
Integrating Equations
of Motion in
Mathematica

Gary L. Gray
Assistant Professor
Engineering Science and Mechanics
The Pennsylvania State University
227 Hammond Building
University Park, PA 16802
gray@engr.psu.edu

Double-click the cell brackets on the right to open and close them.

Introduction

There is really only one thing you need to know about Mathematica — it can do almost anything you would

want to do mathematically. Of course, getting it to do anything is quite another matter. What you will learn here

is probably much less than 1% of what Mathematica is capable of.

This is a quick tutorial on how to use Mathematica for many of problems you will be solving this semester. For

example, you will numerically solve ordinary differential equations (equations of motion), solve systems of

algebraic equations, and plot many types of functions. If you have suggestions, comments, or corrections, please

send them to me at the above email address.

� Executing Commands in Mathematica

Commands are entered in "cells". The vertical lines you see on the right are cell brackets and they define

boundaries between groups of objects. Each cell has associated with it a certain set of attributes, but you only

need be concerned with a couple of them. The cell containing this paragraph is a text cell as you can see in the

toolbar at the top of the window. A text cell is used for adding comments and explanation to a notebook and is

not executable. You can only do mathematics in Mathematica withing executable cells. Any time you start a

new cell, it is an "Input cell" by default and Mathematica commands can be executed there since it is executable.

Below you see an example of an input cell with a Mathematica command and the resulting output cell. The

command is executed by placing the cursor anywhere within the cell and pressing either Shift-Return or Enter.

MmaGuide-GLG.nb 1

2 + 2 Cos@3.1 D

0.0017297

When you execute the very first command in a Mathematica notebook (this is a Mathematica notebook and it

runs in an application called the "front end"), Mathematica must start a program called the "kernel" which is the

application that does all the computation. Therefore, you may experience a small delay the first time you

execute an input cell as you wait for the kernel to start up.

Note that Mathematica knows about constants such as p and E (the N command tells Mathematica to return a

numerical value). You can get the "pi" from the palettes on the right or using some special keystrokes.

N@pD

3.14159

N@ED

2.71828

Without the N, you simply get

p - E

-E + p

since Mathematica thinks of these as exact constants. This is an important thing to keep in mind about

Mathematica.

Mathematica Syntax

You can use any name you like as a variable name, but it cannot have spaces, dashes, or begin with a number.

The equals sign "=" assigns one thing to another. For example, this command sets q equal to 4. A semicolon

suppresses the output.

q = 4;

We now set p equal to 5.

p = 5;

MmaGuide-GLG.nb 2

If you ask Mathematica what p is, it returns what you would expect.

p

5

p + q

9

Mathematica never forgets these values for p and q until you quit and restart the program. (Actually, there are

ways to get it to forget them, but we won't get into them here.) In addition, I highly recommend that you start all

variable names with a lower case letter since all Mathematica commands begin with capital letters and then

there is no was you can use a variable name that is also a Mathematica command.

Multiplication is represented by a space or an asterisk.

p q

20

p * q

20

á Fancy Formatting

Mathematica is capable of some pretty fancy formatting. Note that all Mathematica commands start with capital

letters (e.g., cosine) and also note that the argument of each Mathematica command is contained in square

brackets (more on this later).

z = à
-1

∞∞∞∞ Cos@a xD
������������������������������������
x2 +

�!!!!!!!!!!!!!
y - z3

 âx

You can use the Palettes submenu of the File menu to get a whole bunch of palettes for formatting.

MmaGuide-GLG.nb 3

� The Double Equals Sign

Mathematica uses the double equals sign "==" to equate one thing to another. This is not the same as an

assignment given by the single equals sign. For example, say way want to solve the simultaneous equations x +

y = 3 and x – y = 4. You would enter the equations in the following way (notice that I have put more than one

command in a single cell bracket):

eq1 = x + y == 1

eq2 = x - y == 2

x + y == 1

x - y == 2

I then solve the equations using the Solve command:

xysoln = Solve @8eq1, eq2 <, 8x, y <D

99x ®
3
�����
2

, y ® -
1
�����
2
==

The output from the solution is a list of replacement rules. A replacement rule has the form:

left -> right

That is, anywhere left appears, replace it with right . Here is how you use them.

x �. xysoln

9
3
�����
2
=

y �. xysoln

9-
1
�����
2
=

x y �. xysoln

9-
3
�����
4
=

This says to multiply x by y. Then the /. command tells Mathematica to substitute the replacement rule

xysoln into x y. For now, don't worry about the extra square brackets that are hanging around.

MmaGuide-GLG.nb 4

Let's have a look at one more example.

