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An introduction to categorifying quantum knot invariants

BEN WEBSTER

We construct knot invariants categorifying the quantum knot invariants for all repre-
sentations of quantum groups, based on categorical representation theory. This paper
gives a condensed description of the construction from the author’s earlier papers
on the subject, without proofs and certain constructions used only indirectly in the
description of these invariants.

57M27; 17B37, 16P10

Our aim in this paper is to give a more accessible and compact description of the knot
invariants introduced by the author in the papers [49; 50]. In particular, it will contain
few new results and for the most part neglect proofs, referring the reader to those earlier
papers.

These invariants are categorifications of quantum knot invariants introduced by Reshetik-
hin and Turaev [48; 35]. Particular cases of these include:

� the Jones polynomial when gD sl2 and all strands are labeled with the defining
representation;

� the colored Jones polynomials for other representations of gD sl2 ;

� specializations of the HOMFLYPT polynomial for the defining representation of
gD sln ;

� the Kauffman polynomial (not to be confused with the Kauffman bracket, a
variant of the Jones polynomial) for the defining representation of son .

In [50], the author proves the following:

Theorem A For each simple complex Lie algebra g, there is a homology theory
K.L; f�ig/ for links L whose components are labeled by finite-dimensional represen-
tations of g (here indicated by their highest weights �i ), which associates to such a
link a bigraded vector space whose graded Euler characteristic is the quantum invariant
of this labeled link.

This theory coincides up to grading shift with Khovanov’s homologies for gD sl2; sl3
when the link is labeled with the defining representation of these algebras, and the
Mazorchuk–Stroppel–Sussan homology for the defining representation of sln .
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Categorical representations

Our aim is to describe the construction of these invariants and how one arrives at their
most basic properties. They are based on a principle which is easy to state, but harder
to implement:

Every object or structure of any significance in the theory of quantum
groups possesses a natural categorification.

Obviously, a principle stated this baldly has no hope of really being true, but it has still
been a very successful idea.

In [7], Chuang and Rouquier introduced the notion of a categorical action of sl2 ; while
their work had important consequences for the theory of symmetric groups (proving
Broué’s conjecture for the symmetric group), it also showed that categorical represen-
tations have a remarkable structure. While they are more complex than representations
of sl2 (which, of course, have a very simple structure theory), they have the same
elementary building blocks: for each simple representation of sl2 , there is an essentially
unique simple categorical representation whose Grothendieck group it is. Rouquier
defined categorical actions of other simple Lie algebras and showed that the same
principle holds in that context [37]. This is one manifestation of the principle above.

Khovanov and Lauda also considered the principle above, and arrived at 2–categories
U whose Grothendieck groups coincide with the universal enveloping algebra of any
simple Lie algebra. This was first done for sl2 by Lauda [26]. The general construction
for all g and the proof that the Grothendieck group coincides with U.sln/ in that case
appeared in [21]; the proof that the Grothendieck group is correct was completed in
[49].

We should emphasize, while there are minor differences in formalism and notation,
arising from differing motivations and historical reasons, Rouquier’s approach and
Khovanov–Lauda’s are in essence the same; recent work by Cautis and Lauda [5]
shows that under very weak technical conditions a categorical g–action in the sense of
Rouquier gives rise to an action of a variant of the 2–category U .

This earlier work, which we will largely take for granted herein, provides a context for
the statement above. In particular, we expect any natural operation on representations
to have an analogue on categorical representations, and any natural map between
representations to have an analogous functor between categorical representations. Now,
we turn to describing the maps of interest to us.
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Quantum knot invariants

Reshetikhin and Turaev’s construction (in somewhat more modern language) is es-
sentially the observation that finite-dimensional representations of a quantum group
Uq.g/ are a ribbon category (for more background on ribbon categories, see Chari
and Pressley [6] or Kassel [15]). Due to the extra trouble of drawing ribbons, we will
draw all pictures in the blackboard framing (that is, they should be thickened to ribbons
pressed flat to the page). The category of oriented ribbon tangles rib has

� objects given by sequences of up and down arrows and

� morphisms given by oriented ribbon tangles (ie tangles with choice of framing)
matching the sequences at the top and bottom, considered up to isotopy.

It is important that we don’t allow half-twists in our ribbons, only full-twists; if we
think of each ribbon as having a light and dark side, the light side must always be
facing upward when the ribbon is attached to its up or down arrow. In fact, one
description of the blackboard framing is that the light side of the ribbon always faces
outward. The category rib is a monoidal category (ie, it possesses a tensor product
operation on objects), where the tensor product of objects or morphisms is just horizontal
concatenation.

We can extend this construction by allowing ribbons to be labeled with objects in a
category C and allowing “coupons” with morphisms in the category to be placed on
ribbons, which compose in the obvious way. We denote this category C–rib.

Definition A ribbon structure is a weakly monoidal functor C–rib! C which sends
an upward pointing, untwisted ribbon labeled with C 2 Ob.C/ to C , and a single
upward pointing, untwisted ribbon with a coupon to the labeling morphism.

Obviously, such a functor is determined by the image of three types of ribbon tangles:

� a full twist in one ribbon,

� a crossing of two ribbons (untwisted), and

� cups and caps in all orientations.

Furthermore, it is possible to write a finite list of relations that these maps must satisfy
in order for them to define a functor, all of which are obvious manipulations of ribbon
tangles; these relations can be found, for example, in [6].

Given any ribbon structure on a category C , we arrive immediately at a link invariant
valued in End.1/ŠZŒq; q�1� where 1 is the tensor identity in this category: any ribbon
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link gives such a map, thought of as a tangle starting and ending at the empty diagram.
That is, we pick a generic height function on our link, use this to slice it into pieces
that look like the basic tangles described above, and compose the corresponding maps.

In this language, we can phrase the construction of the Reshetikhin–Turaev knot
invariants thus:

Theorem B The category of finite-dimensional representations of Uq.g/ has a natural
(but not quite canonical) ribbon structure.

This is the theorem that we intend to categorify. The most obvious guess for a cate-
gorification is that there exists a definition of ribbon 2–category such that categorical
representations of g are a ribbon 2–category. This seems to be asking too much, for
reasons will hopefully become clear later in this paper; some extra structure on the
categorical representations will be necessary, such as a triangulated or dg–structure.

Conjecture C There exists a definition of ribbon 2–category such that categorical
representations of g on dg–categories are a ribbon 2–category.

This would instantly imply that Reshetikhin–Turaev invariants possess categorifica-
tions, by exactly the same construction as before. The tensor identity in categorical
representations will just be a copy of the dg–category of complexes of vector spaces
VectK over a fixed base field K. Thus, an exact autofunctor is tensor product with a
complex, which yields the desired knot homology.

Unfortunately, this remains unproven; instead, we have shown that some of the conse-
quences of Conjecture C hold without proving the conjecture itself. The first roadblock
to this conjecture is that our approach does not specify what the tensor product of
an arbitrary collection of categorical representations is. Instead, we explicitly give a
categorical representation V� attached to each tensor product. We believe that this
must arise from a universal definition of a tensor product; such a definition has been
announced by Rouquier [38], but at the time of writing, the details remain unpublished.

