M corom included Bradley L. Jones

#I—.-
e
e

»

’eacﬁ Yourseli

the C# Language

I SAMS in 2 1 Days

Bradley L. Jones

ﬁﬁ\uursmf
the G#
Language

in 21 Days

8 ast 96th St., Indianapolis, Indiana, 46240 USA

Sams Teach Yourself the C# Language
in 21 Days
Copyright © 2004 by Bradley L. Jones

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-32546-2

Library of Congress Catalog Card Number: 2003092624

Printed in the United States of America

First Printing: July 2003

06 05 04 03 4 3 2

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quan-
tity for bulk purchases or special sales. For more information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales @pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
+1-317-428-3341
international @pearsontechgroup.com

ASSOCIATE PUBLISHER
Michael Stephens

ExecuTive EDITOR
Candace Hall

DEVELOPMENT EDITOR
Mark Renfrow

MANAGING EDITOR
Charlotte Clapp

PRrOJECT EDITOR
Matthew Purcell

Cory EDITOR
Krista Hansing

INDEXER
Mandie Frank

PROOFREADER
Paula Lowell

TecHNICAL EDITOR
Anand Narayanaswamy

TeAM COORDINATOR
Cindy Teeters

INTERIOR DESIGNER
Gary Adair
CoVER DESIGNER

Alan Clements

PAGE LAYouT
Michelle Mitchell

Contents at a Glance

Introduction

Week 1 Week at a Glance

DAy 1

Type & Run 1
2

3

4

Type & Run 2
5

6

7

Getting Started with C#

Understanding C# Programs
Manipulating Values in Your Programs

Controlling Your Program’s Flow

The Core of C# Programming: Classes
Packaging Functionality: Class Methods and Member Functions

Storing More Complex Stuff: Structures, Enumerators, and Arrays

Week 1 Week in Review

Week 2 Week at a Glance

DAy 8

9

TypeE & Run 3
10

11

12

13

14

Advanced Method Access

Handling Problems in Your Programs: Exceptions and Errors

Reusing Existing Code with Inheritance

Formatting and Retrieving Information

Tapping into OOP: Interfaces

Making Your Programs React with Delegates, Events, and Indexers

Making Operators Do Your Bidding: Overloading

Week 2 Week in Review

Week 3 Week at a Glance

DAy 15

16

17

Type & Run 4
18

Using Existing Routines from the .NET Base Classes
Creating Windows Forms

Creating Windows Applications

Working with Databases: ADO.NET

37
41
83
117
145
153
179
211

245

269
271
303
347
357
395
429
449
473

499

519
521
553
591
631
643

19 Creating Remote Procedures (Web Services)
TypeE & Run 5

20 Creating Web Applications

21 A Day for Reflection and Attributes

Week 3 Week in Review

Appendices
Appenpix A C# Keywords
B Command-Line Compiler Flags for Microsoft’s Visual C# .NET
C Understanding Number Systems
D Installing and Using SharpDevelop

