Notes: Standard Deviation

A measure of how the values in a data set vary or deviate from the mean.
Formula for calculating Standard Deviation:

$$
\sigma=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}
$$

σ - Greek letter sigma represents standard deviation
Σ - Capital sigma represents the sum of a series of numbers
x - a value in the data set
\bar{x} - the mean of the data set
n - the number of values in the data set

Step 1: Calculate mean

Step 2: Find the difference between the data value and the mean

Step 3: Square each difference

Step 4: Find the average (mean of these squares)

Step 5: Take the square root of the mean of the squares to find the standard deviation

Data Set 1			
x	\bar{x}	$x-\bar{x}$	$(x-\bar{x})^{2}$
12.6	15	-2.4	5.76
15.1	15	0.1	0.01
11.2	15	-3.8	14.44
17.9	15	2.9	8.41
18.2	15	3.2	10.24
$\frac{\sum(x-\bar{x})^{2}}{n}$			
Standard Deviation:			
$\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}$	≈ 2.79		

Data Set 2			
x	\bar{x}	$x-\bar{x}$	$(x-\bar{x})^{2}$
13.4			
11.7			
18.3			
14.8			
14.3			
$\frac{\sum(x-\bar{x})^{2}}{n}$			
$\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}$			

Which set of data has a greater standard of deviation?

The data set with the larger standard of deviation has a larger more spread out range of values.

If many of the data values are close to the mean, then the data would have a relatively small standard deviation. This would tell you that the data is not very spread out.
\qquad
\qquad
Find the standard deviation for each data set by filling in the tables.

1. Data set $1: 4,8,5,12,3,9,5,2$

Data set 2: 5, 9, 11, 4, 6, 11, 2, 7

Data Set 1			
x	$\overline{\mathrm{x}}$	$\mathrm{x}-\overline{\mathrm{x}}$	$(\mathrm{x}-\overline{\mathrm{x}})^{2}$
	$\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{n}}$		
	$\sqrt{\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{n}}}$		
Standard Deviation:			

Data Set 2			
x	$\overline{\mathrm{x}}$	$\mathrm{x}-\overline{\mathrm{x}}$	$(\mathrm{x}-\overline{\mathrm{x}})^{2}$
$\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{n}}$			
Standard Deviation:			
$\sqrt{\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{n}}}$			

Which data set has a greater standard deviation?
2. Data set $1: 102,98,103,86,101,110$

Data set 2: $90,89,100,97,102,97$

Data Set 1			
x	$\overline{\mathrm{x}}$	$\mathrm{x}-\overline{\mathrm{x}}$	$(\mathrm{x}-\overline{\mathrm{x}})^{2}$
$\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{n}}$			
Standard Deviation:			
$\sqrt{\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{n}}}$			

Data Set 2			
x	$\overline{\mathrm{x}}$	$\mathrm{x}-\overline{\mathrm{x}}$	$(\mathrm{x}-\overline{\mathrm{x}})^{2}$
$\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{n}}$			
Standard Deviation:			
$\sqrt{\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{n}}}$			

3. Data set $1: 32,40,35,28,42,32,44$

Data set 2: $40,38,51,39,46,40,52$

Data Set 1			
x	$\overline{\mathrm{x}}$	$\mathrm{x}-\overline{\mathrm{x}}$	$(\mathrm{x}-\overline{\mathrm{x}})^{2}$
$\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{n}}$			
Standard Deviation:			
$\sqrt{\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{n}}}$			

Data Set 2			
x	$\overline{\mathrm{x}}$	$\mathrm{x}-\overline{\mathrm{x}}$	$(\mathrm{x}-\overline{\mathrm{x}})^{2}$
$\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{n}}$			
Standard Deviation:			
$\sqrt{\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{n}}}$			

Which data set has a greater standard deviation?

