
Math0086 practical classes

Week 1: Introduction to MATLAB

Contact: sean.jamshidi.16@ucl.ac.uk

The best way to learn MATLAB, or any programming language, is to try
things out for yourself. This sheet is designed with that in mind, and I hope
that you will try the extra challenges and discover some useful features of
MATLAB yourself. To aid you in your discovery, there are many resources
available. Some of the most often-used are listed below:

• The help command in MATLAB. Type something like help abs at the
command line for a quick description of how the abs function works.

• The doc command in MATLAB. Type something like doc abs to open
a new window with a full description of how the abs function works.
Can be intimidating at first.

• The website https://uk.mathworks.com/matlabcentral/answers/

index is a forum where lots of people have asked questions about how
MATLAB works. Often if you google a question about MATLAB, this will
be one of the first results that comes up.

How to download MATLAB

If you would like to run MATLAB on your own computer, then you will need
to download it. This can be done at the UCL software database, which is
here: https://swdb.ucl.ac.uk/. All of the departmental machines should
have MATLAB installed already, but it is highly recommended that you use
your own computer for coursework.

If you are using your own computer now, I suggest you set MATLAB to
download and begin with the first exercise, which can all be done online.

1

https://uk.mathworks.com/matlabcentral/answers/index
https://uk.mathworks.com/matlabcentral/answers/index
https://swdb.ucl.ac.uk/

1 Getting started

Exercise 1.

Complete the tutorial at https://.learntocode.mathworks.com.

Notice how every time you started a new section of the tutorial, all of the
variables had to be re-defined. This was because the tutorial was teaching
you how to program from the command line. Most programming in MATLAB is
not done this way. Instead, it is more usual to create a file known as a script
and then run it. The script can be saved, edited and shared easily, which is
often much more convenient.

Exercise 2.

On the moodle page you will find a file called ‘learntocode script1.m’, where
the program that you have just designed has been turned into a file (called
a ‘dot m file’) that can be read in MATLAB. Download the file, save it in a
sensible place and open it. This should open MATLAB, with the script in the
Editor window.

MATLAB will only run files that are stored in a certain location, called
the path. In the ‘Home’ tab, click on ‘Set Path’, then ‘Add Folder with
Subfolders’ and navigate to the folder in which you saved the download to
allow MATLAB to run the script. Run the script by clicking on the ‘Editor’
tab and then pressing the ‘Run’ button1.

When you press run, notice that you get an error message on the com-
mand prompt. The script that you downloaded contains three errors that
will stop it from working, and the red error message at the command prompt
should identify the line number and type of error for the first problem that
it encounters. If you look in the editor, the error is highlighted with a red
underline.

Exercise 3.

Remove the errors from the code and run the script (this process is known
as debugging).

1You can also use the F5 key.

2

https://.learntocode.mathworks.com

Note: Two of the mistakes are underlined in the editor in red, but MATLAB can’t
spot the third one. To work out what it is, you need to read the error mes-
sage in the command prompt.

Exercise 4.

Change the code so that the home is located at row 5, column 2 and run the
program again. This is a much faster way of editing than having to start
again and input all the variables from scratch.

Using comments

Some lines in the code are coloured green, and begin with a %. These are
comment lines, and will be ignored by MATLAB when it is running the file.
You should use comments to annotate and organise your code and explain
what different bits mean or do.

Challenge: At the end of the file, I have included code on line 29 and then
turned it into a comment. This is another use for comments – to temporarily
disable part of your program. Remove the % symbol from line 29 and run
the file again. This time, you should see a message at the command prompt
that tells you what the closest location is. To make MATLAB display this
message, I used the function sprintf. Use the help files to explore how
sprintf works and modify line 29 so that the displayed message reads:
“The closest location is (location name) which is (distance) squares away”.
You can also suppress line 27 with a semi-colon so that the closest location
is only displayed once.

3

2 Using matrices

So far we have been storing all of our data in vectors. For example, we stored
the list of location columns in a vector of length 3. Another important way
of storing data is in matrices. In MATLAB , we separate the rows of a matrix
using the semi-colon (;) symbol, and the columns using a comma (,) symbol.
The whole matrix should be enclosed in square brackets,].

To select entries in a matrix we need two indices to specify the row and
column. The first index tells us what row we’re in, and the second index
gives the column. You can select a whole row or column by using a colon
(:). So typing B(:,1) means ‘everything in the first column’.

Exercise 5.

Modify the code so that, instead of having separate vectors for columns and
rows, we use a matrix for the locations. The first column of the matrix
should give the information from locRows, and the second column should

4

give information from locCols. Your code should also store the home lo-
cation as a single vector rather than two scalars. Save your modified code
under a new name.