In[1]:= list = 8d -> 4, e -> 3.2, f -> 1.2 <

Out[1]= 8d ® 4, e ® 3.2, f ® 1.2 <

In[2]:= d �. list

Out[2]= 4

In[3]:= d + e + f + g �. list

Out[3]= 8.4 + g

Notice it didn't substitute anything for g since it was not in our list.

� You can get information about any command by entering a question mark followed by
the command.

Here is information on the Solve command we used above.

? Solve

Solve @eqns, vars D attempts to solve an equation or set of equations

for the variables vars. Solve @eqns, vars, elims D attempts to

solve the equations for vars, eliminating the variables elims.

Even more information can be obtained by using the double question mark.

?? Solve

Solve @eqns, vars D attempts to solve an equation or set of equations

for the variables vars. Solve @eqns, vars, elims D attempts to

solve the equations for vars, eliminating the variables elims.

Attributes @Solve D = 8Protected <

Options @Solve D = 8InverseFunctions -> Automatic,

MakeRules -> False, Method -> 3, Mode -> Generic, Sort -> True,

VerifySolutions -> Automatic, WorkingPrecision -> Infinity <

MmaGuide-GLG.nb 5

Turn off annoying Mathematica warnings.

fred = 12

12

freda = 13

— General::spell1 :

Possible spelling error : new symbol name "freda" is similar to existing symbol "fred".

13

These keep Mathematica from complaining when you name a variable freda when you already have a variable

named fred . I execute these commands in almost every Mathematica notebook I create.

Off @General::spell D

Off @General::spell1 D

Now watch what happens:

joe = 3

3

joey = 1

1

Doing Vector Operations

To do the type of operations we need to do in this class, you first need to load some external packages. These

are packages that ship with Mathematica, but are not loaded automatically.

Needs@"Calculus`VectorAnalysis`" D

� Defining a Vector

Vectors are defines as lists enclosed in curly brackets.

MmaGuide-GLG.nb 6

f = 81, 2, 3 <

81, 2, 3 <

g = 84, 5, 6 <

84, 5, 6 <

dot = DotProduct @f, g D

32

cross = CrossProduct @f, g D

8-3, 6, -3<

These operations also work on more than numbers.

DotProduct @8l, m, n <, 8r, s, t <D

l r + m s+ n t

CrossProduct @8l, m, n <, 8r, s, t <D

8-n s + m t, n r - l t, -m r + l s <

á Picking out components of a vector or list.

You can pick out one of the components of the vector (or, equivalently, a part of a list) by using the following

notation.

cross @@1DD

-3

cross @@2DD

6

You get the idea.

MmaGuide-GLG.nb 7

Now, recall xysoln .

xysoln

99x ®
3
�����
2

, y ® -
1
�����
2
==

It is really a list of lists. Therefore:

xysoln @@1DD

9x ®
3
�����
2

, y ® -
1
�����
2
=

Therefore we need to do the following:

xysoln @@1, 1 DD

x ®
3
�����
2

xysoln @@1, 2 DD

y ® -
1
�����
2

xysoln @@2, 1 DD

— Part::partw : Part 2 of 99x ®
3
�����
2

, y ® -
1
�����
2
== does not exist.

99x ®
3
�����
2

, y ® -
1
�����
2
==P2, 1 T

Get it? One more example. Form a another type of list (actually, this is a 2 by 2 matrix):

In[4]:= mat = 881, 2 <, 83, 4 <<

Out[4]= 881, 2 <, 83, 4 <<

In[5]:= mat@@1DD

Out[5]= 81, 2 <

MmaGuide-GLG.nb 8

In[6]:= mat@@1, 2 DD

Out[6]= 2

In[7]:= mat@@2DD

Out[7]= 83, 4 <

In[8]:= mat@@2, 1 DD

Out[8]= 3

Solving Systems of Algebraic Equations

We have already seen this, but Mathematica is very powerful!!!

� Define 8 equations.

These eight equations are the equations of motion of the slider-crank mechanism inside an IC engine.

MmaGuide-GLG.nb 9

eq1 = N+ Cx == 0

eq2 = Cy - P == mC aC

eq3 = By - Cy == mBC aDy

eq4 = Bx - Cx == mBC aDx

eq5 = Cx L Cos@fD - Cy L Sin @fD == I BC aBC + mBC aDy
a Sin @fD - mBC aDx

a Cos@fD

eq6 = Ax - Bx == 0

eq7 = Ay - By == 0

eq8 = Bx r Cos @qD + By r Sin @qD + T == 0

N+ Cx == 0

-P + Cy == aC mC

By - Cy == aDy
mBC

Bx - Cx == aDx
mBC

L Cos@fD Cx - L Sin @fD Cy == -a Cos@fD aDx
mBC + a Sin @fD aDy

mBC + I BC aBC

Ax - Bx == 0

Ay - By == 0

T + r Cos @qD Bx + r Sin @qD By == 0

� Solve the 8 equations of motion.