Similarly, we construct “by hand” the desired functors attached to small tangles. These
maps behave exactly as they would if there were a ribbon structure as suggested above.
After this construction, the desired knot invariants are obtained by composing these
functors. In practice, this is still an explicit calculation, but conceptually it is quite clean.
Unfortunately, we think it unlikely that there is any “royal road” to a categorical ribbon
structure; in all likelihood, computations by hand like those in the current approach
will still be necessary in order to prove Conjecture C above.
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A brief history of knot homology

While the idea of knot homologies and categorified representation theory appears as
early as the work of Crane and Frenkel [11], the first appearance of one in the literature
as far as the author is aware is Khovanov’s categorification of the Jones polynomial
[16; 17]. Khovanov later extended his picture to the defining representation of sl3 [18],
and then jointly with Rozansky, and using very different methods involving matrix
factorizations, extended this to the defining representation of sln and the defining
representation of son [23; 22], which was interpreted in a spirit more like Khovanov’s
original construction by Mackaay, Stošić and Vaz [29]. A degenerate case of this
construction defines a homology for the HOMFLYPT polynomial itself and its colored
versions, studied by Khovanov and Rozansky [19; 24], Mackaay, Stošić and Vaz
[30] and the author and Williamson [51]. The extension of the matrix factorization
perspective to other fundamental representations of sln was considered by Wu [53]
and Yonezawa [54].

A more geometric perspective, using Fukaya categories and coherent sheaves, appears
in the work of Seidel–Smith [39], Manolescu [31], Cautis–Kamnitzer [3; 4].

Finally, the approach most like ours is the one taken by Stroppel and Mazorchuk–
Stroppel [42; 32] and Sussan [46], which studied categorifications of tensor products
of fundamental representations of sln that arise as blocks of parabolic category O for
type A Lie algebras. In a paper still in preparation, Stroppel and Sussan also consider
the case of the colored Jones polynomial [44] (building on previous work with Frenkel
[13]). It seems likely their construction is equivalent to ours via the constructions of
Section 6. Similarly, Cooper, Hogancamp, and Krushkal have given a categorification
of the 2–colored Jones polynomial in Bar-Natan’s cobordism formalism for Khovanov
homology [9].

However, there are two serious issues with the work mentioned above: they have
only considered minuscule representations (of which there are only finitely many in
each type), and in a few recent papers, the other representations of sl2 . The work of
physicists suggests that categorifications for all representations exist; one schema for
defining them is given by Witten [52]. The relationship between the invariant presented
in this paper and those suggested by physicists is completely unknown (at least to the
author) and presents a very interesting question for consideration in the future.

On the other hand, the quantum invariants which have categorifications often have
several competing ones: for the defining representation of sln , invariants have been
defined by Khovanov–Rozansky, Manolescu, Mazorchuk–Stroppel–Sussan, and Cautis–
Kamnitzer, and no two of these are known to the same or different for n> 3!
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In this paper, we solve the first of these problems, by defining a homology attached
to every labeling of representations. We cannot help much with the second, but we at
least do not make it worse: for defining representations of sln , our invariants agree
with those of Mazorchuk–Stroppel–Sussan.

Our approach is essentially the same as theirs; however, we need categories that have
not appeared (to our knowledge) in representation theory previously. The construction
of these categories and their basic properties is done in the paper [49]. The construction
of the functors corresponding to the action of tangles is done in [50]. Let us state our
main theorem in a form designed to match the definition of a ribbon category. Let
g–rib denote the category of tangles labeled with highest weights of g. Let g–cat be
the category consisting of categorical g–modules, with morphisms being isomorphism
classes of functors which weakly commute with the categorical g–action.

Theorem D There is a functor g–rib! g–cat which sends

� a series of up and down arrows with the i th labeled with �i if oriented upward
and ��i D�w0�i if oriented downward to the categorification V� of the tensor
product defined later in this paper and

� a ribbon tangle between these to an explicit functor defined later in this paper
using a knot projection

which categorifies (a slight modification of) the Reshetikhin–Turaev ribbon structure
on the category of finite-dimensional Uq.g/–modules.

This would be an immediate consequence of Conjecture C and should be considered
strong evidence of its truth. This theorem does imply the existence of the desired knot
homology, by the same argument.

Open questions

Since we hope that this paper will be more accessible to grad students and other
newcomers to the field, we thought it would be appropriate to mention some questions
which remain to be resolved.

One expected property of knot homologies is that they will be functorial over embedded
cobordisms between knots; in particular, this would follow for any knot homology that
arises as part of an extended TQFT. Furthermore, this functoriality is confirmed in
the cases of the defining representation of sl2 and sl3 , and up to sign in Khovanov–
Rozansky homology for sln .
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An introduction to categorifying quantum knot invariants 259

At the moment, we have not proven that the theories defined in this paper are functorial,
but we do have a proposal for the map associated to a cobordism when the weights
�i are all minuscule. As usual in knot homology, this proposed functoriality map is
constructed by picking a Morse function on the cobordism, and associating simple
maps to the addition of handles. At the moment, we have no proof that this definition
is independent of Morse function and we anticipate that proving this will be quite
difficult.

For all highest weights of sl2 , Hogancamp has proven functoriality of the homology
from [9] for surfaces without local maxima, which allows us to avoid an adjunction
which only exists in the minuscule case; obviously, we hope that one can extend this to
all types.

� One very interesting consequence of the functoriality of Khovanov homology is
Rasmussen’s � –invariant [34], a concordance invariant of links which is a lower
bound for slice genus; this was generalized to Khovanov–Rozansky homology
by Lobb [27], and also has an analogue in knot Floer homology, called the
� –invariant. Obviously, it would be very interesting to generalize this work to
the invariants discussed here.

� More generally, Rasmussen (building on his joint work with Dunfield and Gukov
[12]) constructed a large number of spectral sequences relating Khovanov–
Rozansky homologies for different ranks [33]. It is hard to say what an appropri-
ate generalization of these results would be, but it would seem very surprising if
there were none.

� As mentioned earlier, Witten has suggested an approach to homological knot
invariants using Morse cohomology for certain solutions of PDEs [52]. While the
connection of his picture to ours is not at all clear, it presents a very interesting
possibility for future research.

Notation

We let g be a finite-dimensional simple complex Lie algebra, which we will assume is
fixed for the remainder of the paper. In future work, we will investigate tensor products
of highest and lowest weight modules for arbitrary symmetrizable Kac–Moody algebras,
hopefully allowing us to extend the contents of Sections 3, 4 and 5 to this case.

We fix an order on the simple roots of g, which we will simply denote with i < j

for two nodes i; j . This choice is purely auxiliary, but will be useful for breaking
symmetries.
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Consider the weight lattice Y .g/ and root lattice X.g/, and the simple roots ˛i and
coroots ˛_i . Let cij D ˛_j .˛i/ be the entries of the Cartan matrix. Let D be the
determinant of the Cartan matrix. For technical reasons, it will often be convenient for
us to adjoint a D th root of q , which we denote q

1=D .

