
1024, can be reached using relatively few inputs. This limit can be increased to
4096 for Ubuntu 13.10 32-bit version using ulimit, which is still not sufficient for
learning using a alphabet. The solution was using garbage collection to clear out
these unused descriptors. In Java, this is done automatically. For Windows, we
found that once the server reaches a certain number of connections left in the
close wait-state, the server proceeds to send fin+ack-segment to close all
connections. The second approach implies sending a rst-segment with a valid
sequence number, which was possible with the mapper previously described. In

Learning Fragments of the TCP Network Protocol 89

our learning experiments we combined the two approaches, that is, we switched
ports on every run and each run was ended with a valid rst-segment, leaving
no idle connection behind.

We also had to manage the handling of syn+ack retransmits. When the
server is in the syn rcvd-state, it expects a corresponding ack-segment to the
syn+ack-segment it sent, thus ending the 3 way handshake. In this situation,
the TCP protocol specifies that, if the server does not receive the expected ac-
knowledgement within a time frame (defined by the initial retransmission time-
out or initialRTO), it re-sends the syn+ack-segment a number of times after
which it closes the connection. This behaviour is not accounted for because it
would require timer adjustments to fit with the initialRTO . All traces must
therefore be run within initialRTO time. We disabled syn+ack retransmission
for Ubuntu by setting the tcp synack retries to 0. Unfortunately, Ubuntu does
not allow the user to modify the initialRTO since its value is hard coded to
around one second(see TCP INIT TIMEOUT at [23]). The time window pro-
vided by the initialRTO forced us to lower the maximum trace length as to fit
within this time frame. For Windows 8, initialRTO is initially set to 3 seconds
(and can be configured, see [24]), which provides sufficient time to execute se-
quences of long inputs. An alternative approach would have been to ignore the
retransmissions of similar syn+ack-segments.

We also encountered difficulties with packet receipt. By analyzing packet com-
munication we found that Scapy sometimes misses fast server responses, that is,
responses sent after a short time span from their corresponding requests. We be-
lieve this could be caused by Scapy’s slow performance in intercepting responses
quick enough. To circumvent this problem, we crafted a network tracking tool
based on Impacket [8] and Pcapy [9] which augments Scapy’s receipt capabili-
ties. In case Scapy does not receive any responses back, the tracking tool either
confirms that no response was intercepted or returns the response that Scapy
missed.

Our experiments were also affected by the operating system on which the
learner setup was deployed. The Ubuntu operating systems the learner was run
on are unaware of what network packets are sent by Scapy, and therefore cannot
recognize the response packets sent by the server. More specifically, as a TCP-
connection is set up by the learner, the operating system notices a connection
that it has not set up itself. Consequently, it responds with a rst-segment to shut
down that connection. The problem was solved by dropping all rst-segments
sent by the operating system via a firewall rule. This can be done in Ubuntu
using the iptables command. Windows required no such tweak.

For Ubuntu 13.10 we also found that, whenever in the established or
close wait states, the server behaved apparently non-deterministically when
receiving ack and fin+ack segments with valid sequence numbers and in-
valid acknowledgement numbers. On receiving these packets, the server either
retransmitted an ack-segment or it gave no answer. This behaviour is partly,
but not completely, explained by a fragment in the source code in which invalid
acknowledgements are dropped. In order to handle this situation, we split the

90 P. Fiterău-Broştean, R. Janssen, and F. Vaandrager

invalid range of numbers for these inputs into three subranges, each exhibiting
specific behaviour. These ranges are [231,−WIN − 1], [−WIN,−1], [1, 231 − 1]
where WIN is the window size, which correspond to B,W and A in the inferred
Ubuntu model. The ranges are relative to what a valid server sequence number
would be.

7 Experimental Results

We learned models for Windows 8 and Ubuntu 13.10 LTS. As mentioned pre-
viously, the client and server reside in different operating systems. Because the
adapter can only function under Linux, we ran the learner setup (or client) on
Ubuntu systems.

For Windows 8, the client was deployed on a guest virtual machine using the
Ubuntu 12.04 LTS operating system, while the server resided on the Windows
8 host. We also experimented with the client residing on a separate computer
running Ubuntu 13.10 that communicated with the same Windows 8 server and
obtained identical results. Similarly for Ubuntu 13.10, the server and client were
deployed both on one computer, each in its own Ubuntu virtual machine within
the same Windows 8 host, and on separate machines.

In order to reduce the size of the diagram, we eliminate all self loops that have
timeout outputs. Moreover, we use the initial flag letters as shorthands: s for syn,
a for ack, f for fin and r for rst. We condense Request/Response(flags, seq, ack)
to flags(seq, ack) and we group inputs that have the same abstract output
and resulting state. valid and invalid abstract parameters are shorthanded to v
and inv respectively. In the Ubuntu experiment, we split the invalid class in 3
ranges {B,W,A} for ack and fin+ack segments as to handle non determinism.
Finally, inputs having the same effect regardless of the valid or invalid value of
a parameter are merged and the parameter is replaced with .

Figures 6 and 7 show the state models learned for the two operating systems.
Both models depict 4 states of the reference model. We can identify handshake
and termination on the two diagrams by following the sequence of inputs: s(v,v),
a(v,v), af(v,v). We see that for each input in the sequence the same output is
generated. There are, however, notable differences, like the verbosity of the lis-
tening state in case of Ubuntu 13.10. rst-segment responses also differ. Whereas
in Ubuntu 13.10, a rst-segment response always carries a 0 acknowledgement
number, for Windows 8, similar to its joining sequence number, it takes the value
of the last acknowledgement number sent resulting in rst(las,las) outputs.

Checking the models against the specification reveals non-compliance with the
rfc standard [16]. The standard specifies on page 36 (see quotation below) that,
when in synchronized states, receiving unacceptable segments should trigger
specific ack-segment sent back. Later, an exception is made for rst-segment,
which should be dropped. Our learned models, as well as manual tests show that
implementations do not follow this specification.

Learning Fragments of the TCP Network Protocol 91

S(V,V)/SA(FRESH,CLSN+1)

A(V,INV)/R(LAS,LAS)
F(INV,_)/A(SVSN+1,CLSN)
AF(V,INV)/R(LAS,LAS)

AR(V,_)/timeout
R(V,_)/timeout

S(V,_)/RA(ZERO,CLSN+1)

{A,AF}(INV,_)/A(SVSN+1,CLSN)
{F,S,SA}(INV,_)/A(SVSN+1,CLSN)

A(V,V)/timeout

AF(V,V)/A(SVSN+1,CLSN+1)AF(V,V)/A(SVSN+1,CLSN+1)

SA(V,V)/R(SVSN+1,SVSN+1)
SA(V,INV)/R(LAS,LAS)
{R,AR}(V,_)/timeout

S(V,_)/RA(ZERO,CLSN+1)

{A,AF}(INV,_)/A(SVSN+1,CLSN)
{F,S,SA}(INV,_)/A(SVSN+1,CLSN)

{R,AR}(V,_)/timeout
S(V,_)/RA(ZERO,CLSN+1)
SA(V,INV)/R(LAS,LAS)

SA(V,V)/R(SVSN+1,SVSN+1)

Fig. 6. Learned model for Windows 8 TCP

S(V,V)/SA(FRESH,CLSN+1)

{SA,AF,A}(INV,V)/A(SVSN+1,CLSN)
{A,AF}(INV,{B,W,A})/R(LAS,ZERO)
{A,AF}(V,{B,W,A})/R(LAS,ZERO)
{F,S}(INV,_)/A(SVSN+1,CLSN)

SA(_,INV)/R(LAS,ZERO)

AR(V,V)/timeout
R(V,_)/timeout

S(V,_)/RA(ZERO,CLSN+1)
SA(V,V)/R(SVSN+1,ZERO)

{A,AF}(INV,_)/A(SVSN+1,CLSN)
{A,AF}(V,B)/A(SVSN+1,CLSN)
SA(_,_)/A(SVSN+1,CLSN)

A(V,V)/timeout

AF(V,V)/A(SVSN+1,CLSN+1)

AF(V,{V,W})/A(SVSN+1,CLSN+1)

AR(V,_)/timeout
R(V,_)/timeout

{A,AF}(INV,_)/A(SVSN+1,CLSN)
{A,AF}(V,B)/A(SVSN+1,CLSN)
SA(_,_)/A(SVSN+1,CLSN)

A(V,V)/R(LAS,ZERO)
AF(V,V)/R(LAS,ZERO)
SA(V,V)/R(LAS,ZERO)

AR(V,_)/timeout
R(V,_)/timeout

Fig. 7. Learned model for Ubuntu 13.10 TCP

If the connection is in a synchronized state (ESTABLISHED,FIN-
WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-
WAIT), any unacceptable segment (out of window sequence number or
unacceptible acknowledgment number) must elicit only an empty ac-
knowledgment segment containing the current send-sequence number
and an acknowledgment indicating the next sequence number expected
to be received, and the connection remains in the same state.

92 P. Fiterău-Broştean, R. Janssen, and F. Vaandrager

8 Concluding Remarks and Future Work

We defined and implemented a learning setup for the inference using abstraction
of the TCP network protocol. We then used this setup to learn fragments of
different implementations of the TCP protocol, more specifically, the Windows
8 and Ubuntu 13.10 implementations. We learned these implementations on the
basis of flags, sequence and acknowledgement numbers.

For our experiments, we built initial state predicting mappers tailored to the
operating system’s TCP implementation. These mappers reduced the number
of concrete inputs and outputs to a small set of abstract inputs and outputs.
We ran our setup for each mapper and respective operating system and, in each
case, covered 4 states of the TCP protocol.

Comparing the models obtained for each protocol, we found a slight varia-
tion between the Windows and Ubuntu implementations of the TCP protocol.
While in normal scenarios behaviour turned out to be similar, some abnormal
scenarios revealed differences in the values of sequence and acknowledgement
numbers, as well as the flags found in response packets. This variation results
in differing transitions between the state machines inferred for each OS. The
difference in behaviour is already leveraged by tools such as nmap(see [14]), as a
means of operating system fingerprinting. We also identified a case where both
implementations deviated from the RFC 793 standard [16].

In the future we want to extend the TCP alphabet so that we also account
for data transfer and for the sliding window. We also aim to learn fragments
of protocols built over TCP, for instance FTP or HTTP. A long term goal is
automating the learning process which would considerably facilitate future ex-
periments. We believe the mapper can be constructed automatically using tools
that automatically infer invariants over sets of values. These tools can then be
harnessed by algorithms that automatically construct the mapper. Such algo-
rithms already exist, the only invariant they support however is equality. We
believe we can extend this constraint to simple linear invariants. This would
enable the automatic inference of mappers for more complex systems, such as
the TCP protocol.

Our work and related efforts such as [6,21] show that automata learning is
rapidly becoming a very effective technque for studying (non)conformance of
implementations to protocol standards.

References

1. Aarts, F., de Ruiter, J., Poll, E.: Formal models of bank cards for free. In: Pro-
ceedings of the 4th International Workshop on Security Testing, SECTEST 2013,
Luxembourg, March 22 (2013)

2. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learn-
ing through counterexample guided abstraction refinement. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg
(2012)

Learning Fragments of the TCP Network Protocol 93

3. Aarts, F., Jonsson, B., Uijen, J.: Generating models of infinite-state communica-
tion protocols using regular inference with abstraction. In: Petrenko, A., Simão,
A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer,
Heidelberg (2010); Full version avalable at https://pms.cs.ru.nl/
iris-diglib/src/getContent.php?id=2013-Aarts-InferenceRegular

4. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-
put. 75(2), 87–106 (1987)

5. Buchler, M., Hossen, K., Mihancea, P.F., Minea, M., Groz, R., Oriat, C.: Model
inference and security testing in the spacios project. In: 2014 Software Evolution
Week - IEEE Conference on Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), pp. 411–414 (February 2014)

6. Chalupar, G., Peherstorfer, S., Poll, E., de Ruiter, J.: Automated reverse engineer-
ing using lego, http://www.cs.ru.nl/~erikpoll/papers/legopaper.pdf

7. Cho, C.Y., Babić, D., Shin, E.C.R., Song, D.: Inference and analysis of formal
models of botnet command and control protocols, New York, NY, USA (2010)

8. Corelabs. Impacket, http://corelabs.coresecurity.com/index.php?module=

Wiki&action=view&type=tool&name=Impacket

9. Corelabs. Pcapy, http://corelabs.coresecurity.com/index.php?module=
Wiki&action=view&type=tool&name=Pcapy

10. Fiterau, P., Janssen, R.: Experimental learning setup for TCP,
https://bitbucket.org/fiteraup/learning-tcp

11. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated
regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS,
vol. 2306, pp. 80–95. Springer, Heidelberg (2002)

12. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register au-
tomata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 251–266. Springer, Heidelberg (2012)

13. Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation LearnLib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011)

14. Nmap, http://nmap.org/book/osdetect.html
15. Pahdye, J., Floyd, S.: On inferring tcp behavior. SIGCOMM Comput. Commun.

Rev. 31(4), 287–298 (2001)
16. Postel, J. (ed.): Transmission Control Protocol - DARPA Internet Program Pro-

tocol Specification, RFC 3261 (September 1981), http://www.ietf.org/rfc/
rfc793.txt

17. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrap-
olating behavioral models. STTT 11(5), 393–407 (2009)

18. Scapy, http://www.secdev.org/projects/scapy/
19. Shahbaz, M., Groz, R.: Inferring mealy machines. In: Cavalcanti, A., Dams, D.R.

(eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009)
20. SPaCIoS. Deliverable 2.2.1: Method for assessing and retrieving models (2013)
21. Tijssen, M.: Automatic modeling of ssh implementations with state machine learn-

ing algorithms. Bachelor’s thesis, Radboud University Nijmegen (June 2014)
22. Tomte, http://www.italia.cs.ru.nl/tomte/
23. Ubuntu TCP header file, http://lxr.free-electrons.com/source/include/net

/tcp.h

24. How to modify the tcp/ip maximum retransmission time-out,
http://support.microsoft.com/kb/170359

https://pms.cs.ru.nl/iris-diglib/src/getContent.php?id=2013-Aarts-InferenceRegular
https://pms.cs.ru.nl/iris-diglib/src/getContent.php?id=2013-Aarts-InferenceRegular
http://www.cs.ru.nl/~erikpoll/papers/legopaper.pdf
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=Impacket
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=Impacket
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=Pcapy
http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=tool&name=Pcapy
https://bitbucket.org/fiteraup/learning-tcp
http://nmap.org/book/osdetect.html
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.secdev.org/projects/scapy/
http://www.italia.cs.ru.nl/tomte/
http://lxr.free-electrons.com/source/include/net/tcp.h
http://lxr.free-electrons.com/source/include/net/tcp.h
http://support.microsoft.com/kb/170359

On the Validation of an Interlocking System

by Model-Checking

Andrea Bonacchi and Alessandro Fantechi

DINFO - University of Florence
Via S. Marta 3
Firenze, Italy

{a.bonacchi,alessandro.fantechi}@unifi.it

Abstract. Railway interlocking systems still represent a challenge for
formal verification by model checking: the high number of complex inter-
locking rules that guarantee the safe movements of independent trains
in a large station makes the verification of such systems typically incur
state space explosion problems. In this paper we describe a study aimed
to define a verification process based on commercial modelling and verifi-
cation tools, for industrially produced interlocking systems, that exploits
an appropriate mix of environment abstraction, slicing and CEGAR-like
techniques, driven by the low-level knowledge of the interlocking product
under verification, in order to support the final validation phase of the
implemented products.

1 Introduction

In the railway signalling domain, an interlocking is the safety critical system that
controls the movement of the trains in a station and between adjacent stations.
The interlocking monitors the status of the objects in the railway yard and
allows or denies the routing of the trains in accordance with the railway safety
and operational regulations that are generic for the region or country where the
interlocking is located. The instantiation of these rules on a station topology is
stored in the part of the system named control table. Control tables of modern
computerized interlockings are implemented by means of iteratively executed
software controls over the status of the yard objects.

One of the most common ways to describe the interlocking rules given by
control tables is through boolean equations or, equivalently, ladder diagrams
which are interpreted either by a Programmable Logic Controller (PLC) or by
a proper evaluation engine over a standard processor.

Verification of correctness of control tables has been a prolific domain for
formal methods practitioners. Model checking in particular has raised the inter-
est of many railway signalling industries, being the most lightweight from the
process point of view, and being rather promising in terms of efficiency: safety
properties of an interlocking system are quite directly expressed in temporal
logic, and their specifications by means of control tables can be directly formal-
ized. However, due to the high number of boolean variables involved, automatic

F. Lang and F. Flammini (Eds.): FMICS 2014, LNCS 8718, pp. 94–108, 2014.
c© Springer International Publishing Switzerland 2014

On the Validation of an Interlocking System by Model-Checking 95

verification of sufficiently large stations typically incurs in combinatorial state
space explosion problem.

The first applications of model checking have therefore addressed portions of
an interlocking system [4,10]; but even recent works [9,21] show that routine
verification of interlocking designs for large stations is still a challenge for model
checkers, although specific optimizations can help [21].

A recent effort has collected up-to-date reports about interlocking verification
[6,11,15,16]. Notwithstanding their different verification aims, one point in com-
mon to these works is the use of SAT-based model checking, which appears to
be more promising in this respect. We also refer to these works for an extensive
bibliographic references about interlocking verification.

In particular, in [6], we have introduced an effort made in a cooperation with
our industrial partner1, with the final aim of reducing the costs of verifying the
safety requirements of the produced interlocking systems, in the system valida-
tion phase. This validation activity considers the control tables as implemented
in the produced interlocking systems, and extracts from legacy control tables
a Simulink model made of boolean functions with logical gates. The Simulink
model is used in the daily verification activity of the industrial partner to simu-
late on the model the same test cases foreseen for the produced system, in order
to profit from the radically (up to twenty times) shorter time w.r.t. testing.

However, in [6] we also set up a verification framework based on model check-
ing on the extracted model, employing Matlab Design Verifier [20], both because
it works on Simulink models and to exploit at best its SAT-solving capabilities
on the native boolean coding of the control tables.

This paper inherits from [6] the verification framework but presents a sepa-
rate study aimed to make more precise the kind of verification process that the
framework conveniently supports, by considering an appropriate use of environ-
ment abstraction, slicing and CEGAR-like techniques, driven by the detailed
knowledge of the interlocking product under verification.

The paper is organized as follows: in Section 2 Ladder Logic used to imple-
ment control tables is introduced. In Section 3 we discuss the possible different
goals of formal verification efforts for interlocking systems. In section 4 slicing
and abstraction techniques for attacking state explosion are discussed. Section
5 introduces the proposed iterative verification process, which is applied in sec-
tion 7 on models obtained with the extraction procedure sketched in Section 6.
Section 8 concludes the paper.

2 Ladder Logic Diagrams

In Relay Interlocking Systems (RIS), still operating in several sites, the logical
rules of the control tables were implemented by means of physical relay con-
nections. With Computer Interlocking Systems (CIS), in application since 30
years, the control table becomes a set of software equations that are executed
by the interlocking. Since the signalling regulations of the various countries were

1 The name is omitted for confidentiality reasons.

96 A. Bonacchi and A. Fantechi

already defined in graphical form for the RIS, and also in order to facilitate the
representation of control tables by signalling engineers, the design of CISs has
usually adopted traditional graphical representations such as Ladder Logic Dia-
grams (LLD) [18] and relay diagrams [13]. These graphical schemata, also called
principle schemata, are instantiated on a station topology to build the control
table, that is then translated into a program for the interlocking.

Correctness of control tables depends also on their model of execution by the
interlocking software. In building CISs, the manufacturers adopt the principle
of as safe as the relay based equipment [1], and often the implemented model of
execution is very close to the hardware behaviour of the latter.

Ladder Logic is a graphical language which can represent a set of boolean
equations and their execution order (control cycle) can be detailed as the fol-
lowing equation system:

x̃ = f(x̃, ỹ)

where x̃, ỹ are boolean variable vectors representing respectively state/output
variables and input variables: these equations are cyclically executed. Ladder
Logic represents the working of relay-based control systems. For this reason the
variables on the right hand of the equation are also named contacts, while the
variables in the left hand are named coils. Variables can be distinguished in:

– Input variables : the value is assigned by sensor readings or operator com-
mands. These variables are defined in the expressions and cannot be used as
coil.

– Output variables : can be only coils and their value is determined by means
of the assignments of the diagram and is delivered to actuators.

– Latch variables : the value is calculated by means of the assignments, but is
used only for internal computation of the values of other variables. A latch
variable is used as coil in an assignment and is an input variable in other
assignments.

With these three kinds of variables, a Ladder Logic Diagram describes a state
machine whose memory is represented by the latch variables and the evolution
is described by the assignment set. An execution of this state machine, named
control cycle, involves:

1. Reading input variables; the values of these variables are assumed to be
constant for the entire duration of the control cycle.

2. Compute each equation, in sequence, hence assigning values to the output
variables and to the latch variables as a function of the current values of
the input variables and the values of the latch variables computed at the
previous control cycle.

3. Transmission of the values of the output variables.

In this way, the equations can be seen as interpreted by a reasoner engine.
The reasoner engine is the same for every plan; the control table is coded as
data, actually boolean equations, for the reasoner. Behind this choice is the

On the Validation of an Interlocking System by Model-Checking 97

minimization of certification efforts: the reasoner is certified once for all, the
data are considered “easier” to certify if they can be related in some way to the
standard principle schemata adopted by railway engineers in the era of relay-
based interlockings. For this reason, this approach is also referred as “data-
driven”.

In order to give a metric to the dimension of the problem in terms of param-
eters of the control tables, [9] defines the size of a control table as the couple
(m, n), where m is the maximum number of inter-dependent equations involved,
that means equations that, taken in pairs, have at least one variable in common,
and n is the number of inputs of the control table. Another used metric is just
the size of the layout, given as the number of physical entities that constitute
the layout (points, track circuits, signals, . . .) and the number of routes that are
established on the layout.

An example of a single row of a Ladder Logic Diagram is reported in figure
1, expressing the boolean equation:

y = x ∧ (w ∨ ∼ z)

In this graphical language, if x is a boolean variable, an expression e can be
defined inductively by means of the following syntax:

– “--] [--” represents an un-negated variable.
– “--]/ [--” represents a negated variable.
– “--()” represents a coil.
– To mimic a logical and two variables are wired in series.
– To mimic a logical or two variables are wired in parallel.

Fig. 1. Equation y = x ∧ (w ∨ ∼ z) in ladder logic formalism

According to the above representation of the set of boolean equations we can call
x̃i, ỹi the vectors of values taken by such variables in successive executions. From
the equations we can define F (x̃i, x̃i+1, ỹi) as a boolean function that is true iff
x̃i+1 = f(x̃i, ỹi), representing one execution of the equations. Let Init(x̃) be a
predicate which is true for the initial vector value of state and output variables.
If P (x̃) is a predicate telling that a desired (safety) property is verified by the
vector x̃, then the following expression:

Φ(k) = Init(x̃0) ∧
k−1∧
i=0

F (x̃i, x̃i+1, ỹi) ∧
k∨

i=0

∼ P (x̃i)

98 A. Bonacchi and A. Fantechi

is a boolean formula that tells that P is not true for the state/output vector for
some of the first k execution cycles. According to the Bounded Model Check-
ing (BMC) principles [5], using a SAT-solver to find a satisfying assignment to
the boolean variables ends up either in unsatisfiability, which means that the
property is satisfied by the first k execution cycles, or in an assignment that can
be used as a counterexample for P , in particular showing a k-long sequence of
input vectors that cause the safety problem with P . SAT-based Bounded Model
Checking has been recently used for the verification of interlocking systems in
[11,15].

In Section 6 we focus on the representation in a format suitable for Design
Verifier of the legacy control tables that are loaded, in the form of LLDs, in the
analysed interlocking systems.

3 Verification Goals

The various attempts to formal verification of interlocking systems that we find
in the literature differ in many cases for the actual verification goal, according
to the phase of the development process where formal verification is applied, but
also to the kind of development process followed.

Control tables may indeed play two main roles (not always both present) in
the development of these systems: either as specifications of the interlocking rules
[12], often issued by a railway infrastructure company, or as an implementation
means, when they come encoded in some executable language, that may be
either proprietary or standard, as is the case of ladder diagrams. In the first case,
verification of control tables may address self consistency of the specification, or
correctness of the implementation w.r.t. the specification, while in the second
case it may be focused on the check of safety properties (expressed for example
in a temporal logic) on the implementation. A typical issue of any of these
verification tasks is the choice of how to express control tables in a language
suitable for the verification tool adopted. Indeed, commercial solutions exist for
the production of interlocking software, such as Prover Technology’s Ilock, that
includes formal proof of safety conditions as well, by means of a SAT solving
engine. Industrial acceptance of such “black-box” solutions is however sometimes
hindered by the fear of vendor lock-in phenomena and by the loss of control over
the production process.

In an evolution line of interlocking systems, the so called “geographic” approach
departs from the traditional usage of control tables: the interlocking logic is made
up by composition of small elements that take care each of the control of a physi-
cal element (point, track circuit, signal) and are connected by means of predefined
composition rules, mimicking the topology of the specific layout. The global inter-
locking logic therefore comes out as the result of the composition of the elemen-
tary bricks. The geographic approach inherits typical modelling paradigms from
computer science, and can be considered as amodel-based approach, while control
tables inherit the criteria of relay-based functional definition. A known example of
this approach is the EURIS language [3] developed in the Netherlands, and later
adopted by Siemens, for the GRACE toolset of Siemens [17].

On the Validation of an Interlocking System by Model-Checking 99

The relation between control tables and the geographical modelling has been
studied in [2], where automated instantiation of geographical models from con-
trol tables has been proposed: this relation can also drive the verification that a
geographical implementation satisfies the specifications given as control tables.
On the other hand, the trend to formalize interlocking rules also at the specifi-
cation level in a geographic fashion is exemplified by the INESS project, where
UML State Diagrams have been chosen as the modelling language [14].

The context of this paper assumes control tables playing the role of imple-
mentation means, and is aimed to support the final system validation activity
over railway signalling products coming from different branches of the indus-
trial partner. In particular, the verification process described in the following
translates the control tables expressed in the ladder diagrams proprietary for-
mat of our industrial partner. We have already mentioned the feasibility study
[9], that investigated the actual applicability bounds for explicit and symbolic
model checkers on this class of systems, at varying size parameters of control
tables. The not encouraging results were in accordance with those obtained by
several concurrent studies. Indeed, [23,21,22] show how specifically optimized
verification techniques allow the range of verifiable systems to be expanded.

SAT-based verification techniques appear to be more promising, due to the
native boolean coding of the control tables. This, combined with a strong indi-
cation of the industrial partner to exploit commercial modelling and verification
tools, has suggested the adoption of Matlab Design Verifier [20] working on
Simulink models.

Hence, the study has continued addressing on the one side techniques to con-
strain the state space size (see Sect. 4), and on the other side a framework for
extracting a Simulink model from the implemented control tables, which has
been introduced in [6] and summarized in Sect. 6.

4 Environment Assumptions and Slicing

We can observe that the state space of a model of an interlocking system de-
pends on the modelling of its environment as well. Indeed, the study of [9]
made no assumption whatsoever on the environment: the study was aimed at
finding the limits of verification of a completely unconstrained set of boolean
equations, with little attention to realism of the equations set w.r.t. actual inter-
locking rules. The particularly negative outcomes of that work in terms of size
of tractable interlockings were mostly due to the absence of constraints on the
external environment, that is to the assumption that the system is open to any
behaviour of the environment.

Most works on formal verification of interlocking systems do indeed make as-
sumptions on the behaviour of the environment, in order to constrain the state
space, but also because some verification framework can only deal with a closed
system. Such assumptions may take the form of an explicit model of the en-
vironment: for example, trains moving on the controlled track layout are also
modelled, and the trains often obey to some reasonableness constraint, such as

100 A. Bonacchi and A. Fantechi

trains moving in only one direction, appearing in the layout only at its borders,
respecting signals, and so on. Such constraints enforce only particular sequences
of events (e.g. track occupancy events) to be possible inputs for the interlocking
systems, and consequently limit the state space explosion typical of when con-
sidering a fully open environment. It is then a matter of the safety assessment
process to demonstrate that the properties proved under given assumptions are
maintained in any real situation due to the reasonableness of the environment.
For example, it is possible in many cases to show that modelling two trains is
enough to cover cases with more trains present in the track layout [8,19].

Such assumptions in general refer to locality properties, that is, for example,
no-derailment on a point is scarcely related to the position of a distant point on
a parallel track. To be more precise, locality is implied by the definition of routes,
that is, the set of contiguous track elements that need to be granted for a given
train movement: the routes insisting on a given track element define the elements
that may be directly related to the status of the given element. Locality given
by the topological layout of the controlled systems have been used in [23,21,22]
to define domain-oriented optimizations of the variable ordering in a BDD-based
verification.

Locality can be used also for slicing, as suggested in [9] and [15]. The idea
is to consider only the portion of the model that has influence on the property
to be verified, by a topological selection of interested track elements: this allows
for a much more efficient verification, at the price of repeating the verification
activity for each extracted slice and of showing that verifying slices does imply
the satisfaction of desired properties for the whole system. Extracting a slice of
the model implies to make assumptions on the environment of the slice: either an
open, unconstrained environment, or constrained by reasonableness assumptions.
Verification of a slice is targeted therefore to the satisfaction of local properties of
the slices, under the assumptions (possibly none) given for the environment of the
slice. It is therefore needed to show that the satisfaction of local properties under
the given environment assumptions imply the satisfaction of global properties of
interest.

We recall from [6] that the experience reported in this paper is that of an
independent verifier of the interlocking systems produced by other branches of
the company, with little insight of the followed process, and focusing on the
final product. In this context, the verification process is applied to a low-level
implementation, where the only information on the implemented high level func-
tionality is given by the knowledge of the physical track layout and of the naming
convention that specifies references given to the layout elements by the names of
the boolean variables involved. Indeed, each track element n, where n is a unique
identifying number, is associated to several variables whose name contains the
number n. This guides the extraction of a slice.

Consider for example a no-derailment property that can be expressed as: by
no way point p can move while track circuit t is occupied. A slice can be built
by considering only the equations that include variables whose name contains p
and t. All the other variables in the left hand of the equations are considered

On the Validation of an Interlocking System by Model-Checking 101

as free variables, and hence constitute the environment of the slice, either open
or constrained by some reasonableness assumptions. If it comes out that the
slice/environment pair is not suitable for meaningful verification, the pair should
be refined in a successive step, giving rise to an iterative verification process.

This reasoning can be extended to any safety property. Consider a safety
property φ that tells that a dangerous situation referring to the status of some el-
ements {t1, t2, . . . tn} is never reached. Let us build the smallest slice M ′ contain-
ing equations with variables referring {t1, t2, . . . tn}: let us call {x1, x2, . . . xm}
such variables, and {y1, y2, . . . yp} all the other variables. in this slice all the equa-
tions assigning a value not depending from any xi to a variable yj is omitted.
The values taken by the yj variables are not defined, hence they can be consid-
ered as part of the fully open environment. The states reachable by executing
the slice M ′ with any input are a superset of the states reachable when we add
any constraint to the values taken by the yj variables (e.g., by adding equations
not present in M ′, or constraining the environment). Hence, if M ′ |= φ, then the
property is satisfied by the whole equation system M . Otherwise, a counterex-
ample for M ′ |= φ may tell either that the property is not satisfied at all by
M , or that M ′ has too few equations, or that the environment is not sufficiently
constrained.

5 CEGAR-Like Verification Process

The proposed iterative verification process is inspired by the CEGAR (Coun-
terExample Guided Abstraction Refinement) paradigm [7], in which the analysis
of counterexamples drives the refinement of the model for a further verification
cycle.

As shown in Fig. 5, in our case the full model is initially sliced by leaving all
its input variables (that is, its environment) as unconstrained. If the property is
not verified, a counterexample is generated: the counterexample is examined in
order to add constraints on the environment able to remove the occurrence of
spurious counterexamples (model refinement step).

The initial slice M ′, chosen on the basis of the required property (see Sect. 4),
focuses on a given set of track elements, each uniquely identified by a numeric
identifier. Hence the slice is constituted by the equations that refer to variables
having those numbers in their identifier. As we have said, all the other variables
in the right hand side of the equations are considered as free variables, and
hence constitute the fully open environment of the slice. The property P ′ is also
obtained from the desired property P through a consistent slicing mechanism. As
discussed in Sect. 4, it is likely that P ′ is equal to P and P is a safety properties.
For the discussion of this section, we just assume that M ′ |= P ′ ⇒ M |= P , that
is, slicing preserves P .

The model refinement step, which is executed when P ′ is not satisfied and
a counterexample CE is generated, can exploit different techniques, depending
on the results of the analysis conducted on CE. The counterexample analysis is
strictly dependent on the functional and safety aspects of system at hand, and

102 A. Bonacchi and A. Fantechi

Fig. 2. CEGAR-like verification loop

hence requires some knowledge of the produced system: it is therefore a mostly
manual analysis requiring help from signal engineers.

First of all, the analyst can decide that CE is actually related to some fault.
The verification process can continue after storing the faulty scenario. The data
that have produced the counterexample are then excluded for the next refinement
step.

The decision represented in the flow graph by unf(CE) is actually a phase
of the counterexample analysis aimed to distinguish counterexamples that can
be clearly decided to be unfeasible due to, e.g., physical constraints, from those
that may be possibly unfeasible due to the actual behaviour of the environment
of the slice, which is constituted by the equations excluded from the slice. In
the first case, it is likely that the counterexample is generated by an unfeasible
combination of values of input variables, while in the second case it is due to
the unconstrained behaviour assumed for the adjacent elements, that is, by un-
feasible combination of values of latch variables that are assigned by equations
which have been excluded from the slice.

In the first case the analysis continues on the same slice, by excluding the input
data that has produced CE, while in the second case the slice is considered too
small to continue the verification process, and is augmented by bringing in all the
equations that contain free variables of the M ′ slice2. Recall that at the first step
the free variables of M ′ are those that do not contain the identifiers of the track

2 This step can be automated, although in the experience reported in Sect. 7 it has
been performed manually.

On the Validation of an Interlocking System by Model-Checking 103

Fig. 3. Equation y = x ∧ (w ∨ ∼ z) translated in Simulink with logical gates

elements on which the slide was first built: hence this step enlarges the scope
of the considered slice to some other track elements, that with high probability
are physically adjacent to the original ones due to the locality principles. The
property P ′ needs not to be changed: indeed, augment(M ′) |= P ′ means that
M ′ satisfies P ′ when embedded in its proper environment.