Index

On CD-ROM

Answers

661
677
687
705

733

721
723
735
741
745
751

Table

of Contents

Introduction 1
Week 1 At a Glance 5
CHAPTER 1 Getting Started with C# 7
WHAL IS CH? oottt 7
Preparing to Programc..c........ .8
The Program-Development Cycleccoocivviiiiiiiiiiniinininiiiicicicicceee 9
Creating the Source Codeocovireininiiineineeereceeeee e 9
Understanding the Execution of a C# Programcccccceecvveneencrncneenne. 11
Compiling C# Source Code to Intermediate Languagec.cceceevvvrnennne. 13
Completing the Development CYClIeccocevevirinieinieineiiinceceeeeeenene 14
Creating Your First C# Programccccccveoininiineniicneeeeeeseceeeeeeeeeeenene 16
Entering and Compiling Hello.cs17
Types of C# PrOZramscccoeoeviiieinieiniiieenieeeieee ettt st 21
Creating Your First Window Applicationccccceveeieieneinennencieeecsecenene 21
WY CH? oottt 25
C# IS ObJect-Orientedccoveerueiriinieiriiieieniet ettt 26
CH IS MOdUIArcooiiiiiiiiiiiice e 26
C# WIIL Be POPUIAT oviiiiiiiiiiciiccercececeee e 26
A High-Level View Of .INETcooiiiiiiiiieieeeeeeeeeeeee e 27
C# and Object-Oriented Programming (OOP)ccccoceviininniincincnicnccnene 28
Object-Oriented Concepts
Objects and CLaSSESc..ccevverieuirieiriiieierteieierte ettt st
SUIMIMATY .ottt ettt sbesbe b b e
QEA ettt
WOTKSROD ettt e
QUIZ oottt ettt ettt et et b e et e b e e ab e ra e era e aeeeteebeebeenreenaas
EXEICISES ..uvvitenieiiiciieiet ettt ettt ettt 34
Type & Run 1 Numbering Your Listings 37
The First Type & RUN ..coueiiiiiiiiiiiiccceeee e 38
CHAPTER 2 Understanding C# Programs a1

Dissecting a C# Application ...

Starting With COMMENLEScc.eceruiiriirieiiriiieetee ettt 43
Basic Parts of @ C# APPLiCAtionccoeeirivieineininieinceenee et 48
Formatting with WRItESPACEcc.cevveiruiniiiiniiiciiciricecrcece e 48

The Heart of C#: KeyWOIrdsccoccevueiiiiniiiniiiiinieinceeneerece e 49

Vi Sams Teach Yourself the C# Language in 21 Days

LIEETalS ..cuviiiiiiiiieiieeccee e s 50
TAENLITIETS ..eiiiiiiicce ettt 50
Exploring the Structure of a C# Application

Understanding C# Expressions and Statementscccceceveevvererererierenenns
The EMpty StatemeNtcoceevueriieriierienieniterieesieeieeieeie ettt see s
Analyzing LiSting 2.1 ..cccoiiiinieiriieictrce ettt
Lines 1—4: COMMENLScceecverrerierierieriireieieieientestesteeteeseeseensesessessessessessessenns
Lines 5, 7, 13, 17, 21, and 23: Whitespace .. .51
Line 6—The using StatemMENtc.ccooevevvieeirieeireeeeieeeeree e ereeeereeeennees 51
Line 8—Class Declarationc..c.cceceeieieienieniiniininieieieieieiesiesie e 51
Lines 9, 11, 26, and 27: Punctuation Characterscccevveevuerrueriueneeneenne 51
LANE 10: MAIN () cooreeerieeeeee ettt eeee ettt ere e et eaneeeaeeeeaeeeereeereeeennens 52
Lines 14—16: DeClarationsc.ccceceroeervierienieneenieenieeieeieereeteseesieeseesieenee 52
Line 20: The Assignment StatemeNtcccccevvevuerieieieieiesienieneneneneneene 52
Lines 24-25: Calling FUNCtionscccccceeereeininiecinenieeneenceeneeeeeeneeenee 52
Storing Information with Variables52
Storing Information in Variablesccccceevevererienienieiienierieneeseeeeeeeenes 52
Naming YOur VariabIescccoeceveriririeienieienienieeieetcetteneetete e seesieseeseeseeens 53
USING YOUT VariabIescceeieieiieiiieniisieeiteteieiete ettt ettt 55
Declaring @ Variablecccooevererininieieeieeiesieetceet ettt