We let h�;�i denote the symmetrized inner product on Y .g/, fixed by the fact that
the shortest root has length

p
2 and

2
h˛i ; �i

h˛i ; ˛ii
D ˛_i .�/:

As usual, we let 2di D h˛i ; ˛ii, and for � 2 Y .g/, we let

�i
D ˛_i .�/D h˛i ; �i=di :

We let � be the unique weight such that ˛_i .�/ D 1 for all i and �_ the unique
coweight such that �_.˛i/D 1 for all i . Since � 2 1=2X and �_ 2 1=2Y � , for any
weight �, the numbers h�; �i and �_.�/ are not necessarily integers, but 2h�; �i and
2�_.�/ are (not necessarily even) integers.

Throughout the paper, we will use �D .�1; : : : ; �`/ to denote an ordered `–tuple of
dominant weights, and always use the notation �D

P
i �i .

We let Uq.g/ denote the deformed universal enveloping algebra of g; that is, the
associative C.q 1=D/–algebra given by generators Ei , Fi , K� for i and � 2 Y .g/,
subject to the relations:

(i) K0 D 1, K�K�0 DK�C�0 for all �;�0 2 Y .g/,

(ii) K�Ei D q˛
_
i
.�/EiK� for all � 2 Y .g/,

(iii) K�Fi D q�˛
_
i
.�/FiK� for all � 2 Y .g/,

(iv) EiFj �Fj Ei D ıij
zKi�
zK�i

qdi�q�di
, where zK˙i DK˙di˛i

,

(v) For all i ¤ jX
aCbD�cijC1

.�1/aE
.a/
i Ej E

.b/
i D 0 and

X
aCbD�cijC1

.�1/aF
.a/
i Fj F

.b/
i D 0:

This is a Hopf algebra with coproduct on Chevalley generators given by

�.Ei/DEi ˝ 1C zKi ˝Ei �.Fi/D Fi ˝
zK�i C 1˝Fi

and antipode on these generators defined by S.Ei/D� zK�iEi ;S.Fi/D�Fi
zKi :

We should note that this choice of coproduct coincides with that of Lusztig [28], but is
opposite to the choice in some of our other references, such as [6; 40]. In particular, we
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should not use the formula for the R–matrix given in these references, but that arising
from Lusztig’s quasi-R–matrix. There is a unique element

‚ 28U�q .g/˝UCq .g/

in a suitable completion of the tensor product such that �.u/‚D‚x�.u/, where

x�.Ei/DEi ˝ 1C zK�i ˝Ei
x�.Fi/D Fi ˝

zKi C 1˝Fi :

If we let A be the operator which acts on weight vectors by A.v˝w/Dqhwt.v/;wt.w/iv˝

w , then as noted by Tingley [47, 2.10], RD A‚�1 is a universal R–matrix for the
coproduct � (which Tingley denotes �op ). This is the opposite of the R–matrix of
[6] (for example).

We let U Z
q .g/ denote the Lusztig (divided powers) integral form generated over

ZŒq 1=D ; q
�1=D � by En

i

Œn�q !
;

F n
i

Œn�q !
for all integers n of this quantum group. The inte-

gral form of the representation of highest weight � over this quantum group will
be denoted by V Z

�
, and V Z

�
D V Z

�1
˝ZŒq 1=D ;q�1=D �

� � � ˝ZŒq 1=D ;q�1=D �
V Z
�`

. We let

V� D V Z
�
˝ZŒq 1=D ;q�1=D �

Z..q 1=D// be the tensor product with the ring of integer

valued Laurent series in q
1=D ; this is the completion of V Z

�
in the q–adic topology.

Acknowledgments Of course, if I were to thank everyone who helped with the original
papers, my list would be quite long and redundant. Let me just settle for thanking
Mike for having a helpfully timed birthday, and all the organizers of the conference,
for making it so lovely.

1 Categorification of quantum groups

1.1 2–Categories

In this paper, our notation builds on that of Khovanov and Lauda, followed by Cautis
and Lauda [5] who give a graphical version of the 2–quantum group, which we denote
U (leaving g understood). These constructions could also be rephrased in terms of
Rouquier’s description and we have striven to make the paper readable following
either [21] or [37]. However, we will use the relations given in [5] which are a
variation on the formalisms given in those papers. The difference between this category
and the categories defined by Rouquier in [37] is quite subtle; it concerns precisely
whether the inverse to a particular map is formally added, or imposed to be a particular
composition of other generators in the category. Most importantly for our purposes,
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the 2–category U receives a canonical map from each of Rouquier’s categories A and
A0 , so a representation of it is a representation in Rouquier’s sense as well.

Since the construction of these categories is rather complex, we give a somewhat
abbreviated description. The most important points are these:

� an object of this category is a weight � 2 Y ;

� a 1–morphism �!� is a formal sum of words in the symbols Ei and Fi where
i ranges over � of weight ���, Ei and Fi having weights ˙˛i . In [37], the
corresponding 1–morphisms are denoted Ei ;Fi , but we use these for elements
of Uq.g/. Composition is simply concatenation of words. In fact, we will take
idempotent completion, and thus add a new 1–morphism for every projection
from a 1–morphism to itself (once we have added 2–morphisms).
By convention, Fi D Fin

� � �Fi1
if i D .i1; : : : ; in/ (this somewhat dyslexic

convention is designed to match previous work on cyclotomic quotients by
Khovanov–Lauda and others). In Cautis and Lauda’s graphical calculus, this
1–morphism is represented by a sequence of dots on a horizontal line labeled
with the sequence i.
We should warn the reader, this convention requires us to read our diagrams
differently from the conventions of [26; 21; 5]; in our diagrammatic calculus,
1–morphisms point from the left to the right, not from the right to the left as
indicated in [26, Section 4]. For reasons of convention, the 2–category U we
define is the 1–morphism dual of Cautis and Lauda’s 2–category: the objects
are the same, but all the 1–morphisms are reversed. The practical implication
will be that our relations are the reflection through a vertical line of Cautis and
Lauda’s (without changing the labeling of regions).

� 2–morphisms are a certain quotient of the K–span of certain immersed oriented
1–manifolds carrying an arbitrary number of dots whose boundary is given by
the domain sequence on the line y D 1 and the target sequence on y D 0. We
require that any component begin and end at like-colored elements of the 2
sequences, and that they be oriented upward at an Ei and downward at an Fi .
We will describe their relations momentarily. We require that these 1–manifolds
satisfy the same genericity assumptions as projections of tangles (no triple points
or tangencies), but intersections are not over- or under-crossings; our diagrams
are genuinely planar. We consider these up to isotopy which preserves this
genericity.
We draw these 2–morphisms in the style of Khovanov–Lauda, by labeling the
regions of the plane by the weights (objects) that the 1–morphisms are acting on.
By Morse theory, we can see that these are generated by
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� a cup �W EiFi!∅ or �0W FiEi!∅

� D
ii

�

�C˛i

�0 D
ii

�

��˛i

� a cap �0W ∅! EiFi or �W ∅! FiEi

�0 D ii

�

��˛i

�D ii

�

�C˛i

� a crossing  W FiFj ! FjFi

 D

i

i

j

j
�

�

� a dot yW Fi! Fi

y D

i

i

�

�

As in Cautis and Lauda, we will actually consider a family of these categories. Through
out the paper, we fix a matrix of polynomials Qij .u; v/ for i ¤ j 2 � (by convention
Qii D 0) valued in K. We assume that each polynomial is homogeneous of degree
h˛i ; j̨ i D �2dj cij D�2dicji where we give the variable u degree 2di and v degree
2dj . We always assume that the leading order of Qij in u is �cji , and that Qij .u; v/D

Qji.v;u/. In order to match with [5], we take

Qij .u; v/D tij u�cj i C tijv
�cij C

X
qcj iCpcijDcj i cij

s
pq
ij upvq:

Khovanov and Lauda’s category is the choice Qij D u�cj i C v�cij .