3 Writing functions

Sometimes we want to write a separate piece of code, called a function, that
performs a self-contained and simple task. We can then use this function in
lots of different projects without writing it out again every time. We will
now create a function that calculates the distance from a home location to
a list of meeting points, so that you can just ‘call’ the function every time
you write a piece of code that requires this task. Just like a mathematical
function, a function in MATLAB takes some inputs and gives some outputs.
In our case, the function should take two inputs (the home co-ordinates
and the list of meeting point co-ordinates) and return one output (a list of
distances).

The format for writing a function is shown in the screenshot above. The
function must be on its script, and the name of the file must be the same
as the name of the function. The first line of the script must start with the
word function. Next, you need to specify which variable you will output,
the name of the function, and the name of the variables that you input. In
the screenshot, the function is called add and square and takes two inputs,
input1 and input2. You should be able to see that the code adds these two
variables together and squares them, then saves the result as a new variable
called output. The last line of the script must be the word end. The script
must be saved with the same name as the function, so this script would have
to be saved as add and square. You can then call it from the command line
by typing, for example, add and square(1,3) which will return the value
16.

Note: When you are call a function, the only variables that it knows about
are those listed as inputs. So, if we had some other variable called input3,
then the function would not know about it and we couldn’t use it in the
script. Similarly, the only things that exist after the function has run are
the variables that are listed as outputs. So once we leave the function, the

5

intermediate variable input sum will disappear.

Exercise 6.

Write a function, called grid distances, that takes the home co-ordinates
and location co-ordinates as inputs, and then outputs a vector that contains
the distance from home to all the different locations. You have already
written the code that does this, so just transfer it over into a new script.
Modify your previous code to use grid distances.

Challenge: Can you write grid distances so that it computes the dis-
tances in just one line, without creating the intermediate variables distRows
and distCols?

4 Using loops

We will now introduce for loops. The idea of a for loop is that you repeat
the same set of lines a pre-determined number of times. Each time you go
round the loop, the code executes in a slightly different way depending on
the value of something called the counting variable. The counting variable
normally increases by one every time the loop goes round.

In example here, the first line tells MATLAB to loop over the counting
variable i, which should start at 1 and then go through 2, 3, 4, 5, 6. The
syntax i = 1:6 means go through all the integers between 1 and 6, one by
one.2 The next line says that the i-th entry of the vector triangle numbers

should be given by the formula i*(i+1)/2, which is the formula for trian-
gle numbers. The loop is closed using the end command. After the loop
has finished executing, you can see that the vector triangle numbers is as
expected.

Note: If we wanted to carry on adding entries to triangle numbers we
could do this by writing

triangle numbers = [triangle numbers, 28]

2In general, this syntax would be is for i = start:gap:stop, which starts at start,
and then on each loop increments by gap until we get to a number bigger than stop.

6

which tells MATLAB to replace the vector triangle numbers with a new
vector which is made up of the old one, plus a new entry 28.

4.1 Designing a fairer algorithm

So far we have chosen the meeting point that is closest to your house. Now
we will design a (fairer?) algorithm that minimises the total distance that
you and your friend would have to travel.

Exercise 7.

Let’s say that your friend lives at a house with row co-ordinate 7 and column
co-ordinate 4. Modify your script to include their home, along with yours,
in a matrix called homeLocs. Then, use your grid distances function in a
loop to work out the distance from each location to each home. Your code
should work something like this:

• For each home in homeLocs

– Compute the distance to each meeting point using grid distances

– Add this to the total distance

• Then use min to work out which meeting point has the shortest possible
distance

Now add in a third and fourth friend, who live at row 3, column 1 and
row 4, column 4. Also add in a new meeting place, the park, at row 1,
column 4. Run the script and see what the best location is.

Challenges:

• One way of measuring the efficiency of code is to count how many lines
it needs. How short can you make your code?

• (harder) Let’s consider a slightly different problem. You want to meet
with lots of your friends (say 20 of them) and you want to choose
which persons house you should meet at, again defined by the lowest
total travelling distance. Can you write a script that does this?

• (open-ended) How long did the above script take to run, and how does
that time scale as you increase the number of friends? Designing the
most efficient algorithm for this problem is a deep question. Read this
and see if you can design a faster code based on the ideas here.

7

https://stackoverflow.com/questions/7171011/minimum-sum-of-all-travel-times
https://en.wikipedia.org/wiki/Geometric_median

Practice questions

• Create a function that . . .

– takes a vector and returns the average of all the values in the
vector

– takes two points in the plane (x1, y1) and (x2, y2) and computes
the Euclidean distance between them:√

(x2 − x1)2 + (y2 − y1)2.