The model refinement cycle terminates when the property is verified (possibly
trivially because the model has become over-constrained): at that point the
possible faulty counterexamples stored during the process can be subject to
further analysis in order to plan corrective action or to support fault analysis
(e.g. Fault Tree Analysis) conducted at the system level.

We have verified that the above verification process, with its incremental
nature, has helped the verifier to acquire a step-by-step increasing confidence on
the system’s behaviour. This is expected to be an added value when the approach
is adopted within an independent validation division, for which a control table
is a very low-level representation of the rules implemented by the system.

We finally note that the presented process is independent from the model
checking technique used, although in section 7 we will discuss how the process
is applied with a Bounded Model Checker.

6 Model Extraction

One of the most critical steps in the formal verification of interlocking systems is
the description of control tables in a suitable format for a model checker. In the
particular context of this study, this step was entrusted to a model extraction
process which is composed of three phases:

1. Import Station Data: all data about a station (equations, timers, inter-
faces, . . .) are imported in Matlab by means of proprietary legacy libraries
that read the binary files loaded on the interlocking system.

2. Model Station Data: the equations are modelled in a Simulink model by
means of a tool named LLD-Parser [6]. The example equation of Fig. 1
is modelled, as expected, as the logic gates of Fig. 6, where the gates are
actually Simulink blocks.

3. Linking the Models: All the equations are then linked between them by
means of the latch variables, or by timers when needed; in this way the
model of a station is completed. The model has as input and output the
input/output variables of the equations.

104 A. Bonacchi and A. Fantechi

The details of the procedure have been only partially described in [6], since they
are covered by confidentiality constraints; anyway, for our purposes it is enough
to say that the procedure builds a Simulink model made of boolean gates that
replicates the ladder logic. The model extraction procedure has been applied
to equipments containing up to 3500 equations with 500 input variables. This
means that the produced Simulink models are very intricate and actually not
human-readable.

Note that the model extraction is actually a reverse engineering process, in
which some domain knowledge is needed to relate the variables used in the equa-
tions to the controlled track layout. Due to independence constraints between
the validation team and the design team, this knowledge is not always read-
ily available. In the following, in accordance with Sections 4 and 5, we assume
that in the extracted model variables’ identifiers refer to specific track layout
elements (track circuits, points, etc.). Adjacency of layout elements is inferred
from the equations, rather than known in advance. The kind of each element can
be instead deduced from the identifier.

7 Verification with Design Verifier

We show in the following an example verification performed on a Computer
Interlocking Subsystem that controls a small railway station.

The subsystem has 1038 equations, 321 inputs and 470 outputs; each equation
can have from one input to a maximum of 25 inputs. The size of the model
is therefore rather large, and slicing is therefore considered according to the
iterative process defined in section 5. The verification considers a no-derailment
property ND35 for a chosen point, numbered 35 (referring to the fragment of
track layout represented in Fig. 5). The property has been defined as:

“Under the preconditions (which are considered to characterize the state in
which the route is granted for the passage of a train):

1. A route request for the route 11, that includes switch 35, has been received.

2. In accordance with the route request the switches belonging to the route are
in the correct position.

3. The route is reserved.

the switch 35, in the case a movement request, MR35, is received, must not move
either in normal position, NPM35, or in reverse position, RPM35”.

The verification with Design Verifier requires the property ND35 to be ex-
pressed as a Simulink “observer”, as shown in Fig 4.

According to the process described in Section 4, we generate the smallest slice
of the Computer Interlocking Subsystem to prove the property ND35 ; this slice
includes all the equations referring variables whose identifier contains the number
35: the slice has 16 equations and 70 inputs (see figure 5). The preconditions,on
the section 18 variables, have been modelled as a restriction of the station inputs.

On the Validation of an Interlocking System by Model-Checking 105

Fig. 4. Rappresentation of the property ND35 in Simulink

Fig. 5. Fragment of station plan where the property has been proven

The verification on Slice1 has taken 15 iterations, each producing a new coun-
terexample and requiring the refinement of the preconditions on the input vari-
ables to exclude the obtained counterexample. At the end of this phase, when
the property was finally satisfied, the analysis of the counterexamples and of the
input data used to exclude the counterexample in successive steps has shown
that these other preconditions had been actually introduced:

a. No other route request must have been received.

b. The route reservation announces to the adjacent station on the route the
next arrival of a train, and the station acknowledges this announcement:
this acknowledgement must be already received.

This consideration has suggested that enlarging the slices as recommended in the
iterative process would have soon given better results. Indeed, we have performed
such enlargement (Slice2) that has allowed us to include such preconditions
in the slice itself. The new slice contains all the equations that controls the
sections 17, 18, 42 and 78; finally the new inputs of the slice are the variables or
equations for the section 23. The verification of the same property for this slice
has immediately produced no counterexamples.

In order to test the sensitiveness of the approach to timing issues, we have in-
cluded in Slice3 a timer equation which was not included in Slice2. The duration
of the timer is set to 5 seconds, while the simulation step (a parameter of Design
Verifier [20]) is 150 milliseconds. With these parameters, the verification was not
concluded in reasonable time (presumably, the property was satisfied, but Design
Verifier was not able to complete the search for non-existing counterexamples)
because much time was spent to wait the firing of the timer.

We therefore decided to adopt a different time scale, by changing the simu-
lation step to half a second, after checking that the different time scale is still
compatible with the functional behaviour of the slice. The property is satisfied
with the compressed time scale, and the computation time has been dramatically
decreased, well beyond expectations.

106 A. Bonacchi and A. Fantechi

Table 1. Verification Results

Slice Equations Inputs Free Inputs Counterex. Sim. Step (ms) Time (sec)

Slice1 16 70 42 15 150 60.0

Slice2 64 140 94 0 150 104.0

Slice3 65 139 94 - 150 (> 4 days)

Slice3 65 139 94 0 500 46.0

In Table 1 we report for each slice the number of equations, the number of
inputs, the number of free inputs to prove the property, the number of coun-
terexamples produced before proving the property, the simulation step used and
the time taken by Design Verifier to complete a single verification step. The
entire process of importing data production binary files, modelling the station
and proving the property has been run on an DELL XPS L501X 2.67GHz, 4GB
of RAM machine with Windows 7, 64 bits, operating system.

8 Conclusion

The conducted verification experiments have shown the feasibility of the pro-
posed iterative approach on slices of models derived by an industrial design of
a quite large sized interlocking. Indeed, the whole model consisting of one thou-
sand equations is actually not easy to deal with, although Design Verifier was
able to terminate a preliminary verification experiment on the whole model, pro-
ducing a counterexample with an assignment to a quite large number of input
variables. We recall that the validation team, independent from the production
team, has limited knowledge of the details of the equipment, and therefore was
not able to interpret such a complex counterexample.

Although a systematic study in this direction has not been attempted, the
size of the interlocking systems on which the approach has been evaluated is
considerably larger than the limits referred in [9,21], which are around a few
hundreds of equations.

The choice of Design Verifier as the used model checker, that was strongly
suggested by the industrial partner, has not allowed to play with different verifi-
cation strategies, being a commercial and relatively closed tool. Design Verifier is
a SAT-based Bounded Model Checker [5], and hence it is best aimed at verifying
that the boolean output of the observer holds for all the states up to a given
depth. In the conducted experiments, the default depth of 20 Simulink simula-
tion steps was considered to be enough to prove the above properties, since the
slice was starting its behaviour from a known initial state (the route is locked)
and has to respond to few stimuli. Enlarging the slice in general may increase the
depth needed to prove a meaningful property. In this case, a further cycle aimed
to adjust the depth value should be added to the iterative process. Obviously,
increasing the depth increases the time taken by a verification step as well, in

On the Validation of an Interlocking System by Model-Checking 107

principle exponentially w.r.t. the depth due to the increase of boolean variables
on which a SAT assignment is sought. The results shown in this paper were all
obtained within the default bound value of 20 set by Design Verifier. Indeed, by
injecting some modifications in Slice3, which prevent the satisfaction of ND35,
we have obtained counterexamples of maximal length 17, so quite close to the
bound.

Actually, the experimental framework we have presented in this paper will
allow us to perform a comprehensive study of the actual performance of Design
Verifier over a set of control tables that implement different stations for which
interlocking systems are being produced by the industrial partner. This study
will hopefully provide information about the actual effectiveness of performing
automatic verification on large interlocking systems, giving indications about
the optimal slice size that allows for a meaningful verification within reasonable
computation time for the single verification steps, with minimal number of it-
erations. This study will require a deeper understanding of how a SAT-solver
such as that used inside Design Verifier works, in order to explain apparently
unusual phenomena such as the dramatic decrease of computation time on Slice3
experimented when changing the simulation pace.

However, the proposed iterative verification process, independently from the
particular model checker used, has shown its capability of refining the knowledge
of the validators on the internal working of a complex equipment, due to the
incremental information given by the produced counterexamples. This is in our
opinion the major contribution of this research.

References

1. Vanit-Anunchai, S.: Modelling Railway Interlocking Tables Using Coloured Petri
Nets. In: Clarke, D., Agha, G. (eds.) COORDINATION 2010. LNCS, vol. 6116,
pp. 137–151. Springer, Heidelberg (2010)

2. Banci, M., Fantechi, A.: Instantiating Generic Charts for Railway Interlocking Sys-
tems. In: Tenth International Workshop on Formal Methods for Industrial Critical
Systems (FMICS 2005), Lisbon, Portugal, September 5-6 (2005)

3. Berger, J., Middelraad, P., Smith, A.J.: EURIS, European railway interlocking
specification. In: Proceedings of IRSE 1993, pp. 70–82. Institution of Railway Signal
Engineers (1993)

4. Bernardeschi, C., Fantechi, A., Gnesi, S., Larosa, S., Mongardi, G., Romano, D.:
A Formal Verification Environment for Railway Signaling System Design. Formal
Methods in System Design, 139–161 (1998)

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

6. Bonacchi, A., Fantechi, A., Bacherini, S., Tempestini, M., Cipriani, L.: Validation of
Railway Interlocking Systems by Formal Verification, A Case Study. In: Counsell,
S., Núñez, M. (eds.) SEFM 2013 Collocated Workshops. LNCS, vol. 8368, pp.
237–252. Springer, Heidelberg (2014)

7. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

108 A. Bonacchi and A. Fantechi

8. Fantechi, A.: Distributing the Challenge of Model Checking Interlocking Control
Tables. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol. 7610,
pp. 276–289. Springer, Heidelberg (2012)

9. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: Proc. 8th FORMS/FORMAT Symposium, pp. 98–107 (2010)

10. Groote, J.F., van Vlijmen, S., Koorn, J.: The Safety Guaranteeing System at Sta-
tion Hoorn-Kersenboogerd. In: Logic Group Preprint Series 121. Utrecht University
(1995)

11. Haxthausen, A.E., Peleska, J., Pinger, R.: Applied Bounded Model Checking for
Interlocking System Designs. In: Counsell, S., Núñez, M. (eds.) SEFM 2013 Collo-
cated Workshops. LNCS, vol. 8368, pp. 205–220. Springer, Heidelberg (2014)

12. Haxthausen, A.E., Le Bliguet, M., Kjær, A.A.: Modelling and Verification of Relay
Interlocking Systems. In: Choppy, C., Sokolsky, O. (eds.) Monterey Workshop 2008.
LNCS, vol. 6028, pp. 141–153. Springer, Heidelberg (2010)

13. Haxthausen, A.E.: Developing a domain model for relay circuits. Int. J. Software
and Informatics 3(2-3), 241–272 (2009)

14. FP7 Project INESS - Deliverable D.1.5 Report on translation of requirements from
text to UML (2009)

15. James, P., Lawrence, A., Moller, F., Roggenbach, M., Seisenberger, M., Setzer,
A., Kanso, K., Chadwick, S.: Verification of Solid State Interlocking Programs. In:
Counsell, S., Núñez, M. (eds.) SEFM 2013 Collocated Workshops. LNCS, vol. 8368,
pp. 253–268. Springer, Heidelberg (2014)

16. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne,
H., Trumble, M., Williams, D.: Verification of Scheme Plans using CSP||B. In:
Counsell, S., Núñez, M. (eds.) SEFM 2013 Collocated Workshops. LNCS, vol. 8368,
pp. 189–204. Springer, Heidelberg (2014)

17. Jung, B.: Die Methode und Werkzeuge GRACE. In: Formale Techniken für die
Eisenbahn-sicherung (FORMS 2000), Fortschritt-Berichte VDI, Reihe 12, Nr. 441.
VDI Verlag (2000)

18. Kanso, K., Moller, F., Setzer, A.: Automated verification of signalling principles in
railway interlocking systems. Electron. Notes Theor. Comput. Sci. 250(2), 19–31
(2009)

19. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Defining
and model checking abstractions of complex railway models using CSP||B. In:
Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 193–208.
Springer, Heidelberg (2013)

20. Simulink, http://www.mathworks.com/products/simulink/
21. Winter, K., Robinson, N.J.: Modelling Large Railway Interlockings and Model

Checking Small Ones. In: Twenty-Fifth (ACSC 2003), pp. 309–316 (2003)
22. Winter, K., Johnston, W., Robinson, P., Strooper, P., van den Berg, L.: Tool sup-

port for checking railway interlocking designs. In: Proceedings of the 10th Aus-
tralian Workshop on Safety Critical Systems and Software, pp. 101–107 (2006)

23. Winter, K.: Symbolic Model Checking for Interlocking Systems. In: Flammini, F.
(ed.) Railway Safety, Reliability, and Security: Technologies and Systems Engineer-
ing. IGI Global (May 2012)

http://www.mathworks.com/products/simulink/

Deadlock Avoidance in Train Scheduling:

A Model Checking Approach�

Franco Mazzanti, Giorgio Oronzo Spagnolo,
Simone Della Longa, and Alessio Ferrari

Istituto di Scienza e Tecnologie dell’Informazione “A.Faedo”,
Consiglio Nazionale delle Ricerche, ISTI-CNR, Pisa, Italy

Abstract. In this paper we present the deadlock avoidance approach used
in the design of the scheduling kernel of an Automatic Train Supervision
(ATS) system. The ATS that we have designed prevents the occurrence
of deadlocks by performing a set of runtime checks just before allowing a
train to move further. For each train, the set of checks to be performed
at each step of progress is retrieved from statically generated ATS con-
figuration data. For the verification of the correctness of the logic used
by the ATS and the validation of the constraints verified by the runtime
checks, we define a formal model that represents the ATS behavior, the
railway layout, and the planned service structure. We use this formal
model to verify both the absence of deadlocks and absence of false posi-
tives (i.e., cases in which a train is unnecessarily disallowed to proceed).
The verification is carried out by exploiting the UMC model checking
verification framework locally developed at ISTI-CNR.

1 Introduction

One of the pillars of current industry-related research in Europe is the develop-
ment of intelligent green transport systems managed by smart computer plat-
forms that can automatically move people within the cities, while at the same
time ensuring safety of passengers and personnel. In particular, in the metro
signaling domain, the increasing demand for automation have seen the raise
of Communications-based Train Control (CBTC) systems as a de-facto stan-
dard for coordinating and protecting the movements of trains within the tracks
of a station, and between different stations. In CBTC platforms, a prominent
role is played by the Automatic Train Supervision (ATS) system, which auto-
matically dispatches and routes trains within the metro network. In absence
of delays, the ATS coordinates the movements of the trains by adhering to the
planned timetable. In presence of delays, the ATS has to provide proper schedul-
ing choices to guarantee a continuous service and ensure that each train reaches
its destination. In particular, this implies that the ATS shall necessarily avoid
the occurrence of deadlock situations, i.e., situations where a group of trains
block each other, preventing in this way the completion of their missions.

� This work was partially supported by the PAR FAS 2007-2013 (TRACE-IT) project
and by the PRIN 2010-2011 (CINA) project.

F. Lang and F. Flammini (Eds.): FMICS 2014, LNCS 8718, pp. 109–123, 2014.
c© Springer International Publishing Switzerland 2014

110 F. Mazzanti et al.

This paper presents the experience of ISTI-CNR in the design of the schedul-
ing kernel of an ATS system. The component was designed within the frame-
work of an Italian project, namely “Train Control Enhancement via Information
Technology” (TRACE-IT) [1]. The project concerns the specification and devel-
opment of a CBTC platform, and sees the participation of both academic and
industrial partners. Within the project, a prototype of the ATS system has been
implemented, which operates on a simple but not trivial metro layout with re-
alistic train missions. To address the problem of deadlock avoidance in our ATS
prototype, we have decided to develop sound solutions based on formal methods.
In a short preliminary work [2], we have outlined a model-checking approach for
the problem of deadlock avoidance. Such an approach included several manual
steps, and did not consider the presence of false positives (i.e., cases in which
a train is unnecessarily disallowed to proceed). The approach presented in this
paper the principles of the previous work to define a more structured, semi-
automated approach that can deal with realistic circular missions. Furthermore,
the current strategy exploits the usage of model checking also to address the
problem of false positives.

The ATS that we have designed prevents the occurrence of deadlocks by per-
forming a set of runtime checks just before allowing a train to move further.
The set of checks to be performed is retrieved from statically generated config-
uration data that are validated by means of model checking. Our approach to
produce valid configuration data starts with the automatic identification of a
set of basic cases of deadlocks. This goal is achieved by statically analysing the
missions of all the trains, and providing a set of preliminary constraints that can
be used to address the basic cases of deadlocks. Then, we build a formal model
of the scheduling kernel of the ATS that includes the constraints associated to
the basic cases of deadlock. We use such a formal model to verify the absence of
complex cases of deadlocks, and to assess the absence of false positive cases. To
this end, we apply model checking by means of the UMC (UML Model Checker)
tool, which is a verification environment working on UML-like state machines [3].
When complex cases of deadlock are found, the formal model is updated with
additional checks to address such cases. The validation process iterates until the
ATS configuration data are proven to avoid all possible cases of deadlocks. The
verification of the configuration data for the full railway yard is performed by
decomposing it into multiple regions to be analysed separately, and by proving
that the adopted decomposition allows extending the results to the full layout.

The paper is structured as follows. In Sect. 2, we illustrate an abstract model of
the ATS, together with the metro layout and the missions of our ATS prototype.
In Sect. 3, the basic cases of deadlocks are described, and the approach to identify
and automatically avoid such cases is outlined. Sect. 4 explains how complex
cases of deadlocks can occur, and introduces the problem of false positives. Sect. 5
describes the formal model provided for the ATS and the approach adopted to
verify the absence of deadlocks and false positives. In Sect. 6, we describe how we
have partitioned the full layout. Sect. 7 reports the most relevant works related
to ours, and Sect. 8 draws conclusions and final remarks.

Deadlock Avoidance in Train Scheduling 111

2 An Abstract Model of the System

The abstract behavior of the kernel of the ATS system can be seen as a state
machine. This state machine has a local status recording the current progress of
the train missions and makes the possible scheduling choices among the trains
which are allowed to proceed.

BCA01
Piazza Università

I

II

BCA02
3 4

5

6

(a) Itinerary level view (b) Track circuit level view

Fig. 1. The itinerary and track circuit level view of a station

Train movements can be observed and modeled at different levels of abstrac-
tions. In Figure 1 we show two levels of abstraction of the train movement,
namely the itinerary level view and the track circuit level view. An itinerary is
constituted by the sequence of track circuits (i.e., independent line segments)
that must be traversed for arriving to a station platform from an external entry
point, or for leaving from a station platform towards an external exit point. Track
circuits are not visible at the itinerary level view, which is our level of observation
of the system for the deadlock-avoidance problem. Instead, at the interlocking
management level, we would be interested in the more detailed track circuit level
view, because we have to deal with the setting of signals and commutation of
switches for the preparation of the requested itineraries. Notice that it is task of
the interlocking system (IXL) to ensure the safety of the system by preparing
and allocating a requested itinerary to a specific train. At the ATS level it is
just a performance issue the need to avoid the issuing of requests which would
be denied be the IXL, or to avoid sequences of safe (in the sense risk free) train
movements but which would disrupt the overall service because of deadlocks.

yellow

blue >>

yellow >>

blue

red >>

green >>

green

red

Vicolo Corto

Via Accademia
BCA01

I

II

Piazza Università

I

II

BCA02
Via Verdi

I

II

BCA03
Piazza Dante

I

II

III

BCA05BCA04

I

II

I I

II

Vicolo Stretto

Via Marco Polo
Via Roma

Viale dei Giardini

Parco della Vittoria

I

II

III I

II

III

IVViale Monterosa

5

7

8

10

11

12

15

16

1718

20

22

23

24

25

26

2728

29

3031

32

139641 3

2

31

25

23

201613

12

109

8

76

2728

29

30

32

5

43

2

1

26

24

2217

15

1811

Fig. 2. The yard layout and the missions for the trains of the green, red, yellow and
blue lines

In our case, the overall map of the railway yard which describes the various
interconnected station platforms and station exit/entry points (itinerary end-
points) is shown in Figure 2. Given our map, the mission of a train can be
seen as a sequence of itinerary endpoints. In particular, the service is consti-
tuted by eight trains which cyclically start their missions at the extreme points

112 F. Mazzanti et al.

of the layout, traverse the whole layout in one direction and then return to
their original departure point. The missions of the eight trains providing the
green/red/yellow/blue line services shown in Figure 2, are represented by the
data in Table 1.

Table 1. The data for the missions

Green1: [1,3,4,6,7,9,10,13,15,20,23,22,17,18,11,9,8,6,5,3,1]
Green2: [23,22,17,18,11,9,8,6,5,3,1,3,4,6,7,9,10,13,15,20,23]
Red1: [2,3,4,6,7,8,9,10,13,15,20,24,22,17,18,11,9,8,6,5,3,2]
Red2: [24,22,17,18,11,9,8,6,5,3,2,3,4,6,7,8,9,10,13,15,20,24]
Yellow1:[31,30,28,27,11,13,16,20,25,22,18,12,27,29,30,31]
Yellow2:[25,22,18,12,27,29,30,31,30,28,27,11,13,16,20,25]
Blue1: [32,30,28,27,11,13,16,20,26,22,18,12,27,29,30,32]
Blue2: [26,22,18,12,27,29,30,32,30,28,27,11,13,16,20,26]

In absence of deadlock avoidance checks, in our abstract model, trains are
allowed to move from one point to the next under the unique condition that the
destination point is not assigned to another train. This transition is modeled as
an atomic transition, and only one train can move at each step. We are interested
in evaluating the traffic under any possible condition of train delays. Therefore
we abstract completely away from any notion of time and from the details of the
time schedules. Indeed, if we consider all the possible train delays, the actually
planned times of the time table become not relevant.

3 The Basic Cases of Deadlock

A basic deadlock occurs when we have a set of trains (each one occupying a
point of the layout) waiting to move to a next point that is already occupied
by another train of the set. In our railway scenario this means that we have a
basic deadlock when two trains are trying to take the same itinerary in opposite
directions, or when a set of trains are moving around a ring which is completely
saturated by the trains themselves. We consider as another case of basic deadlock
the situation in which two trains are trying to take the same linear sequence of
itineraries in opposite directions.

1 3

2

4

5

6 7

8

9

D

A

B C

Fig. 3. A a sample selection of four basic critical sections from the full layout

For example, if we look at the top-left side of our yard layout we can easily
recognize four of these zones in which the four Green and Red trains might create
one of these basic deadlocks (see also Figure 3):

a) The zone A [1-3] when occupied by Green1 and Green2.
b) The zone B [2-3] when occupied by Red1 and Red2.

Deadlock Avoidance in Train Scheduling 113

c) The zone C [3-4-6-5] when occupied by the four Green and Red trains.
d) The zone D [6-7-9-8] when occupied by the four Green and Red trains.

The first step of our approach to the deadlock free scheduling of trains consists
in statically identifying all those zones of the railway layout in which a basic
deadlock might occur. We call these zones basic critical sections. We have already
seen the two basic kinds of critical sections, namely ring sections and linear
sections, which are associated to the basic forms of deadlocks mentioned before.
Given a set of running trains and their missions, the set of basic sections of
a layout are statically and automatically discovered by comparing the various
missions of all trains. In particular, linear sections are found by comparing all
possible pairs of train missions. For example if we have that:

x y z

ba

d c

Train1: [..., a, x, y, z, b, ...]
Train2: [..., c, z, y, x, d, ...]

then (x,y,z) constitutes a basic linear section of the layout. Similarly if we have
for example three trains such that:

x

z y

Train1: [..., x, y, ...]
Train2: [..., y, z, ...]
Train3: [..., z, x, ...]

then (x,y,z) constitutes a basic ring section of the layout.
The next step of our approach consists in associating one or more counters

to the critical sections in order to monitor at execution time that the access to
them will not result in a deadlock. It is indeed evident that if we allow at most
N-1 trains to occupy a ring section of size N no deadlock can occur on that ring.
Similarly, in the case of linear sections, we could use two counters (each one
counting the trains moving in one direction) and make sure that one train enters
the section only if there are no trains coming from the opposite side (while still
allowing several trains to enter the section from the same side). When a train
is allowed to enter a basic critical section the appropriate counter is increased;
when the train is no longer a risk for deadlocks (e.g. moves to an exit point of
the section) the counter is decreased.

The above policy can be directly encoded in the description of the train mis-
sions by associating to each itinerary endpoint the information on which op-
erations on the counters associated to the entered/exited sections should be
performed when moving to that endpoint. We call the description of the train
missions extended with this kind of information extended train mission.

Let S be a generic name of a section. In the following we will use the notation
S+ to indicate that a train is reaching an entry point of a ring section S, (corre-
spondingly increasing its counter), and the notation S- to indicate that a train
is reaching an exit point of section S (correspondingly decreasing its counter).
The notation SR+ (SR-) indicates that a train is reaching the entry (exit) point
of a linear section S from when arriving from its right side. The notation SL+
(SL-) indicates that a train is reaching the entry (exit) point of a linear section
S from when arriving from its left side.

114 F. Mazzanti et al.

The cases of deadlocks over the basic sections shown in Figure 3 can be avoided
by extending the missions of the trains of the green and red lines (originally
shown in Table 1) in the following way:

Sections:
[A, B, C max 3, D max 3]

Train Missions:
Green1: [(AL+)1,(AL-,C+)3,4,(C-,D+)6,7,(D-)9,10,13,15,20,23,

22,17,18,11,(D+)9, 8,(D-,C+)6,5,(C-,AR+)3,(AR-)1]
Green2: [23,22,17,18,11,(D+)9,8,(D-,C+)6,5,(C-,AL+,AR+)3,(AR-)1,

(AL-,C+)3,4,(C-,D+)6,7,(D-)9,10,13,15,20,23]
Red1: [(BL+)2,(BL-,C+)3,4,(C-,D+)6,7,(D-)9,10,13,15,20,24,

17,18,11,(D+)9,8,(D-,C+)6,5,(C-,BR+)3,2]
Red2: [24,22,17,18,11,(D+)9,8,(D-,C+)6,5,(C-,BL+,BR+)3,(BR-)2,

(BL-,C+)3,4,(C-,D+)6,7,(D-)9,10,13,15,20,24]

Given the discovered set of basic sections, the description of the extended train
missions for all running trains can be automatically computed without effort. By
performing such an initial static analysis on the overall service provided by our
eight train missions shown in Figure 2 we can find eleven basic critical sections
(see Figure 4) and automatically generate the corresponding extended mission
descriptions for all trains. All this automatically generated data about critical
sections and extended missions will be further analyzed and validated before
being finally encoded as ATS configuration data and used by the ATS to perform
at runtime the correct train scheduling choices.

31

3

2

5

643

8

96 7

3031

30

32

2728

29

30

11

15

1718

20

22 25

13

11

15

1718

20

22

26

13

11

16

1718

20

22

23

13

11

16

1718

20

22

2413

Fig. 4. All the basic critical sections of the overall layout

4 From Basic to Composite Sections

Our set of basic critical sections actually becomes a new kind of resource shared
among the trains. When moving from one section to another, a train may have to
release one section and acquire the next one. Again, this behavior can be subject
to deadlock. Let’s consider the example of regions A, B, C shown in Figure 5.

Deadlock Avoidance in Train Scheduling 115

1 4

5

63

2

A

B
C

1 4

5

63

2

A

B
C

Fig. 5. Deadlock situations over the composition of basic critical sections

In the left case (the right case is just an analogous example), train Green2
cannot exit from critical section C because it is not allowed to enter critical sec-
tion A. Moreover, train Green1 is not allowed to leave critical section A because
it is not allowed to enter critical section C. The deadlock situation that is gener-
ated in the above case is not a new case of deadlock introduced by our deadlock
avoidance mechanism, but just an anticipation of an unavoidable future deadlock
(of the basic kind) which would occur if we allow one of the two trains to pro-
ceed. To solve these situations, we can introduce two additional composite criti-
cal section E and F respectively over the points [1-3-4-6-5], (section A plus
section C) and [2-3-4-6-5] (section B plus section C), which are allowed to
contain at most three of the trains Green1, Green2, Red1, Red2). These
new sections are shown in Figure 6a. The missions of the Green and Red trains
are correspondingly updated to take into consideration also these new sections.

1

5

63

2

A

B
C

E

F

4

(a) The composite sections E and F

1

5

63

2

A

B
C

E

F

4

Red

Green

Red
Gre

en

(b) A potential deadlock caused by false
positives

Fig. 6. Composite sections and new deadlock case

It is very important that our mechanism does not give raise to false positive
situations, i.e, situations in which a train is unnecessarily disallowed to proceed.
False positive situations, in fact, not only decrease the efficiency of the scheduling
but also risk to propagate to wider composite sections, creating even further cases
of false positives or deadlocks.

Let us consider the situation shown in Figure 6b. The red train in 2 is not
allowed to proceed in point 3 because section E already contains its maximum
of three trains. The same occurs for the green train in point 1 (section F already
has three trains). As a consequence nobody can progress, while, on the contrary,
nothing bad would occur if the red train in 2 was allowed to proceed.

As we build greater composite sections it becomes extremely difficult to man-
ually analyze the possible effects of the choices. We need a mechanical help for
exhaustively evaluating the consequences of our choices, discover possible new
cases of deadlock involving contiguous or overlapping critical sections, and com-
pletely eliminate potential false positives situations from the newly introduced
composite critical sections. As shown in Figure 7, we will rely on model checking

116 F. Mazzanti et al.

Initial model
(handling basic deadlocks)

Model Checking

New sections, counters,
and updated missions

No more deadlocks or
false positives

New
deadlocks or

false positives

Validated
ATS
Data

Train Missions

Fig. 7. The ATS configuration data validation process

approach for starting a sequence of iterations in which new problems in terms
of deadlocks are found are resolved by creating and managing new sections in
an incremental way.

5 A Verifiable Formal Model of the System

The behavior of the abstract state machine describing the system can be rather
easily formalized and verified in many ways and using different tools. We have
chosen to follow a UML-like style of specification and exploit our in-house UMC
framework.

UMC is an abstract, on-the-fly, state-event based, verification environment
working on UML-like state machines [3]. Its development started at ISTI in
2003 and has been since then used in several research projects. So far UMC is
not really an industrial scale project but more an (open source) experimental
research framework. It is actively maintained and is publicly usable through its
web interface (https://fmt.isti.cnr.it/umc).

In UMC a system is described as a set of communicating UML-like state
machines. In our particular case the system is constituted by a unique state ma-
chine. The structure of a state machine in UMC is defined by a Class declaration
which in general has the following structure:

class <name> is
Signals:

<list of asynchronous signals managed by the objects of the class>
Operations:

<list of synchronous call ops managed by the objects of the class>
Vars:

<list of local vars belonging to the state of the objects of the class>
Behavior:

<list of rules defining the state evolutions of the objects of the class>

end <name>

The Behavior part of a class definition describes the possible evolutions of the
system. This part contains a list of transition rules which have the generic form:

<SourceState> --> <TargetState> {<EventTrigger>[<Guard>] /<Actions> }

https://fmt.isti.cnr.it/umc

Deadlock Avoidance in Train Scheduling 117

Each rule intuitively states that when the system is in the state SourceState,
the specified EventTrigger is available, and all the Guards are satisfied, then
all the Actions of the transition are executed and the system state passes from
SourceState to TargetState (we refer to the UML2.0 [4] definition for a more
rigorous definition of the run-to-completion step).

In UMC the actual structure of the system is defined by a set of active object
instantiations. A full UMC model is defined by a sequence of Class and Objects
declarations and by a final definition of a set of Abstraction rules. The overall
behavior of a system is in fact formalized as an abstract doubly labelled transition
system (L2TS), and the Abstraction rules allow to define what we want see as
labels of the states and edges of the L2TS. The temporal logic supported by
UMC (which has the power of full μ-calculus but also supports the more high
level operators of CTL/ACTL uses this abstract L2TS as semantic model and
allows to specify abstract properties in a way that is rather independent from
the internal implementation details of the system [5].

It is outside the purpose of the paper to give a comprehensive description of
the UMC framework (we refer to the online documentation for more details).
We believe instead that a detailed description of fragment of the overall system
can give a rather precise idea of how the system is specified. To this purpose, we
take into consideration just the top leftmost region of the railway yard as show
by Figure 8, which is traversed only by the four trains of the green and red lines.

Via Accademia
BCA01I

II

Piazza Università
I

II

BCA02
Via Verdi

I

II

3

2 5 8

1
BCA03

74 6 9

91

92

93

94

Fig. 8. The top-left region of the full railway yard

Our UMC model is composed of a single class REGION1 and a single object
SYS.

class REGION1 is
...

end REGION1
SYS: REGION1 -- a single active object
Abstractions {

<observation rules>
}

In our case the class REGION1 does not handle any external event, therefore
the Signals and Operations parts are absent. The Vars part, in our case contains,
for each train, the vector describing its mission, and a counter recording the
current progress of the train (an index of the previous vector). E.g.

