LECTURE 4: NOETHERIAN RINGS AND THE IDEAL-VARIETY CORRESPONDENCE

In this lecture, we will recall the definitions of various types of ideal (*prime*, maximal and radical ideals), define a Noetherian ring and look at certain properties of these rings, and define the variety of an ideal and the ideal of a variety.

1. Review of ideals

In this course, all rings are commutative and have a multiplicative identity element.

Recall the following definitions:

Definition 1. Let R be a ring. We say that $I \subseteq R$ is an ideal of R if

- (i) I is an additive subgroup of R;
- (ii) If $i \in I$ and $r \in R$, then $ir \in I$.

There are certain types of ideals which will be of particular interest:

Definition 2. An ideal $\mathfrak{p} \subsetneq R$ is prime if whenever we have $fg \in \mathfrak{p}$, we must have either $f \in \mathfrak{p}$ or $g \in \mathfrak{p}$.

Definition 3. An ideal $\mathfrak{m} \subsetneq R$ is maximal if whenever we have $\mathfrak{m} \subsetneq I$ for some ideal I, we must have I = R.

Definition 4. The radical of an ideal $I \subset R$ is defined to be the ideal

$$\sqrt{I} := \{ f \in R \mid f^n \in I \text{ for some } n \in \mathbb{N} \}.$$

An ideal is said to be radical if it is equal to its radical, i.e. if $I = \sqrt{I}$.

Let $X \subseteq R$. Then we can define the ideal of R generated by X to be the ideal

$$\{x_1r_1 + \dots + x_nr_n \mid x_i \in X, r_i \in R, n \in \mathbb{N}\}.$$

If X is a finite set $\{x_1, \ldots, x_n\}$, then we write

$$(x_1, \ldots, x_n) = \{x_1r_1 + \cdots + x_nr_n \mid x_i \in X, r_i \in R\}.$$

Examples:

- (1) Consider the ring \mathbb{Z} .
 - (2) is an ideal of \mathbb{Z} . It is prime, maximal and radical.
 - (27) is an ideal of \mathbb{Z} . It is neither prime, maximal nor radical: its radical is (3).
 - (0) is an ideal of \mathbb{Z} . It is prime and radical, but not maximal.
- (2) Consider the ring $\mathbb{Z}/16\mathbb{Z}$. Then the zero ideal is not prime, radical or maximal: its radical is (2).
- (3) Consider the ring $\mathbb{Z}[X]$.
 - (0), (p) and (X) are prime and radical, but not maximal.
 - -(p, X) is prime, radical and maximal.

2. Noetherian rings

Definition 5. We say that a ring R is a Noetherian ring if for every ascending chain of ideals

$$I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots$$
,

there is an integer N such that $I_N = I_{N+m}$ for all $m \in \mathbb{N}$. That is, every strictly ascending chain of ideals must terminate.

We call this property the Noetherian property or the ascending chain condition.

Proposition 6. Let R be a ring. The following are equivalent:

- (1) R is a Noetherian ring;
- (2) Every non-empty set of ideals of R has a maximal element with respect to inclusion (i.e. an ideal which is not contained in any of the others).
- (3) Every ideal $I \subseteq R$ is finitely generated. That is, there are $f_1, \ldots, f_k \in I$ such that $I = (f_1, \ldots, f_k)$.

Proof. (1) \Rightarrow (2): Let \mathcal{I} be a non-empty set of ideals, and let $I_1 \in \mathcal{I}$. If I_1 is maximal, then we are done; otherwise, there exist $I_2 \supseteq I_1$. We can continue inductively to form an ascending chain of ideals, and this chain must terminate by (1), giving a maximal element.

 $(2) \Rightarrow (3)$: Let I be an ideal of R. Define the set

$$\mathcal{I} = \{ J \subseteq I \mid J \text{ is a finitely generated ideal} \}$$

of finitely generated ideals contained in I. Let $J=(j_1,\ldots,j_n)$ be a maximal element of \mathcal{I} , and suppose that $J\neq I$. Then there must be some element $f\in I\setminus J$. But then we can form another finitely generated ideal $(j_1,\ldots,j_n,f)\supseteq J$, which contradicts the maximality of J. So we must have J=I, and hence I is finitely generated.

$$(3) \Rightarrow (1)$$
: Left as an exercise (Q5, HW 1).

Example. The ring of integers \mathbb{Z} is Noetherian. (This is left as an exercise: see Q6, HW 1.)

Proposition 7. If R is a Noetherian ring and I is an ideal of R, then the quotient ring R/I is Noetherian.

Proof. There is a one-to-one correspondence between ideals of R/I and ideals of R containing I. So let $J \supseteq I$ be an ideal of R such that J/I is the corresponding ideal of R/I.

Since we have $J = (f_1, \ldots, f_n)$ for some $f_i \in R$, we have

$$J/I = (f_1 + I, \dots, f_m + I),$$

and hence J/I is finitely generated.

