
International Journal of Science, Engineering and Technology Research (IJSETR)

Volume 4, Issue 4, April 2015

909
ISSN: 2278 – 7798 All Rights Reserved © 2015 IJSETR

A Web Scraping Approach in Node.js

Shikha Mahajan, Nikhit Kumar
Information Science and Engineering

R V College of Engineering

Bangalore, India

Abstract:Web scraping is the process of automatically collecting

information from the World Wide Web. It is a field with active

developments sharing a common goal with the semantic web vision,

an initiative that still requires breakthroughs in text processing,

semantic understanding, and artificial intelligence and human-

computer interactions. Current web scraping solutions range from

the ad-hoc, requiring human effort, to fully automated systems that

are able to convert entire web sites into structured information, with

limitations. This paper describes a method for developing a web

scraper in Node.js that locates files on a website and then

decompresses and reads the files and stores their contents in a

database. It mentions the modules used and the algorithm of

automating the navigation of a website via links. It also describes a

method of scanning the website at regular time intervals to locate

newly added content with the aid of a cron job(scheduled task).

Keywords: web scraping, web mining, locating files in websites,

navigating, DOM, cron job, JavaScript, Node.js, cheerio.js,

decompressing files.

I. INTRODUCTION

A. DEFINITION

In its most basic form, web scraping enables a way to

download web pages and then search for data in them. It often

requires converting unstructured data in web pages to

structured data and then storing it in a database. Web scraping

can be used for indirect content searching on the internet.

B. USES OF WEB SCRAPING

The uses ofweb scraping for business and personal

requirements are endless. Each business or individual has his

or her own specific need for gathering data. Here are few of

the common usage scenarios:

 Gathering data from multiple sources for analysis:

Using a Web Scraper you can extract data from multiple

websites to a single spreadsheet (or database) so that it

becomes easy for you to analyze (or even visualize) the

data.

 For research:

A Web Scraper will help you gather structured data from

multiple sources in the Internet with ease.

 For Marketing:

A web scraper can be used to gather contact details of

businesses or individuals from websites like

yellowpages.com or linkedin.com. Details like email

address, phone, website URL etc. can be easily extracted

using a web scraper.

C. COMMONLY USED WEB SCRAPING TECHNIQUES

 Human copy-and-paste:

In some cases even the best web-scraping technology

cannot replace a human‟s manual examination and copy-

and-paste, and sometimes this may be the only workable

solution when the websites for scraping explicitly set up

barriers to prevent machine automation.

 Text grepping and regular expression matching:

A simple yet powerful approach to extract information

from web pages can be based on the regular expression-

matching or UNIX grep command facilities of

programming languages.

 HTTP programming:

 Static and dynamic web pages can be retrieved by

posting HTTP requests to the remote web server

using socket programming.

 DOM parsing:

By embedding a web browser, such as the Internet

Explorer or the Mozilla browser control, programs can

retrieve the dynamic content generated by client-side

scripts. These browser controls also parse web pages into

a DOM tree, based on which programs can retrieve parts

of the pages.

 Web-scraping software:

There are many software tools available that can be used

to customize web-scraping solutions. The software may

try to automatically recognize the data structure of a page

or provide a recording interface that eliminates the

necessity to manually write web-scraping code, or some

scripting functions that can be used to extract and

transform content, and database interfaces that can store

the scraped data in local databases.

D. WHY NODE.JS FOR WEB SCRAPING

Node.js is a platform built on Chrome's JavaScript runtime. It

uses an event-driven, non-blocking I/O model that makes

itlightweight and efficient, perfect for data-intensive real-time

applications that run across distributed devices. JavaScript was

born as a language to be embedded in web browsers, but we

International Journal of Science, Engineering and Technology Research (IJSETR)

Volume 4, Issue 4, April 2015

910
ISSN: 2278 – 7798 All Rights Reserved © 2015 IJSETR

can now write stand-alone scripts in JavaScript that can run on

a desktop computer or on a web server using Node.js.

Web scraping software till now has been written in Java,

Ruby, and most popularly in Python. All modern languages

provide functions to download web pages, or have extensions

to do it. However, locating and isolating data in HTML pages

is a challenging task. An HTML page has content, style and

layouts elements all intermixed, so a non-trivial effort is

required to parse and identify the interesting parts of the page.