G1M: int[]:= [1,3,4,6,7,9,92,91,9,8,6,5,3,1]; --mission of train Green1
G1P: int := 0; --progress inside mission of train Green1, i.e. index inside G1M

Similar mission and progress data is defined for the other trains as G2M, G2P
(train Green2), R1M, R1P (train Red1), R2M, R2P (train Red2).

118 F. Mazzanti et al.

As we have seen in the previous sections, in this area we have to handle six
critical sections, called A, B, C, D, E, F. For the sake of simplicity, in in this
case we handle the linear A and B critical sections as if they were rings of size
2 (which allow at most one train inside them). We use six variables to record
the limits of each section, and other six variables to record the current status of
the various sections, properly initialized with the number of the trains initially
inside them.

MAXSA: int :=1; -- section A: [1,3] (see Figures 3, 6a and 8)
MAXSB: int :=1; -- section B: [2,3]
MAXSC: int :=3; -- section C: [3,4,5,6]
MAXSD: int :=3; -- section D: [6,7,9,8]
MAXSE: int :=3; -- section E: [1,3,4,5,6]
MAXSF: int :=3; -- section F: [2,3,4,5,6]
SA: int :=1; SB: int :=1; SC: int :=0;
SD: int :=0; SE: int :=1; SF: int :=1;

For each train, the set of section updates to be performed at each step is
recorded into another table which has the same size of the train mission. We
show below the table G1C which describes the section operations to be performed
by train Green1 during its progress:

G1C: int[] := -- Section counters updates to be performed by train Green1
--A,B,C,D,E,F
[[1,0,0,0,1,0], --1 [0,0,0,0,0,0], --92-91
[-1,0,1,0,0,1], --1-3 [0,0,0,1,0,0], --11-9
[0,0,0,0,0,0], --3-4 [0,0,0,0,0,0], --9-8
[0,0,-1,1,-1,-1], --4-6 [0,0,1,-1,1,1], --8-6
[0,0,0,0,0,0], --6-7 [0,0,0,0,0,-1], --6-5
[0,0,0,-1,0,0], --7-9 [1,0,-1,0,0,0], --5-3
[0,0,0,0,0,0], --9-92 [0,0,0,0,0,0]]; --3-1

The element i of the table records the increments or decrements that the
train must apply to the various section counters to proceed from step i to step
i+1 of its mission. For example, in order to proceed, at step 1, from endpoint
1 to endpoint 3, train Green1 must apply the updates described in the element
[-1,0,1,0,0,1], i.e., decrement the counter of section A, and increment the
counters for sections C and F.

In the Behavior part of our class definition we will have one transition rule
for each train, which describes the conditions and the effects of the advancement
of the train. In our case there is no external event which triggers the system
transitions, therefore they will be controlled only by their guards.

In the case of train Green1, for example, we will have the rule:

01: s1 -> s1
02: { - [(G1P <13) and -- 13 is the length of the mission for green1
03: (G1M[G1P+1] /= R1M[R1P]) and ----
04: (G1M[G1P+1] /= G2M[G2P]) and |
05: (G1M[G1P+1] /= R2M[R2P]) and |
06: (SA + G1C[G1P+1][0] <= MAXSA) and |
07: (SB + G1C[G1P+1][1] <= MAXSB) and | Guard
08: (SC + G1C[G1P+1][2] <= MAXSC) and |
09: (SD + G1C[G1P+1][3] <= MAXSD) and |
10: (SE + G1C[G1P+1][4] <= MAXSE) and |
11: (SF + G1C[G1P+1][5] <= MAXSF)] / ----
12: SA := SA + G1C[G1P+1][0]; ----
13: SB := SB + G1C[G1P+1][1]; |
14: SC := SC + G1C[G1P+1][2]; |

Deadlock Avoidance in Train Scheduling 119

15: SD := SD + G1C[G1P+1][3]; | Actions
16: SE := SE + G1C[G1P+1][4]; |
17: SF := SF + G1C[G1P+1][5]; |
18: G1P := G1P +1; ----
19: }

The above rule states that, if train Green1 has not yet completed its mission
(line 02), and the next endpoint for its mission is not already assigned to another
train (lines 03–05), and for each critical section the update of its associated
counter does not exceed the stated limits (lines 06–11), then the train is allowed
to proceed: the section counters are updated as requested by the step (lines 12–
17) and the train progress is incremented of one step (line 18). Similarly, it is
done for all the other four trains.

Finally, we have to define what we want to observe on the abstract L2TS
associated to the system evolutions. Actually we are just interested to observe
that a certain state is the final one, where all trains have completed all their
steps, therefore returning to the point where they started from.

This can be done assigning a label, e.g. ARRIVED to all the system configu-
ration in which the each train is in its final position.

Abstractions {
State SYS.G1P=13 and

SYS.G2P=13 and
SYS.R1P=13 and
SYS.R2P=13 -> ARRIVED

}

The above abstraction rule specifies that the ARRIVED label should be as-
signed to a state when the progresses of the four trains reach the value 13 (the
last index of all the train missions).

At this point the L2TS associated to our model will be a directed graph
which will converge to a final state labelled ARRIVED in the case that no
deadlock occurs in the system. This can be easily checked by verifying the CTL-
like formula:

AF ARRIVED

The formula states that all paths (A in the formula) starting from the initial
state of the system eventually will reach (F) a state labelled HOME. If this prop-
erty does not hold we observe the generated counterexample and view all the
details of the path which leads to the deadlocked state.

In our case the formula is true. The generated statespace has just 10073
configurations, and UMC explores all of them in a few seconds.

But are we sure that we have removed all the possible cases of false positives?
One way to verify that is to allow a train to proceed even if its progress violates
the constraints of the critical sections, but marking the reached state as DEAD.
This is easily done in our model by removing the conditions on the section coun-
ters from the guards of the train transitions, and by adding in the Abstraction
part the following observation rules:

State SYS.SA > MAXSA -> DEAD
State SYS.SB > MAXSB -> DEAD
State SYS.SC > MAXSC -> DEAD

120 F. Mazzanti et al.

State SYS.SD > MAXSD -> DEAD
State SYS.SE > MAXSE -> DEAD
State SYS.SF > MAXSF -> DEAD

In this way we can check the absence of false positives by verifying the formula:
not EF (DEAD and EF ARRIVED)

Which states that does not exists a path (E) which eventually reches (F) a
state that labelled DEAD, and from which exists (E) a continuation of the path
which eventually reaches (F) a state in which all trains are in their destination.

Unfortunately the above formula false, and that allows discovering several
other cases of false positives, (like the one shown in Figure 9) whose removal
requires a more refined use of the counters (the final version of the code can be
found at http://fmt.isti.cnr.it/umc/examples/traceit/).

If we want to check again the absence of deadlocks in this second kind of
model we can now modelcheck the formula:

A[(EF ARRIVED) U (DEAD or ARRIVED)]
This is a typical branching time formula, which states two things. The first is

that all paths will eventually reach a state labelled as DEAD or ARRIVED. The
second is that for all intermediate states of these paths there is scheduling choice
that allows driving all trains to destination (EF ARRIVED) .

In this case the size of the generated statespace is 10493 configurations and
the evaluation time is less than two seconds.

1

5

63

2

A

B
C

E

F

4
RedGreen Red

Gre
en

Fig. 9. Another case of false positive for section E

6 Partitioning the Full Model

Sometimes the scheduling problem might be too complex to be handled by the
model checker. In these cases, it is useful to split the overall layout into subregions
to be analyzed separately. In particular, in the system used as our case study,
we have four trains moving along the red-line and green-line service, and four
other trains moving along the yellow-line and blue-line service. In we consider
all the possible interleavings of eight trains each one performing about 20 steps,
we get a system with about 208 configurations. Most model checkers (and UMC
among them) may have difficulties in performing an exhaustive analysis over a
system of this size, therefore it is useful to consider a possible splitting of the
overall layout. In our case we have considered a partitioning of the system as
shown in Figure 10. The analysis of region 1 has been performed following the
approach outlined in the previous sections, and has led to the management of
six critical sections.

http://fmt.isti.cnr.it/umc/examples/traceit/

Deadlock Avoidance in Train Scheduling 121

Via Accademia
BCA01I

II

Piazza Università
I

II

BCA02
Via Verdi

I

II

3

2 5

1

BCA03

74 6 9

BCA03 Piazza Dante
I

II

III
BCA05

Via Marco Polo
Via Roma

Viale dei Giardini

Parco della Vittoria

I

II

III I

II

III

IV

10

11

12

15

16

1718

20

22

23

24

25

26

27

9

Vicolo Corto BCA05

BCA04

I

II

I I

II

Vicolo Stretto Viale Monterosa

2728

29

3031

32

8

13

Fig. 10. The three regions partitioning the full layout

The analysis of region 3 is similar to the previous one, and leads to the intro-
duction of further four critical sections. The analysis of region 2 is more complex,
being bigger and with 8 trains inside it. The analysis does not reveals any new
cases of deadlocks or false positives, therefore the critical section remain the
basic sections already discovered with our static analysis (shown in Figure 11).
The statespace size of the model for region 2 is 6,820,504 configurations and its
verification takes a few minutes.

In general, it is not true that the separate analysis of the single regions in
which a layout is partitioned actually reveals all the possible deadlocks of the
full system. For this being true it is necessary that the adopted partitioning
does not cut (hiding it from the analysis) any critical section that overlaps two
regions. Since we know from our static analysis were are positioned the basic
critical sections for the layout, and we know that composite sections can only
extend over contiguous/overapping basic sections, it is sufficient to partition the
system in such a way that each region encloses completely a closed group of
connected basic sections.

BCA03 Piazza Dante
I

II

III
BCA05

Via Marco Polo
Via Roma

Viale dei Giardini

Parco della Vittoria

I

II

III I

II

III

IV

10

11

12

15

16

1718

20

22

23

24

25

26

27

9 13

Fig. 11. Four critical sections in region 2

7 Related Work

The problem of deadlock avoidance in train scheduling has been studied since
the 80s. In one of the first works on the subject, Petersen and Taylor [6] propose
a solution based on dividing the line into track segments and using algebraic

122 F. Mazzanti et al.

relationships to represent the model logic. The Petersen and Taylor algorithm
is able to determine a deadlock in a simple network but is not able to deal with
complex networks, which include fleets moving in more than two directions [7].

Mills and Pudney [8] propose a labeling algorithm similar to the Petersen and
Taylor algorithm, presenting high computational efficiency but only suitable for
simple networks with only single lines and crossing loops.

In [9] and [10], Pachl describes two solutions to the deadlock problem. One
is the Movement Consequence Analysis (MCA), derived from studies on routing
techniques for stochastic networks. This solution, however, is based on the anal-
ysis of the next N movements of the train, without specifying how to determine
the correct value of N. The second solution, Dynamic Route Reservation (DRR),
is an evolution of MCA and is based on authorizing the movement of a train only
after the reservation of a portion of the route. This approach does not guarantee
the absence of deadlock and can lead to false positives.

In [7], Cui describes an application of the Bankers Algorithm to the deadlock
problem. Movement tasks are modeled as processes and track segments as re-
sources. Requests are approved if all the processes can obtain all the required
resources. The algorithm can lead to false positives and it is time-consuming.
The author proposes various improvements to reduce false positives and improve
general performance.

Mittermayr [11] uses Kronecker Algebra to model the train routes and build
an evolution graph, subsequently reduced to the relevant synchronizing nodes.
This approach has been used to model additional constraints such as alternative
routes, long trains that occupy more than one track circuit, synchronization in
case of route overtaking and connection. The solution avoids false positives and
false negatives. This approach, however, requires the Scheduler to have access
to the evolution graph in order to successfully schedule trains dynamically.

8 Conclusions

The development of solutions to the problem of deadlock avoidance in train
scheduling is a complex and still open task [12]. Many studies have been carried
out on the subject since the early ’80s, but most of them are related to normal
railway traffic, and not to the special case of driverless metropolitan systems.
Automatic metro systems indeed may express some original properties, e.g., the
difficulty of changing the station platform on which a train should stop, or the
fact that all trains keep moving continuously, which makes the problem rather
different from the classical railway case. The project under which this study
has been carried out is still in progress, and the actual ATS prototype in under
development. There are many directions in which this work is going to proceed.
For example, we want to see if the model checking / model refinement cycles for
the detection and management of critical sections could be in some way fully
automatized removing the human intervention for the generation of the final
validated ATS configuration data. A further interesting evolution would be the
generation and validation of the critical sections data directly from the inside of
the ATS. This would allow to automatically handle at run time also the dynamic

Deadlock Avoidance in Train Scheduling 123

change of the itinerary of the trains. The current metro-line oriented approach
could be further generalized to a wider railway oriented setting by taking into
consideration the train and platform lengths, or the possibility of specifying
connections and overtakings among trains. At a first look the handling of these
aspects should require only minor updates of our current approach.

References

1. Ferrari, A., Spagnolo, G.O., Martelli, G., Menabeni, S.: From commercial docu-
ments to system requirements: an approach for the engineering of novel CBTC
solutions. Int. Journal on STTT, 1–21 (2014)

2. Mazzanti, F., Spagnolo, G.O., Ferrari, A.: Designing a deadlock-free train sched-
uler: A model checking approach. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014.
LNCS, vol. 8430, pp. 264–269. Springer, Heidelberg (2014)

3. Gnesi, S., Mazzanti, F.: An abstract, on the fly framework for the verification
of service-oriented systems. In: Wirsing, M., Hölzl, M. (eds.) Sensoria Project.
LNCS, vol. 6582, pp. 390–407. Springer, Heidelberg (2011)

4. OMG: Object Management Group, UML Superstructure Specification (2006),
http://www.omg.org/spec/UML/2.4.1

5. ter Beek, M.H., Mazzanti, F., Gnesi, S.: CMC-UMC: A Framework for the Verifi-
cation of abstract Service-Oriented Properties. In: Proceedings of the 2009 ACM
Symposium on Applied Computing, pp. 2111–2117. ACM (2009)

6. Petersen, E., Taylor, A.: Line Block Prevention in Rail Line Dispatch and Simula-
tion Models. INFOR Journal (21), 46–51 (1983)

7. Cui, Y.: Simulation-based hybrid model for a partially-automatic dispatching of
railway operation. Ph.D. Thesis Universitat Stuttgart (2009)

8. Mills, R., Pudney, P.: The effects of deadlock avoidance on rail network capacity
and performance. In: Hewitt, J. (ed.) MISG: Mathematics in Industry Study Group
(2003)

9. Pachl, J.: Avoiding deadlocks in synchronous railway simulations. In: International
Seminar on Railway Operations Modelling and Analysis, pp. 359–369 (2007)

10. Pachl, J.: Deadlock avoidance in railroad operations simulations. In: PROMET
Traffic & Transportation. Number 11-0175, pp. 359–369 (2012)

11. Mittermayr, R., Blieberger, J., Schöbel, A.: Kronecker Algebra based Deadlock
Analysis for Railway Systems. PROMET - Traffic & Transportation 24(5), 359–
369 (2012)

12. Törnquist, J.: Computer-based decision support for railway traffic scheduling and
dispatching: A review of models and algorithms. In: 5th Workshop on Algorithmic
Methods and Models for Optimization of Railways, p. 659 (2006)

http://www.omg.org/spec/UML/2.4.1

An Open Alternative for SMT-Based Verification
of SCADE Models

Henning Basold1, Henning Günther2, Michaela Huhn3, and Stefan Milius4

1 Radboud University Nijmegen and CWI Amsterdam, The Netherlands
h.basold@cs.ru.nl

2 Institut für Informationssysteme, Technische Universität Wien, Austria
guenther@forsyte.at

3 Department of Informatics, Clausthal University of Technology
Clausthal-Zellerfeld, Germany

Michaela.Huhn@tu-clausthal.de
4 Lehrstuhl für Theoretische Informatik, FAU Erlangen-Nürnberg

Erlangen, Germany
mail@stefan-milius.eu

Abstract. SCADE is an industrial strength synchronous language and tool suite
for the development of the software of safety-critical systems. It supports formal
verification using the so-called Design Verifier. Here we start developing a freely
available alternative to the Design Verifier intended to support the academic study
of verification techniques tailored for SCADE programs. Inspired by work of Ha-
gen and Tinelli on the SMT-based verification of LUSTRE programs, we develop
an SMT-based verification method for SCADE programs. We introduce LAMA

as an intermediate language into which SCADE programs can be translated and
which easily can be transformed into SMT solver instances. We also present first
experimental results of our approach using the SMT solver Z3.

1 Introduction

The software of safety-critical systems needs to fulfil strong requirements concerning
its correctness. This is why great efforts are made to verify, validate and certify such
software. A model-based development accompanied by formal verification is a well
accepted means to frontload and complement quality assurance for software. In fact,
formal methods, in particular formal verification techniques, are highly recommended
by safety standards, such as DO-178B [11] for the avionics domain or EN50128 [8]
for the railway domain, in a software process appropriate for the higher safety integrity
levels.

For many safety-critical systems, synchronously clocked controllers are the preferred
implementation method. SCADE1 is an industrial strength modelling language and tool
suite for the development of such controllers. Its language is based on the synchronous
data flow language LUSTRE (Halbwachs et al. [17]) and was extended by various fea-
tures, most importantly, by so-called safe state machines (André [2]). The tool suite

1 SCADE is developed and distributed by Esterel Technologies, see
www.esterel-technologies.com.

F. Lang and F. Flammini (Eds.): FMICS 2014, LNCS 8718, pp. 124–139, 2014.
c© Springer International Publishing Switzerland 2014

www.esterel-technologies.com

An Open Alternative for SMT-Based Verification of SCADE Models 125

includes, among other features, code generation, graphical modelling, test automation,
and the SCADE Design Verifier (DV) for SAT-based verification2.

However, while SCADE DV performs very well for certain verification tasks, it can
fail badly for others due to complexity problems. In the latter case the user has little to
no information guiding to the causes making verification infeasible. This makes it al-
most impossible to assess whether it may be most promising to take further measures to
make the formal verification task at hand eventually feasible, to settle for a weaker ver-
ification result (e.g. using bounded model checking using the debug strategy of SCADE

DV) or even abandon further formal verification attempts and rather invest more efforts
in testing. This is a disadvantage both for practical application in industry and for re-
search pertaining to formal verification with SCADE DV (see, e.g., the study [20] on
formal safety analysis of two industrial SCADE models). It may also explain the indus-
tries’ indecision towards adopting formal verification in productive processes.

The work we present here is intended as a first step to counteract the above disadvan-
tage. It is inspired by Hagen and Tinelli’s work [15,16] on the SMT-based verification of
synchronous LUSTRE programs. We build on their ideas to make the first steps towards
a new verification method for SCADE models. After recalling necessary preliminaries
in Sec. 2, we introduce the language LAMA in Sec. 3. This language is intended as an
intermediate language into which synchronous models such as SCADE models can be
translated and that allows for an easy generation of SMT instances. In the ensuing Sec. 4
and 5 we then describe the translation of SCADE synchronous programs to LAMA and
of LAMA programs to SMT instances. Further, in Sec. 6 we present a prototypical im-
plementation of a verification tool based on these translations. As an SMT solver we
use Z3 [26]. We also provide first experimental results comparing our verification tool
with SCADE DV. While SCADE DV still outperforms our tool, our experiments provide
an argument for the correctness of our translations. In addition, our verification tool is
freely available online. Hence, the LAMA language and our implementation can serve
as a platform for the further academic study of the verification of synchronous SCADE

programs, in particular for trying out various optimization and abstraction techniques in
future work.

Related work. This paper reports the results of the first authors master’s thesis [5].
We already mentioned Hagen’s and Tinelli’s work [15,16] on the SMT-based verifi-
cation of LUSTRE programs resulting in the model checker KIND (using Yices [12]
as SMT solver). Recent progress on this using parallelization was reported by Kahsai
and Tinelli [22]. The basic ideas for verifying synchronous models using a SAT solver
and induction go back to Sheeran et al. [28], and were implemented in the LUCIFER
tool [23], a precursor of SCADE DV. The basics and usage of SCADE DV were reported
by Abdulla et al. [1].

There are several methods and tools available for the formal verification of LUSTRE

programs. The Lesar tool comes with the LUSTRE distribution [19,27]. NBAC [21] is
a verification tool that is founded on abstract interpretation. Luke is a verification tool
written by Koen Claessen which is an inductive verifier using an eager encoding into
a SAT solver. Rantanplan by Franzén [14] is an incremental SMT-based verification
tool for the inductive verification of LUSTRE programs; Franzén compared his tool

2 SCADE DV uses a SAT solver developed by Prover Technologies, see www.prover.com.

www.prover.com

126 H. Basold et al.

with NBAC and Luke. Champion et al. [9] proposed to enhance k-induction based
verification for LUSTRE by automated lemma generation. In the STUFF tool they joined
property-directed heuristics and the arbitrary combination of system variables to come
up with invariants that allow to strenghten the property to be proven.

An alternative approach to the verificaton of SCADE programs was developed at
Rockwell Collins (see Whalen at al. [29]). This approach makes use of a transforma-
tion from SCADE to LUSTRE that was provided by the SCADE code generator at the
time. LUSTRE programs are then translated into SAL (“Symbolic Analysis Laboratory”,
see [25]), which also uses Yices as SMT solver. This translation is not freely available
but was reimplemented by Hagen and Tinelli [16] to compare performace with KIND;
the latter outperformed the SAL based verification in most cases. The SAL language
comes quite close to LAMA but is missing automata; it does have quantifiers (over val-
ues), though, a feature not present in LAMA. Unfortunately, the translation from SCADE

to LUSTRE is no longer provided by current SCADE versions.

2 Preliminaries

We begin with a very brief overview of the SCADE language and formal verification
using SCADE DV in Sec. 2.1; for a detailed language description see [13].

In Sec. 2.2–2.4 we give a brief overview over the role of Satisfiability Modulo The-
ories (SMT), the SMT-logic and background theories we are using, and how we are
encoding the semantics of synchronous systems using this logic and theories.

2.1 SCADE and SCADE DV

As we mentioned already, SCADE is a mixture of a LUSTRE-based synchronous dataflow
languages and so-called safe state machines. The basic building blocks of a SCADE

model are the operators, each of which declares its input, output and local (state) vari-
ables. The type system supports simple datatypes (bool, int , . . .) as well as enumer-
ations, arrays and records. The LUSTRE like dataflow part of the language allows to
connect inputs to outputs using (among others) logical and arithmetic operations, case
distinction (“if-then-else”) and up to iterators (map and fold) on arrays. Information
can be stored in local variables across clock cycles and, importantly, the delay opera-
tors fby (“followed by”) and pre allow to access values of variables from previous clock
cycles. The safe state machines allow to switch control between different dataflow di-
agrams. They support hierarchy, i.e., states can contain arbitrary dataflow or state ma-
chine models. Safe state machines and dataflow models are fully integrated. Figure 1
shows an example SCADE node (without the interface specification).

The behavior of a SCADE model is formally captured as a transition system on which
SAT-based model checking of safety properties can be performed [1]. SCADE DV does
not offer a temporal logic but properties have to be modeled as combination of an invari-
ant and synchronous observers [18] in the SCADE modeling language. Such an observer
for a given SCADE operator is itself a SCADE operator that receives the inputs and out-
puts of the operator to be observed and signals through a Boolean output whether the
safety property it monitors holds. SCADE DV then verifies whether the Boolean output
of the observer in parallel composition with the given SCADE operator is always true.

An Open Alternative for SMT-Based Verification of SCADE Models 127

x_1 - 1 x

B

x_1 + 1 x

A

<SM1>

PRE x_1x

-1

1

x >= 10

1
x <= 0

Fig. 1. Periodic counter in SCADE from [24]

2.2 Satisfiability Modulo Theories

In many cases performing model checking by fully exploring the state space of a system
is infeasible at best, or even impossible. A lot of research has been devoted to tackle this
problem. One possibility is to perform so-called symbolic model checking by encoding
a system into logical formulas (usually in first-order logic). Most such descriptions use
some so-called “background theory” T [3], which is independent of the system under
consideration (e.g. integer arithmetic). It might be possible to encode such a theory T
as “library” in first-order logic, but this can lead to performance problems. Usually, the
required theories are nicely behaved, so a general purpose solver can be replaced by
a specialized solver for T . Using a fixed background theory T , systems can often be
described by quantifier free formulas. The validity of these formulas is then efficiently
checked by combining a SAT-solver with a specialized solver for T . This combination
of SAT with specialized theories is called Satisfiability Modulo Theories (SMT).

The SMT-solver that we are using in our implementation is Z3 [26]. To communicate
with the solver we use the standardized text format SMT-LIBv2 [4].

2.3 Simplified SMT-Logic

In this paper we are using an instance of SMT with theories for arithmetic on the integers
Z, the rationals Q and the finite rings Zn = Z/nZ. Moreover, we need to be able to
make inductive definitions on the naturals N and combine these basic types using a
product type. Besides the usual arithmetic operators and relations among the basic types
we will use λ-abstraction over variables of the basic types above. To ease readability
we favor a specialized syntax over SMT-LIBv2, even though SMT-LIBv2 is used in
the implementation. The syntax we use is displayed in Fig. 2. The used variables x
range over a set Var of term variables, the special symbols ite and p1, p2 are functions
having the expected meaning of if-then-else and product projections, respectively. The
arithmetic operations and relations are overloaded for Z, Q and Zn, and formulas can
be used as terms of type B (Boolean).

Another feature we require is the ability to define uninterpreted symbols. We write
Σ = v1 : A1, . . . , vn : An for the uninterpreted signature with variables vi of type Ai.
If Γ is a set of formulas, then we say that a formula ϕ is valid in Σ and Γ , if ϕ holds
for any assignment to variables in Σ under the assumption of Γ , denoted as Σ;Γ � ϕ.

128 H. Basold et al.

Terms � t ::= x | c | ϕ | t � t | ite(ϕ, t, t) | λx.t | t t | (t, t) | p1(t) | p2(t)
� ∈ {+,−, ∗, /}

Forms � ϕ ::= x | 	 | ⊥ | ¬ϕ | ϕ �1 ϕ | t �2 t

�1 ∈ {∧,∨,→} �2 ∈ {≡, <,>,≤,≥}

Fig. 2. Syntax of the used SMT terms and formulas

2.4 Streams

One way of giving semantics to synchronous programs is by viewing them as stream
transformations, i.e., functions taking streams of inputs to streams of outputs. A stream
over a set X is a map σ : N → X . We denote the set of all streams over X by Xω,
hence a stream transformation is a map Xω → Y ω.

The output of a synchronous program depends only on “what happened so far”. More
precisely, synchronous programs are in the class C(X,Y) of causal stream transforma-
tions, where f : Xω → Y ω is causal if for all σ ∈ Xω and n ∈ N the value f(σ)(n)
only depends on σ(0), . . . , σ(n). The reason is that synchronous programs work step-
wise, i.e., they are given by a map c : S × X → S × Y taking a state s ∈ S and an
input x ∈ X to c(s, x) = (s′, y), a new state s′ and an output y. Transition maps like c
are known as Mealy machines, and inherently forbid “to look into the future”.

We can represent streams over X directly in the SMT language from Sec. 2.2 as
function symbols of type N → X . Assume we are given a transition map c, then the
semantics of c for an input stream σ is given by the predicate

Iter(c, σ, γ, τ, n) := (γ(n+ 1) ≡ c1(γ(n), σ(n))) ∧ (τ(n) ≡ c2(γ(n), σ(n))), (1)

where γ : Sω is the stream of internal states, τ : Y ω the stream of outputs and ci =
pi ◦ c, i = 1, 2. If σ, γ and τ are understood from the context, we just write ĉn =
Iter(c, σ, γ, τ, n). Given an initial condition s0 : S, the formula Δn = (γ(0) ≡ s0) ∧∧n

i=0 ĉi defines γ(i) and τ(i), i = 0, . . . , n uniquely, i.e., it approximates the streams γ
and τ up to the n-th position. Just using τ , we can thus approximate the corresponding
causal f ∈ C(X,Y): Δn � f(σ)(n) ≡ τ(n).

This approximation is the basis for bounded model checking: given a predicate
P (x, s, y) on X × S × Y , we can check that P holds up to depth n by showing
Σ;Δn �

∧n
i=0 Pi. Here we simplify again notation by writing Pi = P (σ(i), γ(i), τ(i))

and, moreover, we use Σ = σ : Xω, γ : Sω, τ : Y ω.
On the other hand, if we want to prove that the predicate P holds for every n ∈ N,

we can show this by induction, i.e., by showing that Σ;Δ0 � P0 and Σ; ĉn, Pn, ĉn+1 �
Pn+1 hold. Since this not possible for every c and P , one can try to strengthen the
induction hypothesis by, for example, using k-induction [6,28].

3 The LAMA Language

We introduce the intermediate language LAMA (= Low Abstraction & Mode Automata)
to bridge the gap between the numerous and complex concepts offered in the SCADE

language and the encoding as a set of formulas that can be delivered to an SMT-solver.

An Open Alternative for SMT-Based Verification of SCADE Models 129

LAMA supports a reduced set of language concepts only, but structured data types
and automata are included as they are promising for optimizations when transferred to
the SMT framework. In this sense, LAMA extends and varies from NBAC [21]: LAMA

automata allow for hierarchical and parallel composition, local dataflow may be as-
signed to modes, i.e. automata states, at each level. LAMA automata are inspired by
mode automata [24], but with the difference that the LAMA transitions semantics cor-
responds to strong transitions as used in safe state machines [2] in SCADE.

A LAMA program consists of a collection of declarations of types, constants, input,
local, and state variables and nodes, a (global) dataflow, initializations, assertions and
an invariant. A node is declared by its name and its input and output parameters. It
may contain a set of subnodes N , its own local and state variables V , a local flow F ,
initializations S0, automata definitions A, and an invariant Inv. A node is denoted by
N = (node x y N V F S0 A Inv) in what we call abstract syntax; the concrete syntax
is shown in the example in Fig. 3. An automaton A = (automaton LA l0 EA) ∈ A
consists of a collection LA of modes (location in the concrete LAMA syntax) and an
initial mode l0. The body contains the transitions (edge) EA between the modes.

In case a variable is not explicitly defined in each mode, the default block is used
to define a default assignment. The usage of a node is denoted by (use N t1 . . . tk) in
LAMA where ti are the actual parameter terms.

A dataflow consists of local variable definitions and the initialization and transition
definition for state variables.

The definition of the next state’s value of a variable3 is denoted by
”
’ “ (see line 6,

Fig. 3). In order to deal with the SCADE operators fby and pre either a transition def-
inition will be used, or an automata declaration is introduced (see Sec. 4 for details).
LAMA expressions may use the usual logical, arithmetical and relational operators, pro-
jections (for product types), and pattern matching for user defined enumerations. Their
use, as well as the full syntax of LAMA can be found in appendix A.1 in [5].

The scope of a variable is exactly the block in which it is declared (excluding inner
blocks) with the exception of globally declared enumerations and constants.

The Type System. The syntax and semantics of LAMA types are shown in Fig. 4. The
LAMA typing rules follow the Cardelli’s ideas [7], the details are given in appendix A.2
in [5].

Causality Analysis. As for SCADE, LAMA programs have to be causal, meaning that
the definition of a variable for the current time instant must not instantaneously depend
on itself. In order to check causality, a dependency graph of the variables is constructed.
If this yields a strict (evaluation) order on the variables, the program is causal. Our
approach for LAMA is similar to the causality check in SCADE.

3.1 Dynamic Semantics

The internal state space of a LAMA program P is denoted S =
∏

j�T int
j � where T int

j is
the type of a state variable vj . The space of the input and output values is denoted X =

3 i.e., the next value within the stream associated with x in the LAMA semantics.

130 H. Basold et al.

1 nodes
2 node UpDown () r e t u r n s (xo : i n t) l e t
3 l o c a l x1 : i n t ;
4 s t a t e x : i n t ;
5 d e f i n i t i o n xo = x1 ;
6 t r a n s i t i o n x ’ = x1 ;
7
8 automaton l e t
9 l o c a t i o n A l e t d e f i n i t i o n x1 = (+ x 1) ; t e l

10 l o c a t i o n B l e t d e f i n i t i o n x1 = (− x 1) ; t e l
11 i n i t i a l A;
12 edge (A, B) : (= x 1 0) ;
13 edge (B , A) : (= x 0) ;
14 edge (A, A) : (not (= x 1 0)) ;
15 edge (B , B) : (not (= x 0)) ;
16 t e l
17
18 i n i t i a l x = (− 1) ;
19 t e l
20 l o c a l x : i n t ;
21 d e f i n i t i o n x = (use UpDown) ;
22
23 i n v a r i a n t
24 (and (>= x 0) (<= x 1 0)) ; −− range : 0 t o 10

Fig. 3. UpDown counter example adapted from [24]

∏
k�T in

k � and Y =
∏

l�T out
l �. As the definition of a variable may depend on the current

modes of the automata, the semantics takes the modes into account: Q =
∏

A∈AP
LA.

The semantics of P is then given by a stream transformation �P � : Xω → Y ω de-
fined by a Mealy machine (Sec. 2.4) cP : S × Q × X → S × Q × Y on the state
space S × Q. The mapping �P � is defined by the iteration of cP : let x be an input
stream, we put (sn+1, qn+1, yn) = cP (sn, qn, xn). This sequence starts at (s0, q0) =
(�S0�, (lA0)A∈AP), the semantics of the initialization predicate, and initial modes of all
automata. Using this iteration, we define �P �(x)(n) = yn. The LAMA semantics for
the dataflow part coincides with the LUSTRE semantics.