Theorem 8 (Hilbert basis theorem). Let R be a Noetherian ring. Then the polynomial ring R[X] is Noetherian.

Proof. Let $I \subseteq R[X]$ be an ideal. We will prove that I is finitely generated. For each non-negative integer n define the leading term ideal of degree n to be the ideal

$$I_n = \{a_n \in R \mid \text{there exists some } f = a_n X^n + a_{n-1} X^{n-1} + \dots + a_0 \in I\}$$

As an exercise prove that this is indeed an ideal and that $I_n \subseteq I_{n+1}$ for each n. Hence these ideals form an ascending chain thus there is an N such that $I_N =$ $I_{N+1} = \cdots$

Since R is Noetherian each I_n is finitely generated, so we may pick generators $a_{n,1},\ldots,a_{n,m_n}$. Now for each of these let $f_{n,k}$ be a degree n polynomial with leading term $a_{n,k}$, which must exist by the definition of I_n . We will prove that the set

$$\{f_{n,k} \mid 0 \le n \le N \text{ and } 1 \le k \le m_n\}$$

generates I.

Assume for a contradiction that the $f_{n,k}$ do not generate I. Let $g \in I$ be an element of minimal degree such that g is not generated by the $f_{n,k}$. Suppose $\deg g = n$ then the leading term of g is bX^n for some $b \in I_n$. Now let n' = n if $n \leq N$ and n' = N otherwise. We can write b in terms of the generators of $I_n = I_{n'}$:

$$b = \sum_{k=1}^{m_{n'}} c_k a_{n',k}$$

for $c_k \in R$. Now consider $h = g - X^{n-n'} \sum c_k f_{n',k}$ by construction $\deg h < \deg g$ and so by minimality of g, we must have that h is generated by the $f_{n,k}$, say $h = \sum d_{m,k} f_{m,k}$. Now

$$g = X^{n-n'} \sum c_k f_{n',k} + \sum d_{m,k} f_{m,k}$$

contradicting the assumption and therefore the $f_{m,k}$ do indeed generate I.

Corollary 9. If R is Noetherian, then $R[X_1, ..., X_n]$ is Noetherian.

3. The variety of an ideal and ideal of a variety

In what follows, we will use k to denote a general field (sometimes we will specify that it is algebraically closed). However, there is no harm in just thinking of this

Let k be a field. Let $R = k[X_1, \ldots, X_n]$, and let $f \in R$. The polynomial f defines a map $f: k^n \to k$ by evaluating the polynomial at points $P = (x_1, \ldots, x_n)$ of k^n . We can use this to define a correspondence

For an ideal J, we call $\mathbb{V}(J)$ the variety of J.

Proposition 10. The correspondence $J \mapsto \mathbb{V}(J)$ satisfies the following properties:

- (1) $V(0) = k^n$
- (2) $\mathbb{V}(R) = \emptyset$
- $\begin{array}{ll} (3) & J_1 \subseteq J_2 \implies \mathbb{V}(J_1) \supseteq \mathbb{V}(J_2) \\ (4) & \mathbb{V}(J_1 \cap J_2) = \mathbb{V}(J_1) \cup \mathbb{V}(J_2) \end{array}$
- (5)

$$\mathbb{V}\left(\sum_{\lambda\in\Lambda}J_{\lambda}\right)=\bigcap_{\lambda\in\Lambda}\mathbb{V}(J_{\lambda}).$$

Proof. Left as an exercise.

We also have a partial inverse to this correspondence. Again, let k be a field and let $R = k[X_1, \ldots, X_n]$. Then we have a correspondence

It should be clear that $\mathbb{I}(X)$ is an ideal.

Proposition 11. Let k be a field, and let $R = k[X_1, ..., X_n]$.

- (1) $X \subseteq k^n \Rightarrow X \subseteq \mathbb{V}(\mathbb{I}(X))$ with equality if and only if X is a variety;
- (2) $X \subseteq Y \subseteq k^n \mid \mathbb{I}(X) \supseteq \mathbb{I}(Y)$;
- (3) $J \supseteq R \Rightarrow J \subseteq \mathbb{I}(\mathbb{V}(J))$. This inclusion can be strict.

Remark. Note that part (1) now confirms that all varieties are generated by finitely many polynomials. To see this, let V be a variety: by part (1) of the above proposition, we have

$$V = \mathbb{V}(\mathbb{I}(V)).$$

The ideal $\mathbb{I}(V)$ is an ideal in $k[X_1, \ldots, X_n]$. By the Hilbert basis theorem, $k[X_1, \ldots, X_n]$ is Noetherian (all fields are Noetherian), and hence the ideal $\mathbb{I}(V)$ is finitely generated. So we can write

$$\mathbb{I}(V) = (F_1, \dots, F_m)$$

for some $F_i \in k[X_1, \ldots, X_n]$, and hence

$$V = \mathbb{V}(F_1, \dots, F_m).$$