JavaScript and libraries like jQuery can powerfully and easily

manipulate the DOM inside a web browser. Therefore writing

web scraping scripts in Node.js is advantageous since we can

use many techniques that we know from DOM manipulation

in the client-side code for the web browser. This

paperdescribes simple a method to implement a web scraper in

a node.js application and demonstrates its use to locate and

download contents of files of a particular format from a

website.

The rest of the paper is organized as follows. In Section II, the

origin of the requirement to develop a web scraper in Node.js

is explained. Section IIIdescribes the steps for developing a

web scraper to locate and download files from a website.

Section V concludes the paper and future work is mentioned

in Section VI. The code snippets and the syntax of methods of

various modules are given in the Appendix.

II. ORIGIN OF THE REQUIREMENT

The need for this application was encountered when a

requirement arose tokeep track of logfilescontainingthe

sequence of events of a critical process. The logs were

uploaded on a website daily andexpired after a certain amount

of time. Therefore, a system was necessary to extract useful

information from the files and save it in a database for future

reference. This application was developed to locate and read

from log files hence providing the solution to the requirement.

URL of the section of the website where the files were

uploaded contained the date and time of uploading. Thelinks

to the files could be located anywhere in this section of the

website.The files are compressed therefore we have to

decompress the files to read them. Infinite loops or links that

led back to the previous page were eliminated by the use of

simple if conditions and links of interest were found using

regular expressions. Using an external web scraper for this

application was not appropriate as the requirements were very

specific. Therefore a custom web scrapingtechnique was

designed using modules available in npm registry. This series

of steps can be used by anyone to easily integrate web

scraping functionality into their application.

III. PROCEDURE

This section details the steps in making a web scraper and

searching all links in a section of a website that contains the

path to files of a certain format.The application starts with a

base URL, which is the section of the website that we want to

search. It then obtains the contents of the webpage pointed to

by the base URL and extracts all the links from it. The links

are then inspected. If a link contains the URL of a required file

as its href attribute then the file is decompressed and its

contents are read. Otherwise the link‟s href value is appended

to the base URL and pushed into an array. The process is then

repeated by taking each value in the above formed array as the

base URL. The above procedure is scheduled to run several

times a day with the help of a cron job.

The following steps explain the implementation details to

accomplish the above mentioned tasks:

1. Generate the basic URL of a website or the section of

a website that you want to search.

2. Make a HTTP request to the URL generated in the

previous step.The request is made using the GET

function of Node.js‟ HTTP API. The functionstores

the contents of the webpage pointed to by the URL in

a variable. The response data does not contain

complete content of the webpage as data is sent in the

form of chunks. We get the data chunks by listening

to the „data‟ event on the response. The chunks are

appended as they are received to a string variable

which ultimately contains the entire content of the

webpage.Refer Appendix-[A] for GET function

syntax.

3. Convert the string variable containing the

HTMLreceived in the previous step into a DOM tree

using cheerio‟s LOAD method. Cheerio is an

external package that generates a DOM tree and

provides a subset of the jQuery function set to

manipulate it. To install Node.js packages we use a

package manager called npm that is installed with

Node.js. This is equivalent to Ruby's gem or

Python's easy_install and pip, it simplifies the

download and installation of packages. Refer

Appendix-[B] for cheerio‟s load function syntax.

4. Obtain all the links from the DOM using cheerio‟s

`each` function. Check whether the links href

attribute contain the URL of the required file format

using regular expressions. Refer Appendix-[C] for

cheerio‟s `each` function‟s syntax.

International Journal of Science, Engineering and Technology Research (IJSETR)

Volume 4, Issue 4, April 2015

911
ISSN: 2278 – 7798 All Rights Reserved © 2015 IJSETR

5. If the link directs to the URL of one such file, then

we decompress the file and read its contents. The file

is decompressed using gunzip class of node.jszlib

APIand the contents of the file are stored in a

variable for further processing.Refer Appendix-[D]

for zlibmodule‟s gunzip functionsyntax.

6. If the link does not contain the URL of the required

filethen we append value the link‟s href attribute to

the base URL and push the appended value to an

array.

7. The process is repeated by taking each of the links in

the previously generated array as the base URL until

all the links to files are found.

8. The entire process is repeated everyday with the help

of npm module `node-schedule`. It uses cron patterns

to determine intervals when the module runs. This

way we can keep track of newly generated files.Refer

Appendix-[E] for function to implement cron job

using node-schedule module.