For the sake of brevity, we discuss the automata semantics only informally: In LAMA

a node N may contain a collection A of automata. If a flow refers to N in a use-
construct, then N ’s automata are considered to run in parallel at the same hierarchical
level. However, within a location l of any automaton A ∈ A a flow may use a subnode
N.M that again may contain a collection M.B of automata. The automataB ∈ M.B are
the counterpart of subautomata residing within the state of a state machine in SCADE

(see Sec. 4 for the translation).
For each automaton we distinguish between the selected mode at which the n-th

step is assumed to start and the active mode that is executed at step n, n ≥ 0. Let us
assume node N is evaluated at step n. For each automaton A ∈ A the selected mode
mA,n is considered and the most prior outgoing transition, whose guard evaluates to

An Open Alternative for SMT-Based Verification of SCADE Models 131

〈Type〉 ::= 〈BaseType〉
| 〈Identifier〉
| 〈BaseType〉 ˆ n
| (# T1 . . . Tn)

〈BaseType〉 ::= bool
| int
| real
| sint [n]
| uint [n]

�bool�Σ = B

�int�Σ = Z

�real�Σ = Q

�sint[n]�Σ = {−2n−1, . . . , 2n−1 − 1}
�uint[n]�Σ = {0, . . . , 2n − 1}

�x�Σ = Σ(x)

�T∧n�Σ = �(#T . . . T︸ ︷︷ ︸
n

)�Σ

�(#T1 . . . Tn)�Σ =

n∏
i=0

(�Ti�Σ)

Fig. 4. Syntax and semantics of LAMA types

true, is determined. If such a transition exists, it is executed and its target m′
A is said

to be the active mode of A in step n. Otherwise the selected mode is set active, i.e.
m′

A = mA,n. This corresponds to strong transition semantics and giving outermost
transitions priority as in SCADE. Now the flow definitions are evaluated for the active
mode m′

A. In case the flow of m′
A makes use of a subnode with automata B ∈ M.B,

the selected modes mB of all B are evaluated for outgoing transitions recursively until
the innermost automata are reached. The result of the flow evaluation contributes to the
next step’s state variables sn+1. Finally, the next step’s selected mode mA,n+1 is set to
m′

A for all automata residing in N .

Comparison with SCADE. SCADE offers a lot more language concepts most of which
are translated to LAMA as explained in Sec. 4. Some concepts are not handled yet,
but left for a future extension of the translation: Among these are the basic type char,
records, and type variables, sensors, signals, clocks, and probes. Functions, which can
be translated to nodes easily, static input, and the where . . . numeric construct, which
allows to declare polymorphic operators over numeric types, are missing. Within equa-
tions guarantee, handle, and returns are not handled yet, whereas in automata, dataflow
cannot be assigned to transitions, synchro-transitions and final states are missing, as
well as branching transitions. The sequential operators when and merge and clocked
expressions are not supported. The use of higher order operators and clocked uses of
operators are left out. Tuples, some array operations and structs can be easily handled.

Let us point out that even though the existing implementation cannot yet handle
the full SCADE syntax, all missing language constructs can be reduced to the existing
LAMA syntax in a straightforward way. Only for operator casts some primitive operators
should be added to LAMA. Moreover, our translation does support a sufficiently large
fragment of SCADE that allows to perform experiments on industrial relevant models
such as the ones considered in Sec. 6.

4 Translating SCADE to LAMA

We are now going to describe the translation of a SCADE model to LAMA. Due to space
constraints we can only sketch the general principles and indicate where the subtleties

132 H. Basold et al.

of the translation arise; a detailed description can be found in [5]. We also must assume
that the reader is sufficiently familiar with the SCADE language (see [13]). Fig. 3 shows
(a simplified) form of the translation result of the SCADE model from Fig. 1.

SCADE operators are translated to LAMA nodes. Note though that each instance of
a SCADE operator has its own state memory. Thus, for every instance of a SCADE

operator N a copy of the translation of N with a fresh name is generated in LAMA.
Within a SCADE operator there are state independent (without any synchronous state
machines) and state dependent dataflows, and these must be handled separately.

State independent dataflow. Logical and arithmetic base operations as well as variables,
constants, array functions and if-then-else of SCADE have counterparts in LAMA, and
are hence translated directly. Stream operators are handled as follows: each fby is re-
placed by a chain of pre and → (init) operators and then translated. For the translation
of → and pre one has to distinguish several cases. In the first case of a SCADE state-
ment x = M → preN with M = c a constant expression and N not containing → or
pre, one translates this as a LAMA flow: initial x = c; transition x’ = N; (the second
case x = preM is handled by simply omitting the initialization of x – this is correct
in LAMA if the original SCADE operator was correct). In the third case where M is not
constant the initial statement is not allowed in LAMA and so the translation yields an

automaton with three modes dummy
true �� init

true �� run where in init we have x = M;
and in state run we have x = N. Finally, the remaining cases x = M are treated by
unrolling, i.e., M is rewritten so that one of the first three cases can be applied (see [5]).

State dependent dataflow. SCADE synchronous state machines are translated to LAMA

state machines. Hierarchy of state machines in SCADE is handled by introducing LAMA

nodes for subautomata. For example, let s be a state of a SCADE state machine containing
another state machineMs with states s1, s2 that read variablesa, b, c and write to variable
x. Then state s is translated to a state containing a statement x = (use Ns a b c), where
the LAMA node Ns contains the translation of state machine Ms.

Recall that SCADE knows several types of transitions between states of synchronous
state machines. The strong transitions have the same semantics as transitions in LAMA

and are translated directly, whereas weak transitions need a special treatment. In par-
ticular our translation needs to carefully handle several cases where a state has both
types of transitions entering and/or leaving the state (see [5] for details). SCADE also
distinguishes restart and resume transitions. The former leads to the initialization of all
flows in the target state; they are translated by essentially transforming them into resume
transitions, which have the same semantics in LAMA and can be translated directly.

We omit the description of the translation of default declarations as well as of pre
and last within states. There are also some derived language constructs in SCADE that
are translated by first replacing them by equivalent SCADE constructs whose translation
we already explained; this concerns: the fby operator (mentioned previously), if-blocks
(replaced by state machines), when-match-blocks (replaced by a case switch and an
if-block) and the times operator.

Finally, let us mention two easy optimizations that are performed in this translation
step: (1) pre operators are brought to the root of expressions as much as possible (e.g. by

An Open Alternative for SMT-Based Verification of SCADE Models 133

using the distributive law f(preM1, . . . , preMn) ≡ pre f(M1, . . . ,Mn) that holds
for every non stream operator f); (2) the elimination of auxiliary variables in textual
SCADE code (especially when it is obtained from graphical models) by inlining. Both
techniques reduce the number of state variables in the SMT instances obtained in the
next transformation step and so lead to a smaller problem for the SMT solver at the end.

5 Translating LAMA to SMT

In this section we are going to translate a given LAMA program into a set of SMT-
formulas that we can use to verify the invariant the program comes with. This is done
by first translating the nodes (recursively) into Mealy machines, see Sec. 2.4, and then
constructing another Mealy machine for the data flow of the program. The translation
process yields one machine per variable and automaton, where a machine can use all
inputs and the previous state of all machines in the current scope. More precisely, we
are going to construct a signature Σ and formulas dependent on the step n, such that
every symbol in Σ, except for input symbols, is defined by one formula. The symbols
for each state variable and automaton have a stream type (over the type of the variable).
One formula Dx then defines x at position n + 1, possibly using other symbols at po-
sition n. This translation is easier to implement and use than constructing one machine
describing all state variables/automata at once.

5.1 SMT-Formulas from Nodes

Assume that we are given a LAMA node N = (node x y N V F S0 A P) of type
X → Y . We add symbols x : �X�ω and y : �Y �ω to the signature Σ, where one should
note that X and Y may be product types if the node has several inputs or outputs. For
every variable (v : T) ∈ V of type T we add another symbol v : �T �ω to the signature
Σ. Finally, for each A = (automaton LA l0 EA) ∈ A we add two more symbols
actA, selA : T (LA)

ω to Σ. Here we use a type T (LA) that encodes the modes of A,
for example, using integers or bitvectors.

An equation (v = M) ∈ F (where v can be an output y) gives rise to a formula
Dv := λn. v(n) ≡ M(n), a state transition s′ = M ∈ F on the other hand defines
Ds := λn. s(n + 1) ≡ M(n). The initial condition for s at 0 is given by the formula
Is := (s(0) ≡ a) for s = a ∈ S0. We describe the translation of LAMA terms M in
Sec. 5.2.

The symbols actA, selA : T (LA)
ω for an automaton A ∈ A represent the active and

the selected mode, respectively. Since we are using strong transition semantics, selA
will always be defined by the formula selA(n+ 1) ≡ actA(n) and the initial condition
IA := (selA(0) ≡ l0). The symbol actA on the other hand is assigned the active mode
of the automaton in the current step:

actA(n) ≡ next(selA, EA)(n),

where next returns the active mode (see Sec. 3.1). Depending on the active mode we
select the used computation for a variable v:

Dv := λn. v(n) ≡ match(actA, LA, v)(n).

134 H. Basold et al.

Here match selects the used flow for v, depending on the active mode:

match(actA, LA, v) := λn. if actA(n) ≡ l1 then M1(n)

· · ·
else if actA(n) ≡ ln−1 then Mn−1(n)

else Mn(n)

for (li, Fli) ∈ LA and equations (v = Mi) ∈ Fli .

Finally, we tie everything together by formulas describing the flow of N using an acti-
vation condition eN (“enable N”):

DN := λn. if eN (n) then
∧
v∈V

Dv(n) else
∧

s∈state(V)

Ids(n)

IN :=
∧

s∈state(V)

Is

using the formula Ids(n) = (s(n+ 1) ≡ s(n)) in case the dataflow of N is disabled.
The activation condition is only relevant in the case where a node is used inside a

mode, since its dataflow is independently generated and shall only be active, if the mode
in which the node is used is active. Let l ∈ LA be the mode in which a node N is used,
then eN is simply eN := λn. actA(n) ≡ l.

Example 5.1. We translate here the node UpDown from Sec. 3. The resulting signature
is Σ = {xo : Nω, x1 : Nω , x : Nω, actA, selA : TA

ω} with TA = {1, 2}. The state
variables are defined by the formulas

Dxo := λn. xo(n) ≡ x1(n)

Dx := λn. x(n+ 1) ≡ x1(n)

Dx1 := λn. x1(n) ≡ (if actA(n) ≡ 1 then x(n) + 1 else x(n)− 1)

5.2 Translating Dataflow

There are two kinds of right-hand-sides one can have in the dataflow of LAMA: expres-
sions or the use of a node. We will not describe the translation of LAMA expressions
into SMT here, since this is just a point-wise application on streams. This leaves us with
the case of (use N t) for a node identifier N and the argument t. Recall that we added
symbols for input and output, say x, y, to the signature Σ of node N . The use of a node
is driven by “connecting” x to t:

Dx := λn. x(n) ≡ t(n).

The term (use N t) is translated to the symbol y, i.e., an equation v = (use N t) is
translated to Dv := v(n) ≡ y(n) in Sec. 5.1.

An Open Alternative for SMT-Based Verification of SCADE Models 135

5.3 SMT-Formulas from Programs

Finally, we translate the top level of a LAMA program. Such a program consists of node
declarations and dataflow, which are handled as described in the previous subsections,
and an invariant P . This P is immediately translated to an SMT-formula and hence we
can check its validity according to Sec. 2.4, using the formulas DN and Dv from the
above translation in lieu of Iter from (1).

5.4 Correctness of the Translations

We briefly mention here a possible strategy for proving the correctness of the given
translations. A scheme of the translation steps we have given is shown in the top row

SCADE Reduced SCADE LAMA SMT

Clocked LUSTRE

∼=

Fig. 5. Translation steps

of Fig. 5. In [10] Colaço et al. gave semantics to a fragment of SCADE, including safe
state machines, by translating it into a variant of LUSTRE with clocks. Thus, a possible
strategy would be to translate LAMA into this language as well and show that our trans-
lation yields equally behaving programs. If, moreover, we give semantics to LUSTRE

with clocks in terms of Mealy machines, we can also prove our translation into SMT
formulas correct.

However, this proof has not been carried out so far, and we leave it as future work.
Instead, we have taken a more practical approach for the time being, in that we have
compared our implementation to the SCADE Design Verifier, see Sec. 6.

6 Implementation and Experiments

In this section we describe a first implementation of the transformation of SCADE pro-
grams to SMT instances. We also present results of first experiments using our imple-
mentation on an industrial SCADE model. For this we reproduce verification results that
were already obtained in [20] using SCADE DV, and we compare the running times.

Our implementation of the LAMA framework consists of the following components,
all of which are written in the functional programming language Haskell:

– A library to parse, manipulate and render LAMA-programs: language-lama.
– A parser library for the SCADE (textual) language: language-scade.4

– An SMT interface abstraction which allows us to seamlessly use multiple different
SMT solvers called smtlib2.5

4 Available from https://github.com/hguenther/language-scade.
5 Available from https://github.com/hguenther/smtlib2.

https://github.com/hguenther/language-scade
https://github.com/hguenther/smtlib2

136 H. Basold et al.

– A program to translate SCADE- into LAMA-programs: scade2lama.
– An interpreter for the LAMA language, which can be used to interactively run

LAMA-programs: lama-interpreter.
– The verification component which verifies LAMA-programs by translating them

into SMT: lamasmt.

All components are available under liberal free-software licenses.6 The general work-
flow and the interaction of the components can be seen in Fig. 6.

Fig. 6. Framework components and their interaction

SCADE programs are translated into the LAMA language using scade2lama. The
user has to supply the name of the SCADE node whose properties shall be verified.
The resulting LAMA program can then be formally verified using the lamasmt tool,
which uses either bounded model checking or k-induction. It communicates with the
SMT solver via the smtlib2 library and produces a counterexample trace or states that
the property holds for the node (this is only possible when using k-induction). If the
k-induction is not able to prove the property within a specifiable depth, lamasmt can
produce candidate-counterexamples from the induction step. These may be used later
to generate lemmas, to strengthen the induction hypothesis, e.g. by adapting ideas from
Champion et al. [9].

6.1 Benchmarks

We evaluated the performance of the lamasmt verification tool by applying it to a model
of a level crossing system.7 The details and the descriptions of hazards and the fault
modes of this model can be found in [20].

We compared our tool with the SCADE DV, the proprietary verification tool bundled
with SCADE. Like our tool, it can be used to verify the correctness of properties (called
“proof strategy”) or as a bounded model checker (called “debug strategy”). First, we
compared SCADE DV’s proof strategy against lamasmt with k-induction. We use the

6 Available from https://github.com/hbasold/lama
7 All benchmarks were performed on an Intel R© CoreTM Duo CPU P9600 @ 2.53 GHz with 4

GB of RAM.

https://github.com/hbasold/lama

An Open Alternative for SMT-Based Verification of SCADE Models 137

Table 1. Comparing proof strategies

SCADE DV LAMA

env. model proven time proven time

(1) yes 12s no (depth 27) 5h
(2) no (depth 42) 205m no (depth 46) 27h
(3) yes 23h no (depth 50) 68h

three environment models described in the study [20]: in model (1) a train is constantly
occupying one of the two available tracks, while in model (2) a train can appear and
disappear on track one at random, and in (3) a single train passes through track one for
40 cycles. The property to prove for all these environment models is that no train runs
through an unprotected level crossing.

As Table 1 shows, the pure k-induction strategy does not work very well on the
provided model. This confirms an observation made in [9] that without further heuristics
k-induction does not scale up very well as a property may require a k that leads to a too
large unfolding of the model, or it may not be k-inductive at all.

We also compared the BMC strategies of SCADE DV and LAMA on the five de-
scribed fault modes of the model. Each fault mode was treated using environment model
(1). The fault modes describe the following behaviours: a defect of a traffic light (L1
and L3), a mis- or false-detection by a barrier sensor (BS13 and BS11 resp.), and a bar-
rier that got stuck or is misbehaving (B7 and B9 resp.). We can see in Table 2 that both
tools are able to find the three first fault modes and unable to find counter-examples for
the last two. The found faults occurred at depth 27 in all cases.

Table 2. Comparing BMC strategies

SCADE DV LAMA

bug found time found time

L1 yes 1s yes 422s
BS13 yes 1s yes 491s
B7 + BS11 yes 11s yes 418s
B9 no (depth 35) 10s no (depth 35) 24m
L3 + BS11 no (depth 50) 62s no (depth 30) 13m

While the performance of lamasmt does not yet match that of the SCADE DV, the re-
sults nonetheless give us an indication that the implementation is indeed correct: There
are no false errors being found, nor are any hazards undetected by our implementation.
In the benchmarks, time and memory used by the intermediate translation steps are
negligible, most of the time is taken by the SMT-solver.

138 H. Basold et al.

7 Conclusion and Future Work

In this work, we developed an open experimentation platform for the verification of
SCADE programs based on recent SMT technology. The verification process has been
divided into several translation steps. First, SCADE programs are transformed into a
small subset of SCADE that corresponds to programs in the intermediate language
LAMA. LAMA keeps a few abstractions of SCADE, which are promising to facilitate
optimization of the actual verification. After translating SCADE- into LAMA-programs,
the resulting LAMA programs can almost directly be interpreted as sets of SMT formu-
las, describing transition steps. This step-wise description can then be used to find coun-
terexample using bounded model checking or to prove predicates using k-induction.

These translation steps have been implemented as open source software. This soft-
ware can already find the same counterexamples in a medium-sized design developed
in industry as the proprietary SCADE Design Verifier, which comes with the SCADE

suite. However, the verification procedure and performance are still lacking behind.
Since the developed software is meant to be an experimentation platform, future

work obviously includes optimizing better verification techniques and the translations.
This might effect the intermediate language LAMA itself.

References

1. Abdulla, P.A., Deneux, J., Stålmarck, G., Ågren, H., Åkerlund, O.: Designing safe, reliable
systems using scade. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS, vol. 4313, pp.
115–129. Springer, Heidelberg (2006)

2. André, C.: Semantics of S.S.M (Safe State Machine). Tech. Rep. UMR 6070, I3S Laboratory,
University of Nice-Sophia Antipolis (2003), http://rw4.cs.uni-saarland.de/
teaching/esd07/papers/SSMsemantics.pdf

3. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories. In: Biere,
A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, ch. 26, pp.
825–885. IOS Press (2009)

4. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Proc. 8th Intern.
Workshop on Satisfiability Modulo Theories, Edinburgh, UK (2010)

5. Basold, H.: Transformationen von Scade-Modellen zur SMT-basierten Verifikation. Master’s
thesis, TU Braunschweig (2012), http://arxiv.org/abs/1403.2752

6. Bjesse, P., Claessen, K.: SAT-based verification without state space traversal. In: Hunt Jr.,
W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 372–389. Springer, Heidel-
berg (2000)

7. Cardelli, L.: Type systems. In: Tucker, A.B. (ed.) CRC Handbook of Computer Science and
Engineering, ch. 97. Chapman and Hall (2004)

8. CENELEC: EN 50128 – Railway Applications – Software for Railway Control and Protec-
tion Systems. European Standard (2012)

9. Champion, A., Delmas, R., Dierkes, M.: Generating property-directed potential invariants by
backward analysis. In: Proc. FTSCS. EPTCS, vol. 105, pp. 22–38 (2012)

10. Colaço, J.L., Pagano, B., Pouzet, M.: A conservative extension of synchronous data-flow
with state machines. In: EMSOFT, pp. 173–182. ACM Press (2005)

11. DO-178B: Software considerations in airborne systems and equipment certification (Decem-
ber 2011)

12. Dutertre, B., de Moura, L.: The YICES SMT solver. Tech. rep., SRI Int. (2006)

http://rw4.cs.uni-saarland.de/teaching/esd07/papers/SSMsemantics.pdf
http://rw4.cs.uni-saarland.de/teaching/esd07/papers/SSMsemantics.pdf
http://arxiv.org/abs/1403.2752

An Open Alternative for SMT-Based Verification of SCADE Models 139

13. Esterel: Scade language reference manual (2011)
14. Franzén, A.: Using satisfiability modulo theories for inductive verification of Lustre pro-

grams. Electr. Notes Theor. Comput. Sci. 144(1), 19–33 (2006)
15. Hagen, G.: Verifying safety properties of Lustre programs: an SMT-based approach. Ph.D.

thesis, Department of Computer Science. The University of Iowa (2008)
16. Hagen, G., Tinelli, C.: Scaling up the formal verification of Lustre programs with SMT-based

techniques. In: Proc. FMCAD, pp. 1–9 (2008)
17. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow programming

language LUSTRE. Proceedings of the IEEE 79(9), 1305–1320 (1991)
18. Halbwachs, N., Lagnier, F., Raymond, P.: Synchronous observers and the verification of re-

active systems. In: Proc. of AMAST 1993. Workshops in Computing, pp. 83–96. Springer,
London (1994)

19. Halbwachs, N., Raymond, P.: A turotial of Lustre (2002),
http://www-verimag.imag.fr/˜halbwach/lustre-tutorial.html (last
accessed: March 13, 2014)

20. Huhn, M., Milius, S.: Observations on formal safety analysis in practice. Science of Com-
puter Programming 80, Part A, 150–168 (2014)

21. Jeannet, B.: The NBAC verification/slicing tool, http://pop-art.inrialpes.fr/
people/bjeannet/nbac/index.html (last accessed: February 17, 2014)

22. Kahsai, T., Tinelli, C.: PKind: A parallel k-induction based model checker. In: Barnat, J.,
Heljanko, K. (eds.) PDMC. EPTCS, vol. 72, pp. 55–62 (2011)

23. Ljung, M.: Formal modelling and automatic verification of Lustre programs using NP-Tools.
Master’s thesis, Prover Technology AB and Department of Teleinformatics, KTH, Stockholm
(1999)

24. Maraninchi, F., Rémond, Y.: Mode-automata: About modes and states for reactive systems.
In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, pp. 185–199. Springer, Heidelberg (1998)

25. de Moura, L., Owre, S., Shankar, N.: The SAL language manual. Tech. rep., SRI International
(2003), http://sal.csl.sri.com/doc/language-report.pdf (last accessed:
March 12, 2014)

26. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

27. Pace, G., Halbwachs, N., Raymond, P.: Counter-example generation in symbolic abstract
model-checking. Int. J. Software Tools and Technology Transfer 5(2), 158–164 (2004)

28. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a
SAT-solver. In: Hunt Jr., W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS, vol. 1954, pp.
108–125. Springer, Heidelberg (2000)

29. Whalen, M., Cofer, D., Miller, S., Krogh, B.H., Storm, W.: Integration of formal analysis into
a model-based software development process. In: Leue, S., Merino, P. (eds.) FMICS 2007.
LNCS, vol. 4916, pp. 68–84. Springer, Heidelberg (2008)

http://www-verimag.imag.fr/~halbwach/lustre-tutorial.html
http://pop-art.inrialpes.fr/people/bjeannet/nbac/index.html
http://pop-art.inrialpes.fr/people/bjeannet/nbac/index.html
http://sal.csl.sri.com/doc/language-report.pdf

Improving Static Analyses of C Programs

with Conditional Predicates

Sandrine Blazy1, David Bühler2, and Boris Yakobowski2

1 IRISA - University of Rennes, France
sandrine.blazy@irisa.fr

2 CEA, LIST, Software Safety Lab, 91191 Gif-sur-Yvette, France
{david.buhler,boris.yakobowski}@cea.fr

Abstract. Static code analysis is increasingly used to guarantee the ab-
sence of undesirable behaviors in industrial programs. Designing sound
analyses is a continuing trade-off between precision and complexity. No-
tably, dataflow analyses often perform overly wide approximations when
two control-flow paths meet, by merging states from each path. This
paper presents a generic abstract interpretation based framework to en-
hance the precision of such analyses on join points. It relies on pred-
icated domains, that preserve and reuse information valid only inside
some branches of the code. Our predicates are derived from conditionals
statements, and postpone the loss of information. The work has been in-
tegrated into Frama-C, a C source code analysis platform. Experiments
on real code show that our approach scales, and improves significantly
the precision of the existing analyses of Frama-C.

1 Introduction

Formal program verification is an increasingly sought-after approach to guaran-
tee the absence of undesirable behaviors in software. Static code analysis has
already shown its industrial applicability to prove safety properties on critical or
embedded code. Still, so as to remain tractable, these analyses involve sound but
incomplete approximations of a program behavior. This may lead to false alarms,
when some required properties cannot be proved statically even though they al-
ways hold at runtime. Abstract interpretation [5,6] is a well-known framework to
over-approximate program executions through abstractions of the most precise
mathematical characterization of the program. Designing such abstractions is a
continuing trade-off between precision and efficiency.

Flow-sensitivity, which allows to infer static properties that depend on pro-
gram points, is often considered as a prerequisite to obtain a precise program
analysis. More agressive analyses are path-sensitive: the analysis of a program
statement depends on the control-flow path followed to reach this statement.
Nevertheless, most analyses sacrifice full path-sensitivity and perform approx-
imations when two control-flow paths meet. Those approximations may lead
to a significant loss of precision, and may preclude inferring some interesting
properties of the program.

F. Lang and F. Flammini (Eds.): FMICS 2014, LNCS 8718, pp. 140–154, 2014.
c© Springer International Publishing Switzerland 2014

Improving Static Analyses of C Programs with Conditional Predicates 141

1 i f (f l a g 1)
2 { fd1 = open (path1) ;
3 i f (fd1 ==−1) e x i t () ; }
4 [. . .] // code 1

5i f (f l a g 2)
6{ fd2 = open (path2) ;
7i f (fd2 ==−1) {
8i f (f l a g 1) c l o s e (fd1) ;
9e x i t () ; } }
10[. . .] // code 2
11i f (f l a g 1) c l o s e (fd1) ;
12i f (f l a g 2) c l o s e (fd2) ;

Fig. 1. Example of interleaved conditionals

Consider as an example the code fragment of Fig. 1. Proving that the three
calls to the close function are correct, i.e. that the corresponding fd variable
has been properly created, heavily relies on the possible values for the flag1 and
flag2 variables. An analysis that does not keep track of the relation between
flag1 and fd1 on the one hand, and flag2 and fd2 on the other hand, will not
be able to prove that the program is correct.

In this paper, we define an analysis in which information about the condi-
tionals that have been encountered so far is retained using boolean predicates.
These predicates guard the values inferred about the program. Our analysis is
parameterized by a pre-existing analysis domain, which we use to derive a new
predicated analysis. More precisely, we propagate two kinds of information that
are not present in the original domain: a context and an implication map.

1. A context is a boolean predicate synthesized from the guards of the con-
ditionals that have been reached so far, and that is guaranteed to hold at
the current program point. In our example, at the beginning of line 8, the
context would be flag2 ∧ (fd2 = −1).

2. An implication map is a set of facts from the original analysis domain,
guarded by boolean predicates. Each fact is guaranteed to hold when its
guard holds. Implication maps postpone the loss of precision usually present
at join points. In our example, assuming the existence of an analysis that
verifies the validity of file descriptors, the implication map after line 6 would
consist of the two following implications:

flag1 �→ valid fd (fd1) true �→ valid fd (fd2) ∨ (fd2 = −1)

The first implication results from the analysis of the conditionals at lines 1-
3; it precisely models the information we need between flag1 and fd1. The
second implication is simply the postcondition of the open function, which
holds unconditionnaly: either open succeeds, or it fails with a return code
of −1.

Our framework, based on abstract interpretation, is generic. We also integrated
it into Frama-C, a modular platform dedicated to the analysis of C code [8].
Frama-C provides various sound analyses based on abstract interpretation, de-
ductive verification or testing, implemented by a collection of plugins built
around a common kernel. These plugins collaborate through logical properties
expressed in acsl, a C specification language [1,4]. Among them, the value anal-
ysis plugin [9,3] performs a forward dataflow analysis over intricate low-level

142 S. Blazy, D. Bühler, and B. Yakobowski

abstract domains to compute an over-approximation of the possible values of
variables at each program point. It aims at ensuring the absence of run-time
errors in a given program. Our experiments show that predicated analyses over
much simpler domains may significantly enhance and complement the results of
the value analysis.

Related Work. Different approaches have been proposed in the litterature to
solve instances of the problem we are addressing. Trace-partitioning [14] and
boolean partitioning [7] would keep separate the different execution traces com-
ing from the conditionals on flag1 and flag2 in Fig. 1. One downside is that
code 1 may need to be analyzed twice, and code 2 up to four times. To avoid a
blow-up in analysis time, the analyzer would need to reuse some parts of previous
analyses. However, this requires a modular analysis and significant implementa-
tion efforts. Also, traces should be merged when it is no longer useful to keep
them seperate. Syntactic criteria need to be used to detect such merge points.
Conversely, trace partitioning can be used to unroll loop symbolically, something
our approach does not handle. Predicate abstraction [11] would propagate a sin-
gle fact along all execution paths, but this fact may be arbitrarily complex. In
particular, the predicate is found incrementally, and refined until it is sufficient
to guarantee the property under consideration. In our example, the predicate
would likely link flag1, fd1, flag2 and fd2. Using this approach, [10] shows
how to transform any existing dataflow analysis into a predicated one, the pred-
icates being found by successive refinement iterations. Still, finding the proper
predicate may be abitrarily complex, resulting in hard to predict analysis times.
Also, the refinement phase requires decidable theories and powerful decision pro-
cedures to find the counter-examples from which the predicate is deduced. We
instead chose to limit ourselves to first-order predicates relating the conditionals
present in the program.

The remainder of this paper is organized as follows. First, Sect. 2 introduces
our language, simplified for the sake of illustration. Section 3 defines predicated
domains and explains how to build a predicated analysis over a standard dataflow
analysis, which we further improve in Sect. 4. Sect. 5 describes two domains that
we used to validate our framework. Then, Sect. 6 presents the experimental eval-
uation of our practical implementation. Finally, Sect. 7 draws some conclusions.

2 A Generic Abstract Interpretation Based Framework

Our static analysis is based on abstract interpretation [5,6], and handles the
whole C language. However, for the sake of brevity, we only present here a toy
language. Abstract interpretation links a very precise, but generally undecidable,
concrete semantics, to an abstract decidable one – the abstract semantics being
a sound approximation of the concrete one. This section first defines the syntax
of our toy language, then its concrete and abstract semantics.

Syntax. Figure 2 presents the syntax of our language. Programs operate over
a fixed, finite set of variables V whose values belong to an unspecified set V.

Improving Static Analyses of C Programs with Conditional Predicates 143

e ∈ exp ::= x x ∈ V
| v v ∈ V

| e � e
c, p ∈ C ::= e | ¬c | c ∧ c | c ∨ c

i ∈ stmt ::= x := e
| c �

P ∈ prog � P(N× stmt× N)

Fig. 2. Syntax of our language

Expressions are either variables, constants, or the application of a binary oper-
ator � to expressions. We stratify expressions and conditionals, the truth value
of an element of V being given by a mapping T from V to booleans. Statements
are either assignments, or assume filters that halt execution when the condition
does not hold. A program is represented by its control-flow graph where nodes
are integer-numbered program points and edges are labelled by statements. By
convention, the program starts at node 0. Encoding standard program constructs
such as if or for in such graphs is immediate and not detailed in this paper.
For clarity, we write our examples using a C-like syntax.

Concrete Semantics. A concrete state of the program at a node n of its control-
flow graph is described by an environment ρ ∈ VV assigning a value to each
variable. The semantics �e�ρ (resp. �c�ρ) of an expression e (resp. a condition c)
is its evaluation in the environment ρ, and implicitely depends on the evaluation
of the operators �.

Our concrete semantics maps each program node n to the set S (n) of all pos-
sible environments at this point; hence our semantics is a function in P

(
VV) N.

The semantics �i� of a statement i is a transfer function over a set of states,
described in the first equalities of Fig. 3a. After an assignment on x, x is bound
in the new states to the evaluation of the expression. Assume filters block evalu-
ation, only allowing states in which the condition holds. The concrete semantics
of the entire program P is then the smallest solution of the rightmost equations
of Fig. 3a.

Abstract Semantics Abstract interpretation based analyses rely on an abstract
domain L, whose computable elements model a set of concrete states at a given
program point. Such abstract domains must provide:

– a partial order �L according to the precision of abstract states,
– a monotone concretization function γL from L to P

(
VV), linking the ab-

stract states to the concrete ones,
– greatest and smallest elements �L and ⊥L, such that γL(�L) = VV and

γL(⊥L) = ∅,
– sound approximations !L and "L of union and intersection of concrete states,

– sound abstract transfer functions �i��L from L to L that approximate the
concrete semantics.

The correction theorems for the soundness of the abstract semantics are stated
in the leftmost column of Fig. 3b. The abstract semantics is the least solution
of the system of equations in the rightmost column. The soundness properties

144 S. Blazy, D. Bühler, and B. Yakobowski

(a) Concrete semantics

�x := e� (S) � {ρ [x �→ �e�ρ] | ρ ∈ S}
�c �� (S) � {ρ | ρ ∈ S ∧ T (�c�ρ) = true}

S (0) � VV

S (n) �
⋃

(m,i,n)∈P

�i� (S (m))

(b) Abstract semantics
γL(L) = VV

γL(l1) ∪ γL(l2) ⊆ γL(l1 �L l2)

�i� (γL(l)) ⊆ γL(�i��L (l))

S
�
L (0) � 	L

S
�
L (n) �

⊔
L

{
�i��L

(
S
�
L (m)

)
| (m, i, n) ∈ P

}
Fig. 3. Concrete and abstract semantics

ensure that any solution is a correct approximation of the concrete semantics.
In practice, such systems are solved by iterative data-flow analysis [13,2].

Lemma 1. All behaviors of the concrete semantics are captured by the abstract

one. That is, ∀n ∈ P, S (n) ⊆ γL
(
S
�
L (n)

)
We also define an operator called deps from expressions to sets of variables
P(V), that will be useful when computing memory footprints. deps (e) is the set
of variables on which the evaluation of e depends. On our toy language, this
is the set of variables syntactically present in e. However, in a language with
pointers, deps (e) usually depends on the current program point.

3 Predicated Analyses

This section presents our predicated analysis. We first define the domain that
will represent its abstract states, then the transfer function on statements.

3.1 Predicated Domains

Our analysis derives a predicated analysis on top of an abstract domain L. The
additional information is two-fold. First, we add a boolean predicate c ∈ C,
called the context, standing for a set of facts that we know to hold at the current
program point. Second, we add a mapping I from predicates in C to elements
of L, called a map. Maps stand for implications from guards to values; hence
they contain information that are conditional : I(p) = l implies that l is a correct
approximation of the state as soon as p is verified. We use the syntax λp.l to
denote maps, and write 〈p → l〉 for a value l guarded by a predicate p.