Assigning Values to Your Variables

Issues with Uninitialized Variables

Understanding Your Computer’s MEmOTYccccvereerenineneeneneeeneenieneenenees 58
Introducing the C# Data TYPEScceirieiririeinieirietreeeesee et 59
Numeric Variable TYPESc..cceeueiririeinieiriiieerieeeee ettt 60
The Integral Data TYPESccccoverieirieiriinieirieieeetrtere et 62
Working with Floating-Point Valuescccceceveininnienecncnencencneeee 69
Gaining Precision with Decimalcccoccoeiineiininiinicencnceececnene 70
Storing Boolean Valuescccoccririeieniiinenieiniciecncenceeeseeeeeeeve e 70
Working Checked Versus Unchecked Codec.cccveevreneencnecncincneene. 71
Data Types Simpler Than .NETccocooiiininiiiniiinencecneeceeee 72
Literals Versus Variablescccocoeirieoininieineninineenieeeneesieeeve st 74
Working with Numeric Literalsc.ccccoccveiniineininnineincnecnccecneeeees 74
Working with Boolean Literals (true and false) ..
Understanding String LIteralSccocovvierienienienienieeiceeeieeieetesee e
Creating CONSLANESc.eeieierierierieriesieeeeteeetetetestessessesseeseeseeseensensessessessessessessenne 76
A Peek at Reference TYPEScccevverereririeieieieeete ettt 76

QUIZ ottt et ettt et e et e e e bee e bt e e tbeeebeeetaeennbaeens 79

Contents vii
CHAPTER 3 Manipulating Values in Your Programs 83
Displaying Basic Informationcccceceeeievieiiniineneneneneeeceeeceneseneeceeen 84
Displaying Additional Informationcccceeveninenininnienienenenennenenee 85
Manipulating Variable Values with OPeratorsc..coccecevevveeeeneenenenenenencenens 87

CHAPTER 4

Unary Operator Types
Binary Operator Types
Ternary Operator Types ...
Understanding Punctuators

Moving Values with the Assignment OPeratorc..coccevevereeeeneenenenenenennens 89
Working with Mathematical/Arithmetic Operatorsc..ceceeeveveerenenenenencenens 90
Adding and SUDITACHNEccvevverieriereriiniiiteteteteteste ettt st 90
Doing Multiplicative Operationsccoeeereerverreeeneneeeeeeneesenesesenienenne 91
Working with the Compound Arithmetic Assignment Operators 93
Doing Unary Mathcccoceoieiinininininicteceeeeereercee et 93
Making Comparisons with Relational Operatorsc..cecceceeeeeveenecnenenenencnnns 96
Using the if Statement
Conditional Logical Operators
Understanding Logical Bitwise Operatorsccccecceveeereeuenienenienieneneneeeens 102
Understanding the Type OPeratorscccceceeveeveervenenenereeeenienreneneseneseeeens 102
Using the sizeof OPEIatorc..ccceeevirirerierterienienienrentenieeeeteresee st sie e sieeseene 102
Shortcutting with the Conditional Operatorc..c..cocceceeveeveevienenenrenenenennenn 102
Understanding Operator Precedencecc.ccceverereneninieienienenieneneneneeens 104
Changing Precedence Order
Converting Data TYPES ccvevvevierirerinineeieeerererteet ettt
Understanding Operator Promotioncc.ccceeeveneneninieiienieneneneneneseenene 107
Bonus Material: For Those Brave Enoughccccocoviiiiiiininininnncncee 107
Storing Variables in MEMOTYcccoceevveiiiieneneninenenteeeeeeenee e 108
Understanding the Shift Operatorsc.ccoceverererenienienieneneneneeeeeeeeens 109
Manipulating Bits with Logical Operatorsccccecceeeevvevueneneneneneneenenn 110
Flipping Bits with the Logical NOT Operatorccccecceeevvevenenenenennnns 113
SUIMMATY oottt ettt ettt b ettt e bbb s b b ene 114

QUIZ oottt et e e et e e te e eeaa e e areeeteeenaaeeeareas 115
EXEICISES ..veuvinvitiitietieiieiietetesteet ettt ettt 115
Controlling Your Program’s Flow 117

Controlling Program Flow
Using Selection Statements

REVISIHNG 1 1uvitietieiieiieieietetese sttt ettt ettt eb e sae e ens
Discovering the switch Statementcccocecvinievererinenieienenieeneecsenienens 123

viii

Sams Teach Yourself the C# Language in 21 Days

TypPE & RuN 2

CHAPTER 5

Using [teration StatemMENLSceevereerierniierieriieetentesteseesieeseeesseeseesresaesinenne 128
Executing Code with the while Statementc.cceceeceeievveienieneneneneennn 128
Working with the do Statementccoceveereeneriienienienieneeneeeee e 132
Counting and More with the for Statementccocevceevieneenennennenniennen. 134
The foreach StAEMENLtccceeiviriiiiiiieieeneeeeee e
Revisiting break and continue ...