We have not yet written the relations, but we first describe a grading on the 2–morphism
spaces; the degrees are given by

deg
i j

D�h˛i ; j̨ i deg
i

Dh˛i ; ˛ii deg
i j

D�h˛i ; j̨ i deg
i

Dh˛i ; ˛ii
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deg
i �

D�h�; ˛ii � di deg
i �

D h�; ˛ii � di

deg
i �

D�h�; ˛ii � di deg
i �

D h�; ˛ii � di :

The relations satisfied by the 2–morphisms include:

� The cups and caps are the units and counits of a biadjunction. The morphism y

is cyclic, whereas the morphism  is double right dual to tij=tji � (see [5] for
more details).

� Any bubble of negative degree is zero; any bubble of degree 0 is equal to 1. We
must add formal symbols called “fake bubbles” which are bubbles labeled with a
negative number of dots (these are explained in [21, Section 3.1.1]); given these,
we have the inversion formula for bubbles, as shown in Figure 1.

jC�iC1X
kD�i�1

k

�

j � k D

(
1 j D�2

0 j > �2

Figure 1: Bubble inversion relations; all strands are colored with ˛i .

� The 2 relations connecting the crossing with cups and caps, shown in Figure 2.

� Oppositely oriented crossings of differently colored strands simply cancel, shown
in Figure 3.

� The endomorphisms of words only using Fi (or by duality only Ei ’s) satisfy
the relations of the quiver Hecke algebra R, shown in Figure 4.

This categorification has analogues of the positive and negative Borels given by the
representations of quiver Hecke algebras, the algebra given by diagrams where all
strands are oriented downwards, with the relations in Figure 4 applied; this algebra is
discussed in [37, Section 4] and an earlier paper of Khovanov and Lauda [20]. We
denote these 2–categories UC and U� .

The “Grothendieck group” of a 2–category is a 1–category in an obvious way; the
objects are exactly the same, and a morphism is a class in the Grothendieck group of
the Hom category. We will abuse notation by identifying a 1–category with the sum of
its Hom spaces, which is naturally an algebra, with distinguished idempotents given by
the identities of the various objects.

Theorem 1.1 [49, 1.9] The obvious map induces an isomorphism K0
q.U/Š PUq.g/.

This map intertwines the graded Euler form on K0
q.U/ with Lusztig’s inner product on

PUq.g/.
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� D � �
C

X
aCbCcD�1

a

c

b �

� D � �
C

X
aCbCcD�1

a

c

b �

�
D

X
aCbD�1

a

b
�

�
D �

X
aCbD�1

a

b
�

Figure 2: “Cross and cap” relations; all strands are colored with ˛i . By
convention, a negative number of dots on a strand which is not closed into a
bubble is 0.

2 The tensor product algebras

2.1 Definition and basic properties

We now proceed to the categorifications of tensor products mentioned in the introduction.
Just as with the universal enveloping algebra itself, we define a pictorial category, which
is a representation of the 2–category U . This means we must define a category for
each weight �, a functor between these categories for each 1–morphism and a natural
transformation for each 2–morphism.

First, fix a list �D .�1; : : : ; �`/. We let L�
ı be the category

� The objects of this category are words in Ei , Fi and new symbols I�i
where

the symbols appear in order from right to left; thus according to our dyslexic
conventions, when graphically represented, they will read left to right.
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�

i j

D tij
�

i j

�

i j

D tji
�

i j

Figure 3: The cancellation of oppositely oriented crossings with different labels

We label the regions between the dots representing the letters in these words
as follows: the region at far left is labeled 0, and each time we pass a dot it
contributes its weight. We assign

� Ei weight ˛i ,
� Fi weight �˛i and
� I� weight �.

� The morphisms are immersed 1–manifolds matching up with the graphical
representation of the objects at the top and bottom. Some strands of this immersed
manifold are colored red and some are colored black; the black strands carry
an orientation, and as before are allowed to carry dots. The strands attached to
Ei ’s must be black and oriented up, those connected to Fi are drawn black and
oriented down, while red strands connect I�i

to I�i
without any crossings with

other red strands (crossings with black are fine) or self-intersections.
The composition ab is the picture b stacked on top of a (of course, assuming
the morphisms are composable). We will only ever be interested in these pictures
up to isotopies preserving the conditions above.

Thus we are allowed to have local pictures like:
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i j

=

i j

unless i D j

i i

=

i i

+

i i

i i

=

i i

+

i i

i i

= 0 and

i j

=

ji

Qij .y1;y2/

ki j

=

ki j

unless i D k ¤ j

ii j

=

ii j

C

ii j

Qij .y3;y2/�Qij .y1;y2/

y3�y1

Figure 4: The relations of the quiver Hecke algebra; these relations are
insensitive to labeling of the plane. In order to match [5] take ri D 1 .
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The black strands satisfy all the relations of the category U , using the labels on regions
indicated above. We must also include new relations involving red lines which are:

� All black crossings and dots can pass through red lines, with a correction term
similar to Khovanov and Lauda’s (for the latter two relations, we also include
their mirror images):

ij

=

ij

C a

i

b

j

X
aCbC1D�i

ıi;j

(1) =

=

� The “cost” of a separating a red and a black line is adding �i D ˛_i .�/ dots to
the black strand:

(2)

i �

=

�i

�i

� i

=

i�

�i

� If at any point in the diagram any black line is to the left of all reds (ie, there is
a value a such that the left-most intersection of y D a with a strand is with a
black strand), then the diagram is 0. We will refer to such a strand as violating.
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a non-violating strand

a violating strand

Figure 5: An example of a violating and non-violating strand

Definition 2.1 We let L� be the idempotent completion (that is, Karoubian envelope)
of L�

ı .

Following Brundan and Kleshchev, we will sometimes use yW Fi ! Fi to represent
multiplication by a dot on the a black strand, and  W FiFj ! FjFi to represent a
crossing.

Theorem 2.2 [49, 2.11] There is a representation of U in K–linear categories send-
ing � 7! L�

� , with Ei and Fi sent to adding this symbol at the left to our list (thus,
graphically, we add a strand at the right), and diagrams to the obvious corresponding
diagrams.

We will find it convenient to represent an object in L�
� in terms of

� the sequence of simple roots which occur on black strands iD .i1; : : : ; in/; for
historical reasons, we use i to stand in for Fi and �i to stand in for Ei

� the weakly increasing map �W Œ1; `�! Œ0; n� that sends k to m if the k th red
strand is between the mth and mC 1st black strands (where by convention, the
“0-th strand” is at �1 and the “`C 1-th strand” is at 1).

We denote the corresponding object in L� by simply .i; �/.