We say that 〈p → l〉 is trivial when l = �L, as the value �L brings no in-
formation whatsoever. In order to have a decidable semantics, we restrict our-
selves to maps in which all but a finite number of implications are trivial. To
guarantee that our inclusion operator is antisymmetric, we only consider pairs
of a context and a map in which implications that contradict the context or
are redundant with another (stronger) implication are trivial. Formally, for any

Improving Static Analyses of C Programs with Conditional Predicates 145

	pred � (true, λp.	L)

⊥pred � (false, λp.	L)

(c1, I1) �pred (c2, I2) � c1 ⇒ c2 ∧ ∀p ∈ C, (c1, I1) � 〈p → I2 (p2)〉
(c, I) � 〈p → l〉 � ¬ (c ∧ p) ∨ (∃p′, p ⇒ p′ ∧ I(p′) �L l

)
(c1, I1) �pred (c2, I2) � canonize (c1 ∨ c2 , λp. (l∪ (p) �L l1 (p) �L l2 (p)))

where

⎧⎪⎨
⎪⎩

l∪ (p) =
�

L {I1(p1) �L I2(p2) | p ≡ p1 ∧ p2}
l1 (p) =

�
L {I1(p1) | p ≡ ¬c2 ∧ p1}

l2 (p) =
�

L {I2(p2) | p ≡ ¬c1 ∧ p2}
γpred (c, I) � {ρ | �c�ρ ∧ ∀p ∈ C, �p�ρ ⇒ ρ ∈ γL (I(p))}

Fig. 4. Definition of Lpred, the predicated domain over L

p ∈ C, a pair (c, I) must verify respectively ¬(p ∧ c) ⇒ (I(p) = �L) and
∀p′ ��≡ p, (p ⇒ p′ ∧ I(p′) �L I(p)) ⇒ (I(p) = �L). A context and a map
that do not verify these last two properties can always be canonized into a pair
that does, by mapping the contradictory or redundant implications of I to �L.
We write canonize this operation. We call context-implication-map pair, ranged
over by Φ and abbreviated as CI-pair, a context and a map that verify all these
properties. CI-pairs will represent the abstract state of our predicated analysis.

We define Lpred, the predicated domain over L, as the set of CI-pairs equipped
with the operations of Fig. 4. �pred (resp. ⊥pred) denotes the most general (resp.
most restrictive) context. Both �pred and ⊥pred are made up of trivial implica-
tions only. CI-pairs are ordered by the relation �pred: (c1,I1) is more precise than
(c2,I2) when c1 is stronger than c2, and when (c1, I1) implies all the implications
of I2. This last property is defined using an auxiliary relation � stating that a
CI-pair verifies an implication. The relation (c, I) � 〈p → l〉 holds when either
p contradicts c, or there exists an implication of I stronger than 〈p → l〉.

Example 1. Consider the example of Fig. 5, where L is a basic interval domain.
The notation [i] stands for the singleton interval [i; i]. We write Φi for the state at
the end of line i, its context and non-trivial implications being shown in the two
rightmost columns. For instance, Φ3 maps the three variables assigned at lines 1-
3 to their respective values, under the true guard. The relation Φ7 �pred Φ8,
that relates the state at the end of the else branch and after the first condi-
tional, holds. First, the implications guarded by true and ¬c in Φ8 are implied
by the true-guarded implication of Φ7. Then, the implication guarded by c con-
tradicts the context of Φ7. Finally, all trivial implications of Φ8 are implied by
the corresponding one in Φ7.

Let Φ1 = (c1, I1) and Φ2 = (c2, I2) be two CI-pairs. The join !pred between
them is the smallest CI-pair whose context is implied by c1 and c2, and whose
implications are verified by both Φ1 and Φ2. Its context is simply c1∨c2. Within
the implication map, the operator l∪ combines implications of the two previous

146 S. Blazy, D. Bühler, and B. Yakobowski

1 x = 0 ;
2 y = 0 ;
3 v = 1 ;
4 i f (c) {
5 x = v ;
6 } else {
7 y = v ;
8 }
9 w = 0 ;

10 i f (c) {
11 c = 2 ;
12 }

line
Φline: state after the statement

context implications

3 true true �→ v ∈ [1], x ∈ [0], y ∈ [0]

5 c true �→ v ∈ [1], x ∈ [1], y ∈ [0]

7 ¬c true �→ v ∈ [1], x ∈ [0], y ∈ [1]

8
c ∨ ¬c ≡
true

true �→ v ∈ [1], x ∈ [0, 1], y ∈ [0, 1]

c �→ v ∈ [1], x ∈ [1], y ∈ [0]

¬c �→ v ∈ [1], x ∈ [0], y ∈ [1]

9 true

true �→ v ∈ [1], w ∈ [0], x ∈ [0, 1], y ∈ [0, 1]

c �→ v ∈ [1], w ∈ [0], x ∈ [1], y ∈ [0]

¬c �→ v ∈ [1], w ∈ [0], x ∈ [0], y ∈ [1]

10 c true �→ v ∈ [1], w ∈ [0], x ∈ [1], y ∈ [0]

11 true true �→ v ∈ [1], w ∈ [0], x ∈ [1], y ∈ [0], c ∈ [2]

12 true
true �→ v ∈ [1], w ∈ [0], x ∈ [0, 1], y ∈ [0, 1]

c �→ v ∈ [1], w ∈ [0], x ∈ [1], y ∈ [0], c ∈ [2]

Fig. 5. Example of an analysis using a predicated interval analysis

maps: the L-join of values present under guards p1 and p2 respectively of Φ1

and Φ2 is kept under the new guard p1 ∧ p2. Conversely, the operators l1 and
l2 preserve the values only present in Φ1 or Φ2 respectively. A value valid in Φ1

under a guard p1 may be present in the join provided that the new guard negates
c2 (so that Φ2 also verifies the implication) – resulting in the guard ¬c2 ∧ p1.
Values present in Φ2 are likewise present under guards that negate c1. Note that
this additional information from Φi is thrown away if all guards p∧¬cj contradict
the new context, i.e. whenever ci ⇒ cj .

Example 2. Consider again Fig. 5. We have Φ8 = Φ5 !pred
Φ7. The value implied

by true in Φ8 comes from the operator l∪, and is equal to I5(true)!L I7(true).
Conversely, the value implied by c comes from the operator l1, which negates the
context of Φ7; furthemore, the value is exactly Φ5(true). Note that the intervals
inferred in Φ5 and Φ7 are entirely retained, guarded by the negations of the
converse contexts; no information is actually lost.

Finally, the concretization γpred (c, I) of an element of the predicated domain is
the set of states wherein c is true and all implications of I are valid.

3.2 Abstract Transfer Functions

We now define in Fig. 6 our abstract semantics for statements in Lpred. The gist
of the analysis is to apply the transfer functions of L to each of its elements in
the map, which is carried out by the lift function, while new implications will
be created by !pred for values that are present in only one branch at a junction
point. However, to remain sound, we also need to invalidate predicates (either
in the context or in a guard) whose truth values are possibly modified by a
statement. Following standard dataflow terminology, we define a kill operator,

Improving Static Analyses of C Programs with Conditional Predicates 147

lift (i, (c, I)) �
(
c, λp. �i��L (I (p))

)

kill (x, (c, I)) �

⎛
⎜⎜⎜⎜⎝

{
c if x /∈ deps (c)

true otherwise

λp.

{
I (p) if x /∈ deps (p)

	L otherwise

⎞
⎟⎟⎟⎟⎠

refine (h, (c, I)) � canonize
(
c ∧ h, λp.

�
L
{
I
(
p′
) | h ∧ p ⇒ p′

})
�x := e��pred (Φ) � lift (x := e, kill (x,Φ))

�c ���pred (Φ) � lift (c �, refine (c, Φ))

Fig. 6. Definition of the abstract semantics �.��pred
that removes contexts and implications depending on a certain variable x. This
operator is used after an assignment x := e, as it modifies the value of x.

While kill and lift used in conjunction are sufficient to define a sound abstract
semantics for Lpred, they never use the existing implications or enrich the context.
Yet, the join operation retains specific information of each branch only when they
have different non-true contexts. Thus, we define an operator refine that enriches
the context by a new predicate h ∈ C, supposed to be verified. This operator
also learns information by simplifying the map according to h. More precisely,
the valid value under a guard p is the L-meet of the elements implied by any
guard weaker than p ∧ h.

Within our abstract semantics �.��pred, there are two natural places where
refine may be used. First, after an assume statement c�, the predicate c holds by
definition. Second, after a statement x := e, the equality x = e holds (provided
the value of e does not depend on x). In practice, this second rule rapidly leads to
the creation of intractable contexts. Hence, we only enrich our states on assume
statements. Let us stress that any application of refine(h, ·) is sound, provided h
actually holds. Refining more or less aggressively results in a trade-off between
precision and complexity.

Example 3. At line 4 in Fig. 5, in the branches of the conditional, the operator
refine enriches the context according to the condition. After the conditional, the
context reverts to true due to the join between Φ5 and Φ7. Note that despite
the canonization, the join and the lift function duplicate the value of variables
v and w at line 8 and 9 respectively. At line 10, on a conditional with the same
condition c, the refine operator maps the true guard to I9(true)"LI9(c), as both
true and c are implied by the new context c. We have re-learnt the information
known about x and y at line 5. Meanwhile, the c guard becomes redundant with
the true one, while ¬c contradicts the context. Both implications are changed
to trivial ones by the canonize operator. On line 11, c is overwritten. Hence,
the context c is reset to true by the kill operator. Finally, upon exiting the
conditional, we lose the information coming from the else branch, as negating
the context true would result in a trivial implication, that would never hold.

148 S. Blazy, D. Bühler, and B. Yakobowski

But the information coming from the then branch is preserved under the guard
¬¬c ≡ c.

Lemma 2. Our predicated analysis over Lpred is sound.

γpred (Φ1) ∪ γpred (Φ2) ⊆ γpred
(
Φ1 !pred Φ2

)
�i� (γpred (Φ)) ⊆ γpred

(
�i��pred (Φ)

)
Moreover, we can state a stronger result, that links, at a program point n, the
abstract semantics of S�L with its equivalent S�pred for Lpred.

Theorem 1. Our predicated analysis is as precise as the non-predicated one.

∀n ∈ P, given (cn, In) = S
�
pred (n) , then In(true) �L S

�
L (n)

Of course, the predicated analysis can be more precise. As an example, on line 10
of the program of Fig. 5, the non-predicated analysis would have inferred the
value I9(true). Our own result – namely I10(true) – is much more precise.

4 Improving the Analysis

This section explains how to avoid computing guarded values that are needlessly
redundant, and details some strategies to decrease the complexity of our analysis.

4.1 Avoiding Redundant Values

As previously remarked in example 3, our analysis keeps within implications
more information than needed. Even though we avoid redundant implications
in the map, some values of L may encode information partially present under
weaker guards. Furthermore, the transfer function of the underlying domain may
be costly and it is applied to every element of L in the map. In order to decrease
the practical complexity of the predicated analysis, we require two additional
features from the underlying domain L.

1. A more lightweight transfer function �i, p��L×C over statements i, parame-
terized by the predicate p that guards the processed value. This way, the
analysis can be more precise on the true guard only and avoids the duplica-
tion of new information. Thus, �i, true��L×C may be defined as �i��L, while
�i, ·��L×C applied to a non-true guard should be defined as a very imprecise
operation, that only guarantees the soundness of the analysis on L. For-
mally, we only require �i, ·��L×C to be an over-approximation of �i��L. The
lift operator is then redefined as

lift (i, (c, I)) �
(
c, λp. �i, p��L×C (I (p))

)

Improving Static Analyses of C Programs with Conditional Predicates 149

3 . . .
4 i f (c) {
5 x = v ;
6 } else {
7 y = v ;
8 }
9 w = 0 ;

10 . . .

line context implications after the statement

8
c ∨ ¬c ≡
true

true �→ v ∈ [1] ;x ∈ [0, 1] ; y ∈ [0, 1]

c �→ x ∈ [1] ; y ∈ [0]

¬c �→ x ∈ [0] ; y ∈ [1]

9 true

true �→ v ∈ [1] ;w ∈ [0] ;x ∈ [0, 1] ; y ∈ [0, 1]

c �→ x ∈ [1] ; y ∈ [0]

¬c �→ x ∈ [0] ; y ∈ [1]

Fig. 7. Analysis of Fig. 5 with factorization

2. A difference operation \L that discards information already contained in
another element of L, that we use to simplify implication maps. Ideally,
a \L b should be as large as possible, while retaining all the information of a
not already present in b. To be sound, we require a �L a \L b. We define an
operator reduce, that simplifies each implication by all the values mapped to
weaker guards, and we use it whenever we need to canonize a map (i.e. after
a join or a refinement).

reduce (I) � λp. I (p) \L
(�

L {I (q) | p ⇒ q, p �≡ q}
)

canonize′ (Φ) � reduce (canonize (Φ))

These two operators may lose a lot of information; ideally, they would just keep
the values that the non-predicated analysis fails to compute.

Example 4. Let us come back to the example of Fig. 5, improved in Fig. 7. When
joining the values coming from lines 5 and 7, the reduce operator removes under
the guards c and ¬c the information about v, which is already present under the
weaker guard true. In parallel, after line 9, the modified lift operator does not
apply the full interval analysis to the values guarded by c and ¬c. Instead, we
use a simpler abstraction, that only removes information about variables that
are overwritten. This way, the information about w is no longer duplicated.

4.2 Convergence of the Analysis and Practical Complexity

Throughout the analysis of a given program, all guards of non trivial implications
present in a map are derived from the conditionals of the program, so their
number remains finite. In practice, this number can be high; we discuss a possible
way of limiting it in Sect. 6. The predicated analysis essentially amounts to
performing the underlying analysis over the values under each guard (except for
the refine operations, which allow us to be more precise). Thus, if the underlying
domain provides (or requires) a widening operator to effectively compute the
fixpoint, then it can (and should) be lifted as well. Finally, if the underlying
transfer functions are monotonic, so are the predicated ones, which ensures the
termination of our analysis.

150 S. Blazy, D. Bühler, and B. Yakobowski

Some operators of the abstract semantics may seem costly to compute, but
efficient implementations or simpler operators can mitigate this. For instance, at
a junction point of the control-flow graph, Φ1 !pred Φ2 creates fresh implications
through the operators l1, l2 and l∪ (Fig. 4). Both l1 and l2 only traverse one
map once. On the other hand, l∪ requires |Φ1| × |Φ2| operations, where |Φ| is
the number of non trivial implications in Φ. However, any implication 〈p → l〉
that held before the control-flow split (and that has not been invalidated since)
still exists in Φ1 and Φ2, and will exist in the join. Then, any implication of
the form 〈p ∧ p′ → l !L l′〉 is redundant with 〈p → l〉 and does not need to be
considered. An optimized implementation should thus consider only the subparts
of the maps that are distinct. In order to further speed up the analysis, we can
also use a more approximate join, that keeps only implications 〈p → l1 !L l2〉
such that 〈p → l1〉 ∈ Φ1 and 〈p → l2〉 ∈ Φ2.

The refine and reduce operators alter the values guarded in the implications,
w.r.t. the context (for refine) and weaker guards (for reduce). Nevertheless, the
value under the true guard is quite special, as it is the broadest one. We can
define easier to compute versions of these operators, at the expense of precision.
They only refine the value under true, and reduce other values accordingly:

reduce (I) � λp. I (p) \L I (true)

refine (h, (c, I)) � canonize′
(
c ∧ h, I

[
true �→

�
L {I (p) | h ⇒ p}

])
5 Applications

This section describes the two abstract domains on which we have instanciated
a predicated analysis in the Frama-C platform. Note that our framework could
also be applied to other domains, e.g. intervals or the “valid file descriptors”
domain used for Fig. 1.

5.1 A First Abstract Domain: Initialized Variables

A first simple domain retains at each progam point the set of variables that were
properly initialized. Our experiments on a generated C code, where initialization
of variables happens far before their uses, showed that this domain is very useful.
In the abstract semantics of this domain, we introduce a new default value ∅ in
V, to which all variables are equal at program entry (i.e. S (0) � {λx.∅}).

γinit (V) = {ρ | ∀x ∈ V, ρ (x) �= ∅}

�x := e��init (V) =

{
V ∪ {x} if deps (e) ⊆ V

V \ {x} otherwise

�c ���init (V) = V

deps (x := e) � deps (e)

deps (c �) � deps (c)

The execution of a statement is correct when all the involved variables are
initialized. We extend deps to instuctions: deps (i) denotes the set of variables
the statement i depends on. Then, a program P is correct according to this
initialized semantics when ∀ (n, i,m) ∈ P, deps (i) ⊆ S

�
init (n).

Improving Static Analyses of C Programs with Conditional Predicates 151

�c �, p��eq×C (E) �
{
E ∪ {e1 = e2} if p ≡ true and c = (e1 = e2)

E otherwise

�x := e, p��eq×C (E) �
{
killeq (x,E) ∪ {x = e} if p ≡ true and x /∈ deps (e)

killeq (x,E) otherwise

killeq (v,E) � {(a = b) ∈ E | v /∈ deps (a) ∧ v /∈ deps (b)}
E \eq F � {(a = b) ∈ E | (a = b) /∈ F}
γeq (E) � {ρ | (a = b) ∈ E ⇒ �a�ρ = �b�ρ}

Fig. 8. Abstract semantics for the equality domain

5.2 A Second Abstract Domain: Equalities

Our experiments also relied on a symbolic domain tracking equalities between
C expressions. It aims at enhancing the precision of Frama-C’s existing value
analysis plugin, whose abstract domains are non-relational. Our intents are also
somewhat similar to those of Miné [12], in particular abstracting over temporary
variables resulting from code normalization. Our equality domain boils down
to retaining equalities stemming from assignments or equality conditions. Its
formal definition is presented in Fig. 8, where the set E of equalities increases
on equality assume statements, and on assignments that do not refer to the
variable being modified. To be sound, the transfer function on assignments must
also remove equalities that involve the overwritten variable, through the killeq
operator. Following Sect. 4.1, we present simplified transfer functions, for which
only the true guard is enriched, and in which the operator \eq can be used to
remove redundant equalities.

This domain lends itself to a natural extension of our analysis, namely the
strengthening of the context by backward-propagating information from L when
modifying the context. For example, the equalities can be used to quotient the
context by equal expressions. Furthermore, during the weakening of a context –
when the truth value of one of its litterals is modified – we may substitute the
litteral by an expression equal to it, instead of resetting the context.

i f (p) {
. . .
h = e ;

} else {
h = 0 ;

}
i f (h)

. . .

Fig. 9. Code pattern

Moreover, we were faced with code patterns similar
to the one presented in Fig. 9, in which the condition
of a branch is defined within a previous one – resulting
in an implicit dependency between the two conditions
h and p. To handle this pattern, we extend refine so
that, when computing refine (h, (c, I)) with I contain-
ing 〈p → (h = 0)〉, then we also add ¬p to the new
context.

Thus, imprecision in the refinement of contexts can
be reduced by crossing information between underly-
ing and predicated domains.

152 S. Blazy, D. Bühler, and B. Yakobowski

0

100

200

300

400

500

0 1 2 3 5 10

in
it
ia
li
ze
d
a
ss
er
ti
o
n
s
to

b
e
va

li
d
a
te
d

size of predicates (context and guards)

slevel = 1
slevel = 100

slevel = 1000

slevel
assertions

to be validated
initialization
assertions

validated assertions/clevel

1 2 3 5 10

1 632 439 225 267 296 305 308 6.4s

10 600 409 199 241 270 279 282 9.8s

100 504 315 166 198 223 235 236 38s

1000 430 243 121 142 160 169 172 502s

6s 9s 15s 24s 116s time

Fig. 10. Experimental results

6 Experimental Results

We have integrated our predicated analyses framework as a new plugin of the
Frama-C platform. This plugin runs above the value analysis plugin (abbrevi-
ated as VA), which we mainly use to get aliasing information on pointers. This
information is needed to ensure the soundness of the deps operator.

Perimeter of our Analysis. At each program point where it cannot guarantee the
absence of run-time error, VA emits as an alarm an acsl assertion that excludes
the failure case. These alarms may correspond to real bugs, if the statement can
give rise to an error at execution time, or may be due to a lack of precision. To
limit imprecisions caused by junctions in the control-flow graph, VA implements
an instance of trace partitionning, and propagates separately multiple abstract
states coming from different branches. As dissociating every feasible execution
path leads to untractable analyses, the number of parallel states maintained by
VA is limited but configurable by the slevel parameter. Still, high slevel values
may lead to high analysis time.

Using a predicated analysis over a simple domain to prove some of the acsl

assertions emitted by VA can avoid this blow up. By construction, we mainly

Improving Static Analyses of C Programs with Conditional Predicates 153

improve VA’s results on successive assume statements with identical conditions1.
Although such pattern is relatively unusual in idiomatic C code, it is much more
frequent in generated programs, for which our method is well adapted.

Some generated programs can include a very large number of nested condi-
tional branchs and loops, leading to overly wide contexts in our own analysis. To
avoid a complexity explosion, we limit the number of litterals in the predicates
used in contexts and guards (thereby decreasing the precision of our results),
according to a parameter clevel. Conversely, our prototype implements a precise
version of the abstract semantics operators presented in Sect. 3, without the
relaxations proposed in Sect. 4.2.

Results. We tested our plugin on a C program of 5000 lines generated by the
industrial environment scade, devoted to real-time software. As often with such
codes, multiple conditionals are heavily used – typically to test automata states
or clocks. Our results are presented in Fig. 10. We first applied VA, which emitted
various assertions to further validate (column 2). As expected, a higher slevel
results in fewer alarms. Between 55% and 70% of those are assertions requiring
variables to be properly initialized (column 3), which are those our underlying
domain understands. We then ran our predicated analysis, instantiated by the
domain presented in Sect. 5.1, with different limits for the size of predicates
(columns “validated assertions”). The last column indicates the analysis time of
VA, while that of the predicated analysis is given in the last line.

While VA produces significantly less alarms with a higher slevel, its anal-
ysis time also increases drastically. This is unsurprising, as fully partitioning
for k successive conditionals may require as much as 2k distinct states. On the
other hand, our plugin is effective to quickly validate numerous assertions left
unproven by VA, even with strongly limited predicates. The precision of our
analysis increases rapidly with the clevel parameter, while the analysis times re-
mains reasonable. More generally, it turns out that small contexts are sufficient
to retain most of the relevant information: less assertions remain to be validated
with clevel = 1 and slevel = 1 than with clevel = 0 and slevel = 1000. Intuitively,
even inside deeply nested conditionals (which generate complex contexts), only
the more recent guards are useful. In general, our results show that it is much
more cost efficient to increase the clevel parameter than the slevel parameter.

7 Conclusion

This work provides a generic framework to enhance the precision of standard
dataflow analyses. This framework constructs a derived predicated analysis able
to mitigate information loss at junction points of the control-flow graph, by
retaining the conditional values about each branch. Our analysis strives to min-
imize redundant information processing due to these disjunctions. Experimental
tests led through the static analysis platform Frama-C on generated C code
showed that a predicated analysis over simple domains can significanlty improve
the results of prior analyses.

1 Modulo conjunction, disjunction and negation, but only over uninterpreted expres-
sions; in particular, x < y and y > x are not considered as being equivalent guards.

154 S. Blazy, D. Bühler, and B. Yakobowski

The litterals of our predicates are expressions that we currently consider as
opaque. In order to improve our analysis, we intend to give some meaning to
the operators in these expressions and to extend the logical implication between
guards accordingly. In particular, we will handle successive conditions on dis-
tinct but related expressions, such as (x ≥ 0) � and (x ≥ 2) �. Moreover, prior
syntactic analyses or heuristics could help to select relevant predicates for the
contexts, which would no longer be extended at each assume statement. This
would avoid maintaining implication guards that will never be useful again later
in the program. Finally, it would be worthwhile to apply our predicated analysis
over more complex abstract domains.

References

1. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Pre-
vosto, V.: ACSL: ANSI/ISO C Specification Language, Version 1.8 (2014),
http://frama-c.com/download/acsl-implementation-Neon-20140301.pdf

2. Bourdoncle, F.: Efficient chaotic iteration strategies with widenings. In: Pottosin,
I.V., Bjorner, D., Broy, M. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141.
Springer, Heidelberg (1993)

3. Chebaro, O., Cuoq, P., Kosmatov, N., Marre, B., Pacalet, A., Williams, N.,
Yakobowski, B.: Behind the scenes in sante: a combination of static and dynamic
analyses. Autom. Softw. Eng. 21(1), 107–143 (2014)

4. Correnson, L., Signoles, J.: Combining analyses for C program verification. In:
Stoelinga, M., Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 108–130.
Springer, Heidelberg (2012)

5. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977)

6. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4),
511–547 (1992)

7. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.:
Combination of abstractions in the ASTRÉE static analyzer. In: Okada, M., Satoh,
I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 272–300. Springer, Heidelberg (2007)

8. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C - A software analysis perspective. In: Eleftherakis, G., Hinchey, M., Hol-
combe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg
(2012)

9. Cuoq, P., Prevosto, V., Yakobowski, B.: Frama-C’s value analysis plug-in,
http://frama-c.com/download/value-analysis-Neon-20140301.pdf

10. Fischer, J., Jhala, R., Majumdar, R.: Joining dataflow with predicates. In: Wer-
melinger, M., Gall, H. (eds.) ESEC/SIGSOFT FSE, pp. 227–236. ACM (2005)

11. Graf, S., Säıdi, H.: Verifying invariants using theorem proving. In: Alur, R., Hen-
zinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 196–207. Springer, Heidelberg
(1996)

12. Miné, A.: Symbolic methods to enhance the precision of numerical abstract do-
mains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855,
pp. 348–363. Springer, Heidelberg (2006)

13. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis. Springer
(2005)

14. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst. 29(5) (2007)

http://frama-c.com/download/acsl-implementation-Neon-20140301.pdf
http://frama-c.com/download/value-analysis-Neon-20140301.pdf

Detecting Consistencies and Inconsistencies

of Pattern-Based Functional Requirements

Christian Ellen1, Sven Sieverding1, and Hardi Hungar2

1 OFFIS - Institute for Information Technology
Escherweg 2,26121 Oldenburg, Germany

<ellen,sieverding>@offis.de
2 German Aerospace Center - Institute of Transportation Systems

Lilienthalplatz 7, 38108 Braunschweig, Germany
hardi.hungar@dlr.de

Abstract. The formal specification of functional requirements can of-
ten lead to inconsistency as well as unintended specification, especially
in the early stages within the development process. In this paper, we
present a formal model checking approach which tackles both of these
problems and is also applicable during the requirements elicitation phase,
in which no component model is available. The presented notion of con-
sistency ensures the existence of at least one possible run of the sys-
tem, which satisfies all requirements. To avoid trivial execution traces,
the ”intended” functional behavior of the requirements is triggered. The
analysis is performed using model checking. More specifically, to reduce
the overall analysis effort, we apply a bounded model checking scheme.
If the set of requirements is inconsistent the method also identifies a
maximal sub-set of consistent requirements. Alternatively, a minimal in-
consistent sub-set can be computed. The approach is demonstrated on
a railway crossing example using the BTC Embedded Specifier and the
iSAT model checker.

Keywords: Formal Methods, Contract-based Design, Verification, Con-
sistency Analysis, Requirements Engineering.

1 Introduction and Related Work

The elicitation and formalization of requirements are very important steps in
today’s development processes of safety relevant embedded systems, especially
if they have to follow industrial standards like ISO26262[7]. In the early stages
of the development process, feedback on the consistency of the current set of
requirements can help to avoid (often costly) problems in later stages.

On the one hand, tools like the BTC Embedded Specifier 1 or the Require-
ments Quality Suite 2 can be used to support requirement engineers in the early
requirements elicitation phase, but do not offer a formal consistency analysis.

1 www.btc-es.de/index.php?idcatside=52
2 www.reusecompany.com/requirements-quality-suite

F. Lang and F. Flammini (Eds.): FMICS 2014, LNCS 8718, pp. 155–169, 2014.
c© Springer International Publishing Switzerland 2014

www.btc-es.de/index.php?idcatside=52
www.reusecompany.com/requirements-quality-suite

156 C. Ellen, S. Sieverding, and H. Hungar

On the other hand, several different notions of consistency for requirements
have been formally defined (e.g., [6,4,1]). These often require explicit knowledge
of the system architecture (component model) or can only be applied by spe-
cialists in formal methods.

Within this paper, we are bridging this gap by: Defining a sound general
notion of the consistency of functional requirements, namely existential consis-
tency, instantiating this notion with the semantics of the BTC Pattern language
[3], and fully integrate the analysis within the Embedded Specifier. Our goal
is to provide the consistency information directly accessible to the requirement
engineer, without the need of special training. In addition, the analysis avoids
trivial consistency results by taking into account the “intended” behavior of the
patterns.

Since our analysis is a formal analysis method, scalability is a important factor
for its applicability. This is addressed by using a bounded model checking (BMC)
procedure based on the state-of-the-art constraint solver iSAT [5]. The presence
of false-inconsistency results (esp. in large numbers) due to the incompleteness of
the BMC approach may lead to a lower industrial acceptance of the approach.
Therefore, we address this issue by defining a automated procedure to detect
guaranteedmaximal consistent sets of requirements as well as a second procedure
to detect a guaranteed minimal inconsistent set of requirements.

In this paper, we use parts of the railroad crossing system, developed by
Leveson [8], as a running example throughout the paper to demonstrate our
approach. This example is usually used to demonstrate real time analysis or
correctness checks. The idea behind this the scenario is as follows:

As soon as a train approaches the crossing, the gate has to close. If the gate is
closed, the train is allowed to enter the crossing. When the train finally leaves the
crossing area, the gate has to open again. The main safety goal for this scenario
is: Whenever a train is in the crossing area, the gate has to be closed.

For this paper, we use only the basic version of the crossing with only one
rail track and one gate. We will define formal functional requirements for this
scenario and perform the proposed consistency analysis on this system. It is
worth mentioning that we are only checking the consistency of the requirements
and not the correctness of the specification.

The article is structured as follows: Section 2 introduces the semantics of the
BTC Pattern language, Section 3 defines the formal basis on which the different
notions of consistency, see Section 4, are defined. Section 5 describes how the
analysis is integrated into the Embedded Specifier. The paper concludes with
Section 6.

2 BTC Patterns

We choose to use the commercial tool BTC Embedded Specifier to demonstrate
our approach. The Embedded Specifier provides its own requirement language,
to which we will refer as the “BTC patterns” throughout this paper. First,
we give an overview of the semantics of the BTC pattern, before we formally

Consistency Analysis 157

introduce them in Section 3. These BTC patterns [3] are structured templates
of the following strcuture:

<Activation mode> <Base Pattern> <Start-up Phase>

2.1 Base Pattern

The base patterns are structured text blocks which have a formal semantic,
but are close to natural language. They usually have a trigger and reaction
structure e.g.,P implies Q during next X steps. This base pattern specifies that
a property Q has to hold for the next X steps after a property P is satisfied.

The parameters P and Q of the pattern have to be instantiated using boolean
expressions (¬,∨,∧,⇒,⇔) over integer arithmetic literals (+,−, ∗, /, <,≤,=,≥
, >) and variables (called macros). By convention, a name of a macro starts
with a Dollar sign ($). In addition, a positive, non-zero integer value has to be
assigned to the parameter X .

The complete list of all patterns can be found in the documentation of the tool
[3]. The documentation also includes, for each pattern, an observer automaton
defining its semantics.

2.2 Start-up Phase

The start-up phase allows to model a delay after the start of a system. This can
be used to avoid side effects resulting from a not yet properly initialized system
state.

immediate The requirement must hold directly after the start of the system.
after N steps The requirement must hold after waiting exactly N steps.

after reaching R The requirement must hold one step after R occurs, but
R may not occur at all.

2.3 Activation Modes

The activation mode defines how a pattern is activated after the start-up phase
of the system.

init The requirements must hold for the first step of the system (after start-
up).

first The requirements must hold for the first occurrence of the trigger prop-
erty (usually P) if there is any occurrence.

cyclic The requirements must hold for multiple iterations of the pattern after
initialization. If the pattern is not active, it will be activated every time its
activation condition is valid. This explicitly excludes an activation of the
pattern if the last instance is not completed (iterative semantics).

158 C. Ellen, S. Sieverding, and H. Hungar

2.4 Example

For the railroad crossing system, we can use the base pattern, already mentioned
in Section 2.1, to model the procedure to close the gate. Whenever a train
enters the crossing and the gate is in an upright position (P = $TrainEnters
∧ $GateIsUp), the gate shall move down (Q = $GateMovesDown) for the next
five (X = 5) steps. We use the cyclic activation mode, because the gate shall
close every time a train enters. We do not have a start-up phase in the system,
we use immediate. The requirement for closing the gate again is of the same
structure. Both instantiated BTC pattern are shown in Table 1 with the ID P1
and P2 respectively.

Table 1. Railroad crossing pattern instantiations

ID BTC pattern

P1 cyclic P implies Q during next X steps immediate
P: $TrainEnters ∧ $GateIsUp
Q: $GateMovesDown
X: 5

P2 cyclic P implies Q during next X steps immediate
P: $TrainExit ∧ $GateIsDown
Q: $GateMovesUp
X: 5

P3 cyclic Q only after P immediate
Q: $TrainEnters
P: $TrainExit

P4 cyclic Q only after P immediate
Q: $TrainExit
P: $TrainEnters

We also need two additional requirements to model the constraint, that only
one train at the time is allowed to be within the crossing area. Therefore, we
choose to use the BTC pattern cyclic Q only after P immediate, which re-
stricts the ordering of occurrences of events. Requirement P3 in the Table 1
specifies that a new train is only allowed to enter, if the previous train has left.
P4 models, that a train can only exit after it enters the crossing before.

The predefined observer automaton in Figure 1 reflects the semantics of one
BTC pattern used for P1 and P2 in the example. It is based on a counter
automaton (similar to a Büchi state machine) and it accepts an input string,
if the error state is never reached. In case of this example pattern, as long as
no P occurs, the automaton is accepting the input within its initial state. If P
occurs, during the next max X steps Q has to hold and the parameter P is
ignored. In case, Q does not hold while in state 1 of the observer automaton, the
failure state – state 2 – is entered. Failure states are always sinks, which means,
whatever values P and Q will assume in the future, the automaton cannot reach
the fair state again.