– computes the Euclidean distance between two vectors of length
n

– takes the radius and length of a cylinder and returns its volume
and surface area

– takes a vector and sorts it into descending order

– takes two inputs, a vector and a string, and sorts the vector into
ascending order if the string is ascend, and descending order if
the string is descend. If the string is not either of these things,
return a custom error telling the user what they should have done.

– takes an integer n as input, and returns the smallest integer m > 1
such that n is divisible by m. If n is not an integer, the function
should return an error.

• Write a program that works that computes the distance matrix be-
tween a series of locations, using some of the functions you created
earlier. The program should then output the pair of locations that are
closest to eachother.

• Modify the above program so that the user also inputs an integer n,
and the program outputs n pairs of locations starting with the two
that are closest together.

• Modify all of the above programs to work in the taxi-cab norm (a
different way of measuring distance)

8

Math0086 practical classes
Week 2: First-order Euler methods

Contact: sean.jamshidi.16@ucl.ac.uk

The forward Euler method is the simplest routine for solving first or-
der differential equations. The idea is to approximate the derivative using
what’s known as a finite difference method. Specifically, using something
called a first order forward differencing scheme. Recall the definition of the
derivative:

dy

dt
= lim

∆t→0

y(t+∆t)− y(t)

∆t
.

Thus it seems reasonable that, for small ∆t, one could write
dy

dt
≈ y(t+∆t)− y(t)

∆t
.

Consider the initial-value problem
dy

dt
= f(t, y) with y(t0) = y0.

Using the approximate expression for the derivative, we can write

y(t+∆t) = y(t) + ∆tf(t, y(t))

so the value of y at a time t is enough to (approximately) determine the
value of y at a time t+∆t.

The forward Euler method iterates the above equation. Writing yn for
the approximate solution at time tn = t0 + n∆t, we get

y0 = y(t0) (given),
y1 = y(t0 +∆t) = y0 +∆tf(t0, y0),

y2 = y(t0 + 2∆t) = y1 +∆tf(t0 +∆t, y1).

and so on. At each stage, the approximate solution yn is computed based on
data from the previous time-step only. In MATLAB, we will store the solution
as a vector

y_sol = [y0, y1, y2, y3 . . .]

so that the j-th entry of y_sol contains the approximation to the solution
at tj−1.

1

Exercise 1.
Write a script that uses the forward Euler method to solve the ODE

dy

dt
= 2y, y(0) = 1 (1)

over the range 0 ≤ t ≤ 1 using the time-step ∆t = 0.05. Plot your solution.

Exercise 2.
For equation (1) it is possible to compute a solution by hand. This is known
as an analytical solution or an exact solution, while the solution that we
computed using Euler’s method is known as a numerical solution. Compare
the numerical and analytical solutions by plotting them on the same axes
(you will need to use the command hold on to do this).

Properties of the error

Exercise 3.
Compute numerical solutions using various step-sizes ∆t and show graphi-
cally that the forward Euler method for this problem converges to the exact
solution as ∆t → 0.

Notice that the solutions are not exactly the same however small you make
∆t – solving a differential equation numerically will always introduce an
error. A lot of the theory of numerical differential equations aims to reduce
this error.
Exercise 4.
On a new set of axes, plot the difference between the analytical and numer-
ical solutions as a function of t. The is known as the local error. How does
the local error change as t increases?

Exercise 5.
Now use the forward Euler method to solve the equation

dy

dt
= −50y (2)

with the initial condition y(0) = 1 over the interval 0 < t < 1. Use the
time-step ∆t = 0.05 and compare your numerical solution to the exact
solution…Why does this go wrong? Use the ‘stability’ section of the lecture
notes to find a more appropriate value of ∆t.

2

Exercise 6.
Plot the local error in the numerical solution for this value of ∆t. Also,
compute the error at the final time-step for various values of ∆t. How is
this different to (1), and why?

The global error

Exercise 7.
The forward Euler method is called a first order method because the dif-
ference between the exact and numerical solutions at a given time-step is
proportional to ∆t (as opposed to, say, ∆t2). Verify the error at t = 1 is
O(∆t) by comparing the error for several values of ∆t. What is the con-
stant of proportionality for each equation, and how could a bound on this
be derived analytically?

The backward Euler method
The backward Euler method is similar to the forward one, but has different
stability properties.
Exercise 8.
Use the backward Euler method to solve the two differential equations from
the previous section. Be careful in how you compute y(t +∆t) – you need
to do some re-arranging of the algorithm.

Exercise 9.
Investigate the stability of both equations under the backward Euler method
analytically, then verify this numerically.