Fig 1. Flow chart to locate files in a website

IV. CONCLUSION

This paper begins with definingweb scraping and highlights its

uses. It presents a method of automating navigation of

websites via links, obtaining desired information from the

webpage and designing a cron job to extract newly uploaded

content from the website. It then explains a method of

automating the process of locating files of a given format on a

website with the help of web scraping. The paper hence

provides an example of custom web scraping functionality in

node applications with the help of npm modules

V. FUTURE WORK

This method of locating files can be applied to extract images,

tables and other information from websites. The method can

be enhanced to handles infinite loops while using links to

traverse websites. Additionallytechniques to handle pagination

in web pages can be incorporated.

APPENDIX

[A] HTTP get function to get the content of a webpage pointed

to by BASEURL in a variable called „body‟.

http.get(BASEURL, function(res) {

res.on('data', function(chunk) {

body += chunk;

 });

res.on('end', function() {

 /*define function to be done after getting the

page body*/

 });

 })

 .on('error', function(e) {

 /*define function to handle error while retrieving

the page*/

 });

}

[B] Cheerio load method to convert the HTML string stored in

a variable called `body` to DOM.

$ = cheerio.load(body);

[C]cheerio‟s each function to get and check all the links in a

webpage‟s DOM.

/*if the text of the link does not say „Parent Directory‟ then

append the link‟s text to the base URL and push into an

array*/

$('a')

 .each(function() {

if (($(this).text() != 'Parent Directory'){

 URL1 = BASEURL + $(this).text();

 url_list1.push(URL1);

 }

 });

International Journal of Science, Engineering and Technology Research (IJSETR)

Volume 4, Issue 4, April 2015

912
ISSN: 2278 – 7798 All Rights Reserved © 2015 IJSETR

[D] Decompressing the contents of a compressed file whose

URL is stored in a variable called „url‟using GUNZIP

method.

functiongetGzipped(url, callback) {

var buffer = [];

http.get(url, function(res) {

 // pipe the response into the gunzip to decompress

vargunzip = zlib.createGunzip();

res.pipe(gunzip);

gunzip.on('data', function(data) {

 // decompression chunk ready, add it to the buffer

buffer.push(data.toString())

 })

 .on("end", function() {

 // response and decompression complete, join the

buffer and return

callback(null, buffer.join(""));

 })

 .on("error", function(e) {

callback(e);

 })

 })

 .on('error', function(e) {

callback(e)

 });}

[E] Function to implement cron job

/*cron pattern read to func the function every hour*/

varcron_pattern = '00 * * *';

var j = schedule.scheduleJob(cron_pattern, function(){

// function body

});

REFERENCES

[1] Sanjay Kumar Malik1 , SAM Rizvi2 “Information Extraction using Web

Usage Mining, Web Scrapping and Semantic Annotation” 2011
International Conference on Computational Intelligence and

Communication Systems.

[2] Richard Baron Penman, Timothy Baldwin, David Martinez “Web

Scraping Made Simple with SiteScraper”

[3] GuChengjian, Huang Lucheng, “Web Mining in Technology Management,

2008 International Seminar on Business and Information

Management978-0-7695-3560- 9/08, 2008 IEEEDOI
10.1109/ISBIM.2008.127.

[4] Clara Sacramento, Ana C. R. Paiva “Web Application Model
Generation through Reverse Engineering and UI Pattern Inferring”

2014 9th International Conference on the Quality of Information and

Communications Technology.

[5]PranamKolari And Anupam Joshi, “Web mining: Research And Practice”,
Web Engineering, 1521-9615/04, 2004 IEEE.

 [6] Giovanni Grasso, Tim Furche, and Christian Schallhart “Effective Web
Scraping with OXPath” WWW 2013 Companion, May 13–17, 2013, Rio

de Janeiro, Brazil.

[7] Kosala, R. and Blockeel, H. (2000). Web mining research: A survey.

ACM SIGKDD Explorations Newsletter, 2(1):1–15.

[8] "Web Scraping", (Wikipedia), [online] 2015,

http://en.wikipedia.org/wiki/Web_scraping (Accessed: 27 March 2015).

[9] VasaniKrunal A. "Content Evocation Using Web Scraping Content

Evocation Using Web Scraping",IOSR Journal of Computer Engineering
(IOSR-JCE) e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue

3, Ver. IX (May-Jun. 2014), PP 54-60