Consistency Analysis 159

1

0

2 true

X := X + 1

P̄

Q and (X = max X − 1)P/

Q̄

Q and

X := 0

(X < max X − 1)/

cyclic P implies Q during next X steps immediate

Fig. 1. Example of the BTC pattern
modeling the process to close the gate
after a train approaches. The param-
eter of the pattern are as follows:

– P : $TrainEnters ∧ $GateIsUp
– Q : $GateMovesDown
– max X : 5

3 Trace and Pattern Semantics

Within this section, we formally define the semantics of functional requirements
by means of counter automatons and traces. A set of traces is grouped to a
specification for which the semantic is extended to address the intended behavior
of a requirement.

These general definition of the terms allows us to define the notions of con-
sistency and inconsistency (Section 4) independent of the semantics of the used
pattern language.

3.1 Traces and Formulas

In [4,6] the authors specify the semantic foundation of requirement contracts.
We restate the main definitions and assumptions.

Definition 1 (Variable, Requirement, Value, Time, Evolution)

1. X is a set of variables, X ∈ X, each with an associated type type(X). For
each type we assume a set of values Vtype

2. R(X) is a set of requirements over the variables among X

3. N0 is the domain of time, with i ∈ N0

4. An evolution εX of variable X is a function in εtype(X) ⊆ [N0 → Vtype(X)]
which associates to each point in time a value x ∈ Vtype(X). A prefix of an
evolution εtype(X)|u is a restriction of an evolution εx to points in time i ≤ u.

We use xi as a shorthand notation for the value x ∈ Vtype(X) at time i ∈ N0 of
a variable X ∈ X according to an evolution εX .

In the following w.l.o.g., we assume type to be either Boolean (0/1-Integer) for
the macros used in the patterns or positive Integer for time bound parameters.
A correct typing of the variables, with respect to the parameters of the pattern
at hand, is also assumed.

160 C. Ellen, S. Sieverding, and H. Hungar

Definition 2 (Trace). Given a set of variables X, the set S(X) of traces (or
sequences) for X, is the set of combined evolutions for the variables in X, s.t.:

S(X) =def {(X �→ εX)X∈X|εX ∈ εtype(X)}

A prefix (intial segment) of a trace σ ∈ S(X) is given by a bound k ∈ N0 and
consists of all the prefixes εX |k with X ∈ X. The set of prefixes of length k of
traces over X is denoted by Pk(X).

A trace σ ∈ S(X) represents an execution of a system modeled by the individual
evolutions of the system variables over time. The systems under investigation
are assumed to start at a point in time (i = 0) and run (in principle) indefinitely
long. Dependend on the selected verification procedure these unbounded traces
can be handled differently (e.g., by LTL model checking). In case of a bounded
model checking procedure, as it is applied in our implementation, finite prefixes
of these traces enter the picture. In our implementation the general concept of
requirements R is instantiated by means of BTC Patterns.

3.2 Pattern Semantics

As illustrated in the example in Sec. 2.4, the semantics of a pattern is given
by an automaton. In the following definitions, the propositional parameters of
the patterns are not instantiated, while the step parameters are already given
by natural numbers. The full instantiation is done afterwards by replacing all
parameters with boolean conditions over X.

Definition 3 (Counter Automaton)

1. A counter automaton A(Q) = (S,Q,W, T, I, F) over a set of parameters
Q consists of finite sets of states S, boolean parameters Q, counters W,
and transitions T . Each t ∈ T is labeled by a boolean condition cond(t)
on parameters and counters and disjoint sets of counters to be incremented
(inc(t)) and resetted (reset(t)). The counter conditions are of the form W ∼
n with W ∈ W, n ∈ N0 and ∼∈ {<,=}. The state I ∈ S is the initial state,
and F ∈ S is a failure state. The size |A| of A is the number of states, |S|.

2. A counter automaton is complete and deterministic if the conditions at the
set of transitions leaving a state are exhaustive and pairwise exclusive, and
the failure state has no transition leading to another state.

3. A run of a counter automaton is a trace σ ∈ S({s} ∪ Q ∪W) with s0 = I,
W0 = 0 for every W ∈ W, and for i ∈ N:

∃t ∈ T. si →t si+1 ∧ σi |= cond(t) ∧Wi+1 =

⎧⎨⎩
Wi + 1 c ∈ inc(t)
0 c ∈ reset(t)
Wi else

4. A run is accepting if ∀i ∈ N : si �= F . The semantics S(A(Q)) of a counter
automaton A(Q) is the set of its accepting runs, restricted to the evolutions
of elements of Q.

5. If W = ∅, the counter automaton is said to be propositional.

Consistency Analysis 161

The approach presented in the rest of the paper rests on the fact that counter
automata capture the semantics of patterns.

Proposition 1. The semantics of a pattern P(Q) is given by a complete and
deterministic counter automaton A(P(Q)). A trace σ over Q′ ⊇ Q satisfies P(Q),
denoted by σ |= P(Q), if σ|Q ∈ S(A(P(Q))).

Fig.1 shows an example automaton. Though the semantics of patterns is given
in terms of counter automata, counters can be eliminated. There is an equivalent
propositional automaton with 5 copies of the state “1” (the counter runs from
0 to 4.). This fact will be used later in completeness argumentations.

Proposition 2. Every counter automaton A is equivalent to a propositional au-
tomaton A′. I.e., there is a propositional automaton A′ s.t. S(A) = S(A′), with

|A′| ≤ |A| × ×
W∈W

(|W |+ 2)

, where |W | is the maximal value n ∈ N0 occurring in counter conditions over W .

Proof. Since counter values enter conditions only by comparisons to constants,
there is a maximal relevant value for each counter: The highest constant to
which it is compared. Therefore, only finitely many counter valuations (including
W = 0 and an artificial additional value for all values higher than the highest
constant) are relevant. These can be flattened out in the state set.

3.3 Specifications and Their Standard Semantics

In this article, specifications consisting of sets of patterns are considered.

Definition 4 (Specification). A specification C(X) consists of a set of instan-
tiated patterns {P1(X1), . . . Pm(Xm)} with Xi ⊆ X. The instantiation replaces the
boolean parameters of a pattern by boolean conditions over the variables. The se-
mantics of a specification is the intersection of the sets of accepting traces of the
automata defining the semantics of the patterns in the specification. A trace σ(X)
satisfies a specification, denoted by σ |= C(X), if the trace satisfies all patterns
modulo the instantiation.

Thus, a system complies to the specification if it satisfies all patterns, i.e., if
its traces are a subset of the intersection of all trace sets of the patterns. This
can be reflected on the level of automata by the usual synchronous product of
automaton.

Proposition 3 (Synchronous Product). 3 Let {Ai|i = 1 . . . n} be a set of
counter automata. Then

S
(

n×
i=1

Ai

)
=

n⋂
i=1

S (Ai) , and

∣∣∣∣∣ n×
i=1

Ai

∣∣∣∣∣ = n×
i=1

|Ai|,

where × denotes the synchronous product of the automaton after renaming pa-
rameters and counters of the Ai to avoid name clashes.

3 Technical details of the construction are deferred to a more complete presentation.

162 C. Ellen, S. Sieverding, and H. Hungar

3.4 Intended Specification Semantics

For practical purposes, the pure logical view of the previous section will be
extended. If one looks at the example pattern (Fig. 1), the requirements engineer
will most likely intend the final system to have a trace where a train approaches
the crossing (“train enters” becomes true) while the gate is up. If this trace is
ruled out by some other patterns in the specification, this will most probably be
an error.

This observation gives rise to a definition of the intended semantics of the
patterns of a specification. Semantically, this relies on a labeling of automaton
states. Given a pattern and the automaton A(Q) = (S,Q,W, T, I, F) defining
its semantics, the activation of a trigger in the pattern corresponds to a subset
R ⊂ S, s.t. reaching a state in R corresponds to activating the relevant trigger.
In the example, one expects that there will be traces of the system where P
is triggered, so that the state labeled “1” is reached by some legal trace of the
system. In general, trigger activation might correspond to reach one of a set
of states, and if several triggers are to be activated, there are correspondingly
several state sets.

Definition 5 (Intended Semantics). Let a pattern with labeled triggers and
the correspondingly annotated counter automaton A,R with R = {R1, . . . , Rm}
be given. Then the intended semantics of the annotated pattern is the set of
traces of A originating in runs of A which meet each set in R at least once. I.e.:

SI(A,R) := {σ ∈ S(A)|∀i ∈ {1, . . . ,m}. ∃j. σ(s)j ∈ Ri}

The synchronous product from Prop. 3 can be lifted to annotated counter
automatons in an obvious way.

The reader may note that asking for activation of triggers changes the nature
of the game. Patterns by themselves define only safety properties in the techni-
cal meaning of this term in temporal logic. A safety property is characterized by
the fact that it is true for trace if and only if it is true for all its finite prefixes.
Activation of triggers adds an element of liveness to that. Thus, activation of
triggers cannot be captured by the automaton of Def. 3, and we need the addi-
tional concept of reaching states. An equivalent technical alternative consists in
specifying the required activations by additional (fair) automata. This is possi-
ble since the pattern automata are deterministic. Fig. 2 shows an example of a
simple trigger automaton.

Such trigger automaton could also model more complex behavior, i.e., some
pattern require P to hold for more than one step. For every pattern in the BTC
library a trigger automaton was defined, reflecting the “intention” of the specific
pattern.

Consistency Analysis 163

0

true

P̄

P

1

Fig. 2. Trigger automaton for the pat-
tern of Figure 1. The trigger requires P :
$GateOpen && $TrainEnters to be eval-
uated to true for at least one step. This
will force the requirement to execute its in-
tended behavior, i.e., to close the gate, at
least once.

Definition 6 (Trigger Requirements). A specification may have associated
additional trigger requirements. For specifications by BTC patterns C(X), there
is a standard set of trigger requirements C↑(X).

4 Consistency

In the context of requirements engineering and contracts, many different notions
of consistency are defined. Consistency can be analyzed for the relationship of a
contract to the interface of a component (e.g., [9]), to possible environments ([2]),
or purely between a set contracts (e.g., [1]). Our notion of consistency analysis
addresses the latter and is specialized for functional requirements. It checks if for
a given specification C(X) at least one trace over X exists. Within this section,
we define notions of such existential consistency.

4.1 Existential Consistency

For infinite traces the existence of at least one possible execution of a system
which fulfills all requirements of the specification C is defined as follows:

Definition 7 (Existential Consistency). A specification C(X) is existentially
consistent, denoted by cons(C(X)), iff there exists at least one trace σ ∈ S(X)
s.t. σ |= C(X)

This definition is weaker compared to other definitions of contract consistency
(e.g., [2,1]) in which C must hold for all possible traces over the input variables in
X. In contrast to these approaches, our method does not assume any underlying
component model of the system. It is applicable in an earlier design state in
which no component or architecture definition is available. Especially, neither a
definition of the components input and output variables, nor the interconnection
of components has to be defined. Our so called existential consistency is purely
based on observations of traces of different variables and the requirements defined
so far.

For the railroad crossing requirement in Figure 1, existential consistency is
given by a trace on which P never holds. On this trace the automaton will always
stay in the initial state. As already mentioned in the previous section, this trivial
solution does not reflect the “intended” behavior of the requirement. Thus, we
extend the notion of consistency to triggered existential consistency.

164 C. Ellen, S. Sieverding, and H. Hungar

Definition 8 (Triggered Existential Consistency). A specification C(X)
with associated trigger requirements C↑(X) is triggered existentially consistent,
denoted by cons↑(C(X)), iff the set C(X) ∪ C↑(X) is existentially consistent.

Applying this definition to the example requirement in Figure 1 together with
the trigger in Figure 2 yields a consistent trace on which the trigger condition
$TrainEnters ∧ $GateIsUp holds at least once. This forces the observer of the
requirement to leave the initial state and observe the “intended” behavior of
GateMovesDown for 5 steps.

4.2 Bounded Consistency

Some model checking techniques can deal with the verification of properties on
full (infinite) traces (e.g., Linear Temporal Logic (LTL) model checking). For
scalability reasons often techniques like bounded model checking (BMC) are
used, which consider only finite prefixes of traces. These methods are a priori
incomplete because of the boundedness of the prefixes. Applied to the existential
consistency problem, they might fail to discover inconsistencies due to their
limited search horizon.

Therefore, when using bounded existential consistency one has to determine
whether a finite witness prefix for bounded consistency ensures the existence of
a witness for general consistency. This holds, if the bounded prefix contains a
loop to a previously visited state (including counters) within the prefix.

Definition 9 (Loop). If C(X) is defined by BTC patterns, a prefix π of length
k of a trace σ is called a loop for C(X) iff there exists an i ∈ N0 with i < k s.t.
∀A(P(Q))∈ C(X) : si = sk ∧Wi = Wk ∧Qi = Qk.

The idea is that, as far as the patterns are considered, the state of the system
at time k is indistinguishable from the one at the beginning of the loop at
time i. Such a loop can then always be extended to a infinite run by iteratively
appending the evolution between i and k. Since the semantics is given by counter
automatons, this means that all counters and variables at time i must have the
same value as at time k and that the active states must be the same.

Based on this definition the notion of bounded existential consistency can be
defined.

Definition 10 (Bounded Existential Consistency). A specification C(X) is
bounded existentially consistent for a depth bound k, denoted by consk(C(X)), iff
there exists at least one prefix π ∈ Pk(X) s.t. ∀c ∈ C(X) : π |= c and π is a loop
for C(X).

Proposition 4. Bounded existential consistency implies existential consistency:

consk(C(X)) =⇒ cons(C(X))

Proof. Let consk(C(X)) with π0 |= C(X) and i ∈ N0 be the lower point in time
of the loop. Then, starting with j = 0, πj can be extended to a prefix πj+1

Consistency Analysis 165

by extension of πj with the partial evolutions εX |[i,k] within π0 of all variables
X ∈ X. By construction, πj+1 is a loop for C(X) and therefore cons|πj|(C(X)) ⇒
cons|πj+1|(C(X)). From Def. 9 follows |πj | < |πj+1| and therefore successive
application of the extension constructs a trace σ s.t. σ |= C(X). From Def. 7
follows cons(C(X)) for the trace σ.

To generalize this for the “intended” semantics, the definition of a loop has to
be extended to include the occurrence of fair states within the loop. Then, the
definition of bounded triggered consistency is straightforward.

Definition 11 (Bounded Triggered Consistency). A set of functional re-
quirements C(X) with associated set of trigger requirements C↑(X) is bounded
trigger consistent for a depth bound k, denoted by consk↑(C(X)), iff the set
C(X) ∪ C↑(X) is k-bounded existential triggered consistent.

Also in the case of triggered consistency, bounded consistency implies consis-
tency.

Proposition 5. Bounded triggered consistency implies existential consistency:

consk(C(X) ∪ C↑(X)) =⇒ cons(C(X) ∪ C↑(X))

Proof. This property relies on the fact that, in most general case, Büchi trigger
conditions for BTC patterns require triggers to be activated infinitely often. If
this happens on the cycle of the finite prefix, it will happen infinitely often on
the infinite trace constructed from that.

Since bounded (existential) consistency for a given depth bound k relies on
the runs of the counter automata on a finite set of parameter evolutions, this is
decidable.

Proposition 6. For a set of functional requirements C(X) with associated set of
trigger requirements C↑(X)and an arbitrarily given depth bound k, it is decidable
whether consk↑(C(X)) does hold.

The following theorem states that a depth bound can be computed which is
sufficient large so that bounded existential (triggered) consistency is guaranteed
to hold if the unbounded does so.

Theorem 1. Let C(X) be a set of functional requirements defined by BTC pat-
terns. Then bounds k1 and k2 can be computed s.t.

cons(C(X)) ⇒ consk1(C(X)), and
cons↑(C(X)) ⇒ consk2↑(C(X))

The proof of the theorem relies on the fact the BTC patterns can be defined
by propositional automata (Proposition 2). Essentially, one has to find a loop in
the product automaton combining all properties. Estimations on the size of the
bounds can be derived from studying the resulting graphs—states are vertices,
transitions are edges. The following proposition illustrates the principles which
can be applied here.

166 C. Ellen, S. Sieverding, and H. Hungar

Proposition 7. Given a directed graph with a distinguished initial vertex con-
sisting of n vertices, for any set V of vertices, which can be covered by one path
starting in the initial vertex, there is such a path of length at most n2.

Proof. The path covering V moves through the strongly connected components
(SCCs) of the graph. In an SCC of size m, to reach a particular vertex, there
is a path moving through a set of intermediate vertices (at most m − 1) and
ending in that vertex. At most m− 1 such paths are needed, to reach all states
except the initial one. These path can be combined into one path of length less
than m− 1 (number of paths) times m− 1 (number of nodes to be reached) plus
one (initial vertex)4. The paths covering the single SCCs are then connected by
pieces of length at most m− 1. This establishes n2 as a (not tight) bound.

Theorem 1 and the opposite implications from Proposition 4 and 5 imply de-
cidability of (triggered) existential consistency. As a further consequence, BMC
is indeed complete for checking (triggered) consistency of specifications given by
BTC patterns.

This theoretical result serves as a foundation of the practical method which is
developed in the subsequent section. Though a bound derived from Proposition 7
will be too large to be of much practical relevance, there is hope for tighter
bounds resulting from arguments which take the specific form of the pattern
automata into account. And also, one may look for approximation procedures
whith internal completeness checks.

The practical approach is intended to deal with specifications which will be,
at least in the beginning, inconsistent. If a set of requirements is consistent, an
analysis procedure can provide the prefix as witness trace of the consistency.
In case of an inconsistency result, such a witness does not exist. Therefore, it
is of interest for a practical application, which requirements form a maximal
consistent subset and which requirements are causes for the inconsistencies.

Definition 12 (Maximal Consistent Subset). A subset of functional re-
quirements D(X) ⊆ C(X) is called maximal consistent subset w.r.t. a notion of
consistency CONS ∈ {cons(·), consk(·), cons↑(·), consk↑(·)}, iff CONS(D(X))
and ∀c ∈ C(X) \ D(X) : ¬CONS(D(X) ∪ {c})

An analysis may check iteratively if there are subsets of sizes |C(X)| − i for
increasing i ∈ N if the analysis concluded that the full set of requirements is
inconsistent. In the context of early validation of requirements, the presence
of a high number of false inconsistency results due to the incompleteness of
the bounded consistency analysis is a problem. These can be reduced by further
increasing k up toKmax. If this procedure is applied to the example requirements
of Table 1, the presented set of requirements is indeed inconsistent for i = 0 and
consk↑(·). Setting i = 1 generates a maximal consistent subset {P1, P2, P3}
together with an witness trace which violates the requirement P4. It is easy to
see, that in this trivial example the requirements P3 and P4 are causing the

4 It is not hard to see that this bound can be tightened to �m/2� × (�m/2� + 1).

Consistency Analysis 167

inconsistency. Triggering P3 by observation of a TrainEnters signal will violate
P4 (which expects an TrainExit signal first) and vice versa. For large numbers
of requirements the root causes of the inconsistencies may be hard to detect,
especially if a interaction of multiple requirements is required. Therefore, we
define the notation of bounded existential inconsistency separately which tries
to identify minimal inconsistent subsets.

Definition 13 (Minimal Inconsistent Subset). A subset of functional re-
quirements D(X) ⊆ C(X) is called minimal inconsistent subset w.r.t. a no-
tion of consistency CONS ∈ {cons(·), consKmax(·), cons↑(·), consKmax↑(·)}, iff
¬CONS(D(X)) and ∀c ∈ D(X) : CONS(D(X) \ {c})

Using this definition, the consistency analysis may be performed iteratively for
all subsets of increasing size and even a bounded analysis can detect inconsistencies
without the occurrence of false negative results. In our example, the algorithmfirst
concludes that all sets of size 1 are consistent, which corresponds to the fact that
each single requirement is consistent on its own.When analyzing the sets of size 2,
the algorithm identifies the set {P3, P4} to be minimal inconsistent.

Both, the analysis for maximal consistent subsets and the analysis for minimal
inconsistent subsets may complement each other. An analysis for a feasible k
can compute a maximal consistent subset D(X) ⊆ C(X). If not D(X) = C(X), a
minimal inconsistent subset can be computed starting with the sets containing
one of the inconsistent requirements not in the maximal consistent subset.

Alternatively, if a minimal consistent subset of size i is computed first, a
subsequent consistency analysis with parameter i− 1 may be used to generate a
witness trace which violates a requirement and fulfills all other requirements. For
example, the identified inconsistent set {P3, P4} can be used in a consistency
analysis with i = 1. This will generate a witness trace which fullfills the intended
semantics of P3 and violates P4 or vice versa.

5 Tool Integration

To evaluate our approach, we prototypically implemented the bounded triggered
consistency analysis (Def. 11) using the satisfiability modulo theories (SMT)
solver iSAT [5,10] and integrated the analysis directly into the user interface
of the BTC Embedded Specifier. This enables the analysis to be used directly
during the requirements elicitation phase. After entering new requirements, the
analysis can be used for two purposes. First, it can check if the newly entered
requirement is consistent on its own (e.g., the parameters are instantiated cor-
rectly) or if it conflicts with already existing requirements. Second, the provided
witness trace for the new specification can be used for debugging purposes. Fig-
ure 3 shows a part of such an witness trace for one of our analysis runs on
the railroad crossing example. As discussed in the previous sections, the re-
quirements P3 and P4 are conflicting. The partial witness trace shows that by
observing $TrainExit in step 1 before TrainEnters in step 9 will violate P4.
The red marker at the end of the trace indicates that the model checker did not
investigate more than 15 steps.

168 C. Ellen, S. Sieverding, and H. Hungar

Fig. 3. Screenshot of the analysis results in the BTC Embedded Specifier. The maximal
consistent sub-set of requirements, the inconsistent requirements, as well as a part of
the witness trace are shown.

6 Conclusion and Future Work

Within this paper, we introduced the formal semantics for different notions of
consistency. These are based on general functional requirements which we defined
semantically as observable contracts over infinite traces and finite prefixes. As an
instance of such requirements, we demonstrated how the definitions can be used
to perform an existential bounded consistency analysis using the BTC Pattern
language. This analysis, as well as a procedure to compute maximal consistent
subsets has been implemented using the bounded model checker iSAT as a back-
end and has been fully integrated into the Embedded Specifier tool s.t. it may
support the users directly during the specification of a requirement. In general,
the analysis is applicable in early phases of the development process without
explicit knowledge of any system model apart form the available variables.

For future extensions, the consistency analysis could be lifted to a general
consistency analysis, in cases where more structural information of the system
at hand is available (e.g., components and their interfaces).

In addition, we plan to perform an evaluation of the applicability and the
performance of the procedures in larger industrial use cases.

Acknowledgments. The research leading to these results has received fund-
ing from the ARTEMIS Joint Undertaking under Grant Agreement N◦332830
(CRYSTAL) and German national funding from BMBF N◦01IS13001A.

References

1. Aichernig, B.K., Lorber, F., Ničković, D., Tiran, S.: Require, test and trace it.
Tech. Rep. IST-MBT-2014-03, TU Graz (2014), https://online.tugraz.at/
tug online/voe main2.getVollText?pDocumentNr=637834&pCurrPk=77579 (vis-
ited on: March 06, 2014)

https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=637834&pCurrPk=77579
https://online.tugraz.at/tug_online/voe_main2.getVollText?pDocumentNr=637834&pCurrPk=77579

Consistency Analysis 169

2. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Baptiste Raclet, J.,
Reinkemeier, P., Sangiovanni-vincentelli, A., Damm, W., Henzinger, T., Larsen,
K.: Contracts for systems design. Tech. rep., Research Centre Rennes – Bretagne
Atlantique (2012)

3. BTC Embedded Systems AG: BTC Embedded Validator Pattern Library, Release
3.6 (2012)

4. Damm, W., Hungar, H., Henkler, S., Stierand, I., Josko, B., Oertel, M., Reinke-
meier, P., Baumgart, A., Büker, M., Gezgin, T., Ehmen, G., Weber, R.: SPES 2020
Architecture Modeling. Tech. rep., OFFIS e.V. (2011)

5. Eggers, A., Kalinnik, N., Kupferschmid, S., Teige, T.: Challenges in constraint-
based analysis of hybrid systems. In: Oddi, A., Fages, F., Rossi, F. (eds.) CSCLP
2008. LNCS, vol. 5655, pp. 51–65. Springer, Heidelberg (2009)

6. Hungar, H.: Compositionality with strong assumptions. In: Nordic Workshop on
Programming Theory, pp. 11–13. Mälardalen Real–Time Research Center (Novem-
ber 2011)

7. International Standard Organization: Road Vehicles - Functional Safety (November
2011)

8. Leveson, N.G., Stolzy, J.L.: Safety analysis using petri nets. IEEE Transactions on
Software Engineering 13(3), 386–397 (1987)

9. Rajan, A., Wahl, T. (eds.): CESAR - Cost-efficient Methods and Processes for
Safety-relevant Embedded Systems. Springer (2013) No. 978-3709113868

10. Teige, T., Eggers, A., Fränzle, M.: Constraint-based analysis of concurrent proba-
bilistic hybrid systems: An application to networked automation systems. Nonlin-
ear Analysis: Hybrid Systems 5(2), 343–366 (2011)

Test Specification Patterns

for Automatic Generation of Test Sequences

Ugo Gentile1, Stefano Marrone2, Gianluca Mele1,
Roberto Nardone1, and Adriano Peron1

1 Università di Napoli “Federico II”, DIETI, Italy
{ugo.gentile,roberto.nardone,adrperon}@unina.it,

gianluca.mele@studenti.unina.it
2 Seconda Università di Napoli, Dip. di Matematica e Fisica, Italy

stefano.marrone@unina2.it

Abstract. Model Based Testing (MBT) enables automatic generation
of test cases using models to specify the system behavior and require-
ments. Key features of MBT approaches are the automation level and
the complexity of non-automated steps. Usually, test case generation is
supported by some automatic technique whereas modeling is manually
performed. UML statecharts or other extended finite state machine for-
malisms are widely used to build behavior models. To ease their develop-
ment, as well as the extraction of test cases from them, is an important
aspect to be addressed in order to perform testing activities with lower
skill, cost and effort. This paper aims at providing a contribution to
both the issues. Test Specification Patterns (TSPs) are proposed and
expressed by means of UML annotated statecharts as a mean to aid the
construction of models and build specifications on the base of well known
recurring problems and their solutions (patterns). In order to improve
usability and increase the automation level, a transformational approach
is defined which derives Promela code from specifications built by TSPs
composition and applies model checking to obtain test sequences by using
the SPIN model checker. The usage of TSPs and the test case generation
process is illustrated on a test scenario from the Radio Block Centre, the
vital core of the modern railway control systems.

Keywords: Test Specification Patterns, Test Case Generation, Model
Checking, Model Transformations, ERTMS/ETCS.

1 Introduction

As the complexity and the criticality of control systems increased, automatic
generation of test sequences became more and more relevant in achieving reduc-
tion of cost and development time, as well as a general improvement of product
quality. Testing generation approaches are mainly based on the use of model-
based techniques [10,14] and formal methods [4,27] which require high skilled
personnel in both modelling the system under test and defining test case speci-
fications. As an example, model checking is exploited for test case generation [9]

F. Lang and F. Flammini (Eds.): FMICS 2014, LNCS 8718, pp. 170–184, 2014.
c© Springer International Publishing Switzerland 2014

Test Specification Patterns for the Automatic Generation of Test Sequences 171

relying on the idea that counterexamples may be interpreted as test sequences.
Indeed, model checking is a well assessed approach for test sequence generation
in the context of Model Based Testing (MBT). In the last decade, Model Driven
Engineering has emerged as a leading methodology not only in the development
of software artifacts [26] and evaluation of quantitative system properties [21,3]
but also in supporting testing activities [20,13]. Scientific works mainly address
the definition of languages and methodologies for model development and test
case generation algorithms: at the best of our knowledge, few works focus on
test specification methods with the objective of reducing the complexity of the
modelling activity. The paper aims to fill this gap by defining a model-based ap-
proach to aid the test engineer in modelling test specifications. The work is part
of a wider research project addressing test case automatic generation through
model checking techniques. Specifically, Test Specification Patterns (TSPs) are
proposed as a way to build complex specifications relying on a well-known re-
curring problems and their related solutions (patterns).

In order to increase the automation level of the test case generation process,
a transformational approach that derives Promela never claims from the speci-
fications built by TSPs composition, is defined. A never claim is used to specify
a behavior that should never happen. It consists of propositions or boolean ex-
pression on the state of system and may be used to match either finite or infinite
behaviors. In the proposed approach SPIN model checker [12] is used to generate
counterexamples from never claims if the defined behavior (i.e. the specification)
is true. The steps of the generated counterexample represent the steps of a test
sequences.

In order to improve usability, the approach is empowered by model-driven
techniques: (1) the usage of the Verification & Validation (V&V) UML profile
allows for capturing both system and requirement features by a high level model;
(2) the usage of a model transformation chain enables the automatic generation
of Promela code from UML state machines annotated with V&V UML Profile
stereotypes. This work also extends the V&V UML profile and the transforma-
tion chain to support TSPs [7]. The usage of TSPs and the test case generation
process is illustrated on a test scenario from the Radio Block Centre (RBC), the
vital core of modern railway control systems.

The remainder of this paper is organized as follows. Section 2 sketches the
scientific and research background of our work. Section 3 introduces the Test
Specification Patterns and their representation by the V&V UML profile. Sec-
tion 4 describes how the Promela code is generated from TSPs. Section 5 contains
a brief description of the RBC system and illustrates the application of the test
sequence generation approach to this case study. Finally, Section 6 closes the
paper and provides some hints about future directions.

2 Background

In this Section, we provide some pointers to the context in which TSPs have
been developed. Moreover, a brief review of the related work is reported.

172 U. Gentile et al.

2.1 The CRYSTAL Project

The ARTEMIS Joint Undertaking project CRYSTAL (CRitical sYSTem engi-
neering AcceLeration) 1 takes up the challenge to establish and push forward
an Interoperability Specification (IOS) and a Reference Technology Platform
(RTP) as a European standard for safety-critical systems. CRYSTAL is strongly
industry-oriented and will provide ready-to-use integrated tool chains having a
mature technology-readiness level. To achieve technical innovation, CRYSTAL
developed a user-driven approach based on four pillars [23], the first of them is
to apply engineering methods to industrially relevant Use Cases from the auto-
motive, aerospace, rail and health sectors and increase the maturity of existing
concepts developed in previous projects on European and national level, like
CESAR 2 and MBAT 3. The work described in this paper was born in the rail
domain and specifically from the needs expressed by Ansaldo STS (ASTS), an in-
ternational transportation leader (Railway/Mass Transit). The overall objectives
of the work are: reduce validation and test effort, in particular the time needed
for the definition of system level tests. Previous steps addresses the definition of
both a model driven methodology and of a language for the specification of high
level formal models of critical systems. This paper focuses on the definition of
modeling guidelines to support the modeler in representing system aspects/re-
quirements, in particular by the introduction of the concept of Test Specification
Patterns (TSPs). TSPs are a way to easily create test specifications to be used
to automate the generation of test sequences.

2.2 V&V UML Profile and Test Sequence Generation

Previous work has been published in [7] and extended in [17]. This preliminary
work focuses on the development of a UML profile and a chain of model trans-
formations. The V&V UML profile is used to annotate UML state machine based
models which represent both the system behaviour and the test specification. The
V&V UML profile is organized into a set of packages, as shown in Figure 1(a).

Figure 1(b) exemplifies the usage of the V&V UML profile on the model of
a simplified car controller (CC) taken from [8]. The CC has two Boolean inputs
that represent the decision to accelerate or brake. Upon acceleration, the car
starts moving, with either slow or fast velocity. Upon braking the car immedi-
ately stops. Figure 1(c) shows a test specification representing the requirement
“When brakes are pressed a car must stop”. Since the V&V UML profile aims
at providing a unifying modelling framework for Verification & Validation (both
analysis and testing), it is built upon existing UML profiles, specifically the UML
Testing Profile (UTP) [22] and the MARTE-DAM profile4 [2]. The V&V UML
Profile stereotypes used throughout the paper are reported in Table 1.

1 http://www.crystal-artemis.eu/
2 http://www.cesarproject.eu/
3 http://www.mbat-artemis.eu/
4 MARTE-DAM stands for Modeling and Analysis of Real-Time and Embedded Sys-
tems - Dependability Analysis and Modelling.

Test Specification Patterns for the Automatic Generation of Test Sequences 173

V&V UML Profile

MARTE-DAM

Testing

UTP

(a)

(b) (c)

<<V&VState>>
STOP

<<V&VState>>
FAST

<<V&VTransition>> T1
 Brake==TRUE

<<V&VTransition>> T9
 Accelerate==TRUE

<<V&VState>>
FAST

<<V&VTransition>>
T8

Requirement description=’When brakes are

pressed the car must stop.’

System

Analysis

<<V&VBehaviour>>
CarController

<<V&VPropertySpecification>>
CarStop

<<V&VState>>
SLOW

<<V&VTransition>> T3
 Accelerate==TRUE

<<V&VTransition>> T4
 Accelerate==FALSE

<<V&VTransition>> T5
 Brake==TRUE

<<V&VTransition>> T8
 Brake==TRUE

<<V&VTransition>> T2
 Accelerate==FALSE

<<V&VTransition>> T7
 Accelerate==TRUE

<<V&VTransition>> T6
 Accelerate==FALSE

<<V&VState>>
STOP

Fig. 1. Overview of V&V UML Profile: top-level packages (V&V UML Profile) (a),
model of a car controller (b), property specification (c)

Table 1. Used stereotypes in the V&V UML Profile

Stereotype Inherits / Extends Tags: type

V&VBehaviour - / StateMachine requirements:
V&VRequirement[*]

V&VTestSpecification V&VPropertySpecification /
StateMachine

verifies: V&VRequirement[*]

V&VState BehavioralItem / Vertex

V&VTransition BehavioralItem / Transition

V&VTestCase V&VBehavior / StateMachine covers: V&VRequirement[*]

V&VBehaviour is used to represent the behaviour of a system; by means of
the tag requirements, it may provide the description of one or more requirements
expressed by natural language. V&VTestSpecification is used to specify the re-
quirement covered by the test sequence that must be generated. This information
is provided by the tag verifies. V&VState is used to represent a state of the sys-
tem under test inside a state machine annotated with the V&VBehaviour stereo-
type; transitions between states are tagged with the V&VTransition stereotype.
V&VTestCase is used to represent the test sequence generated by applying the
model transformation chain. It is also modeled by a state machine. The tag covers
specifies the requirement covered by the test sequence. The transformation chain
can be split into forward and backward transformation sub-chains. They both
consist of a model-to-model transformation and a model-to-text transformation.
The forward transformation (VVP2Promela) generates: (1) a Promela abstract

174 U. Gentile et al.

model, and (2) Promela code from the abstract model. Each state machine of
the system model is translated into a Promela process, whereas the state ma-
chine representing a test specification is translated into a Promela never claim
(the negated property). Then, the SPIN model checker is invoked in order to
generate a counterexample (i.e. one of the possible test sequences containing all
the steps needed to test the specified requirement). Finally, the backward trans-
formation is in charge of transforming the output of the model checker into a
test sequence expressed by V&V UML profile. The present paper starts from
this work and introduces the TSPs extending both the V&V UML profile and
the VVP2Promela transformation in order to support the patterns.