Further use of the Euler method(s)

Exercise 10.
Adapt the forward Euler method to solve the differential equation

dy

dt
= sin (ty) with y(0) = π/2 (3)

over the range 0 ≤ t ≤ 6π. In this case, no analytical solution exists, so how
can we trust our numerical solution?

Challenge: Solve equation (3) using the backward Euler method. For now,
use fsolve (an automated routine for solving nonlinear equations using
Newton’s method) to get y(t+∆t) at each time-step.

3

Challenge: How can you verify that forward Euler is first-order accurate,
given that no analytical solution exists for (3)?

Solving higher-order differential equations using finite difference methods
often involves writing the equation as a system. For example, if our equation
was

d2y

dt2
+ 3

dy

dt
− cos (y) = 0 (4)

we would write
d

dt

(
y
y′

)
=

(
y′

cos (y)− 3y′

)
.

Equivalently, we introduce a function v = y′(t) and solve the system

d

dt

(
y
v

)
=

(
v

cos (y)− 3v

)
.

The advantage of this is that we can apply forward Euler (or any method)
to the derivatives on the left-hand side of the equation, and then solve for
y(t+∆t) and v(t+∆t) at each time step.
Exercise 11.
Solve equation (4) using forward Euler over the range 0 ≤ t ≤ π with the
initial conditions y(0) = 0, y′(0) = π/2. Plot your solution y(t).

Exercise 12.
Investigate the critical points of the system (4) and plot your numerical
solution in the (y, y′) phase plane. What initial conditions are needed to
approach a different critical point?

4

Math0086 practical classes
Week 3: Other methods for ODEs

Contact: sean.jamshidi.16@ucl.ac.uk

There are many other finite difference methods, each with their own
stability and convergence properties. All of the methods discussed below
are listed in the lecture notes.

1 Second-order equations
Using exactly the same Taylor expansion as in forward-Euler, an approxi-
mation for the second derivative is

d2y

dt2
=

y(t2)− 2y(t1) + y(t0)

∆t2
. (1)

That is, to compute the solution at t we require data about the solution at
the two previous time-steps. Thus, this is an appropriate method to solve a
second-order initial-value problem, where we are given y and dy/dt at some
t = t0.
Exercise 1.
Use the forward-Euler method to solve the second-order equation

d2y

dt2
=

dy

dt
− y (2)

over the range 0 < t < 2π along with the initial conditions y(0) = 0,
y′(0) = 1. Find the analytical solution and use it to investigate stability
and the order of the method.

2 The leapfrog method

Exercise 2.
Solve the equation

dy

dt
=

sin (2t)− 2ty

t2
(3)

on the interval 1 ≤ t ≤ 2 with the initial condition y(1) = 2. Use the leap-
frog method, thinking carefully about how you compute the solution at the
first grid-point.

1

Challenge: Without using the analytical solution, can you show that the
method is second-order?

3 Crank-Nicolson
Crank-Nicolson is another second-order accurate method, one which is un-
conditionally stable for a certain class of problems. The idea is to approxi-
mate the right-hand side by an average of two different time levels:

y(t+∆t)− y(t)

∆t
=

1

2
[f(t, y(t)) + f(t+∆t, y(t+∆t))] . (4)

But how do we compute f(t+∆t, y(t+∆t)) when we don’t know y(t+∆t)?
One way is to use forward Euler to approximate y(t+∆t) and then use that
in the Crank-Nicolson formula as follows:

y0(t+∆t) = y(t) + ∆tf(t, y(t)) (Forward Euler)

y1(t+∆t) = y(t) +
∆t

2

[
f(t, y(t)) + f(t+∆t, y0(t+∆t))

]
(Crank-Nicolson)

Exercise 3.
Implement this version of Crank-Nicolson for the equation

dy

dt
=

t

y
, y(t = 0) = 3. (5)

Exercise 4.
Another option is to keep iterating equation (4) to get successive approx-
imations for y(t + ∆t). That is, use forward Euler to compute a first ap-
proximation, use that in (4) to get a second approximation, then use that
in (4) to get a third approximation and so on. Implement a method that
repeats this until the difference between successive approximations is less
than ϵ = 0.01.

Challenge: You can also write an implicit version of Crank-Nicolson,
where the right-hand side of (4) is solved numerically using a Newton solver.
Compare the speed and accuracy of each of these three methods.

4 Higher-order methods

2

Exercise 5.
One of the most widely used schemes is the fourth-order Runge-Kutta method
(commonly known as RK4). Use RK4 to solve (3) and show that the method
is, indeed, 4th order.

