Notes: Standard Deviation

A measure of how the values in a data set vary or deviate from the mean.

Formula for calculating Standard Deviation:

$$\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{n}}$$

σ – Greek letter sigma represents standard deviation

 Σ – Capital sigma represents the sum of a series of numbers

x - a value in the data set

 \bar{x} - the mean of the data set

n – the number of values in the data set

Step 1: Calculate mean

Step 2: Find the difference between the data value and the mean

Step 3: Square each difference

Step 4: Find the average (mean of these squares)

Step 5: Take the square root of the mean of the squares to find the standard deviation

Data Set 1				
X	$\bar{\chi}$	$x-\bar{x}$	$(x-\bar{x})^2$	
12.6	15	-2.4	5.76	
15.1	15	0.1	0.01	
11.2	15	-3.8	14.44	
17.9	15	2.9	8.41	
18.2	15	3.2	10.24	
$\frac{\sum (x-\bar{x})^2}{n}$			7.772	
Standard Deviation: $\sqrt{\frac{\sum (x-\bar{x})^2}{n}}$			≈ 2.79	

Which set of data has a greater standard of deviation?

The data set with the larger standard of deviation has a larger more spread out range of values.

If many of the data values are close to the mean, then the data would have a relatively small standard deviation. This would tell you that the data is not very spread out.

Data Set 2				
X	\bar{x}	$x-\bar{x}$	$(x-\bar{x})^2$	
13.4				
11.7				
18.3				
14.8				
14.3				
Standard Deviation: $\sqrt{\frac{\sum (x-\bar{x})^2}{n}}$				

Find the standard deviation for each data set by filling in the tables.

1. Data set 1: 4, 8, 5, 12, 3, 9, 5, 2 Data set 2: 5, 9, 11, 4, 6, 11, 2, 7

75074 15 88 15 84 16				
Data Set 1				
Х	$\bar{\mathbf{X}}$	$x - \bar{x}$	$(x-\bar{x})^2$	
$\sum (x - \bar{x})^2$				
n				
Standard Deviation:				
	$\sqrt{\frac{\sum (x-\overline{x})^2}{n}}$			
L				

Data Set 2					
X	$\bar{\mathbf{x}}$	$x - \bar{x}$	$(x-\bar{x})^2$		
	$\sum (x - \bar{x})^2$				
	n				
Stan	Standard Deviation:				
	$\sqrt{\frac{\sum (x-\bar{x})^2}{n}}$				

Which data set has a greater standard deviation?

2. Data set 1: 102, 98, 103, 86, 101, 110 Data set 2: 90, 89, 100, 97, 102, 97

Data Set 1				
X	$\overline{\mathbf{X}}$	$x - \bar{x}$	$(x-\bar{x})^2$	
$\frac{\sum (x - \bar{x})^2}{n}$				
Standard Deviation: $\sqrt{\frac{\sum (x-\overline{x}\)^2}{n}}$				

Data Set 2					
X	$\overline{\mathbf{X}}$	$x - \overline{x}$	$(x-\bar{x})^2$		
	$\frac{\sum (x-\bar{x})^2}{n}$				
11					
Standard Deviation:					
	$\sqrt{\frac{\sum (x-\bar{x})^2}{n}}$				

3. Data set 1: 32, 40, 35, 28, 42, 32, 44 Data set 2: 40, 38, 51, 39, 46, 40, 52

Data Set 1				
Х	$\bar{\mathbf{x}}$	$x - \bar{x}$	$(x-\bar{x})^2$	
	$\sum (x - \bar{x})^2$			
	n			
Stan	Standard Deviation:			
$\sqrt{\frac{\sum (x-\overline{x})^2}{n}}$				

Data Set 2					
X	$\bar{\mathbf{x}}$	$x - \bar{x}$	$(x-\bar{x})^2$		
	$\sum (x-\bar{x})^2$				
	n				
Stan	Standard Deviation: $\frac{\overline{\Sigma(x-\overline{x})^2}}{}$				
	√ n				

Which data set has a greater standard deviation?