Under decategorification, the projective .i; �/ is sent to the vector

Fin
� � �Fi�.`/.� � � .Fi�.3/ � � �Fi�.2/C1

.Fi�.2/ � � �Fi1
v1/˝ v2/˝ � � �˝ v`/;

where vi 2 V�i
is a fixed highest weight vector; we state a more precise theorem along

these lines in Section 2.2.

Of course, as with any idempotent complete category with finitely many objects and
finite-dimensional Hom spaces, L�

� is equivalent to the category of projective modules
over the algebra

T �
D End

�M
i;�

.i; �/
�
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where we let i range over all positive strings of roots, and � over weakly increasing
maps as above. Obviously, many readers will be more comfortable working with
modules over this algebra.

Grading

This category is graded with degrees given by

� a black/black crossing: �h˛i ; j̨ i,

� a black dot: h˛i ; ˛ii D 2di

� a red/black crossing: h˛i ; �i D di�
i .

This category is also self-dual; there is an isomorphism HomL.A;B/! HomL.B;A/

given by reflecting diagrams in the horizontal axis. We will denote this map by .�/� .

Representations

Recall that a finite-dimensional representation of a K–linear category C is a K–linear
additive functor C ! VectK to the category of finite-dimensional K–vector spaces.
Similarly, a graded representation is a homogeneous functor C! gVectK . For each
object .i; �/, the Yoneda embedding gives a corresponding graded representation
HomL�..i; �/;�/ which we denote by Pi;� .

Definition 2.3 We let V� be the category of finite dimensional graded representations
of L� , and V

�
� be the category of finite-dimensional graded representations of L�

� .
These are equivalent to the corresponding representation categories over the algebra
T � .

We can define a U –module structure on V� using that on L� . If M is an object in
V

�
� , then we can define

EiM.N / WDM.FiN / FiM.N / WDM.EiN /.�h˛i ; �iC di/:

While this definition may initially look strange, it is chosen so that the Yoneda embed-
ding is U –equivariant, since Ei and Fi are biadjoint.

If �D .�/ is a single element, then this category has been previously studied; V� is
the module category of the cyclotomic quiver Hecke algebra, as described by Khovanov
and Lauda [20].

Geometry & Topology Monographs, Volume 18 (2012)



An introduction to categorifying quantum knot invariants 271

2.2 Examples

If the algebra g D sln , then these algebras have a well-understood combinatorial
structure. For one thing, we need only consider the case where � consists of fundamental
weights; all other cases arise from breaking the appearing weights up into fundamentals
(in any order) and only considering sequences where each of those blocks comes all
together with no black strands separating them.

We can consider � (now assumed to consist only of fundamental weights) as a list
p1; : : : ;p` of integers between 1 and n� 1, such that �j is the highest weight ofVpj Cn .

Recall that an `–multi-partition is an ordered `–tuple of partitions, and that a tableau on
such a partition is a numbering of the boxes by integers from ` different alphabets, we
denote 11; 21; 31; : : : ; 12; 22; : : : ; 1`; 2`; : : : ; we order these as listed, first according
to which alphabet it lies in, and then by the usual order on each alphabet. A tableau is
standard if

� all rows and columns are strictly increasing;

� jk cannot appear after the k th partition;

� each symbol appears at most once, and if jk appears, then mk appears for all
m< j .

Each diagram carries a superstandard tableau distinguished by only using the k th
alphabet in the k th piece of the partition, and it is the unique tableau with the row
reading word being totally ordered. There is a standard coloring of the diagram of our
multipartition with the simple roots of sln ; the box in the j th row and k th column
of the mth diagram is colored with p̨m�jCk . Attached to each standard tableau, we
have a sequence consisting of �1 , followed by the root for the box labeled 11 , then
for the box labeled 21 , etc. After all boxes labeled with that alphabet have been read,
we add �2 and read all boxes corresponding to 12; 22; : : : , add �3 and so on. So, for
nD 4, and �D .!3; !1/ then the labeling by roots is given by

˛3

˛2
˛1 ˛2

for example, we associate:

11

22
12 32 (!2; ˛3; !1; ˛1; ˛2; ˛2 )
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The superstandard tableau of the same shape gives:

11

21
12 22 (!2; ˛3; ˛2; !1; ˛1; ˛2 )

This rule leads to a basis for T � indexed by pairs of semi-standard tableaux of the
same shape on `–multi-partitions such that the diagram of the j th partition fits in a
pj � n�pj box (ie has at most pj rows and n�pj columns).

Associated to each standard tableau S, we have a diagram BS where the sequence at
one end is the sequence described above, and the other is the sequence associated to
the superstandard tableau of the same shape. This diagram follows the simple rule of
“connect elements corresponding to the same boxes.” So, in the example above, we
switch the second and third black lines to obtain

!2 !1˛3 ˛1 ˛2 ˛2

In general, this is not unique: it essentially depends on picking a reduced expression for
the corresponding permutation. We fix one of these in a completely arbitrary manner.
Let CS;T D B�SBT be product of the diagram associated to one of the tableaux, times
the reflection of the diagram associated to the other (these match along the idempotent
of the superstandard tableau).

Theorem 2.4 [45, 5.11] The elements CS;T for S and T a pair of semi-standard
tableaux of the same shape, which fits into boxes as above, are a graded cellular basis
of T � .

For example, if nD 2, then one is only allowed shapes which fit in a 1� 1 box, so
they are either empty or a single box, and the idempotents corresponding to these have
no two consecutive black lines (and this is the only restriction on them). Similarly, for
a semi-standard tableau of this shape, the first restriction is vacuous, and thus the only
restriction is that we must not use the k th alphabet after the k th diagram, or use the
same symbol twice. For example, for �D .!1; !1; !1/ and �D�1, the elements BS

associated to tableaux are shown in Figure 6. Of course, the basis is easily constructed
from these by matching pairs of the diagrams shown, and their reflections., but for
reasons of space we do not explicitly write it out.
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11 12 ∅

11 13 ∅

22 12 ∅

12 22 ∅

12 13 ∅

13 23 ∅

13 12 ∅

23 13 ∅

11 13∅

12 13∅

13 23∅

23 13∅

12 13∅

13 23∅

23 13∅

Figure 6: The lower halves of basis vectors in one example

Decategorification

Let v�i 2 V� be defined inductively by

� if �.`/D n, then v�i D v
��

i ˝ v` where v` is the highest weight vector of V�` ,
and �� is the restriction to Œ1; `� 1�;

� if �.`/¤ n, then v�i D Fin
v�i� , where i� D .i1; : : : ; in�1/.

Theorem 2.5 [49, 3.6] There is a canonical isomorphism �W K0.T
�/! V Z

�
given

by ŒP�
i � 7! v�i .

Description in terms of functors

This category actually arises in a very natural way inside the categorification of the
corresponding simple representation of highest weight �D �1C � � �C�` .
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If � and �0 are dominant weights so that ���0 is also dominant, then there is a natural
functor L�! L�0 commuting with the action of Fi ’s; one simply sends i 7! i (note
that this does not commute with Ei ’s; this is unsurprising since there is also a map
of n�–modules between these representations of the same form, and no such map of
g–modules). On representations, of course, this induces a functor in the other direction
I�
0

�
W V�

0

!V� commuting with Ei .