Reviewing gotoccceeveeveenceniceniennne.

Exploring Labeled Statements

NESUNZ FIOW ..ttt

SUMIMATY ceontiiieiieeieet ettt sttt e bt et et e bt st e satesatesaeenbeenbeenees

QEA ettt

WOTKSROD ettt sttt st s
QUIZ ettt et et e e e et e et e e bt e et e e e nbeeeaeeenbaeenreas
EXEICISES ..uvviteniiuiteiinieteiiete ettt ettt ettt ettt st st

Guess the Number! 145

The Guess TYPe & RUNcoiiiiiiiiiiiieeeeeeeee et 146

The WinGuess Type & RUNcc.cocoviviiiiiiiiiiiiineeeeseseseeeeene 148

The Core of C# Programming: Classes 153

Digging into Object-Oriented Programmingccccoeceevieveenenneenennieniiennene 154
Encapsulationc.ccooiiriiiiiniiiieeteseeee et 154
INhETItanceccocoiiiiiiiii e 155
POlymOrphiSImc..coviiiiiiiiiiiiieeete et 155
REUSE oottt sttt 156
ODbjects and CIASSES ...c.eevververvireiriieieieieiesiesteste st eteeeestetessesaessessesseeseeneeneas 156

Defining a Class

DeClaring CLaSSESeeveeueeuieieierierienieeieeitentetetetestestesteeseeseessesessesaestesaesseeseeneens 157
The Members of @ Classccoeeiviiiiiiininiiiiiicce e 158

Working with Data Members, a.k.a. Fieldsc..cccocoeiniiininiiniiicneinceene 159
Accessing Data MEmDETScc.coveirieirinieinieiniccnieeeeneee et 159
USing Data MEMDETScc.eveviiriiriiriieieieiesiesiesie ettt siessesbe s s eneenes 161
Using Classes as Data Memberscccccceoevinininininiiniiicicenceeeeee 163
Working with Nested Types

Using Static Variablescccocoveiiinieininieincinieecnet et

Inspecting the Application Class

Creating PrOPertiesc.occverieinieiiniineeneetntcteentetete ettt

A First Look at NamESPACESc.coueeveuerueuiruinieiinieiniinieienteeeeieneeesaeeereseesesaeeenens 172

Nested NAMESPACES ..uveeveriiriiriiiriienitenitenieeie ettt sttt eee e 174

Contents

iX

CHAPTER 6

CHAPTER 7

SUMIMATY 1ottt sttt sb et et st eatesatesaeesbeenaeenees 175
QEA et bbbt a ettt e bbbt ene et enes 175
WOTKSROD ettt et 175
QUIZ oottt ettt ettt ettt e ettt ae e ae e ae e reebeebeebeenbeenaaas 176
EXEICISES uveuvintititieuieiieiiete ettt ettt ettt ettt ettt s e st et e et e b e b et ebeeneeneenes 176

Packaging Functionality: Class Methods and Member Functions 179

Getting Started with Methodscccoeiiiiiciinininccceeee 180

USING MEthOAS ...cuviiiiiiiiiiciiceee e 180

Understanding Program Flow with Methodc..cccooeiiiiiiiiinininnneee 183

Exploring the Format of a Methodcccoveiiiininininiiiccccccee 183
The Method Header ..o 184
Returning Data from a Methodcccoeviiiininininiiccccceee 184
Naming Methodsc.cccceeueee
Building the Method Body

Passing Values to Methodsc.coceveriririeieiiiiienceeeieeeeeese e
Working with Static Methodsc.coeceeieriniinininininieeccneeceeee 192
Access Attributes for Parametersccococeiiiiiiiiiiniiieee 192

