
LECTURE 4: NOETHERIAN RINGS AND THE IDEAL-VARIETY

CORRESPONDENCE

In this lecture, we will recall the definitions of various types of ideal (prime,
maximal and radical ideals), define a Noetherian ring and look at certain properties
of these rings, and define the variety of an ideal and the ideal of a variety.

1. Review of ideals

In this course, all rings are commutative and have a multiplicative identity ele-
ment.

Recall the following definitions:

Definition 1. Let R be a ring. We say that I ⊆ R is an ideal of R if

(i) I is an additive subgroup of R;
(ii) If i ∈ I and r ∈ R, then ir ∈ I.

There are certain types of ideals which will be of particular interest:

Definition 2. An ideal p ( R is prime if whenever we have fg ∈ p, we must have
either f ∈ p or g ∈ p.

Definition 3. An ideal m ( R is maximal if whenever we have m ( I for some
ideal I, we must have I = R.

Definition 4. The radical of an ideal I ⊂ R is defined to be the ideal
√
I := {f ∈ R | fn ∈ I for some n ∈ N}.

An ideal is said to be radical if it is equal to its radical, i.e. if I =
√
I.

Let X ⊆ R. Then we can define the ideal of R generated by X to be the ideal

{x1r1 + · · ·+ xnrn | xi ∈ X, ri ∈ R,n ∈ N}.

If X is a finite set {x1, . . . , xn}, then we write

(x1, . . . , xn) = {x1r1 + · · ·+ xnrn | xi ∈ X, ri ∈ R}.

Examples:

(1) Consider the ring Z.
– (2) is an ideal of Z. It is prime, maximal and radical.
– (27) is an ideal of Z. It is neither prime, maximal nor radical: its

radical is (3).
– (0) is an ideal of Z. It is prime and radical, but not maximal.

(2) Consider the ring Z/16Z. Then the zero ideal is not prime, radical or
maximal: its radical is (2).

(3) Consider the ring Z[X].
– (0), (p) and (X) are prime and radical, but not maximal.
– (p,X) is prime, radical and maximal.
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2. Noetherian rings

Definition 5. We say that a ring R is a Noetherian ring if for every ascending
chain of ideals

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · ,
there is an integer N such that IN = IN+m for all m ∈ N. That is, every strictly
ascending chain of ideals must terminate.

We call this property the Noetherian property or the ascending chain condition.

Proposition 6. Let R be a ring. The following are equivalent:

(1) R is a Noetherian ring;
(2) Every non-empty set of ideals of R has a maximal element with respect to

inclusion (i.e. an ideal which is not contained in any of the others).
(3) Every ideal I ⊆ R is finitely generated. That is, there are f1, . . . , fk ∈ I

such that I = (f1, . . . , fk).

Proof. (1) ⇒ (2): Let I be a non-empty set of ideals, and let I1 ∈ I. If I1

is maximal, then we are done; otherwise, there exist I2 ⊇ I1. We can continue
inductively to form an ascending chain of ideals, and this chain must terminate by
(1), giving a maximal element.

(2)⇒ (3): Let I be an ideal of R. Define the set

I =
{
J ⊆ I | J is a finitely generated ideal

}
of finitely generated ideals contained in I. Let J = (j1, . . . , jn) be a maximal
element of I, and suppose that J 6= I. Then there must be some element f ∈ I\J .
But then we can form another finitely generated ideal (j1, . . . , jn, f) ) J , which
contradicts the maximality of J . So we must have J = I, and hence I is finitely
generated.

(3)⇒ (1): Left as an exercise (Q5, HW 1). �

Example. The ring of integers Z is Noetherian. (This is left as an exercise: see
Q6, HW 1.)

Proposition 7. If R is a Noetherian ring and I is an ideal of R, then the quotient
ring R/I is Noetherian.

Proof. There is a one-to-one correspondence between ideals of R/I and ideals of R
containing I. So let J ⊇ I be an ideal of R such that J/I is the corresponding ideal
of R/I.

Since we have J = (f1, . . . , fn) for some fi ∈ R, we have

J/I = (f1 + I, . . . , fm + I),

and hence J/I is finitely generated. �

Theorem 8 (Hilbert basis theorem). Let R be a Noetherian ring. Then the poly-
nomial ring R[X] is Noetherian.