These are the various forces in the problem.

MmaGuide-GLG.nb 10

soln =

Solve @8eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8 <, 8Ax , B x , A y , B y , C x , C y , N, T <D

99T ® r Sin @qD H-P - aDy
mBC - aC mCL +

1
�����
L

 Hr Cos @qD Ha aDx
mBC - L aDx

mBC -

Sec@fD I BC aBC - L P Tan@fD - a aDy
mBC Tan@fD - L aC mC Tan@fDLL,

Ax ® -
1
�����
L

Ha aDx
mBC - L aDx

mBC - Sec@fD I BC aBC - L P Tan@fD - a aDy
mBC Tan@fD - L aC mC Tan@fDL,

Ay ® P + aDy
mBC + aC mC,

N ® -
-a aDx

mBC + Sec@fD I BC aBC + L P Tan@fD + a aDy
mBC Tan@fD + L aC mC Tan@fD

���
L

, B x ® -
1
�����
L

Ha aDx
mBC - L aDx

mBC - Sec@fD I BC aBC - L P Tan@fD - a aDy
mBC Tan@fD - L aC mC Tan@fDL,

Cx ® -
a aDx

mBC - Sec@fD I BC aBC - L P Tan@fD - a aDy
mBC Tan@fD - L aC mC Tan@fD

���
L

,

By ® P + aDy
mBC + aC mC, C y ® P + aC mC==

If I wanted to assign the one of the eight solutions to a variable, I would do it as before (get used to this, because

you will be doing it a lot).

bX = Bx �. soln @@1DD

-
a aDx

mBC - L aDx
mBC - Sec@fD I BC aBC - L P Tan@fD - a aDy

mBC Tan@fD - L aC mC Tan@fD
���

L

Notice I didn't get the curly braces this time.

Solving a Single Second-Order Ordinary Differential Equation.

� You begin by defining the equation to be solved.

For a single second-order ODE, you simply define the equation in the manner shown below. Notice, that you

can include the initial conditions in the list (for numerical solutions, you must include the initial conditions).

This equation happens to be a form of an equation called Duffing's equation.

duffing = 9x'' @t D + g x' @t D - x@t D + x@t D3
== A Cos@t D, x @0D == 0.6, x' @0D == 1.25 =

9-x@t D + x@t D
3

+ g x ¢@t D + x²@t D == A Cos@t D, x @0D == 0.6, x ¢@0D == 1.25 =

Notice that derivatives are indicated by "primes" and we have indicated that x is a function of time.

MmaGuide-GLG.nb 11

� Now use the command NDSolve to get the solution.

á I now get the solution. Notice that I must assign values to the constants using replacement rules.

The nice thing about using replacements rules is that the variables are not permanently assigned the numerical

values.

duffsoln1 = NDSolve @duffing �. 8g -> 0.15, A -> 0.3 <, x, 8t, 0, 100 <D

— NDSolve::mxst :

Maximum number of 1000 steps reached at the point t == 58.9464420548711398 .̀

88x ® InterpolatingFunction @880., 58.9464 <<, <>D<<

Mathematica has default limits on almost everything. We can integrate out past 58.9 seconds by setting the

MaxSteps variable to a higher value.

duffsoln1 =

NDSolve @duffing �. 8g -> 0.15, A -> 0.3 <, x, 8t, 0, 100 <, MaxSteps -> 5000D

88x ® InterpolatingFunction @880., 100. <<, <>D<<

Mathematica returns an InterpolatingFunction as the solution. You can work with

InterpolatingFunction 's as you would with Sin or Cos or any other function.

� Plot the solution versus time.

We use the Plot command to plot the solution. First, let's look at a couple of simple examples.

MmaGuide-GLG.nb 12

á 2D Plot Example

Plot Ax2 Cos@xD, 8x, 0, 20 <E

5 10 15 20

-200

-100

100

200

300

� Graphics �

MmaGuide-GLG.nb 13

á 3D Plot Example

Plot3D @Cos@xD Sin @yD, 8x, -p, p<, 8y, -p, p<D

-2

0

2

-2

0

2

-1

-0.5

0

0.5

1

-2

0

2

� SurfaceGraphics �

We can increase the resolution.