Types of Class MEthOdscccveriririiiiiiieicieeseeeeeeese e 198
Property Accessor Methodscoceeeeieiiricnienenininiecccceeeeee e 198
Constructorscccceeeevueenenene.
Destructors/Finalizers

SUIMMATY oottt ettt ettt ettt be bbb eee

QLA ettt

WOTKSHOD et
QUIZ ottt et e et e et e e et e e et e e eaaeeeareas
EXETCISES ..ottt

Storing More Complex Stuff: Structures,

Enumerators, and Arrays 211

Working With StrUCIUIEScccviviiiriieriieieeiteie et 212
Understanding the Difference Between Structures and Classes 212
Structure MEMDELSccocoviviiiiiriiiiiiiicictcieeeeee e 213
NESUNZ SIUCIUIES .eeuvieniieiieeteeiie ettt ettt ettt st et sbe et eeeenee s

Structure MethodSoooviieiiieiieccce e
Structure Constructors

Structure Destructors
Clarifying with ENUMEIatorsc.ccccvivieireiniinieinicieeneesccee e 220
Changing the Default Value of Enumeratorsccocccveenenicincnncnnencnn 223
Changing the Underlying Type of an Enumeratorcccocceveincnncnnennn 225

CHAPTER 9

Contents Xi
Revisiting NAMESPACES ...ecuveruiiriieriieiieieeie ettt ae st sae e e 286
Naming @ NaMESPACEcc.eevieierieiiiiniieniienieeteeie ettt 286
Declaring @ NameSPaACE ...ccc.eevverierieriieniieieeieeieeie et sttt 286
using and NAMESPACES .eccveevverrieriirieriienitenieesite st et et et eee st et sresieesereee 288
SUMIMATY oottt sttt e bt et ettt st eeate st e saeesbaenaeenees 290
QEA ettt 291
WOTKSROD ettt st 291

QUIZ o 292
EXEICISES ...vviiiiiiiiiiiciiiieice e 292
Handling Problems in Your Programs: Exceptions and Errors 295
Understanding the Concept of Handling Problemsccccceoevenincncnenennns 296
Preventing Errors via Logical Codecccocevireneniniiiiniiieneneeceieeeee 296
What Causes Exceptions?

Exception HANAINGcoeeieiiiiniinininieeeeeeseeee e
USINg try and CatCh ..ooociiviiiirireeeeie e
Catching Exception Informationcccceceeerienininicnicncneneneneseeeeeeee 300
Using Multiple catches for a Single trycoevevnininineneneneeeeeee 302
Understanding the Order of Handling EXceptionscccccecevevenencnnennee. 303

Adding Finality With fInally ..c.coccccoemeeienneeinreeeeneeeeneenenescenseeneeseenenenes 304

CommOn EXCEPLONSecuiiuiiiiiiriiniiniinieeitet ettt 310

Defining Your Own EXception Classesccceeererererinieieiienienenienieneneeneens 312

Throwing Your Own EXCEPHONS ...cc.eeveruiriiieiiiiniinienieeieeieeeeeteseesie e 314
Rethrowing an EXCEPHONcceviririiieiiieienienieieeiee e 317

Using checked Versus unchecked Statementscoceeeeeeveveenienenienenieneneens 318
Formats for checked and uncheckedcccccoiveiiiciiiiniiniciecreeeccenne 320

What IS DebUZZING? ..ooveiiiiiiiieiee et 320

Understanding the Types Of EITOrScocuevieiievininininiiieiciecncneseseeeeene 321

FINAING EITOTS .ottt
Encountering Syntax Errors

Encountering Runtime Errors

Tracing Code with Code Walkthroughsccccceeveninininiieiiicnncncneeeeee 322

Working with Preprocessor DIr€Ctivescceeevereninirieieienieneneneneeeenene 322
Preprocessing Declarationsceceecveviererenenenenieieieeeeeeeeeie e 323
Conditional Processing (#if, #elif, #else, #eNdif) ..c.ccoccvvemenienienrenenennee 328
Reporting Errors and Warning in Your Code (#error, #warning) 328
Changing Line Numbers
A Brief Look at Regions