Theorem 2.6 [49, 3.22] There is a fully faithful functor L�!V� sending

.i; �/ 7! Fin
� � �Fi�.`/I�`Fi�.`/�1 � � �Fi�.`�1/I�`�1

Fi�.`�1/�1
� � �

(that is, by replacing all I� ’s in the corresponding word by the functors I� ).

Thus, these representations have an interestingly recursive structure; in a sense that is
impossible on the decategorified level, the tensor products already appear as soon as
you consider highest weight representations and very natural functors between them.

3 Braiding functors

3.1 Braiding

Recall that the category of integrable Uq.g/ modules (of type I) is a braided cate-
gory; that is, for every pair of representations V;W , there is a natural isomorphism
�V;W W V ˝W !W ˝V satisfying various commutative diagrams (see, for example,
[6, 5.2B], where the name “quasi-tensor category” is used instead). This braiding is
described in terms of an R–matrix R 2 5U.g/˝U.g/ , where we complete the tensor
square with respect to the kernels of finite-dimensional representations, as usual.

As we mentioned earlier, we were left at times with difficult decisions in terms of
reconciling the different conventions which have appeared in previous work. One which
we seem to be forced into is to use the opposite R–matrix from the one used by many
authors (for example, in [6]). Thus, we must be quite careful about matching formulas
with references such as [6].

Our first task is to describe a functor categorifying the braiding. To begin with, let
B�k
W L�!V� �� be the functor which sends a sequence .i; �/ to the functor where

B�k
..i; �/I .i0; �0// is the K–span of pictures like the morphisms of L� , beginning

at .i; �/, ending with .i0; �0/ and having exactly one crossing between the k th and
kC 1st red strands, with certain relations we describe below. We can think of this as
a functor L� �L� ��! gVectK . From this perspective, the morphisms in L� act by
attaching at the bottom of this diagram, and morphisms in L� �� act at the top.
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�1

�1

� � � � � �

�`

�`

�kC1

�kC1

�k

�k

� � �

� � �

Figure 7: An example of an element of B�k

As before, we need to mod out by relations:

� We impose all local relations from Section 2, including planar isotopy.

� Furthermore, we have to add the relations (along with their mirror images) which
along a black strand to slide through a red crossing:

�k

�k

�k�1

�k�1

=

�k

�k

�k�1

�k�1

�k

�k

�k�1

�k�1

=

�k

�k

�k�1

�k�1

Definition 3.1 Let B�k
be the derived functor LB�k

W D�.V�/!D�.V�k ��/. For
any word in the braid generators ��1

i1
� � � �

�n

in
, we let

B.��1

i1
� � � �

�n

in
/D B�1

�1
� � �B�n

�n

Here, D�.V�/ refers to the bounded above derived category of V� .

Theorem 3.2 [50, 1.5-8] The functors B�i
are equivalences and define a weak braid

groupoid action on our categories; that is, for any braid � D ��1

i1
� � � �

�n

in
, the functor

B.��1

i1
� � � �

�n

in
/ only depends on the resulting braid up to isomorphism.
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Furthermore, the map B.��1

i1
� � � �

�n

in
/ induces on the level of Grothendieck groups

is exactly the map induced on tensor products of the representations by the braided
structure on representations of Uq.g/.

4 Rigidity structures

4.1 Coevaluation and evaluation for a pair of representations

Now, we must consider the cups and caps in our theory. The most basic case of this
is � D .�; ��/, where we use �� D �w0� to denote the highest weight of the dual
representation to V� . It is important to note that V� Š V �

��
, but this isomorphism is

not canonical.

In fact, the representation K0.T
�/ comes with more structure, since it is an integral

form V Z
�

. In particular, it comes with a distinguished highest weight vector vh , the

class of the unique simple in V�
�

which is 1–dimensional and concentrated in degree 0.
Thus, in order to fix the isomorphism above, we need only fix a lowest weight vector
vl of V�� , and take the unique invariant pairing such that hvh; vli D 1.

Proposition 4.1 [50, 2.3] There exists a unique self-dual simple module L� 2V
�;��

0

which is “U –invariant;” it is killed by all Ei and all Fi .

The class of this simple in V�˝V�� can be regarded as an isomorphism V �
�
! V�� ,

which we will fix from now on.

Recall that the coevaluation Z..q//! V�;�� is the map sending 1 to the canonical
element of the pairing we have fixed, and evaluation is the map induced by the pairing
V��;�! Z..q//.

Definition 4.2 Let

K�;�
�

∅ W D�.gVect/! V�;�� be the functor RHomK. PL�;�/.2h�; �i/Œ�2�_.�/�

and

E∅
��;�
W V��;�!D�.gVect/ be the functor �

L
˝T �

PL��

Proposition 4.3 [50, 2.3] The functor K�;�
�

∅ categorifies the coevaluation, and E∅
��;�

the evaluation.

We represent these functors as leftward oriented cups as is done for the coevaluation
and evaluation in the usual diagrammatic approach to quantum groups; this is shown in
Figure 8.
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� ��

K�;�
�

∅

���

E∅
��;�

Figure 8: Pictures for the coevaluation and evaluation maps

4.2 Ribbon structure

Now, in order to define quantum knot invariants, we must also have quantum trace and
cotrace maps, which can only be defined after one has chosen a ribbon structure. The
Hopf algebra Uq.g/ does not have a unique ribbon structure; in fact, topological ribbon
elements form a torsor over the characters Y=X ! f˙1g. Essentially, this action is by
multiplying quantum dimension by the value of the character.

The standard convention is to choose the ribbon element so that all quantum dimensions
are Laurent polynomials in q with positive coefficients; however, a simple calculation
above shows that this choice is not compatible with our categorification!

Proposition 4.4 B�1
L� ŠL�� Œ�2�_.�/�.�2h�; �i � h�; �i/.

By Proposition 4.4, we have

B2L� DL�Œ�4�_.�/�.�4h�; �i � 2h�; �i/:

Thus, if we wish to define a ribbon functor R to satisfy the equations

B2L� ŠR�2
1 L� DR�2

2 L� DR�1
1 R�1

2 L�;

which are necessary for topological invariance (as we depict in Figure 9).

Definition 4.5 The ribbon functor Ri is defined by

RiM DM Œ2�_.�i/�.2h�i ; �iC h�i ; �ii/:

Taking Grothendieck group, we see that we obtain the ribbon element in Uq.g/ uniquely
determined by the fact that it acts on the simple representation of highest weight �
by .�1/2�

_.�/qh�;�iC2h�;�i . This is the inverse of the ribbon element constructed by
Snyder and Tingley in [40]; we must take inverse because Snyder and Tingley use the
opposite choice of coproduct from ours. See Theorem 4.6 of that paper for a proof that
this is a ribbon element. From now on, we will term this the ST ribbon element.
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=

Figure 9: The compatibility of double twist and the ribbon element

It may seem strange that this element seems more natural from the perspective of
categorification than the standard ribbon element, but it is perhaps not so surprising; the
ST ribbon element is closely connected to the braid group action on the quantum group,
which also played an important role in Chuang and Rouquier’s early investigations
on categorifying sl2 in [7]. It is not surprising at all that we are forced into a choice,
since ribbon structures depend on the ambiguity of taking a square root; while numbers
always have 2 or 0 square roots in any given field (of characteristic ¤ 2), a functor
will often only have one.

