LECTURE 4: NOETHERIAN RINGS AND THE IDEAL-VARIETY
CORRESPONDENCE

In this lecture, we will recall the definitions of various types of ideal (prime,
mazimal and radical ideals), define a Noetherian ring and look at certain properties
of these rings, and define the variety of an ideal and the ideal of a variety.

1. REVIEW OF IDEALS

In this course, all rings are commutative and have a multiplicative identity ele-
ment.
Recall the following definitions:

Definition 1. Let R be a ring. We say that I C R is an ideal of R if
(i) I is an additive subgroup of R;
(ii) Ifi eI andr € R, then ir € I.

There are certain types of ideals which will be of particular interest:

Definition 2. An ideal p C R is prime if whenever we have fg € p, we must have
either f € p or g € p.

Definition 3. An ideal m C R is maximal if whenever we have m C I for some
ideal I, we must have I = R.

Definition 4. The radical of an ideal I C R 1is defined to be the ideal
VI:={feR| f*elI for somen c N}.
An ideal is said to be radical if it is equal to its radical, i.e. if I = /1.
Let X C R. Then we can define the ideal of R generated by X to be the ideal
{z1r +- - +axprn |2, € X,r; € Ryn € N}
If X is a finite set {z1,...,z,}, then we write
(x1,...,xn) ={x1r1+ -+ aprn | 2, € X,1; € R}

Examples:

(1) Consider the ring Z.
— (2) is an ideal of Z. It is prime, maximal and radical.
— (27) is an ideal of Z. It is neither prime, maximal nor radical: its

radical is (3).

— (0) is an ideal of Z. It is prime and radical, but not maximal.

(2) Consider the ring Z/16Z. Then the zero ideal is not prime, radical or

maximal: its radical is (2).

(3) Consider the ring Z[X].
— (0), (p) and (X) are prime and radical, but not maximal.
— (p, X) is prime, radical and maximal.
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2. NOETHERIAN RINGS

Definition 5. We say that a ring R is a Noetherian ring if for every ascending
chain of ideals

IlgIQggInga

there is an integer N such that Iy = Inim for allm € N. That is, every strictly
ascending chain of ideals must terminate.

We call this property the Noetherian property or the ascending chain condition.

Proposition 6. Let R be a ring. The following are equivalent:

(1) R is a Noetherian ring;

(2) Every non-empty set of ideals of R has a mazimal element with respect to
inclusion (i.e. an ideal which is not contained in any of the others).

(3) Ewery ideal I C R is finitely generated. That is, there are f1,...,fr € I
such that I = (f1,..., fx).

Proof. (1) = (2): Let Z be a non-empty set of ideals, and let Iy € Z. If I}
is maximal, then we are done; otherwise, there exist In DO I;. We can continue
inductively to form an ascending chain of ideals, and this chain must terminate by
(1), giving a maximal element.

(2) = (3): Let I be an ideal of R. Define the set

7= { J CI|Jis a finitely generated ideal}

of finitely generated ideals contained in I. Let J = (j1,...,Jn) be a maximal
element of Z, and suppose that J # I. Then there must be some element f € I'\J.
But then we can form another finitely generated ideal (ji,...,jn,f) 2 J, which
contradicts the maximality of J. So we must have J = I, and hence [ is finitely
generated.

(3) = (1): Left as an exercise (Q5, HW 1). O

Example. The ring of integers Z is Noetherian. (This is left as an exercise: see
Q6, HW 1.)

Proposition 7. If R is a Noetherian ring and I is an ideal of R, then the quotient
ring R/I is Noetherian.

Proof. There is a one-to-one correspondence between ideals of R/I and ideals of R
containing I. So let J D I be an ideal of R such that J/I is the corresponding ideal
of R/I.

Since we have J = (f1,..., fn) for some f; € R, we have
‘]/I: (f1+[a7fm+1)7
and hence J/I is finitely generated. O

Theorem 8 (Hilbert basis theorem). Let R be a Noetherian ring. Then the poly-
nomial ring R[X] is Noetherian.

Proof. Let I C R[X] be an ideal. We will prove that I is finitely generated. For
each non-negative integer n define the leading term ideal of degree n to be the ideal

I, = {a, € R | there exists some f = a, X" + U1 X" 14 dqpe I}
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As an exercise prove that this is indeed an ideal and that I, C I,41 for each n.
Hence these ideals form an ascending chain thus there is an N such that Iy =

Inii =
Since R is Noetherian each I, is finitely generated, so we may pick generators
G155 0n,m, - Now for each of these let f,, ; be a degree n polynomial with leading

term ay, 1, which must exist by the definition of I,,. We will prove that the set
{fak |0<n < Nand1<k<my}

generates I.

Assume for a contradiction that the f, ; do not generate I. Let g € I be
an element of minimal degree such that g is not generated by the f, ;. Suppose
deg g = n then the leading term of g is bX™ for some b € I,,. Now let n’ = n if

n < N and n’ = N otherwise. We can write b in terms of the generators of I,, = I,/
m.n/
b= Z CrAn’ k
k=1

for ¢ € R. Now consider h = g — xn-—n > ¢k fnrk by construction degh < degg
and so by minimality of g, we must have that h is generated by the f, », say
h = dechch- Now

g = Xn—n/ chfn’,k + de,kfm,k

contradicting the assumption and therefore the f,, ; do indeed generate I. O

Corollary 9. If R is Noetherian, then R[X1,...,X,] is Noetherian.

3. THE VARIETY OF AN IDEAL AND IDEAL OF A VARIETY

In what follows, we will use k to denote a general field (sometimes we will specify
that it is algebraically closed). However, there is no harm in just thinking of this
as C.

Let k be a field. Let R = k[X4,...,X,], and let f € R. The polynomial f
defines a map f : k™ — k by evaluating the polynomial at points P = (21,...,Z,)
of k™. We can use this to define a correspondence

{ideals J C R} — {subsets X C k"}
J — V(J)={Pek™| f(P)=0forall feJ}

For an ideal J, we call V(J) the variety of J.

Proposition 10. The correspondence J — V(J) satisfies the following properties:

(1) V(0) = k”

(2) V(R) =

(3) J1 C J2 = V(Jl) (JQ)
E4; V(Jl N Jg) V(Jl) UV(JQ)
)

\Y (Z J,\> = () V(J»).

AEA AEA

Proof. Left as an exercise. [
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We also have a partial inverse to this correspondence. Again, let k be a field and
let R =k[Xy,...,X,]. Then we have a correspondence
{subsets X C k"} — {ideals J C R}
X — IX)={feR|f(P)=0foral Pe X}.
It should be clear that I(X) is an ideal.

Proposition 11. Let k be a field, and let R = k[Xq,...,X,].
(1) X Ck" = X CV((X)) with equality if and only if X is a variety;
(2) XCYCKk"|I(X)DI(Y);
3) JODR = JCI(V(J)). This inclusion can be strict.

Remark. Note that part (1) now confirms that all varieties are generated by
finitely many polynomials. To see this, let V' be a variety: by part (1) of the above
proposition, we have

V =V(I(V)).

The ideal I(V) is an ideal in k[Xy,...,X,]. By the Hilbert basis theorem,
k[X1,...,X,] is Noetherian (all fields are Noetherian), and hence the ideal I(V) is
finitely generated. So we can write

]I(V) = (F17'°'7Fm)
for some F; € k[X1,...,X,], and hence
V=V(F,...,Fn).