USING DEDUZZETS ..ttt

SUIMMATY oottt ettt ettt be s bbb eae

Xii

Sams Teach Yourself the C# Language in 21 Days

TypPE & RuN 3

CHAPTER 10

CHAPTER 11

WOTKSROD ettt st 335
QUIZ o 335
EXEICISES ..uvviteniiuiteiietet ettt sttt sttt 336

Lines and Circles and Squares, “Oh My!” 339

Reusing Existing Code with Inheritance 349

Understanding the Basics of INheritancec..cccoceeevnieiinineincneincinceene
Delving into Simple INheritancecccocevieveinienieniieieieseeeee e
Inheritance in ACHONccccoeviiiiiiiiiiiicieteeeee e
Using Base Methods in Inherited Methods ...

Exploring Polymorphism and Inherited Classesccccceevevieninininininienns 359

Working with Virtual Methodsccccoviiiiiiiiiiiieiieeseceeecee e 362

Working with Abstract CLassesccccevievieiieiiiniinininieicieieceee s 365

SEAING CIASSES .veevveriiiiieiiiestterit ettt ettt sttt ettt ettt e sba e 368

The Ultimate Base Class: ODJECT ..covveiieeiiuiiieeeiiieee et eeevre e eereeeeeeanes 370
A Look at the Object Class MethodScccc.ceevvvvieiieiiieieeceeee e 370
Boxing and UnbOXiNGcoceeviiriiiiiniieniieieeieeiecte et 371

Using the is and as Keywords with Classes—Class Conversions 373
Using the is Keyword
Using the as Keyword

Working with Arrays of Different Object TYPEscceevveveierierierenieneneeeeeeneens 376

SUMIMATY 1ottt sttt b et e bttt sa e eate st e saeesbeenaeenees 381

QELA o 382

WOTKSROD ettt st 383
QUIZ et 383
Exercises ...

Formatting Formatting and Retrieving Information 387

Understanding Console Input and OULPULccevevuerieirieieiieicnienenieneeeeiene 388

Formatting Informationc..coccocevereriiienieniieeneeeeeeeeese e 388
Formatting NUMDETScc.eviriririniiieiceetestesest et 391
Formatting Date and Time Valuesccccocevererenenieieniicneneeeeeeeee 398
Displaying Values from Enumerationsc.cceceeeeeeieienieneneneneneeeeene 402

Working More Closely With Stringscccceoevieveneneninieieiciecnesesiese e 403
String MEthOdScouveuiiiiiiiiniieeeee e 405
The Special String FOrmatter—=@ccocevevererenenenieieeeseeceieeeen 406
Building StrinZS ..ee.eeieieiiieieeee e 407

Getting Information from the Consolec..cccvveverininieienienineneneeeeeee 410
Using the Read Method ccoeiririiiiiiiciee e 410
Using the ReadLine Methodcccooceeiiiiiiiniinininineeceeeceee e 412

Using the Convert Class ..ot 413
SUIMMATY ettt ettt ettt et b e bbb 417

Contents xiii
QEA .o 417
WOTKSROD ettt ettt st 418
QUIZ oottt et e et b e et e e nbeeeateenbeeenreas 418
EXEICISES ..ouviiiiiiiiiciiiietcee e 418
CHAPTER 12 Tapping into OOP: Interfaces 421
Interfaces: A First LOOKcc.ccooiiiiiiiiiiiiiciccccceecee e 422
Classes Versus INterfacesccccccoiveiiiiiiiiiiiinciineececeee e 422
USING INTETTACES ..eveviiiriiiiieiieieeer e 423
Why Use INerfaces?cccooeriririiieieieriesteries et 423
Defining INtErfacesocoveoiiiiiiirininirteeeee e 424
Defining an Interface with Method Membersc..ccceoevevevenineneneenne. 424
Specitying Properties in Interfacesccccoevvrieriiiiciicncninenineneeee 428
Using Multiple Interfaces
Using Explicit Interface Members
Deriving New Interfaces from EXisting Onescc.coceeeeieieviencncnicncneneenns 435
Hiding Interface MEmDETSccccoeriririiiiieiiieieeeeeeeeeeee e 435
SUIMMATY oottt ettt et b ettt be s bbb eae
QLA et
WOTKSHOD ettt
Quiz
Exercises
CHAPTER 13 Making Your Programs React with Delegates, Events,