2.3 Specification Patterns

The research community on Requirement Engineering finds in the problem of the
requirement/specification patterns one of the most promising research trends [5].
In their work [6], Dwyer at al. define a set of patterns to define and reuse prop-
erty specifications for finite state verification where properties are specified with
temporal logics. Our approach is inspired by the Dwyer’s work but properties
are expressed by state-based models and translated into Promela never claims.
Notice that our test specification patterns apply to the specification of test cases
and deeply differ from “test patterns” or design patterns in software testing :
testing patterns are described for example in [1] and they are used to define
testing strategies; the work in [25] defines a set of testing patterns from classical
design patterns in order to find “recurring” errors.

Back to property specification patterns, some attempts to extend the work of
Dwyer at al. have been done: in [16] an extension to the specification of real-
time properties is introduced, while an extension to probabilistic properties is
described in [11]. Other meaningful approaches based on specification patterns
are introduced in [28] where Validation Patterns are defined for the verification
of embedded systems, and in [19] where specification patterns are used for a
run-time monitoring of the system behavior. Further research effort has been
spent in facilitating the application of specification patterns by the support of
software tools: SPIDER [15], PROPEL [24] and Prospec [18] are some examples.
With respect to the specification patterns, TSPs are oriented to a testing-based
form of verification. This feature is the main semantic difference between TSPs
and the specification patterns in [6].

3 TSPs Definition and Implementation

TSPs are a way to gather the previous and consolidated experiences in testing
and provide a set of guidelines for test specification. The sources considered for
the identification of the TSPs set proposed in this paper are: (1) requirement
specifications of critical systems5; (2) scientific literature (e.g., [6,29]). The set

5 In this phase of the work and due to the nature of the industrial use case, only
the ERTMS/ETCS specification has been considered, counting tens of functional
requirements.

Test Specification Patterns for the Automatic Generation of Test Sequences 175

of TSP that we are presenting below does not want to be exhaustive since they
are part of a work in progress.

TSPs have been divided into two categories and are listed in Table 2: (1) Con-
trol Patterns address properties related to the evolution of the system Related
concerns are parallelism, sequence and/or loops; (2) Data Patterns refer to the
management of data within the property to verify (e.g., set and evaluation of
variables inside the test specification).

In the following we intend for model elements both transitions and states and
for covering a model element respectively the passage through a transition and
the reaching of a state.

Table 2. List of Test Specification Patterns

Name Pattern

Control Patterns

Sequence It specifies an ordered sequence of steps of the test specification. A test
sequence generated according to this pattern must fulfill the step of the test
specification in the specified order.

Cover It specifies that a model element is covered at least once within a specific
point of the test specification.

NotCover It specifies that a model element is not reached before the fulfillment of the
following step of the test specification (within a specified Sequence).

Next It specifies that two model elements are reached in a close succession.

And It checks that two or more sub-steps are accomplished regardless of their
order.

DetChoice It allows to choose between two alternative sub-steps with respect to a con-
dition.

Memory It takes into account some alternative steps that, according to which step is
fulfilled, address the future steps of the test specification to fulfill.

Loop It specifies that a model element is reached for a defined number of times.

Any It allows to verify that at least one of the model elements specified within
this pattern is reached at least once.

Data Patterns

Test It tests the value of a variable (of the model of the systems or of the test
specification) to address a choice in the specification future behaviour.

Set It allows to assign the value of an internal variable of test specification.

Assert It waits until a variable assumes a specified value.

Extensions to the V&V domain model: Figure 2 shows the Testing and the Sys-
tem packages of the V&V domain model. The package Testing contains the sub-
package Specification and the package System contains the subpackages Structure
and Behavior6. With the respect to the previous version of the domain model,
the modifications due to the introduction of the TSPs are::

6 For sake of space, some edges in the Figure 2 (i.e. cover/not cover, assert/set) rep-
resent couples of distinct associations of the domain model.

176 U. Gentile et al.

– the introduction of the Property metaclass in the Behaviour subpackage:
by means of this class it is possible to associate an ExternalVariable of our
domain model to a BehaviouralItem;

– the substitution of the Partial and Full VerificationContexts into the Prop-
ertySpecification and TestCase classes. PropertySpecification models the test
specification state machine (i.e., the input to the automatic generation pro-
cess); TestCase models the output of the process (i.e., the state machine
representing the test sequence);

– the introduction of TestStep and TestTransition as the model elements con-
stituting the TestSpecification;

– the definition ofTestType enumeration, listing some kinds ofTestSteps (AND,
ANY, LOOP, etc.);

– the cover and not cover associations between TestStep and aBehaviouralItem
(system state and/or transition);

– the assert and set associations between TestStep and a Property ;
– the test association between TestTransition and Property.

In this context, a Test Specification Pattern can be specified as a TestSpecifica-
tion “template”. The composition relation between TestStep and TestSpecifica-
tionItem enables the construction of a TestSpecification by means of composition
of patterns. The formal definition of composition rules is a work in progress.

Testing

System

Structure

Behaviour

Specification

Behaviour

TestCase

PropertySpecification

TestSpecificationItem

TestTransitionTestStep

BehaviouralItem

StateTransition

Requirement

Component

ExternalVariable

implements

Property

performs

<<Enumeration>>

VariableType

<<Enumeration>>

VariableNature

<<Enumeration>>

TestType
TestSpecification

implements

cover

cover/notcover

assert/set

test

implements

verifies

source

destination

source

destination

Fig. 2. Extended V&V domain model

Extensions to the V&V UML profile: the constructs defined in the domain model
have been implemented as UML stereotypes and DataTypes in the V&V UML
profile. Table 3 describes the stereotypes newly added or modified by the intro-
duction of the TSPs.

There are threemain stereotypes and twodatatypes.TheV&VTestSpecification
stereotype is used to annotate a UML State Machine as a test specification.

Test Specification Patterns for the Automatic Generation of Test Sequences 177

Table 3. New stereotypes in V&V UML profile

Stereotype Inherits / Extends Tags: type

V&VTestSpecification PropertySpecification / StateMa-
chine

V&VTestStep TestSpecificationItem / Vertex Kind: TestType[1]
Assert: V&VExpression[0..1]
Set: V&VExpression[0..1]
Cover: BehavioralItem[0..1]
NotCover:BehavioralItem[0..1]
LoopCounter: Integer[0..1]

V&VTestTransition TestSpecificationItem / Transi-
tion

Test: V&VExpression[0..1]

It can contain both V&VTestSteps and V&VTestTransitions. The first are used
to annotate the UML States representing the single steps of the specification. A
V&VTestStep can be taggedwith: 1)Kind specifies the kind of the step7; 2)Assert
contains the expression to evaluate in case of Assert pattern (null, otherwise); 3)
Set points to the expression to execute; 4)Cover, used in the cover patterns, points
to the BehavioralItem that the test casemust reach; 5)NotCover points to the Be-
havioralItem BehavioralItem that the test case must not reach; 6) LoopCounter
defines the number of the iterations to verify of the elements enclosed in a Loop
pattern. The twodatatypes are:TestType, alreadydiscussed, andV&VExpression
that represents the string of the property to set/verify.

The concrete representation of the TSPs relies on the UML State Machine
diagram. Some of them are described in this Section on a simply example and in
Section 5.1 on the Railway case study. Some of the TSPs summarized in Table 2,
as the Memory one, are not showed since they are a compact representation of
the other TSPs. Figure 3, 4 and 5 represent the test specification models of
three TSPs : the Next Pattern in Figure 3, the And Pattern in Figure 4 and
the Any Pattern in Figure 5. The test specifications described in this Section
are built on the base of the state machine of the CC in Figure 1(b). Figure 3
shows the case in which we want to create a test specification that is used to
verify the presence of direct edge between FAST and STOP states after the
passage through the transition braking. Figure 4 considers the case in which we
are interested in reaching the states STOP and FAST in a unordered sequence
starting from the SLOW state. In this case the And TSP has been used. The
example in Figure 5 shows the application of the Any, Set and Test TSPs. With
the Any TSP we verify that one of the two possible behavior of brakes is covered.
More specifically we check by using a Set TSP on a local variable if a brake has
been pressed (a == TRUE) or not (a==FALSE). Hence, with the sequence of
steps we want to verify that if the reached state is SLOW and the previous was
FAST, the next state will be STOP. To control what was the previous state
we check the value of the local variable a by using a Test TSP (TestTransition
stopping within the Figure 5).

7 According to its type it may assume one of the following values: AND, ANY, NONE,
DETCHOICE, LOOP,MEMORY, TEST, NEXT. NONE is a value assumed when no
specific pattern is implemented by the TestStep.

178 U. Gentile et al.

<<V&VTestStep>>
NextStep

<<V&VTestStep>>
Step1

Kind=NONE;
Coversi=FAST;

<<V&VTestStep>>
Step2

Kind=NONE;
Covers=STOP;

<<V&VTestTranstion>>
braking

<<V&VTestStep>>

kind=Next;

<<V&VTestSpecification>>
Next

Fig. 3. Car Controller : TSP Next

<<V&VTestStep>>
AndStep

<<V&VTestStep>>

kind=And;

<<V&VTestSpecification>>
And

<<V&VTestStep>>
Step1

Kind=NONE;
Covers=STOP;

<<V&VTestStep>>
Step3

Kind=NONE;
Covers=FAST;

<<V&VTestStep>>
Step1

Kind=NONE;
Covers=SLOW;

<<V&VTestTransition>>
braking

Fig. 4. Car Controller : TSP And

<<V&VTestStep>>
AnyStep

<<V&VTestStep>>

kind=Any;

<<V&VTestSpecification>>
AnyTestSet

<<V&VTestStep>>
Step2_2

Kind=NONE;
Set=V&VExpression;

{Variable=a,
value=TRUE;}

<<V&VTestStep>>
Step1

kind=NONE;
Covers=SLOW;

<<V&VTestTransition>>
braking

<<V&VTestStep>>
Step2_1

kind=NONE;
Covers=T7

<<V&VTestStep>>
Step2_4

Kind=NONE;
Set=V&VExpression;

{variable=a,
value=FALSE}

<<V&VTestStep>>
Step2_3

Kind=NONE;
Covers=T5;

<<V&VTestStep>>
Step3

Kind=NONE;
Covers=SLOW;

<<V&VTestStep>>
Step4

Kind=NONE;
Covers=STOP;

<<V&VTestTransition>>
slowingDown_1

<<V&VTestTransition>>
slowingDown_2

Fig. 5. Car Controller : TSPs Any, Test and Set

4 Promela Code Generation

Figure 6 depicts the process as described in Subsection 2.2 and extended in order
to automate the support to TSPs.

TSPs

conforms to

conforms to

M2M

Promela Model

M2T Promela
Code

instanceOf

 Promela

<<metamodel>>

 V&VP

<<profile>>

System Model

Specification Model

Promela
Counterexample

Trace
VVP2Promela

uses

Fig. 6. Extended model-driven approach for TSPs support

Test Specification Patterns for the Automatic Generation of Test Sequences 179

Here some hints about the generation of Promela code from TSPs are given.
By means of the VVP2Promela transformation chain, as stated in Section 1,
each test specification generates a Promela never claim that is used to specify
a behaviour that should never happen in the state space of the Promela model
of the system. Listing 1.1 shows the translation in Promela of the example in
Figure 3; Listing 1.2 shows the translation in Promela of the AndStep state
implementing the AND pattern as for the example in Figure 4.

Listing 1.1. Sequence never claim

never {
Step1:

if
:: (state == FAST) -> goto

Step2
:: else -> goto Step1

fi;
Step2:

if
:: (state==STOP) -> goto

endStep
:: else -> goto Step2

fi;
endStep :

skip

}

Listing 1.2. Any never claim

never {
test_S1 :

if
:: (state == SLOW) -> goto \

NOTE{AndStep }
:: else -> goto Step1

fi;
AnyStep :

if
:: (transition == T4) -> goto

endStep
:: (transition == T7) -> goto

endStep
:: else -> goto AndStep

fi;
endStep :
skip

}

5 The Radio Block Centre Use Case

Radio Block Centre (RBC) is a computer-based system in charge of controlling
the movements of the trains on the track area that is under its supervision, in
order to guarantee a safe inter-train distance. RBC is integrated within the Euro-
pean Rail Traffic Management System/European Train Control System (ERTM-
S/ETCS), a standard for the interoperability of the European railway signaling
systems. ERTMS/ETCS ensures both technological compatibility among the Eu-
ropean railway networks and the integration of the new signaling system with
the existing national train interlocking systems. RBC continuously monitors the
train movements; it receives the exact position of the train from EVC (European
Vital Computer) and information about the train detection and the route status
from the Interlocking and Automatic Block System. The main objective of the
train control system is to timely transmit to each train on-board system (i.e., the
EVC) its up-to-date Movement Authority (MA) and the related speed profile.
Communication is performed via GSM-R. The MA contains information about
the distance a train may safely cover, depending on the status of the forward
track; in addition, MA may contain the Temporary Speed Restriction (TSR)
message that contains speed restrictions on a specific part of the track: normally
a TSR is sent in case of planned works on the tracks. When a TSR is activated,

180 U. Gentile et al.

RBC sends a TSR message to the EVC that must reply by sending an ACK
message. If the ACK message is received from the EVC, the message is correctly
delivered, otherwise RBC re-sends the message: after the three attempts, the
RBC shall send a braking command by means of an Unconditionally Emergency
Stop (UES).

5.1 Application to RBC

In this Subection, an application of the proposed approach is shown by applying
it to the management functionalities of the TSR and Unconditionally Emergency
Stop (UES) messages of the RBC. The test specifications are realised with the
TSPs and consider the following requirements: (REQ1) RBC shall send a UES
message to EVC if the acknowledgement to a TSR message does not arrive after
three attempts; (REQ2) after two attempts to send a TSR message, RBC may
accomplish the management of the TSR without sending a UES message.

Figure 7 and Figure 8 show the behaviour of the RBC by means of two UML
State Machines respectively modelling the management of the TSR and of the
UES messages. In Figure 7, the TSR START state represents the first state of
the TSR management: it initialises the count and the timer state respectively
representing the number of the attempts of sending the TSR message and the
Boolean value used to indicate if the state is timed up or not. The transition
T01 imposes the transmission of the TSR message (first attempt) setting the
count to 1. The state TIMER ON is a waiting state after which the RBC may:
(1) increase the count if the acknowledgement to the TSR message does not
arrive, (2) end the procedure if an ack is received by the train, (3) go to the
Aborting state after three attempts. This last condition frees the evolution of
the second state machine (Figure 8) that, after the initial state, sends a UES
message to the train. The synchronisation of the two state machines is achieved
by the UES status variable.

Test specification of REQ1: Figure 9(a) shows the application of the TSPs to
the modelling of a proper test specification for REQ1. To realise the test specifi-
cation, three different patterns have been composed: a NotCover, used to avoid
the receive of an ack (T04 transition); an Assert, that controls that the RBC
sends a UES message; and a Sequence, used to combine the first two patterns.

Test specification of REQ2: the test specification described in Figure 9(b) shows
the case in which the acknowledgement to a TSR message arrives after two
attempts. The test specification is realised by a Sequence of a Loop pattern and
a Cover pattern. The Loop pattern (Step1) checks that another Sequence of
two steps occurs twice in the test case. These steps are: Step1 1 and Step1 2,
modelled by two Cover patterns, respectively covering the TIMER ON state and
the T02 transition. Therefore, when the acknowledgement arrives on the third
attempt, Step2 (modelled by a Cover pattern) controls that the T04 transition
is covered and that the machine ends without sending a UES message. In this
case, the Promela never claim generated by the VVP2Promela transformation

Test Specification Patterns for the Automatic Generation of Test Sequences 181

<<V&VBehavior>>
TSR_sm

<<V&VState> INIT_STATE

<<V&VState>>
TSR_START

entry/ OpaqueBehavior Init()
do/ OpaqueBehavior Init()

<<V&VState>>
TIMER_ON

entry/ OpaqueBehavior resetAndActivateTimer()
exit/ OpaqueBehavior stopTimer()

<<V&VTransition> T01
 / msg_out = TSR

 count = count +1

<<V&VTransition> T02
 / timer = TIMEOUT OR count < 3 OR msg_in == "NULL"/

count=count+1;
 msg_out=TSR;

<<V&VState>>
Abort

<<V&VTransition> T03
 timer = TIMEOUT AND count == 3

OR msg_in == "NULL"/
msg_out= UES ;

<<V&VTransition> T05
 uesh_state="RUNNING"

<<V&VState> END_STATE

<<V&VTransition> T04
 msg_in="ACK"

Fig. 7. TSR management

<<V&VBehavior>>
UES_hanlder

<<V&VState>
 INIT_STATE

<<V&VState>>
WaitingState

<<V&VTransition>
Transition 0

<<V&VState>>
RunningState

<<V&VTransition>
Transition 1

msg_out == UES

<<V&VTransition>
Transition 2

<<V&VState>
FINAL_STATE

Fig. 8. UES management

<<V&VTestStep>>
Step2

Kind=NONE;
Covers=T04;

<<V&VTestSpecification>>
TS_REQ2

<<V&VTestStep>>
Step1

<<V&VTestStep>>
Step1_1

Kind=NONE;
Covers=TIMER_ON

<<V&VTestStep>>
Step1_2

Kind=NONE;
Covers=T02;

<<V&VTestTranstion>>
TTS1

<<V&VTestStep>>
Step1

Kind=NONE;
NotCovers=T04;

<<V&VTestStep>>
Step2

Asserts=(msg_out==UES);

<<V&VTestStep>>

kind=LOOP;

LoopCounter=2;

(a)

<<V&VTestSpecification>>
TS_REQ1

(b)

<<V&VTestTranstion>>
 TTS2

<<V&VTestTranstion>>
TTS1

Fig. 9. Test specifications of REQ1 (a) and of REQ2 (b)

182 U. Gentile et al.

chain is reported in Listing 1.3 while the sequence of the states, the transitions
and the variations of the variables, as generated by the SPIN model checker and
computed by a simple string manipulation stage, is reported in Listing 1.4.

Listing 1.3. REQ2 never claim

never{
Step1_1 :

if
:: (state_EBC_TSR == TIMER_ON) -> goto

Step1_2
:: else -> goto Step1_1

fi;
Step1_2 :

if
:: (transition_EBC_TSR == T02) -> goto

Loop1Step
:: else -> goto Step1_2

fi;
Loop1Step:

if
:: 1 -> atomic{countLoop1=countLoop1+1; goto

Loop1Check;}
fi;

Loop1Check:
if

:: (countLoop1 == 2) -> goto Step2
:: else -> goto Step1_1

fi;
Step2:

if
:: (transition_EBC_TSR == T04) -> goto

endStep
:: else -> goto Step2

fi;
endStep :

skip;
}

Listing 1.4. REQ2 test
sequence

state= TSR_START

transition =T01

state= TIMER_ON

input=(msg_in = NULL)

transition =T02

state= TIMER_ON

input=(timer = TIMEOUT)

transition =T02

state= TIMER_ON

input=(msg_in = ACK)

transtion=T04

6 Conclusions and Future Developments

This paper introduces the concept of Test Specification Pattern as an effective
and efficient way to specify the desired property to test according to state-
based model of a critical system. In particular, we believe that TSPs may play a
relevant role in automated model based testing processes where the generation of
test sequences can be a hard task to address. In this paper, we have showed how
the definition of proper patterns applicable to the specification of test sequences
may be supported by a model driven process. At this aim we have extended the
V&V UML profile and set up proper model transformations to generate Promela
code.

According to the research agenda of the CRYSTAL project, research effort
will address the migration of the Test Specification Patterns to other domain-
specific languages. In addition, we will investigate the definition and the usage
of System Specification Patterns to aid the development of state-based models
for critical and embedded systems.

Test Specification Patterns for the Automatic Generation of Test Sequences 183

Acknowledgments. This paper is partially supportedby researchprojectCRYS-
TAL (Critical SystemEngineeringAcceleration), funded from theARTEMISJoint
Undertaking under grant agreement n. 332830 and fromARTEMISmember states
Austria, Belgium, Czech Republic, France, Germany, Italy, Netherlands, Spain,
Sweden, United Kingdom.

References

1. Common test patterns and reuse of test designs, http://msdn.microsoft.com/
en-us/library/cc514239.aspx

2. Bernardi, S., Merseguer, J., Petriu, D.C.: A dependability profile within MARTE.
Journal of Software and Systems Modeling (2011)

3. Bernardi, S., et al.: Enabling the usage of UML in the verification of railway sys-
tems: The DAM-rail approach. Reliability Engineering & System Safety 120, 112–
126 (2013)

4. Bosik, B.S., Ümit Uyar, M.: Finite state machine based formal methods in proto-
col conformance testing: from theory to implementation. Computer Networks and
ISDN Systems 22(1), 7–33 (1991)

5. Cheng, B.H.C., Atlee, J.M.: Research directions in requirements engineering. In:
Future of Software Engineering, pp. 285–303. IEEE CS (2007)

6. Dwyer, M.B., Avrunin, G.-S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proc. of the ICSE 1999, pp. 411–420. ACM (1999)

7. Flammini, F., Marrone, S., Mazzocca, N., Nardone, R., Vittorini, V.: Model-driven
V&V processes for computer based control systems: A unifying perspective. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol. 7610, pp. 190–
204. Springer, Heidelberg (2012)

8. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model checkers: A survey.
Softw. Test. Verif. Reliab. 19(3), 215–261 (2009)

9. Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from re-
quirements specifications. SIGSOFT Softw. Eng. Notes 24(6), 146–162 (1999)

10. Gargantini, A., Riccobene, E.: Asm-based testing: Coverage criteria and automatic
test sequence generation. Journal of Universal Computer Science 7(11), 1050–1067
(2001)

11. Grunske, L.: Specification patterns for probabilistic quality properties. In: Proc. of
ICSE 2008, pp. 31–40. ACM, New York (2008)

12. Holzmann, G.: Spin Model Checker, the: Primer and Reference Manual, 1st edn.
Addison-Wesley Professional (2003)

13. Javed, A.Z., Strooper, P.A., Watson, G.N.: Automated generation of test cases us-
ing model-driven architecture. In: Second International Workshop on Automation
of Software Test (2007)

14. Kitamura, T., Do, N.T.B., Ohsaki, H., Fang, L., Yatabe, S.: Test-case design by fea-
ture trees. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609,
pp. 458–473. Springer, Heidelberg (2012)

15. Konrad, S., Cheng, B.H.C.: Facilitating the construction of specification pattern-
based properties. In: Proc. of Requirements Engineering, pp. 329–338 (August
2005)

16. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Proc. of ICSE
2005, pp. 372–381 (May 2005)

http://msdn.microsoft.com/en-us/library/cc514239.aspx
http://msdn.microsoft.com/en-us/library/cc514239.aspx

184 U. Gentile et al.

17. Marrone, S., Flammini, F., Mazzocca, N., Nardone, R., Vittorini, V.: Towards
model-driven v&v assessment of railway control systems. International Journal on
Software Tools for Technology Transfer (2014)

18. Mondragon, O., Gates, A.Q., Roach, S.: Prospec: Support for elicitation and formal
specification of software properties. Electr. Notes Theor. Comput. Sci. 89(2), 67–88
(2003)

19. Mondragon, O., Gates, A.Q., Roach, S., Mendoza, H., Sokolsky, O.: Generating
properties for runtime monitoring from software specification patterns. Int. Journal
of Software Engineering and Knowledge Engineering 17(1), 107–126 (2007)

20. Mussa, M., Ouchani, S., Al Sammane, W., Hamou-Lhadj, A.: A survey of model-
driven testing techniques. In: Proceedings of QSIC 2009, pp. 167–172 (August
2009)

21. Mustafiz, S., Sun, X., Kienzle, J., Vangheluwe, H.: Model-driven assessment of
system dependability. Software & Systems Modeling 7(4), 487–502 (2008)

22. UML testing profile, Version 1.1, OMG document (2012)
23. Pflügl, H., El-Salloum, C., Kundner, I.: Crystal, critical system engineering accel-

eration, a truly European dimension. ARTEMIS Magazine 14, 12–15 (2013)
24. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: PROPEL: an approach

supporting property elucidation. In: Proc. of ICSE 2002, pp. 11–21 (May 2002)
25. Soundarajan, N., Hallstrom, J.O., Shu, G., Delibas, A.: Patterns: from system

design to software testing. Innovations in Systems and Software Engineering 4(1),
71–85 (2008)

26. Terrier, F., Gérard, S.: MDE benefits for distributed, real time and embedded sys-
tems. In: Kleinjohann, B., Kleinjohann, L., Machado, R., Pereira, C., Thiagarajan,
R.S. (eds.) From Model-Driven Design to Resource Management for Distributed
Embedded Systems. IFIP, vol. 225, pp. 15–24. Springer, Boston (2006)

27. Tretmans, J.: A formal approach to conformance testing. In: Proc. of the IFIP
TC6/WG6.1 Workshop on Protocol Test Systems VI, pp. 257–276. North-Holland
Publishing Co., Amsterdam (1994)

28. Tsai, W.-T., Yu, L., Zhu, F., Paul, R.: Rapid embedded system testing using ver-
ification patterns. IEEE Software 22(4), 68–75 (2005)

29. Van der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

Randomised Testing of a Microprocessor Model

Using SMT-Solver State Generation

Brian Campbell and Ian Stark

LFCS, School of Informatics, University of Edinburgh, UK
{Brian.Campbell,Ian.Stark}@ed.ac.uk

Abstract. We validate a HOL4 model of the ARM Cortex-M0 micro-
controller core by testing the model’s behaviour on randomly chosen
instructions against a real chip.

Themodel and our intended application involve precise timing informa-
tion about instruction execution, but the implementations are pipelined,
so checking the behaviour of single instructions would not give us sufficient
confidence in the model. Thus we test the model using sequences of ran-
domly chosen instructions.

The main challenge is to meet the constraints on the initial and in-
termediate execution states: we must ensure that memory accesses are
in range and that we respect restrictions on the instructions. By careful
transformation of these constraints an off-the-shelf SMT solver can be
used to find suitable states for executing test sequences.

Keywords: Randomised testing, microprocessor models, HOL, SMT.

Mechanised formal models of instruction set architectures provide a basis for
low-level verification of software. Obtaining accurate models can be difficult;
most architectures are described in large reference manuals consisting primarily
of prose backed up by semi-formal pseudo-code. Once a model is produced it is
common to test individual instructions against hardware to gain confidence in
the model (for example, [7]), but some effects may require a sequence of several
instructions to appear.

This is relevant for the intended application of our model. We wish to extend
existing low-level verification work using Myreen’s decompilation [9] to include
timing properties. We want to use a realistic processor with a relatively simple
cost model, because our technique is largely orthogonal to the low-level timing
analysis and we do not wish to spend resources recreating a complex worst-case
execution time analysis (such as those surveyed in [13]).

While the ARM Cortex-M0 has a simple cost model, even this design has a
non-trivial microarchitecture in the form of a three stage pipeline (fetch, decode
and execute). Hence to build confidence in our model, and in particular the tim-
ing information contained in the model, we wish to test sequences of instructions
in order to exercise the pipeline.

However, finding a processor state in which an arbitrary sequence of instruc-
tions can be executed without faulting is not always easy. Consider the sequence

F. Lang and F. Flammini (Eds.): FMICS 2014, LNCS 8718, pp. 185–199, 2014.
c© Springer International Publishing Switzerland 2014

186 B. Campbell and I. Stark

ldrsh r0, [r1, r2] ; load r0 from r1+r2 (16 bits, sign-extended)
lsls r0, r0, r2 ; shift r0 left by r2

bcs +#12 ; branch if carry set

add r0, r0, r2 ; add r2 to r0

ldr r3, [r0, #0] ; load r3 from r0

Fig. 1. An example test sequence of M0 code

in Figure 1. The final instruction reads a word from memory at an address stored
in the r0 register. We must ensure that this address is a valid location in memory,
which makes up a tiny fraction of the processor’s address space.

Moreover, r0’s contents is a result of several operations: a half-word load,
sign-extension, shift and bitvector addition, where r2’s value is used in several
different ways. Finding solutions to such constraints is a natural application for
an SMT (Satisfiability Modulo Theories) solver with good bitvector support.

The solutions provided by the solver will specify parts of the registers and
memory, including the placement of instructions. For example, if the bcs branch
is taken then the next instruction must be placed 12 bytes later. Whether the
processor takes the branch is also decided by a non-trivial calculation due to the
shift instruction; again, we leave this to the SMT solver.

Note that the constraints come from two sources; some, such as instruction
alignment, come directly from the model in the form of hypotheses to a theorem.
However, the model is not intended to be comprehensive, especially where details
about particular implementations are concerned. Thus we need to add additional
constraints to capture these details, such as the size and layout of memory.

HOL

L3
SMT
(yices)

Model
Step thms
Prog logic

Instr gen
Testing

Hardware
(STM32F0-Discovery)

Fig. 2. Outline of the testing system

The testing system is outlined in Figure 2. The model is written in the L3
specification language, and the generated HOL version is accompanied by tool
libraries, shown in the dashed box. Instruction generation is separated from the
main testing code, and can be overridden manually. An SMT solver is invoked
to help find a pre-state using an adaption of the HolSmtLib library [12], and the
hardware is invoked over a USB link. Our software is available online1.

1 https://bitbucket.org/bacam/m0-validation

https://bitbucket.org/bacam/m0-validation

Randomised Testing of a Microprocessor Model 187

Our contributions are to demonstrate that symbolic evaluation with SMT
constraint solving is an effective way to test a formalised microprocessor model,
and that the ability to add additional constraints is useful for bridging the gap
between a model and an implementation, and for checking hypotheses about
deviations from the model.

Section 1 briefly describes the M0 model and accompanying tools, then the
description of the testing system begins with the generation of instructions in
Section 2 and continues in Section 3 with the construction of pre-states which
satisfy the restrictions on successful execution. Section 4 discusses the practical-
ities of running the tests on the hardware, and Section 5 presents the outcomes
of testing. We consider the results and variations of the system in Section 6, then
consider related work before concluding.

1 The Processor Model

The ARM Cortex-M0 model we use was developed by Anthony Fox in his L3
domain specific language [6]. It is a greatly simplified adaption of his ARMv7
model, with the addition of instruction cycle timings from the ARMv6-M refer-
ence manual [1]. L3 provides a specification language with imperative features
that allows models to closely follow the pseudo-code typically found in such
manuals.

An automatic translation produces a version for the HOL4 proof assistant [8],
together with Standard ML versions of the instruction decoder and encoder. The
main interface to the model itself is a step function,

NextStateM0 : m0 state → m0 state option ,

where the type m0 state is a record containing register values, memory content,
flags, and other miscellaneous information about the processor state. The mem-
ory is represented as a HOL function from 32-bit words representing addresses
to 8-bit contents.

[Aligned (s.REG RName_PC,2), s.MEM (s.REG RName_PC) = 3w,
Aligned (s.REG RName_0 + 0w,4), s.MEM (s.REG RName_PC + 1w) = 104w,
¬s.AIRCR.ENDIANNESS, ¬s.CONTROL.SPSEL, s.exception = NoException]

� NextStateM0 s = SOME (s with
<|REG := (RName_PC =+ s.REG RName_PC + 2w)

((RName_3 =+ s.MEM (s.REG RName_0 + 0w + 3w) @@
s.MEM (s.REG RName_0 + 0w + 2w) @@
s.MEM (s.REG RName_0 + 0w + 1w) @@
s.MEM (s.REG RName_0 + 0w)) s.REG);

count := s.count + 2; pcinc := 2w|>)

Fig. 3. Example step theorem for ldr r3,[r0,#0]

Additional tools are provided in two HOL libraries. The first, stepLib, pro-
vides symbolic evaluation of the step function for individual instructions. An

188 B. Campbell and I. Stark

example is shown in Figure 3. The hypotheses assert that the program counter
and source address are correctly aligned, that the instruction is present in mem-
ory and that certain control flags are set correctly. The conclusion states that
the model’s step function will succeed with an updated state, where the program
counter is moved forward, the result of the load is present and two ticks of the
processor’s clock have passed. (The HOL term (k =+ v) m denotes a map which
returns v at k and is m everywhere else.) For branches, which are the only con-
ditional instructions in the ARMv6-M architecture, two theorems are returned:
one for when the branch is taken, and one for when it is not.

The second library provides separation-logic-like specifications for instruc-
tions. The principal intended use for the model is to provide low-level verification
using Myreen’s decompilation technique [9], and these specifications provide the
interface between the model and the decompilation library.

We could test the model directly, or test one of these two libraries. In order
to determine what constraints on the state are necessary for successful execu-
tion we need to perform symbolic evaluation of the instructions. If we used the
separation-logic specifications we would have to make memory aliasing decisions
before we can obtain the preconditions. Thus by testing stepLib we obtain the
symbolic evaluation and can leave the aliasing decisions to the SMT solver.

The model does not currently support interrupts and exceptions, which are
not necessary for the verification work we intend to do in the near future. Hence
we leave these for further work, briefly discussing them in Section 6.