Exercise 6.
There are many built-in ODE solvers in MATLAB, the most popular of which
is called ode45. This is based on the RK4 method but uses an ‘adaptive
time-step’ to vary ∆t and aid stability. It can be used as a benchmark to
test your own routines against. Use ode45 to solve the Lorenz equations

dx

dt
= 10(y − x) (6)

dy

dt
= −xz + 28x− y (7)

dz

dt
= xy − 8

3
z (8)

Use the initial conditions {x, y, z} = {1, 1, 1} and integrate up to t = 100.
Plot your solution in three dimensions using plot3.

Change the initial condition for x to 1.00001 and run your code again.
What has happened to the solution at t = 100? Why is this surprising?

3

Math0086 practical classes
Week 5: Explicit methods for PDEs

Contact: sean.jamshidi.16@ucl.ac.uk

Analytical solutions to partial-differential equations are far scarcer than
they are for ODEs, so understanding the properties of numerical schemes
becomes even more significant.

There are many ways to solve PDEs numerically. This worksheet ex-
plores explicit (also called time-marching) finite difference methods for PDEs
in one spatial variable (x) and one time variable (t).

1 Forward-differencing scheme
We will consider a simple PDE: the one-dimensional wave equation. It’s
simplicity allows us to comprehensively analyse both the equation itself and
any numerical method that we apply to it, and so it is a valuable tool for
learning about the properties of PDEs. We can think of it as being a model
for vibrations on a string. The wave equation is:

∂

∂t
u(x, t) =

∂

∂x
u(x, t), (1)

along with the initial data u(x, 0) = f(x). The analytical solution is just
u(x, t) = f(x+ t). That is, the initial data propagates through space, with
unit speed, to the left.

The first approach is to approximate both derivatives in (1) using a
first-order scheme, as in forward Euler. We write

∂

∂t
u(x0, t0) ≈

u(x0, t0 +∆t)− u(x0, t0)

∆t
(2)

∂

∂x
u(x0, t0) ≈

u(x0 +∆x, t0)− u(x0, t0)

∆x
. (3)

Substitution of these into (1) provides us with the algorithm

u(x0, t0 +∆t) = u(x0, t0) +
∆t

∆x
(u(x0 +∆x, t0)− u(x0, t0)) . (4)

1

Notice how, just like in forward Euler, knowledge of the solution at t = t0
allows us to compute the solution at the next time t0 +∆t. Since we have
the initial condition u(x, 0) = f(x) we can compute u(x,∆t), and then
repeatedly apply (4) up to some final time t = T .

Important note: A major issue with finite-difference methods for PDEs
is how to impose boundary conditions. The PDE (1) is valid on the infinite
domain −∞ < x < ∞, so for an analytic solution we might not worry
about boundary conditions. However, for our computations we will of course
restrict x to some finite range. The algorithm in (4) runs into trouble when
we try and compute u(xN +∆x, t) where xN is the last grid-point. We need
to make a decision about how the boundary condition will be approached.
In our case, the solution is a wave propagating to the left and so we can
presume that the value of u(xN +∆x, t) = 0 for all t.

Exercise 1.
Write a code that uses (4) to solve (1) on the domain 0 ≤ t ≤ 1, −5 ≤ x ≤ 5
subject to the initial conditions f(x) = exp (−30x4). For the right-hand
boundary condition, assume that u(5 + ∆x, t) = 0. Use step sizes ∆t =
∆x = 0.01.

Your solution should be a matrix, with each row corresponding to the solu-
tion at a certain time. You can visualise it using the command waterfall
or by writing an animation function that uses pause. Compare your results
to the exact solution.

Exercise 2.
Change the size of ∆t and ∆x to explore stability. What happens if ∆t >
∆x? How could this be predicted in terms of characteristics?

2 Applying boundary conditions
Now suppose that the equation (1) was posed on a finite domain, with
boundary conditions at either end. Suppose that there is a ‘wave-maker’ at
x = 5. That is, we start from flat initial conditions f(x) = 0 and instead
wiggle the right-hand end at x = 5 in a sinusoidal way. That is, we impose

u(5, t) = sin (t). (5)

Exercise 3.
Apply the above boundary condition and run your code up to t = 4π.
Since we know the value of u at the last grid-point xN , we can use forward-
differencing for the spatial derivative to compute ∂u/∂x at every grid-point

2

where the solution is unknown (ie all grid-points apart from the last one).
What happens if you apply both the initial condition f(x) = exp (−30x4)
and the boundary condition?

Other problems involve ‘Neumann boundary conditions’, where ∂u/∂x is
specified along the boundary. These can be directly applied by changing an
entry in the spatial discretisation of (4).
Exercise 4.
Solve the wave equation with initial conditions f(x) = exp (−30x4) and the
Neumann boundary condition

∂u

∂x
= 0 (6)

at x = 5, which insists that the solution be flat at the right-hand side.

