SWBAT: Proving Rhombi and Squares Using Coordinate Geometry

Proving Rhombi and Squares using Coordinate Geometry

SWBAT: Proving Rhombi and Squares Using Coordinate Geometry HO REVIEW

Prove that quadrilateral ABCD with the vertices $\mathrm{A}(2,1), \mathrm{B}(1,3), \mathrm{C}(-5,0)$, and $D(-4,-2)$ is a rectangle.
Question: 15 this a \square with \cong digs?
Formula: Midpoint $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Work:

$$
\text { distance }=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Step 1: Prove \square first

$$
\text { Mp of }\left(A=\left(\frac{2+-5}{2}, \frac{1+0}{2}\right)=\left(\frac{-3}{2} ; \frac{1}{2}\right)\right.
$$

Mp of $B D=\left(\frac{1+-4}{2}, \frac{3+-2}{2}\right)=\left(-\frac{3}{2}, \frac{1}{2}\right)$
Step 2: Prove \cong diagonals

$$
\begin{aligned}
& C A=\sqrt{(1)^{2}+(7)^{2}}=\sqrt{1+49}=\sqrt{50} \\
& B D=\sqrt{(5)^{2}+(5)^{2}}=\sqrt{25+25}=\sqrt{50}
\end{aligned}
$$

Statement
$\frac{A B C D \text { is a rectangle bl its a } 7 \text { with } \cong \text { diagonals. }}{2}$.

SWBAT: Proving Rhombi and Squares Using Coordinate Geometry HZ REVIEW

Prove that quadrilateral PLUS with the vertices $\mathrm{P}(2,1), \mathrm{L}(6,3), \mathrm{U}(5,5)$, and $\mathrm{S}(1,3)$ is a rectangle.
Question is this a $\square u_{i}$ th \cong dings?
Formula

$$
\text { Midpoint }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

work:

$$
\text { distance }=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

step 1: Prove [I first
m_{p} of $S L=\left(\frac{6+1}{2}, \frac{3+3}{2}\right)=(7 / 2,3)$

$$
n_{p} \text { of } \cup P=\left(\frac{a+5}{2}, \frac{1+r}{2}\right)=\left(\frac{7}{2}, 3\right)
$$

Step 2 . Prove \cong diagonal is

$$
\begin{aligned}
& S L=\sqrt{(0)^{2}+(5)^{2}}=\sqrt{25} \\
& P U=\sqrt{(4)^{2}+(3)^{2}}=\sqrt{16+9}=\sqrt{25}
\end{aligned}
$$

Statement:
PLUS is a rectangle blue its a \square with \cong diagonals.

SWBAT: Proving Rhombi and Squares Using Coordinate Geometry

Quadrilateral

1. four sided polygon
2. sum of interior angles is 360°

SIDES:

1. opposite sides parallel 2. opposite sides a ANGLES:
2. opposite angles a
3. consecutive angles
supplementary
DIAGONALS:
4. diagonals bisect each other
5. diagonals form a triangles

SWBAT: Proving Rhombi and Squares Using Coordinate Geometry
Proving a Quadrilateral is a Rhombus
Method: Prove that all four sides are equal.

SWBAT: Proving Rhombi and Squares Using Coordinate Geometry

Example Model Problem

Prove that a quadrilateral with the vertices $\mathrm{A}(-2,3), \mathrm{B}(2,6), \mathrm{C}(7,6)$ and $\mathrm{D}(3,3)$ is a rhombus.
Question: Are all sides \cong ?
Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Work:

$$
\begin{aligned}
& \underline{A B}=\sqrt{(4)^{2}+(3)^{2}}=\sqrt{25} \\
& \underline{B C}=\sqrt{(5)^{2}+(0)^{2}}=\sqrt{25} \\
& \underline{C D}=\sqrt{(4)^{2}+(3)^{2}}=\sqrt{25} \\
& \underline{A D}=\sqrt{(5)^{2}+(0)^{2}}=\sqrt{25}
\end{aligned}
$$

Statement:
\therefore Quad $A B C D$ is a rhombus b/c all the sides are \cong.

SWBAT: Provina Rhombi and Sauares Usina Coordinate Geometry Practice

1. Prove that the quadrilateral with the vertices $\mathrm{D}(2,1), \mathrm{A}(6,-2), \mathrm{V}(10,1)$ and $\mathrm{E}(6,4)$ is a rhombus.
Question: Are all sides \cong ?
Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Work:

$$
\begin{aligned}
& \underline{D E}=\sqrt{(4)^{2}+(3)^{2}}=\sqrt{25} \\
& \underline{E V}=\sqrt{(-4)^{2}+(3)^{2}}=\sqrt{25} \\
& \underline{V A}=\sqrt{(4)^{2}+(3)^{2}}=\sqrt{25} \\
& \underline{A D}=\sqrt{(-4)^{2}+(3)^{2}}=\sqrt{25}
\end{aligned}
$$

Statement:
\therefore Quad DAVE is a rhombus b/c all the sides are \cong.