2 Instruction Sequence Generation

We produce instruction sequences by randomly picking instructions that are
supported by the model. The M0’s subset of the Thumb instruction set is fairly
small; the reference manual lists 77 instructions [1, §A6.7] of which the model
only supports the user-level instructions. Thus we take the opportunity to pro-
vide a fresh list of the instruction formats for cross checking against the model.
In Section 6 we will consider alternative approaches.

Figure 4 gives a datatype for fragments of M0 instruction formats and a few
sample formats. While the datatype has a few generic constructors for literal and
immediate bit strings, the rest are specialised for targeting the M0. Registers

datatype instr_format = Lit of int list | Imm of int
| Reg3 | Reg4NotPC | Reg4NotPCPair
| CmpRegs | RegList of bool (* inc PC/LR *)
| STMRegs | Cond | BLdispl

val instrs = [
(1,([Lit [0,0,0,1,1,0,0], Reg3, Reg3, Reg3], "ADD (reg) T1")),
(14,([Lit [1,1,0,1], Cond, Imm 8], "B T1")),
(1,([Lit [0,1,0,0,0,1,1,1,0], Reg4NotPC, Lit [0,0,0]], "BX")),
(1,([Lit [1,1,1,1,0], BLdispl], "BL")),
...

Fig. 4. Language for instruction formats and sample formats

Randomised Testing of a Microprocessor Model 189

come in three-bit and four-bit representations2, with several further variants for
pairs of registers and specific instructions.

Each format consists of a list of fragments. For example, the ADD instruction
format in Figure 4 has a constant prefix, the destination register and two source
registers. The integer before the format is a weighting, which is used here to
make the conditional branches appear more often than other instructions. A
name is given to each format for debugging and logging purposes.

The Branch with Link instruction format BL is the most unusual. It is the only
32-bit instruction supported by the model (the rest are system instructions) and
the offsets for the jump are very large (up to 16MB) compared to the amount
of memory available (kilobytes). Thus almost all BL instructions are unusable,
and untestable. To produce useful instructions the BLdispl fragment picks and
encodes branch displacements with magnitude bounded by the size of SRAM.

2.1 Sanity Checks

We perform several automated tests of our generator. The first is an internal
consistency check which ensures that every format is either 16 or 32 bits long.

To cross check the generator against the model, we split the list of instruction
formats into the instructions that we expect the model to support, and those
that we believe the model does not. We then ask the model for theorems about
several instances of each format, ensuring that they are present for all supported
instructions and absent for all other instructions. We also check that only the
conditional branches generate multiple theorems.

Following the discovery of an extra instruction in the model, we ensured that
no further extra instructions were present by performing a manual check of the
format list against stepLib. It may be possible to devise automated checks of
this, but the small instruction set makes a manual comparison the most effective
use of time. More details, and the other testing results, can be found in Section 5.

3 Generating Pre-states for Testing

Having chosen a sequence of instructions we can obtain theorems describing the
behaviour of each one from stepLib and combine them into a single result by
taking the theorem for the final instruction and repeatedly instantiating the
start state with the step theorem for the previous instruction, simplifying at
each step to keep the symbolic state a reasonable size. Also, to keep this process
manageable we randomly pick whether to take each branch so that we only have
one step theorem for each instruction.

Recall the example sequence in Figure 1. We saw the step theorem for an ldr

instruction in Figure 3. After combining the step theorems the conditions become
more complex due to the symbolic execution. For example, the requirement from
the ldr instruction that the address for the load in r0 is aligned is now expressed
in terms of the initial state, reflecting how r0 is calculated:

2 Many instruction formats only use r0 to r7 to keep the instructions compact.

190 B. Campbell and I. Stark

Aligned (s.REG RName_2 +
sw2sw (s.MEM (s.REG RName_1 + s.REG RName_2 + 1w) @@

s.MEM (s.REG RName_1 + s.REG RName_2))
<<~ w2w ((7 >< 0) (s.REG RName_2)), 4)

where (7 >< 0) selects the low byte of r2 and <<~ performs the shift.
These hypotheses make up the bulk of the constraints the pre-state must

satisfy, but we must also meet additional requirements that are imposed by the
hardware, and translate the constraints into a form suitable for the solver.

3.1 Additional Requirements

For successful execution on the device, the state must satisfy requirements about
areas where the model is deliberately incomplete (often because they vary be-
tween implementations):

– self-modifying code must be forbidden;
– the memory map and its restrictions must be respected;
– a test harness is required to stop execution cleanly; and
– the model’s implicit invariant that stack pointers are always aligned must

be enforced.

The last point is the result of starting execution from a state loaded by the
debugger; the model (and the manual’s pseudo-code) establish the alignment
of the stack pointers on reset and maintain it throughout execution. We must
respect that invariant in our states, or the debug interface will reject them.

To implement the restrictions on self-modification and the memory map we
need to know the symbolic positions of every instruction and memory access.
Recovering this information after combining the step theorems would be difficult
at best. For example, if we throw away the result of a load,

ldr r0, [r1, #0]
ldr r0, [r2, #0]

then the use of the address in r1 will disappear in the combined theorem. In-
stead, we record the symbolic addresses in each step theorem by adding free
variables for the set of instruction locations and accessed memory locations, and
hypotheses to give symbolic values to them. The symbolic value for the instruc-
tion is given by the program counter, and we can find all memory accesses by
finding the terms which consult the memory field of the state, s.MEM.

For example, for the final instruction in the example, we add a hypothesis
for the instruction location, two for the memory access for the instruction, and
another four for the word that is loaded:

instr start 4 = s.REG RName_PC,
memory address 4 = s.REG RName_PC,
memory address 5 = s.REG RName_PC + 1w,
memory address 0 = s.REG RName_0,
memory address 1 = s.REG RName_0 + 1w,
memory address 2 = s.REG RName_0 + 2w,
memory address 3 = s.REG RName_0 + 3w,

Randomised Testing of a Microprocessor Model 191

Combining the extended step theorems as before performs symbolic evaluation
of the earlier instructions, restating these addresses in terms of the initial state:

instr start 4 = s.REG RName_PC + 8w,
memory address 4 = s.REG RName_PC + 8w,
memory address 5 = s.REG RName_PC + 9w,
memory address 0 = s.REG RName_2 +

sw2sw (s.MEM (s.REG RName_1 + s.REG RName_2 + 1w) @@
s.MEM (s.REG RName_1 + s.REG RName_2))

<<~ w2w ((7 >< 0) (s.REG RName_2)),
· · ·

The remaining addresses are similar. We can then add constraints requiring all
accesses to be in the range of the target device’s SRAM. For self-modification we
can discover the symbolic locations written to by examining the memory field of
the post-state record, then constrain them to be disjoint from the instructions.

By extracting the expression for the post-state program counter we can syn-
thesise locations for the harness instructions, and so add constraints requiring
them to be present and unmodified by execution. In most of our tests the harness
consists of a single software breakpoint instruction3.

3.2 Practical HOL

The technique outlined above of combining step theorems by instantiation and
simplification is intended to keep the symbolic state manageable. However, there
are two further issues we need to address to achieve this.

The main problem was that when a memory update is distributed to the uses
of memory by evaluation, subsequent memory lookups will be partially evalu-
ated into aliasing checks. These grow quickly, especially when load-multiple and
store-multiple instructions are involved; every address written to is compared
against every address read. We could attempt to avoid exposing these aliasing
checks by curtailing evaluation, but we chose the more compact solution of in-
troducing free variables for the intermediate memory states. The updates from
store instructions are moved to hypotheses which constrain the free variable to
be exactly the intermediate memory state.

For example, storing a single byte with strb r0, [r1,#0] updates the memory
field of the state record,

s with <|MEM := (s.REG RName_1 =+ (7 >< 0) (s.REG RName_0)) s.MEM;
REG := (RName_PC =+ s.REG RName_PC + 2w) s.REG;
count := s.count + 2; pcinc := 2w|>

so we add the new hypothesis

Abbrev (mem step 0 = (s.REG RName_1 =+ (7 >< 0) (s.REG RName_0)) s.MEM)

using HOL’s Abbrev mechanism to prevent the definition being used during sim-
plification, and put the variable in the state record:

3 Hardware breakpoints would also work, but are slightly harder to use on our main
target device.

192 B. Campbell and I. Stark

s with <|MEM := mem step 0;
REG := (RName_PC =+ s.REG RName_PC + 2w) s.REG;
count := s.count + 2; pcinc := 2w|>

The second problem is that unconstrained evaluation will reveal implementa-
tion details about the model and HOL libraries, which it is important to avoid for
the SMT translation described in the next section, and to keep the size of terms
reasonable. Restricting the computation rules used during evaluation prevents
this, along with careful choices of simplification and rewrite rules.

3.3 Preparing for SMT Solving

The constraints we obtain consist largely of bitvector operations, first-order logic
and a little natural number arithmetic, which suits the abilities of a number of
SMT solvers. HOL4 already comes with the HolSmtLib package for interfacing
with Yices 1 and Z3 [12]; we used Yices because HolSmtLib’s translation for
Yices supports a greater range of HOL types and terms. We do not expect that
using another solver would pose any major problems.

Normally, HolSmtLib proves goals where the free variables are universally
quantified. To use an SMT solver in this way the library must negate the goal
and check that that is unsatisfiable. We thus have to adapt the library, because
we wish to check that the constraints are satisfiable, treating the free variables
as existentially quantified and using the satisfying assignment returned for them
to construct the pre-state for testing. Hence we adapted the library to remove
the negation and parse the satisfying assignments.

However, the subset of HOL supported by the translation to Yices’ input
language is still rather small, and the definitions used in the model do not always
fit within it. For example, the Aligned predicate is defined by

Aligned (w,n) = (w = n2w (n * (w2n w DIV n)))

which is not well supported as it switches between bitvectors and natural num-
bers using n2w and w2n. Thus during the process of combining the step theorems
above we are careful not to unfold definitions like Aligned. Instead, we use HOL
theorems about them to rewrite them into the supported subset. For example,
the model already provides the result

(∀a : word32. Aligned (a, 1)) ∧
(∀a : word32. Aligned (a, 2) = ~word_lsb a) ∧
(∀a : word32. Aligned (a, 4) = ((1 >< 0) a = 0w:word2)) ∧
(∀a : word8. Aligned (a, 4) = ((1 >< 0) a = 0w:word2))

which provides a bitvector interpretation for all of the necessary cases. We prove
simple results to ensure that bit selection, shifts and addition are also in the
expected form, and slightly more complex ones to obtain the overflow and carry
bits for addition.

By using HOL theorems we know that the transformations are sound ; the
worst case for an error is that we end up with constraints that the SMT solver
cannot handle. We also extended the transformation itself for a few terms that
are awkward to deal with in HOL: right rotation, map updates, 8-bit bitvector

Randomised Testing of a Microprocessor Model 193

to natural conversion, and variable bit indexing. The latter two are defined in a
brute-force fashion by large if-then-else trees, but perform well in practice.
These do not benefit from any soundness guarantees, but are not critical to the
soundness of the testing procedure because we check in HOL that the generated
assignments satisfy the hypotheses from the model when we use them.

To find the above set of rewrites that are required to target the SMT-friendly
subset of HOL we performed a survey of the step theorems produced by the
model. For a randomly chosen set of instructions from each format we attempted
to translate the step theorem into Yices’ input language. As each unsupported
definition was discovered, we added a new rewrite, until no more were found.

One example of this is the carry bit from the lsls instruction in the example,
where it decides whether the branch is taken. The step theorem from the model
calculates it from the registers,

if w2n ((7 >< 0) (s.REG RName_2)) = 0 then s.PSR.C else testbit 32
(shiftl (w2v (s.REG RName_0)) (w2n ((7 >< 0) (s.REG RName_2))))

saying that the old value is used if no shift is done, otherwise the correct bit is
extracted from r0. However, the shift and test are done using bitstrings rather
than bitvectors, a different but related HOL4 type which is not supported by the
SMT translation. This was discovered during the survey of instruction formats
described above. Thus we proved a small theorem,

∀x : word32. testbit 32 (shiftl (w2v x) n) =
if (n > 0) ∧ (n <= 32) then x ’ (32 - n) else F

that expresses the shift and test as a bit selection, and added it to the set of
rewrites applied to the step theorems. The resulting theorems still need some of
our extensions to the Yices translation. Note that these transformations can be
sensitive to changes in the model; in particular, if more step theorems exposed
bitstring operations like this, then we may need to perform more rewriting.

Once all of the constraints have been translated, Yices is invoked and if suc-
cessful returns a satisfying partial assignment. We can form a partial pre-state
from this; for our example this is (eliding some irrelevant details):

<| MEM :=
(0x20000000w =+ 136w) ((0x20000001w =+ 94w) ((0x20000002w =+ 144w)
((0x20000003w =+ 64w) ((0x20000004w =+ 4w) ((0x20000005w =+ 210w)
((0x20000006w =+ 16w) ((0x20000007w =+ 68w) ((0x20000008w =+ 3w)
((0x20000009w =+ 104w) ((0x2000000Aw =+ 0w) ((0x2000000Bw =+ 190w)
((0x200002F0w =+ 7w) ((0x200002F1w =+ 0w) rand mem)))))))))))));
PSR := rand flags with C := F;
REG := (RName_PC =+ 0x20000000w) ((RName_1 =+ 0xFFFFE9F8w)

((RName_2 =+ 0x200018F8w) rand regs));
count := 0 |>

Instantiating the rand free variables with random data provides a full pre-state.

4 Test Execution and Comparison

We can now instantiate the combined theorem that describes the behaviour of
the instructions with the pre-state we have discovered, and hence obtain a con-
crete post-state to compare against the device. This step is complicated slightly

194 B. Campbell and I. Stark

by the abstraction of the intermediate memory values (Section 3.2) and the size
of the term describing the whole memory. For the former we progressively instan-
tiate each variable using the definition we recorded in the hypothesis, then use
evaluation to make the next memory value concrete. For the latter we split up
the state record before supplying the concrete values; this prevents duplication
of the large memory term in several places where it is projected away.

At the end of this process we should obtain a theorem with no hypotheses
giving the model’s concrete prediction of the behaviour of the device. By checking
that the hypotheses have been discharged we do not have to trust the SMT
translation and solver.

To perform the test we used the OpenOCD debugging tool [10] to write the
pre-state to the microcontroller on the development board and start execution.
To encode the processor flags into the binary Application Processor Status Reg-
ister (APSR) we use the HOL function provided by the model. If the test is
successful, the device will halt at the breakpoint instruction in the test harness.
The same tool is used to read the post-state back from the board.

Precise cycle timings are obtained by directly setting up and reading back the
device’s SysTick counter timer from the debugger. This timer only ticks while
the processor is running, so it stops once the breakpoint is reached. We then
have to correct for the time spent in the harness. However, the reference manual
does not provide a cycle count for breakpoints, but experimentally we measured
a consistent overhead of 3 cycles. (This matches the reasonable hypothesis that
there will be 2 cycles overhead to fill the pipeline at the start, and one more at
the end to execute the breakpoint.)

The post-state retrieved from the board is then compared to the model’s
prediction, checking the register contents (adjusting the PC for the extra in-
structions in the test harness), the SRAM, the APSR and the cycle count.

Some failed tests might not reach the breakpoint instruction; for example,
a branch might not be taken when it is expected to, or a memory access may
fault. In these cases the comparison will fail because the program counter will
be incorrect, and usually other parts of the state too.

4.1 Scaling Up Testing

To perform large test runs, and to debug the testing code, we designed logging
with several features in mind:

– Ease of rerunning tests, if necessary with the same random background data
for memory, flags and registers.

– Classification into successes and failures (impossible combination of instruc-
tions, SMT solver returned ‘unknown’, exception due to bug in model or test
code, or genuine mismatch).

– Data about the differences between the post-state and the model.
– Text that can be read manually.

This is implemented in a straightforward manner, where there is one file per
classification with one line per test. Each line contains a numerical identifier, the

Randomised Testing of a Microprocessor Model 195

instruction sequence, branch choices, the test harness used, and details about
the failure, if any. The random data used in each test case is stored in a file
named using the identifier, so that it can be reproduced precisely when necessary.
Instruction placement and profiling of the testing code were added to the logs
later to provide more detail.

5 Outcomes from Testing

First, the consistency tests for Section 2’s instruction generation revealed a miss-
ing instruction pattern for ldrsb in stepLib, with the result that ldrsb instruc-
tions were present in the model but code using them could not be verified. A
few minor bugs when generating step theorems were also found.

Recall that these consistency tests do not detect extra instructions in the
model. Our manual check for these was prompted by Fox discovering one such
instruction. Fortunately, as we can bypass the instruction generation we could
immediately test for this instruction and confirm its absence from the device.

Similarly, there are alternative forms of the bx and blx instructions which the
reference manual marks as unpredictable, i.e., they might work but should not
be used. L3 already features the syntax for indicating this, but doesn’t act upon
it, so the variants are present in the model. Again, if we bypass the instruction
generator we can test these variants, finding that a few of these instructions
behave normally on the hardware we have.

Moving on to the results from the randomised testing, we tried sequences of
5 to 10 instructions long. Test failures with bx and blx instructions uncovered a
bug where the check on the Thumb mode bit was reversed. The lack of support
for self-modifying code can be seen if we turn off the additional constraints to
prevent it, as can the invariant about the alignment of the stack pointer.

Finally, we encountered anomalies with the timing model where some test
sequences would take one cycle longer than predicted. Several test cases which
produced these anomalies were examined, revealing that in each case the SMT
solver had chosen to place instructions in the last word of SRAM. This was rein-
forced by testing manually chosen sequences with extra constraints which forced
instructions to be placed in or around the last word. More intensive evidence
was provided by adding constraints to require or forbid an instruction placed in
the final word for a full test run.

This explanation fits with the processor’s pipeline design: executing an in-
struction from the last word implies attempting to fetch the next word, but this
does not exist. Presumably it is handling this corner case that consumes an extra
processor cycle.

5.1 Performance

To give a general indication of the performance of the system, we performed
a test run of 1000 sequences of 5 instructions for this paper. Of the 1000, 105
had no possible pre-state, 882 matched the model’s prediction, and 13 did not

196 B. Campbell and I. Stark

match; each instruction format was used in at least 34 viable tests. All of the
non-matching cases differed only in execution time, and had an instruction in
the last word. None of the successful tests did.

To compare the effects of increasing the sequence length, n, we present the
per-test rate of impossible cases and mean time in seconds for each stage:

n Impossible Generation Combination Pre-state SMT Instantiation Testing
5 0.105 0.037 0.769 2.418 0.313 4.795 3.272
7 0.145 0.053 1.585 5.909 1.101 8.662 3.437
9 0.320 0.038 2.917 11.239 5.114 12.956 3.516

The rate of impossible combinations increases as the probability of incompatible
instructions and branch choices increases. The main time costs are the stages
involving the full 8kB of memory; it may be possible to reduce this by restricting
the memory to the test’s footprint.

These were measured on a dual-core 8GB Intel Core i5-3320M using a de-
velopment version of HOL4 from March 2014 running on PolyML 5.5.1. The
generated HOL and SML for the M0 model and tools is present in the HOL4
distribution4. An STM32F0-Discovery board was used as the target.

6 Discussion

For a simple microprocessor like the Cortex-M0 we can ask whether testing
sequences of instructions rather than individual instructions is worth the extra
effort. Indeed, the mistakes in the model and tools could have been detected
by single instructions, and even the timing anomaly could be detected despite
appearing to be the result of the processor’s pipeline.

However, it is only through testing sequences that we know this. Moreover,
by adjusting the additional constraints that we add we can also witness the lack
of support for self-modifying code, and if we wanted to extend the model to
support that, or to support timing when executing from slower memory (such
as the flash memory on the STM32F0), only sequences of instructions would
explore the relevant behaviour.

The form of the generated code. We generate the sequences of instructions to be
executed by picking each instruction individually. We do not expect this code to
reflect real application code, but one feature that is worth considering in detail
is the likelihood of generating loops. First, note that the execution cannot stop
inside a loop because a breakpoint is used to halt execution. More importantly,
we must generate the same instructions several times with an appropriate branch.
For example, we manually tested the following sequence to show that the extra
timing penalty for placing instructions in the last word of memory could build
up over time, only taking the bcs branch to the breakpoint at the end:

4 In the directory examples/l3-machine-code/m0.

Randomised Testing of a Microprocessor Model 197

run_test_code debug
‘adds r0, r0, r2 bcs -#12 b -#4
adds r0, r0, r2 bcs -#12 b -#4
adds r0, r0, r2 bcs -#12‘
(SOME [0, 1, 0, 0, 1, 0, 0, 0])
(Basic Breakpoint) [‘‘instr_start 2 = 0x20001ffew : word32‘‘];

The SMT solver then picks a state in which the loop runs the correct number
of times. However, the chances of generating a sequence like this randomly are
vanishingly small. One possible area for future work is to produce structural
features like loops in conjunction with the instruction generation.

Generating instructions directly from the model. By writing our own instruction
generator we duplicated some of the information contained in the model: the
set and encodings of supported instructions. To apply the testing more widely it
would be helpful to use the model directly. (Unsupported instructions are less of
an issue because missing instructions do not affect the soundness of verification.)

L3 models feature a datatype for instructions, a decoding function and (op-
tionally) an encoding function. An easy approach is to generate members of the
datatype, then use the encoding function to produce binary code to test. How-
ever, we have few guarantees about these functions: the most we can expect is
that decoding reverses encoding. The opposite may not be true.

For example, if we took this approach for the M0 model we would still not test
the extra unpredictable forms of the branch instructions, because they have
the same representation in the datatype as the normal version, so the encoder
will not produce them, but the decoder handles them.

We suggest two possibilities to consider: analysing the decoder function to
guide generation of binary instructions; or generating the decoder and encoder
functions from a single, more abstract, definition. An example of the latter ap-
proach would be a more principled version of our instruction format language.

There is another alternative which is suitable for some targets, including the
M0: the Thumb instruction set is sufficiently dense that you can simply pick
values at random, then check whether it is a valid instruction. The downside to
this approach is that you cannot bias which instructions are chosen or the values
used (such as the branch distance for bl instructions mentioned in Section 2).

The form of generated pre-states. The parts of the state most relevant to the
execution are provided by the SMT-solver. These are certainly not randomly
sampled, but can be pleasingly daemonic: for example, we have seen useful biases
towards reusing locations and using the top and bottom of SRAM, which reveal
self-modifying code (if allowed) and the timing anomaly we found. If we wished
to generate a wider variety of pre-states we could investigate adding further
constraints to force the solver to behave differently.

Potential extensions. More complete microprocessor models include system fea-
tures such as interrupts and exceptions. We expect our model-driven approach
would adapt well to these because we can generate tests where the event occurs

198 B. Campbell and I. Stark

on a particular instruction. For example, to produce a fault on a load instruction
the SMT solver can be asked to ensure that the given address is invalid, and to
interrupt at a given instruction the timing knowledge can be used to initialise
a timer. Examining the behaviour of sequences of instructions would be vital in
this context; even a relatively simple processor like the Cortex-M0 has complex
interrupt handling features such as nesting and tail chaining.

7 Related Work

SMT solvers have already been used in dynamic test case generation, Bounimova
et al. [3] have described deploying their SAGE fuzzer at scale to test Microsoft
products. This derives new test cases by tracing the execution of existing cases,
finding a set of constraints on the input that should alter the execution in an
interesting way, then using Z3 to solve those constraints. These are then run
against a runtime checker. Our testing is model-driven rather than trace-driven;
and the constraint solving is for producing meaningful test cases rather than
being the source of fresh test cases. They also perform much more engineering
to scale up to mass testing on a large variety of products.

Brucker et al. [4] performed model-based test generation for Verisoft’s VAMP
architecture, using the HOL-TestGen tool for the Isabelle/HOL proof assis-
tant. The tool takes theorem-like specifications for tests and produces ‘abstract’
test cases, plus test input data which fills in the details (selected randomly, or
using Z3). In principle the whole pre-state could be generated by regarding it as
an input, but they used an empty initial configuration because their representa-
tion of the model allows ill-formed states to be generated. Their work focused
on test case generation and did not test against hardware.

Fox and Myreen [7] validated a previous ARMv7 model using single instruc-
tion randomised testing, successfully covering a large portion of the instruction
set and revealing several bugs. As they did not have to solve complex con-
straints to construct the state they had more freedom to pick extreme values
while searching for bugs.

A higher standard for models is a formal proof that they match a hardware
design. There has been work in this area for decades; one particularly relevant
example is Fox’s verification of the ARM6 microarchitecture with respect to an
ISA definition [5]. Proofs of processor designs can be difficult, and this is un-
usual for its high coverage of a commercial processor’s instruction set. Similarly,
Beyer et al. [2] have verified the VAMP gate-level design in the PVS system.

On a related note, Moore [11] promotes the usefulness of symbolic execution
of executable processor models, and mentions the importance of testing even for
low-level RTL models by recalling that testing an AMD processor model was cru-
cial for persuading managers that the model was valid and worth investigating.
This work involved executing existing test cases, whereas we have synthesised
them by solving constraints revealed by symbolic execution.

Randomised Testing of a Microprocessor Model 199

8 Conclusion

We have gained confidence in our cycle-accurate Cortex-M0 model using this
model-driven randomised testing. An off-the-shelf SMT solver handled the con-
straints involved in forming a valid pre-state well, and we used additional con-
straints to respect the model’s limitations and validate our hypothesis about the
only timing anomaly found. A key question for future work is whether we can
make the testing easy to reuse with L3-generated models for other architectures.

Acknowledgements. Support for this work was provided by the EPSRC Pro-
gramme Grant EP/K008528/1, Rigorous Engineering for Mainstream Systems
(REMS). Our thanks go to Anthony Fox, Magnus Myreen, Peter Sewell and the
other members of the REMS project for their assistance.

References

1. ARM: ARMv6-M Architecture Reference Manual, document DDI 0419C (2010),
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0419c/index.html

2. Beyer, S., Jacobi, C., Kröning, D., Leinenbach, D., Paul, W.J.: Putting it all to-
gether — formal verification of the VAMP. International Journal on Software Tools
for Technology Transfer 8(4-5), 411–430 (2006)

3. Bounimova, E., Godefroid, P., Molnar, D.: Billions and billions of constraints:
Whitebox fuzz testing in production. In: Proceedings of the 2013 International
Conference on Software Engineering, ICSE 2013, pp. 122–131. IEEE (2013)

4. Brucker, A.D., Feliachi, A., Nemouchi, Y., Wolff, B.: Test program generation for
a microprocessor. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942,
pp. 76–95. Springer, Heidelberg (2013)

5. Fox, A.: Formal specification and verification of ARM6. In: Basin, D., Wolff, B.
(eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 25–40. Springer, Heidelberg (2003)

6. Fox, A.: Directions in ISA specification. In: Beringer, L., Felty, A. (eds.) ITP 2012.
LNCS, vol. 7406, pp. 338–344. Springer, Heidelberg (2012)

7. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7 in-
struction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS,
vol. 6172, pp. 243–258. Springer, Heidelberg (2010)

8. HOL4, http://hol.sourceforge.net/
9. Myreen, M.O., Gordon, M.J.C., Slind, K.: Decompilation into logic - improved. In:

Cabodi, G., Singh, S. (eds.) FMCAD, pp. 78–81. IEEE (2012)
10. Open on-chip debugger (2014), http://openocd.sourceforge.net/
11. Strother Moore, J.: Symbolic simulation: An ACL2 approach. In: Gopalakrishnan,

G., Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522, pp. 334–350. Springer,
Heidelberg (1998)

12. Weber, T.: SMT solvers: New oracles for the HOL theorem prover. International
Journal on Software Tools for Technology Transfer (STTT) 13(5), 419–429 (2011)

13. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley,
D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut,
I., Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time
problem—overview of methods and survey of tools. ACM Trans. Embed. Com-
put. Syst. 7, 36:1–36:53 (2008)

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0419c/index.html
http://hol.sourceforge.net/
http://openocd.sourceforge.net/

Author Index

Ahmad, Muhammad 1
Alexeev, Petr 33

Basold, Henning 124
Blazy, Sandrine 140
Bonacchi, Andrea 94
Boström, Pontus 33
Bühler, David 140

Campbell, Brian 185

Della Longa, Simone 109

Ellen, Christian 155

Fantechi, Alessandro 94
Ferrari, Alessio 109
Fiterău-Broştean, Paul 78
Fokkink, Wan J. 63

Gentile, Ugo 170
Günther, Henning 124

Hasan, Osman 1
Heikkilä, Mikko 33
Huhn, Michaela 124
Hungar, Hardi 155
Huova, Mikko 33

Janssen, Ramon 78

Linjama, Matti 33
Lockefeer, Lars 63

Marrone, Stefano 170
Mazzanti, Franco 109
Mele, Gianluca 170
Milius, Stefan 124
Myers, Chris 48

Nardone, Roberto 170
Nguyen, Thang 16
Ničković, Dejan 16

Peron, Adriano 170

Serwe, Wendelin 48
Sieverding, Sven 155
Spagnolo, Giorgio Oronzo 109
Stark, Ian 185

Vaandrager, Frits 78

Waldén, Marina 33
Williams, David M. 63
Wu, Jian 48

Yakobowski, Boris 140
Yoneda, Tomohiro 48

Zhang, Zhen 48
Zheng, Hao 48

	Preface
	Organization
	20 Years Past and (Hopefully) 20 Yearsto Come: My Experience in Ansaldo STSwith Formal Methods and Railways
	Quantitative Verification:Formal Guarantees for Timeliness,Reliability and Performance
	Table of Contents
	Formal Verification of Steady-State Errorsin Unity-Feedback Control Systems
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Multivariate Calculus Theories in HOL-Light
	3.2 Formalization of Block Diagrams in Control Systems

	4 Steady-State Error Analysis
	5 Application: Pulse Width Modulation (PWM) push-pull dc-dc Converter
	6 Conclusions
	References

	Assertion-Based Monitoring in Practice –Checking Correctnessof an Automotive Sensor Interface
	1 Introduction
	2 Verification Flow in the Automotive Domain – State-of-the-Practice
	3 Signal Temporal Logic
	4 Case Study
	4.1 Case Study Description
	4.2 Formalization of DSI3 Discovery Mode Requirements
	4.3 Case Study Evaluation

	5 Lessons Learned and Future Directions
	6 Conclusions
	References

	Formal Analysis of a Fault-Tolerant RoutingAlgorithm for a Network-on-Chip
	1 Introduction
	2 Related Work
	3 Network-on-Chip Architecture and Routing Algorithm
	4 Formal Models of NoCs
	4.1 One Direction Routing
	4.2 Removing Arbiter’s Buffering Ability
	4.3 Finding Proper Data Abstractions

	5 Verification Results
	6 Discussion
	References

	Formal Specification and Verificationof TCP Extended with the Window Scale Option
	1 Introduction
	2 Related Work
	3 Specification
	3.1 The TCP Instance
	3.2 The Complete System

	4 Verification
	5 Conclusion
	References

	Learning Fragments of the TCP Network Protocol
	1 Introduction
	2 The TCP Network Protocol
	3 Regular Inference Using Abstraction
	3.1 Learning Mealy Machines
	3.2 Inference Using Abstraction

	4 Learning Setup
	5 Messages and Abstraction
	5.1 Mapper Description
	5.2 Initial State Detection

	6 Complications Encountered
	7 Experimental Results
	8 Concluding Remarks and Future Work
	References

	On the Validation of an Interlocking Systemby Model-Checking
	1 Introduction
	2 Ladder Logic Diagrams
	3 VerificationGoals
	4 Environment Assumptions and Slicing
	5 CEGAR-Like Verification Process
	6 Model Extraction
	7 Verification with Design Verifier
	8 Conclusion
	References

	An Open Alternative for SMT-Based Verification of SCADE Models
	1 Introduction
	2 Preliminaries
	2.1 SCADE and SCADE DV
	2.2 SatisfiabilityModulo Theories
	2.3 Simplified SMT-Logic
	2.4 Streams

	3 TheLAMA Language
	3.1 Dynamic Semantics

	4 Translating SCADE to LAMA
	5 Translating LAMA to SMT
	5.1 SMT-Formulas from Nodes
	5.2 Translating Dataflow
	5.3 SMT-Formulas from Programs
	5.4 Correctness of the Translations

	6 Implementation and Experiments
	6.1 Benchmarks

	7 Conclusion and Future Work
	References

	Improving Static Analyses of C Programs with Conditional Predicates
	1 Introduction
	2 A Generic Abstract Interpretation Based Framework
	3 Predicated Analyses
	3.1 Predicated Domains
	3.2 Abstract Transfer Functions

	4 Improving the Analysis
	4.1 Avoiding Redundant Values
	4.2 Convergence of the Analysis and Practical Complexity

	5 Applications
	5.1 A First Abstract Domain: Initialized Variables
	5.2 A Second Abstract Domain: Equalities

	6 Experimental Results
	7 Conclusion
	References

	Detecting Consistencies and Inconsistencies of Pattern-Based Functional Requirements
	1 Introduction and Related Work
	2 BTC Patterns
	2.1 Base Pattern
	2.2 Start-up Phase
	2.3 Activation Modes
	2.4 Example

	3 Trace and Pattern Semantics
	3.1 Traces and Formulas
	3.2 Pattern Semantics
	3.3 Specifications and Their Standard Semantics
	3.4 Intended Specification Semantics

	4 Consistency
	4.1 Existential Consistency
	4.2 Bounded Consistency

	5 ToolIntegration
	6 Conclusion and Future Work
	References

	Test Specification Patterns for Automatic Generation of Test Sequences
	1 Introduction
	2 Background
	2.1 The CRYSTAL Project
	2.2 V&V UML Profile and Test Sequence Generation
	2.3 Specification Patterns

	3 TSPs Definition and Implementation
	4 Promela Code Generation
	5 The Radio Block Centre Use Case
	5.1 Application to RBC

	6 Conclusions and Future Developments
	References

	Randomised Testing of a Microprocessor ModelUsing SMT-Solver State Generation
	1 The Processor Model
	2 Instruction Sequence Generation
	2.1 Sanity Checks

	3 Generating Pre-states for Testing
	3.1 Additional Requirements
	3.2 Practical HOL
	3.3 Preparing for SMT Solving

	4 Test Execution and Comparison
	4.1 Scaling Up Testing

	5 Outcomes from Testing
	5.1 Performance

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Author Index