The method applied here seems fairly robust, but for more complicated
PDEs it will quickly break down.
Exercise 5.
Apply the forward in time and space method to solve Burger’s equation

∂u

∂t
+ u

∂u

∂x
= 0 (7)

with the initial condition f(x) = exp (−x4). You can set u = 0 at the
right-hand boundary condition, and run your code up to t = 1. Investigate
whether you can make the code stable.

Burger’s equation is a difficult problem to solve numerically because it can
develop a shock from smooth initial data. The forward-Euler method is par-
ticularly bad at handling shocks because it cannot represent the propagation
of short waves–something that we will investigate next time.

3

Math0086 practical classes

Week 6: More explicit methods

Contact: sean.jamshidi.16@ucl.ac.uk

This worksheet explores several explicit methods for solving hyperbolic
PDEs, and introduces some important ideas that can help in choosing the
best method.

1 Von-Neumann stability

The Von Neumann method is one way of classifying the stability of an
explicit method for a linear PDE. The basic idea is to decompose the solution
into Fourier modes, and examine the growth/decay of a typical mode. It
was shown in lectures that, for a first-order method, stability for the wave
equation ut + aux = 0 is equivalent to the CFL condition |a|∆t/∆x < 1.

Exercise 1.

Using the code from the previous sheet, show that the forward-Euler method
is unstable when the CFL condition is not satisfied. Use the function fft

to perform a Fourier decomposition and show that the growth is fastest for
shorter wavelengths.

2 Up-wind methods

Recall Burger’s equation:

∂u

∂t
+ αu

∂u

∂x
= 0. (1)

We saw in the previous exercises that we could not produce a stable solution
to this equation when using the forward Euler method when α = 1.

Exercise 2.

Solve Burger’s equation with α = 1 using a first-order method where the
discretisation is forward in time, and backward in space. Use the initial
condition u(x, 0) = exp(−x4) and apply u = 0 at the left-hand end of the
domain. Your code should now be stable.

Which method (forward or backward in space) works when α = −1?
Why?

1

3 Numerical dispersion and dissipation

For ODEs, it is generally true that higher-order truncation methods are
‘better’1. For PDEs, there is an extra layer of subtlety that is related to the
parity of a method’s order. Odd-order methods introduce a phenomenon
called numerical dissipation, and even-order methods introduce numerical
dispersion. We will now investigate these.

Suppose that we approximate the x-derivative using a second-order dis-
cretisation.

∂

∂x
u(x0, t0) =

u(x0 + ∆x, t0)− u(x0 −∆x, t0)

2∆x
. (2)

Note that now we need to apply boundary conditions at either end of the
domain. For now, let us consider periodic boundary conditions, that is we
impose u(x0, t) = u(xN , t) for all t, where the domain is x0 < x < xN .

Exercise 3.

Solve the wave equation ut = ux with initial data f(x) = exp (−30x4) using
the second-order method for the x-derivative only, and periodic boundary
conditions. Compare your solutions to those that were obtained using the
first-order method.

What you are seeing here is numerical dispersion; the initial condition is
breaking up into different Fourier modes, which are travelling at different
speeds. The error in the first-order method is dominated by numerical
dissipation, which is not so important for smooth initial conditions.

Exercise 4.

Solve Burger’s equation with α = 1 using backward space differencing and
the initial condition u(x, 0) = H(x), where H(x) is the Heaviside step func-
tion. The solution is stable, but becomes smoother over time. This is
numerical dissipation in action.

Exercise 5.

Solve the wave equation using first-order differencing and the initial con-
dition u(x, 0) = tanh(10x). Compare your results to the solution with the
same initial condition and the central space-differencing method (impose
ux = 0 at both ends for this). Do you think either one is the correct solu-
tion?

1Of course, higher order methods are more complicated to code and take longer to run,
so there are diminishing returns from going to ever-higher orders. For most applications,
a clever 4th-order method is sufficient

2

Exercise 6.

Design a method that is appropriate for solving the heat equation, ut = uxx.
Use the initial condition u(x, 0) = sech2 (x4) and apply no-flux conditions
ux = 0 at the domain ends. Justify your choice of method, and how you
have applied the boundary conditions.

Many higher-accuracy methods involve taking several smaller steps and
combining them all into one larger step. For example, for ODEs the RK4
algorithm takes 4 partial steps and then combines them. We can apply the
same idea to PDEs. One such method is called the Matsuno method. For
an equation

du

dt
= F (u)

the Matsuno method first computes an approximation ũ, and then uses that
to calculate the value of u at the next time step:

ũ = un + ∆tF (un)

un+1 = un + ∆tF (ũ).