This different choice of ribbon element will not seriously affect our topological invari-
ants; we simply multiply the invariants from the standard ribbon structure by a sign
depending on the framing of our link and the Frobenius–Schur indicator of the label,
as we describe precisely in Proposition 5.6.

=

Figure 10: Changing the orientation of a cap

Proposition 4.6 [50, 2.11] The quantum trace and cotrace for the ST ribbon structure
are categorified by the functors

C��;�
∅ W D�.gVect/! V��;� given by RHom. PL�� ;�/.2h�; �i/Œ�2�_.�/�

and

T∅
�;��
W V�;�� !D�.gVect/ given by �˝T �

PL�:
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�� �

C��;�
∅

� ��

T∅
�;��

Figure 11: Pictures for the quantum (co)trace

4.3 Coevaluation and quantum trace in general

More generally, whenever we are presented with a sequence � and a dominant weight
�, we wish to have a functor relating the categories � and �CD .�1; : : : ; �j�1; �; �

�;

�j ; : : : ; �`/. This will be given by left tensor product with a particular bimodule.

The coevaluation bimodule K
�C

�
is generated by the diagrams of the form

�1

�1

i

i

� � �

� ��

� � �

�`

�`

j

jikikiki1 i1 i1

�i1 .sk�1�/
ik

v

where v is an element of L� and diagrams only involving the strands between � and
�� act in the obvious way, modulo the relation (and its mirror image).

� ��

j

j

v

=

� ��

j

j

v

One can think of the relation above as categorifying the equality .Fiv/˝KDFi.v˝K/

for any invariant element K .
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Definition 4.7 The coevaluation functor is

K
�C

�
D RHomT �.K

�C

�
;�/.2h�; �i/Œ�2�_.�/�W V�

! V�C:

Similarly, the quantum trace functor is the left adjoint to this given by

T
�C

�
D�

L
˝

T �C K
�C

�
W V�C

! V�:

The evaluation and quantum cotrace are defined similarly.

Since K
�C

�
is projective as a right module, Hom with it gives an exact functor. The

quantum trace functor, however, is very far from being exact in the usual t -structure.

Proposition 4.8 [50, 2.13] K
�C

�
categorifies the coevaluation and T

�C

�
the quantum

trace.

5 Knot invariants

5.1 Constructing knot and tangle invariants

Now, we will use the functors from the previous section to construct tangle invariants.
Using these as building blocks, we can associate a functor ˆ.T /W V�! V� to any
diagram of an oriented labeled ribbon tangle T with the bottom ends given by �D

f�1; : : : ; �`g and the top ends labeled with �D f�1; : : : ; �mg.

As usual, we choose a projection of our tangle such that at any height (fixed value of
the x–coordinate) there is at most a single crossing, single cup or single cap. This
allows us to write our tangle as a composition of these elementary tangles.

For a crossing, we ignore the orientation of the knot, and separate crossings into positive
(right-handed) and negative (left-handed) according to the upward orientation we have
chosen on R2 .

� To a positive crossing of the i and i C 1st strands, we associate the braiding
functor B�i

.

� To a negative crossing, we associate its adjoint B��1
i

(the left and right adjoints
are isomorphic, since B is an equivalence).

For the cups and caps, it is necessary to consider the orientation, using the conventions
shown in Figures 8 and 11.

� To a clockwise oriented cup, we associate the coevaluation.
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� To a clockwise oriented cap, we associate the quantum trace.

� To a counter-clockwise cup, we associate the quantum cotrace.

� To a counter-clockwise cap, we associate the evaluation.

Theorem 5.1 [50, 3.1] The functor ˆ.T / does not depend (up to isomorphism) on
the projection of T . The map induced by ˆ.T /W V�!V� on the Grothendieck groups
V�! V� is that assigned to a ribbon tangle by the structure maps of the category of
Uq.g/–modules with the ST ribbon structure.

In particular, the complex ˆ.T /.K/ for a closed link in an invariant of K and its graded
Euler characteristic of is the quantum knot invariant for the ST ribbon element.

Theorem 5.2 [50, 3.2] The cohomology of ˆ.T /.K/ is finite-dimensional in each
homological degree, and each graded degree is a complex with finite-dimensional total
cohomology. In particular the bigraded Poincaré series

'.T /.q; t/D
X

i

.�t/�i dimq H i.ˆ.T /.K//

is a well-defined element of ZŒq 1=D; q
�1=D �..t//.

The only case where the invariant is known to be finite-dimensional is when the weights
�i are all minuscule; recall that a dominant weight � is called minuscule if every
weight with a non-zero weight space in V� is in the Weyl group orbit of �.

Proposition 5.3 [50, 3.3] If all �i are minuscule, then the cohomology of ˆ.T /.K/
is finite-dimensional.

Unfortunately, the cohomology of the complex ˆ.T /.K/ is not always finite-dimen-
sional. This can be seen in examples as simple as the unknot U for gD sl2 and label
2. In fact:

Proposition 5.4 [50, 3.4] '2.U /D q�2t2
C 1C q2t�2

C
q�2� q�2t

1� t2q�4
.

It is easy to see that the Euler characteristic is q�2 C 1C q2 D Œ3�q , the quantum
dimension of V2 . As this example shows, infinite-dimensionality of invariants is
extremely typical behavior. This same phenomenon of infinite dimensional vector
spaces categorifying integers has also appeared in the work of Frenkel, Sussan and
Stroppel [13], and in fact, their work could be translated into the language of this paper
using the equivalences of [49, Section 5]; it would be quite interesting to work out this
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correspondence in detail. Similar infinite-dimensional behavior appeared in the work
of Cooper, Hogancamp and Krushkal on colored Jones polynomials and Jones–Wenzl
projectors using Khovanov’s diagrammatic calculus [10; 9].

Conjecture 5.5 The invariant ˆ.L/ for a link L is only finite-dimensional if all
components of L are labeled with minuscule representations.

Some care must be exercised with the normalization of these invariants, since as we
noted in Section 4.2, they are the Reshetikhin–Turaev invariants for a slightly different
ribbon element from the usual choice. However, the difference is easily understood.
Let L be a link drawn in the blackboard framing, and let Li be its components, with
Li labeled with �i . Recall that the writhe wr.K/ of a oriented ribbon knot is the
linking number of the two edges of the ribbon; this can be calculated by drawing the
link the blackboard framing and taking the difference between the number of positive
and negative crossings. Here we give a slight extension of the proposition of Snyder
and Tingley relating the invariants for different framings [40, Theorem 5.21]:

Proposition 5.6 [50, 3.8] The invariants attached to L by the standard and Snyder–
Tingley ribbon elements differ by the scalar

Q
i.�1/2�

_.�i /�.wr.Li /�1/ .

Since one of the main reasons for interest in these quantum invariants of knots is their
connection to Chern–Simons theory and invariants of 3–manifolds, it is natural to ask:

Question 5.7 Can these invariants glue into a categorification of the Witten–Reshetik-
hin–Turaev invariants of 3–manifolds?