SWBAT: Proving Rhombi and Squares Using Coordinate Geometry
Prove that quadrilateral ABCD with the vertices $\mathrm{A}(8,0), \mathrm{B}(0,6), \mathrm{C}(-8,0)$, and $\mathrm{D}(0,-6)$ is a rhombus.

Question: Are all sides \cong ?
Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Work:

$$
\begin{aligned}
& \underline{A B}=\sqrt{(-8)^{2}+(6)^{2}}=\sqrt{100} \\
& \underline{B C}=\sqrt{(8)^{2}+(6)^{2}}=\sqrt{100} \\
& \underline{C D}=\sqrt{(-8)^{2}+(6)^{2}}=\sqrt{100} \\
& \underline{D A}=\sqrt{(8)^{2}+(6)^{2}}=\sqrt{100}
\end{aligned}
$$

Statement:
\therefore Quad $A B C D$ is a rhombus b/c all the sides are \cong.

SWBAT: Proving Rhombi and Squares Using Coordinate Geometry summary

* Use the distance formula $4 x$ to show all sides \cong.

Proving that a Quadrilateral is a Square

There are many ways to do this. Prove that the quadrilateral is a rectangle and a rhombus.

SWBAT: Proving Rhombi and Squares Using Coordinate Geometry

Example Model Problem

1. Prove that the quadrilateral with vertices $\mathrm{A}(0,0), \mathrm{B}(4,3), \mathrm{C}(7,-1)$ and $\mathrm{D}(3,-4)$ is a square.

Question: Is this a rhombus and a rectangle?
Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Work: Step 1: Prove Rhombus

$$
\begin{aligned}
& \underline{\mathrm{AB}}=\sqrt{(4)^{2}+(3)^{2}}=\sqrt{\mathbf{2 5}} \\
& \underline{\mathrm{BC}}=\sqrt{(-3)^{2}+(4)^{2}}=\sqrt{\mathbf{2 5}} \\
& \underline{\mathrm{CD}}=\sqrt{(4)^{2}+(3)^{2}}=\sqrt{\mathbf{2 5}} \\
& \underline{\mathrm{DA}}=\sqrt{(-3)^{2}+(4)^{2}}=\sqrt{\mathbf{2 5}}
\end{aligned}
$$

Step 2: Prove Rectangle
$\underline{A C}=\sqrt{(-7)^{2}+(1)^{2}}=\sqrt{50}$
$\underline{B D}=\sqrt{(1)^{2}+(7)^{2}}=\sqrt{50}$

Statement:
\therefore Quad $A B C D$ is a square b / c it's a rhombus and a rectangle.

SWBAT: Proving Rhombi and Squares Using Coordinate Geometry

1. Prove that the quadrilateral with vertices $\mathrm{A}(2,2), \mathrm{B}(5,-2), \mathrm{C}(9,1)$ and $\mathrm{D}(6,5)$ is a square.

Question: Is this a rhombus and a rectangle?
Formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Work: Step 1: Prove Rhombus

$$
\begin{aligned}
& \underline{A D}=\sqrt{(4)^{2}+(3)^{2}}=\sqrt{\mathbf{2 5}} \\
& \underline{D C}=\sqrt{(-3)^{2}+(4)^{2}}=\sqrt{\mathbf{2 5}} \\
& \underline{C B}=\sqrt{(4)^{2}+(3)^{2}} \\
& =\sqrt{\mathbf{2 5}} \\
& \underline{B A}=\sqrt{(-3)^{2}+(4)^{2}}
\end{aligned}=\sqrt{\mathbf{2 5}}
$$

Step 2: Prove Rectangle
$\underline{A C}=\sqrt{(-7)^{2}+(1)^{2}}=\sqrt{50}$
$\underline{B D}=\sqrt{(1)^{2}+(7)^{2}}=\sqrt{50}$

Statement:
\therefore Quad $A B C D$ is a square b / c it's a rhombus and a rectangle.

Summary
\rightarrow Prove Rhombus ${ }^{\text {st }}$
Calculate distance $4 x$ to
Show all sides \cong
\rightarrow Prove Rectangle
Calculate distance $2 \times$ on dags) to show dags \cong.