Exercise 7.

An advantage of the Matsuno method is that it damps short waves, which
can remove many of the problems that we saw earlier. Use the Matsuno
method and centred space differencing to solve the wave equation with initial
conditions given by H(x). Use a Fourier decomposition to show that short
waves from the initial conditions have been damped. This is known as
selective dissipation.

3

Math0086 practical classes

Week 7: Implicit methods

Contact: sean.jamshidi.16@ucl.ac.uk

The previous exercise sheet explored explicit (time-marching) methods
for solving PDEs. In an explicit method, the solution at a grid-point (x0, t0)
cannot depend on other values at the same time-step. That is, we use an
algorithm where u(x0, t0) is expressed in terms of u(xi, t0−∆t) for some xi.

An implicit method uses an algorithm that cannot be written in this way.
Instead, we solve a system of equations at time t0 in order to get the value
of u at any point x0. Implicit methods are thus more costly to program, but
they have significant stability advantages.
We will first consider the heat equation

∂u

∂t
=
∂2u

∂x2

with the initial conditions u(x, 0) = u0(x) and boundary conditions that
u → 0 as |x| → ∞. This is a model for any diffusive process such as
diffusion of a chemical in the atmosphere, or the spreading of heat through
an object.

1 Backward Euler

Consider a method based on using backward Euler in time and second-order
central differencing in space.

∂

∂t
u(x, t) ≈ u(x, t)− u(x, t−∆t)

∆t
∂2

∂x2
u(x, t) ≈ u(x+ ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
.

Although this looks similar to forward Euler, the difference is that the spatial
derivative is written in terms of unknown variables u(x, t), as opposed to
u(x, t−∆t).

Re-arranging the heat equation to separate known and unknown vari-
ables, we have(

1

∆t
+

2

∆x2

)
u(x, t)− 1

∆x2
(u(x+ ∆x, t) + u(x−∆x, t)) =

u(x, t−∆t)

∆t
.

1

This makes clear the challenge of an implicit method. Given a solution
u(x, t−∆t) we must solve a system of linear equations to find u(x, t).

Exercise 1.

Write down the matrix associated with this method. That is, write the
problem in the form

Au = b

where u is the vector of unknowns, the values of u(x, t+∆t) at the grid-points
x1 < x2 < x3 · · · < xN for a given t. The right-hand side vector b should
be a vector consisting of contributions from u(x, t) and from the boundary
conditions. For now, set the boundary conditions to be homogeneous (u =
0).

We can now compute the problem by inverting the matrix A at each time-
step. That is, given data um at time t, the solution at time t+ ∆t is

um+1 = A−1bm

where the vector bm is computed using um.

Exercise 2.

Write a code that solves the heat equation using this method and initial con-
ditions u(x, 0) = sech2(10x) You can invert the matrix using the backslash
operator (\).

2 Methods of inverting large matrices

The main issue with implicit methods is the computation time needed to
invert the matrix. When more spatial dimensions are added, this becomes
even more costly.

Exercise 3.

For the backward Euler algorithm applied to the heat equation, the matrix
A is tri-diagonal. Write a code that implements the Thomas algorithm to
invert A. Check your results against the first exercise.

For a general (not necessarily tri-diagonal) matrix A, one approach is to
write A = L+D + U where L, D and U are the lower-triangular, diagonal
and upper-triangular parts of A. Specialised inversion algorithms can then
be used on each part separately. In the Jacobi method, we use the fact that
a diagonal matrix is (very) cheap to invert, and write

Du = (D −A)u + b

u = (I −D−1A)u +D−1b.

2

https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

The latter equation is then solved iteratively, ie given some data um ≈
u(x,m∆t) we repeat

um+1
n = (I −D−1A)um+1

n−1 +D−1bm,

until |um+1
n − um+1

n−1 | < ε for some pre-determined tolerance ε. We then let
u(x, (m + 1)∆t) = um+1

n , update A and b if necessary and begin iteration
again for the next time-step.

Exercise 4.

Implement the Jacobi method for solving the backward Euler system at
each time step. You should make use of the function diag to generate the
matrix D. As a starting point for iteration, you could use the solution at the
previous time-step. Use while to keep a loop running until the difference
between iterations is less than ε = 0.01. Record how long (on average) it
takes to solve the system using tic and toc, and plot how this varies with
the size of the matrix.

The next logical step is the Gauss-Seidel method. This additionally inverts
the lower triangular part of the matrix;

(L+D)u = −Uu + b

un = −(L+D)−1Uun−1 + (L+D)−1b.