Proof. Let I ⊆ R[X] be an ideal. We will prove that I is finitely generated. For
each non-negative integer n define the leading term ideal of degree n to be the ideal

In = {an ∈ R | there exists some f = anX
n + an−1X

n−1 + · · ·+ a0 ∈ I}
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As an exercise prove that this is indeed an ideal and that In ⊆ In+1 for each n.
Hence these ideals form an ascending chain thus there is an N such that IN =
IN+1 = · · ·.

Since R is Noetherian each In is finitely generated, so we may pick generators
an,1, . . . , an,mn

. Now for each of these let fn,k be a degree n polynomial with leading
term an,k, which must exist by the definition of In. We will prove that the set

{fn,k | 0 ≤ n ≤ N and 1 ≤ k ≤ mn}

generates I.
Assume for a contradiction that the fn,k do not generate I. Let g ∈ I be

an element of minimal degree such that g is not generated by the fn,k. Suppose
deg g = n then the leading term of g is bXn for some b ∈ In. Now let n′ = n if
n ≤ N and n′ = N otherwise. We can write b in terms of the generators of In = In′ :

b =

mn′∑
k=1

ckan′,k

for ck ∈ R. Now consider h = g −Xn−n′ ∑
ckfn′,k by construction deg h < deg g

and so by minimality of g, we must have that h is generated by the fn,k, say
h =

∑
dm,kfm,k. Now

g = Xn−n′ ∑
ckfn′,k +

∑
dm,kfm,k

contradicting the assumption and therefore the fm,k do indeed generate I. �

Corollary 9. If R is Noetherian, then R[X1, . . . , Xn] is Noetherian.

3. The variety of an ideal and ideal of a variety

In what follows, we will use k to denote a general field (sometimes we will specify
that it is algebraically closed). However, there is no harm in just thinking of this
as C.

Let k be a field. Let R = k[X1, . . . , Xn], and let f ∈ R. The polynomial f
defines a map f : kn → k by evaluating the polynomial at points P = (x1, . . . , xn)
of kn. We can use this to define a correspondence

{ideals J ⊆ R} −→ {subsets X ⊆ kn}
J 7−→ V(J) = {P ∈ kn | f(P ) = 0 for all f ∈ J}.

For an ideal J , we call V(J) the variety of J .

Proposition 10. The correspondence J 7→ V(J) satisfies the following properties:

(1) V(0) = kn

(2) V(R) = ∅
(3) J1 ⊆ J2 ⇒ V(J1) ⊇ V(J2)
(4) V(J1 ∩ J2) = V(J1) ∪ V(J2)
(5)

V

(∑
λ∈Λ

Jλ

)
=
⋂
λ∈Λ

V(Jλ).

Proof. Left as an exercise. �



4 LECTURE 4: NOETHERIAN RINGS AND THE IDEAL-VARIETY CORRESPONDENCE

We also have a partial inverse to this correspondence. Again, let k be a field and
let R = k[X1, . . . , Xn]. Then we have a correspondence

{subsets X ⊆ kn} −→ {ideals J ⊆ R}
X 7−→ I(X) = {f ∈ R | f(P ) = 0 for all P ∈ X}.

It should be clear that I(X) is an ideal.

Proposition 11. Let k be a field, and let R = k[X1, . . . , Xn].

(1) X ⊆ kn ⇒ X ⊆ V(I(X)) with equality if and only if X is a variety;
(2) X ⊆ Y ⊆ kn | I(X) ⊇ I(Y );
(3) J ⊇ R ⇒ J ⊆ I(V(J)). This inclusion can be strict.

Remark. Note that part (1) now confirms that all varieties are generated by
finitely many polynomials. To see this, let V be a variety: by part (1) of the above
proposition, we have

V = V(I(V )).

The ideal I(V ) is an ideal in k[X1, . . . , Xn]. By the Hilbert basis theorem,
k[X1, . . . , Xn] is Noetherian (all fields are Noetherian), and hence the ideal I(V ) is
finitely generated. So we can write

I(V ) = (F1, . . . , Fm)

for some Fi ∈ k[X1, . . . , Xn], and hence

V = V(F1, . . . , Fm).