Remark 5.8 The most naive ansatz for categorifying Chern–Simons theory, following
the development of Reshetikhin and Turaev [36] would associate

� a category C.†/ to each surface †, and
� an object in C.†/ to each isomorphism of † with the boundary of a 3–manifold

such that

� the invariants K we have given are the Ext–spaces of this object for a knot
complement with fixed generating set of C.T 2/ labeled by the representations
of g, and

� the categorification of the WRT invariant of a Dehn filling is the Ext–space of
this object with another associated to the torus filling.

While some hints of this structure appear in the constructions of this paper, it is far
from clear how they will combine.
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5.2 Functoriality

One of the most remarkable properties of Khovanov homology is its functoriality with
respect to cobordisms between knots; this functoriality was conjectured by Khovanov
[16], shown to exist up to sign by Jacobsson [14] and given a more explicit topological
description by Bar-Natan [2]; finally, a way around the sign problems was given by
Clark, Morrison and Walker [8]. This property is not only theoretically satisfying but
also played an important role in Rasmussen’s proof of the unknotting number of torus
knots [34]. Thus, we certainly hope to find a similar property for our knot homologies.
While we cannot present a complete picture at the moment, there are promising signs,
which we explain in this section. We must restrict ourselves to the case where the
weights �i are minuscule, since even the basic results we prove here do not hold in
general. We will assume this hypothesis throughout this subsection.

The weakest form of functoriality is putting a Frobenius structure on the vector space
associated to a circle. This vector space, as we recall, is

A� D Ext�.L�;L�/Œ2�
_.�/�.2h�; �i/:

This algebra is naturally bigraded by the homological and internal gradings. The algebra
structure on it is that induced by the Yoneda product.

Theorem 5.9 [50, 3.11] For minuscule weights �, we have a canonical isomorphism

SL� ŠL�.�4h�; �i/Œ�4�_.�/�:

Thus, the functors K and T are biadjoint up to shift.

In particular, Ext4h�;�i.L�;L�/Š Hom.L�;L�/� , and the dual of the unit

��W Ext4h�;�i.L�;L�/!K

is a symmetric Frobenius trace on A� of degree �4h�; �i

One should consider this as an analogue of Poincaré duality, and thus a piece of evidence
for A� ’s relationship to cohomology rings.

It would be enough to show that this algebra is commutative to establish the functoriality
for flat tangles; we simply use the usual translation between 1+1 dimensional TQFTs
and commutative Frobenius algebras (for more details, see the book by Kock [25]). At
the moment, not even this very weak form of functoriality is known.

Question 5.10 Is there another interpretation of the algebra A�? Is it the cohomology
of a space?

Geometry & Topology Monographs, Volume 18 (2012)



284 Ben Webster

We can use the biadjunction to give a rather simple prescription for functoriality: for
each embedded cobordism in I �S3 between knots in S3 , we can isotope so that the
height function is a Morse function, and thus decompose the cobordism into handles.
Furthermore, we can choose this so that the projection goes through these handle
attachments at times separate from the times it goes through Reidemeister moves. We
construct the functoriality map by assigning

� to each Reidemeister move, we associate a fixed isomorphism of the associated
functors;

� to the birth of a circle (the attachment of a 2–handle), we associate the unit of
the adjunction .K;T / or .C;E/, depending on the orientation;

� to the death of a circle (the attachment of a 0–handle), we associate the counits
of the opposite adjunctions .T ;K/ or .E;C/ (ie, the Frobenius trace);

� to a saddle cobordism (the attachment of a 1–handle), we associate (depending
on orientation) the unit of the second adjunction above, or the counit of the first.

Conjecture 5.11 This assignment of a map to a cobordism is independent of the
choice of Morse function, ie this makes the knot homology theory K.�/ functorial.

6 Comparison to other knot homologies

A great number of other knot homologies have appeared on the scene in the last
decade, and obviously, we would like to compare them to ours. While several of these
comparisons are out of reach at the moment, in this section we check the one which
seems most straightforward based on the similarity of constructions: we describe an
isomorphism to the invariants constructed by Mazorchuk–Stroppel and Sussan for the
fundamental representations of sln . In this section, we fix the value of the polynomials
Qij to be:

Qij .u; v/D

8̂<̂
:

1 i ¤ j ˙ 1

u� v i D j C 1

v�u i D j � 1

For any list of integers p1; : : : ;p` , we let p be the Lie algebra of block upper triangular
matrices in glN where N D

P
pi .

Definition 6.1 Parabolic category O , which we denote Op , is the full subcategory of
glN –modules with a weight decomposition where p acts locally finitely. We let Op

n

be the full subcategory generated by the simples whose highest weights .a1; : : : ; an/

satisfy n� i � ai > �i .
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Let �D .!p1
; : : : ; !p`/ be a corresponding list of fundamental weights of sln .

Theorem 6.2 [49, 5.8] We have an equivalence of graded categories „W V� Š
�!Op

n .

If n< pi for any i , the latter category is trivial, and the former is not defined, so by
convention, we take it to be trivial. We should note that this gives an explicit graded
presentation of Op

n (and thus of each integral block of parabolic category O for glN );
this is the first such presentation we know to appear in the literature.

Under this equivalence our work matches with that of Sussan [46] and Mazorchuk–
Stroppel [32], though the latter paper is “Koszul dual” to our approach above. Recall
that each block of On has a Koszul dual, which is also a block of parabolic category
O for glN (see [1]). In particular, we have a Koszul duality equivalence

�W D".Op
n/!D#.npO/

where n
p
zO is the direct sum over all n part compositions � (where we allow parts

of size 0) of a block of p�–parabolic category O for glN with a particular central
character depending on p.

Now, let T be an oriented tangle labeled with � at the bottom and �0 at top, with all
appearing labels being fundamental. Then, as before, associated to � and � we have
parabolics p and p0 .

Theorem 6.3 [50, 4.4] Assume � only uses the fundamental weights !1 and !n�1 .
Then we have a commutative diagram

D#.np0
zO/D#.np

zO/

D". zOp0

n /D". zOp
n/

V�0V�

F.T /

F.T /

ˆ.T /

„„

��

where F.T / is the functor for a tangle defined by Sussan in [46] and F.T / is the
functor defined by Mazorchuk and Stroppel in [32].

Our invariant K thus coincides with the knot invariants of both the above papers when
all components are labeled with the defining representation, and thus coincides with
Khovanov homology when gD sl2 and Khovanov–Rozansky homology when gD sl3 .
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What we have shown directly is that when gD sl2 , our construction agrees with that of
Stroppel [41]; the relationship of that invariant to Khovanov homology was conjectured
in [41, Section 2.5] and confirmed in [43]. The sl3 result follows from a direct relation
between foams and projective functors proven by Mazorchuk–Stroppel [32, Section
7.3]. We believe strongly that this homology agrees with that of Khovanov–Rozansky
when one uses the defining representation for all n (this is conjectured in [32]), but
actually proving this requires an improvement in the state of understanding of the
relationship between the foam model of Mackaay, Stošić and Vaz [29] and the model
we have presented. It would also be desirable to compare our results to those of Cautis–
Kamnitzer for minuscule representations, and Khovanov–Rozansky for the Kauffman
polynomial, but this will require some new ideas, beyond the scope of this paper.
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