Exercise 5.

Compare performance of the Jacobi and Gauss-Seidel methods. You can use
the functions tril and triu to generate the matrices L and U .

3

Math0086 practical classes

Week 8: Finite element for an ODE

Contact: sean.jamshidi.16@ucl.ac.uk

This worksheet applies the finite element method to ODEs. We begin
with the second-order ODE

d2T

dx2
+ 2 = 0 0 < x < 6, T (0) = 0, T ′(6) = −3. (1)

Exercise 1.

Write down the exact solution to this equation and derive the system of
equations, in terms of basis functions φi, that needs to be solved for the
finite element method.

Exercise 2.

For piecewise linear basis functions on the grid [0, 2, 4, 6], what is the mass
matrix A? What about for an arbitrary grid of evenly spaced points? Write
a code that generates the matrix A for an evenly spaced grid.

Exercise 3.

Use your code to solve the problem, and observe convergence to the exact
solution as the grid-size ∆x→ 0.

Exercise 4.

Adapt your code to solve the equation Txx + x = 0.

Often in the finite element method, the right-hand side and the boundary
conditions are considered as “data”. That means it is assumed that they
are supplied by the user of the code, so the programmer should write code
that works with any sensible inputs. On the other hand the equation is not
data, and the programmer writes code knowing what equation will be used.

Exercise 5.

Can you adapt your code so that it works for an arbitrary right-hand side
f(x), if f(x) is supplied by the user as a function? What about for arbitrary
boundary conditions? You will need some way of telling your algorithm
whether to apply Neumann or Dirichlet conditions.

1

Math0086 practical classes

Week 9/10: 2D finite element method

Contact: sean.jamshidi.16@ucl.ac.uk

We will use the finite element method to solve the equation

∇2u = 1 (1)

in the region x2 + y2 ≤ 1 along with the boundary conditions

∂u

∂n
=

1

2
, u =

1

4
on x2 + y2 = 1. (2)

The exact solution for this problem is u = r2/4. For the finite element
method, we consider the problem in the weak formulation∫∫

D
∇u.∇v dA =

∫
∂D

v
∂u

∂n
ds−

∫∫
D
v dA (3)

and seek a numerical solution of the form

u =

i=N∑
i=1

αiφi +
1

4
(4)

where φi are piecewise-linear basis functions on a triangular mesh. That
is, we mesh the domain into a series of triangles (elements), and for each
node i = 1 . . . N we define φi = ax + by + c to be 1 at node i and 0 at all
other nodes. Note that φi is defined element-wise; the constants a, b, c take
different values on each elements. The +1/4 is needed in order to satisfy the
Dirichlet boundary condition as (3) does not include any information about
this. Instead, we use the finite element method to seek a solution u that is
zero around the boundary and then just add 1/4.

We take v = φj in (3) and create the linear system

i=N∑
i=1

αi

∫∫
D
∇φi.∇φj dA =

∫
∂D

1

2
φj ds−

∫∫
D
φj dA, j = 1 . . . N (5)

which we write as
Au = b (6)

and then seek to implement in MATLAB for arbitrary grid spacing.

1

Exercise 1.

Downoad the package distmesh from here. Type meshdemo2d for a series
of demos. Read through the distmesh documentation, and identify which
of the demo examples produces a triangular mesh on the unit circle.

Exercise 2.

Write code to solve (5). It is helpful to break your code up into the following
sections:

• Create a basis function φi for each node that is not on the boundary.
To do this, go through all the elements k that contain node i and then
solve a 3x3 linear system to find the coefficients for the function φi on
the element k.

• Compute the entries of the matrix A. We can integrate over each in-
dividual element and then sum the total. An element only contributes
to aij if it contains both nodes i and j. Use the geometry of the mesh,
and the linearity of φ, to help you.

• Compute entries of the right hand side vector. The area integral is
just the volume of the tetrahedron made by φ, and the line integral
has a similar geometric interpretation.

• Solve for the coefficients, and visualise the solution u by plotting the
coefficients in 3D over the mesh. Remember to add 1/4 to your solu-
tion!

Exercise 3.

Compute a numerical solution to the same problem using centred finite
differences. Which code takes longer to run, for the same grid-size?

2

http://persson.berkeley.edu/distmesh/

	Getting started
	Using matrices
	Writing functions
	Using loops
	Designing a fairer algorithm

	Second-order equations
	The leapfrog method
	Crank-Nicolson
	Higher-order methods
	Forward-differencing scheme
	Applying boundary conditions
	Von-Neumann stability
	Up-wind methods
	Numerical dispersion and dissipation
	Backward Euler
	Methods of inverting large matrices