MmaGuide-GLG.nb 14

Plot3D @Cos@xD Sin @yD, 8x, -p, p<, 8y, -p, p<, PlotPoints -> 30D

-2

0

2

-2

0

2

-1

-0.5

0

0.5

1

-2

0

2

� SurfaceGraphics �

á Plot the Solution to the Differential Equation

Remember that duffsoln1 is an InterpolatingFunction . Note that you must wrap the replacement

with Evaluate when working with InterpolatingFunctions in this way.

MmaGuide-GLG.nb 15

Plot @Evaluate @x@t D �. duffsoln1 D, 8t, 0, 100 <D

20 40 60 80 100

-1.5

-1

-0.5

0.5

1

1.5

� Graphics �

á Do a phase plot of the solution.

Now we are plotting x versus x (x is on the y axis and x is on the x axis). Notice that we can take the derivative

of x by simply a "prime" on it.

ParametricPlot @Evaluate @8x@t D, x' @t D< �. duffsoln1 D, 8t, 0, 100 <,

PlotRange -> All D

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

� Graphics �

MmaGuide-GLG.nb 16

That was a pretty boring solution. Here is a mathematically chaotic one! We integrate again with adifferent set

of parameters. Now we see why the replacement rules are so useful.

duffsoln2 =

NDSolve @duffing �. 8g -> 0.3, A -> 0.3 <, x, 8t, 0, 100 <, MaxSteps -> 5000D

88x ® InterpolatingFunction @880., 100. <<, <>D<<

Plot @Evaluate @x@t D �. duffsoln2 D, 8t, 0, 100 <D

20 40 60 80 100

-1.5

-1

-0.5

0.5

1

1.5

� Graphics �

MmaGuide-GLG.nb 17

ParametricPlot @Evaluate @8x@t D, x' @t D< �. duffsoln2 D, 8t, 0, 100 <,

PlotRange -> All D

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

� Graphics �

Now on to a more complicated example.

A System of Second-Order Equations.

� For a system of second-order ODEs, you can also put the equations and initial
conditions in a list.

Now, the list just gets longer. These happen to be the equations of motion for a damped, forced, elastic

pendulum.

pendulum = 9q'' @t D + 2 R' @t D q' @t D � R@t D +

c q' @t D � m- g Cos@q@t DD � R@t D == A Cos@w t D � Im R@t D2
M,

R'' @t D + c R' @t D � m- R@t D Hq' @t DL2
+ k HR@t D - L0L � m- g Sin @q@t DD == 0,

q@0D == 0, q' @0D == 2.0, R @0D == 1.2, R' @0D == 0=

9-
g Cos@q@t DD
�����������������������������������

R@t D
+

c q¢@t D
���������������������

m
+

2 R¢@t D q¢@t D
�������������������������������������

R@t D
+ q²@t D ==

A Cos@t wD
������������������������������

m R@t D2
,

k H-L0 + R@t DL
���

m
- g Sin @q@t DD +

c R¢@t D
���������������������

m
- R@t D q¢@t D

2
+ R²@t D == 0, q@0D == 0,

q¢@0D == 2., R @0D == 1.2, R ¢@0D == 0=

MmaGuide-GLG.nb 18

á Set up a vector of the parameters and their values.

params = 8L0 -> 0.5, m -> 0.25, k -> 10, c -> 0.06, g -> 9.81, A -> 1, w -> 3.6 <

8L0 ® 0.5, m ® 0.25, k ® 10, c ® 0.06, g ® 9.81, A ® 1, w ® 3.6 <

á Numerically solve the equations of motion after substituting in the parameters.

pendsoln = NDSolve @pendulum �. params, 8q, R <, 8t, 0, 20 <, MaxSteps -> 20000 D

88q ® InterpolatingFunction @880., 20. <<, <>D,

R ® InterpolatingFunction @880., 20. <<, <>D<<

á Plot the trajectory.

ParametricPlot @Evaluate @8R@t D Cos@q@t DD, - R@t D Sin @q@t DD< �. pendsoln D,

8t, 0, 20 <, PlotPoints -> 1000, PlotRange -> All, AspectRatio -> 1D

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

� Graphics �

MmaGuide-GLG.nb 19

� More on Interpolating Functions

We can combine them to form other quantities. For example, here is the velocity of the pendulum versus time.

velocity =
"##

HR' @t DL
2

+ HR@t D q' @t DL
2

�. pendsoln

9,IInterpolatingFunction @880., 20. <<, <>D@t D
2

InterpolatingFunction @880., 20. <<, <>D@t D2
+

InterpolatingFunction @880., 20. <<, <>D@t D2
M=

Plot @Evaluate @velocity D, 8t, 0, 20 <D

5 10 15 20

1

2

3

4

5

6

7

� Graphics �

Mathematica can be quite wonderful!

MmaGuide-GLG.nb 20