and Indexers

USING an INAEXET ..ocuveiiiiiiiiiiieiieiteceee ettt
Exploring Delegates

Creating Events
Understanding an Event’s Delegatecccoooevviviiiiiiiiiiniinininiiicicnene, 451
Deriving from the EventArgs Classc.ccccoeeveneiineinieneincieenieeseeienens 451
Working with the Event Class Codecccoviviniininiiiiiiiiiiiiieeccceeee
Creating Event HandIersccccooiiiiiiiiiiiiiiicceeeeeeeeeee e
Associating Events and Event Handlersc..cccoceiiiiiiiinininiiin,
Pulling [t AIl TOZELhET ..ceeiviiiiiiiiieeeeeee e
Multiple Event Handlers (Multicasting)

QUIZ e ettt et e b ettt eane s

Xiv

Sams Teach Yourself the C# Language in 21 Days

CHAPTER 14 Making Operators Do Your Bidding: Overloading 465
Overloading Functions Revisitedcccccoevirinininininieiciccenceeeeece 466
OVerloading OPETators ccccoerererierieieieienterteri ettt 466
Creating Overloaded OPEratorscccoeeerererereeieienienieneneseeseeeeeenees 470
Overloading the Basic Binary Mathematical Operatorsc.cccceeveeveenenne. 471
Overloading the Basic Unary Mathematical Operatorsc..cc.ceceeevevvenenne. 474
Overloading the Relational and Logical Operators
Overloading the Logical Operatorscccceceeerererieienieneneneneneeeeeenees
Summarizing the Operators to Overloadc..cocvceevieiiininineninineeeeeees
SUMMATY ettt ettt ettt b s
QELA et
WOTKSROD et
QUIZ ottt e e e et e et e et a e e aeeeeaaeeeareas
EXETCISES ..uviiiiiiiiiiciieiee e
WEeek 2 Week In Review 491
Week 3 Week At a Glance 505
A Caution 0N WEEK 3 ..ottt et 506
CHAPTER 15 Using Existing Routines from the .NET Base Classes 507
Classes in the .NET Framework ..., 508
The Common Language SpecifiCationc..cccoeveveeievienienieneneneneeeenenn 508
Namespace Organization Of TYPESc..ccceveririniriiieieiinieneeeeeee e 509
Using the ECMA Standardscocoeceeviiiiininininininieieccceeeeee e 509
Checking Out the Framework Classescccoccevervevienieniencneneneneneeeenee 510
Working with @ TIMETocoeiiiiiiiiniiniiiieetccee e 510
Getting Directory and System Environment Informationc..cccceceeeveeincninne 513
Working with Math ROULINES ccooviviiiiiiiiiiiiiiicecccccc e 516
Working with FIIEescooiiiiiiiiic e 519
Copying @ FIle .c.ooiiiiiiiii e 520
Getting File Informationoceeeevieiiiiiinininininicicecccceeeeeeeeeen 524
Working with Simple Data Filesccccooiviiiiiininininiiicicccneeeeene 526
Understanding StrEamscoccevevereeieienienienenenieeeeteteeetere e 526
Understanding the Order for Reading Filesc..cccoocooeviiinininnnniennn 526
Creating and Opening Filesccccoceviiiiinininiininiiiiiciciceeeeeeee 527
Working with Other File TYPescccccoevirininininiiieieicccnceeeeeeee 535
SUMMATY oottt ettt 535
QELA o
Workshop
Quiz

Contents

XV

CHAPTER 16

CHAPTER 17

Creating Windows Forms 539
Working with Windows and FOrmSccccecuevieiinininininiciciccencneneeeeiene 540
Creating Windows FOImSccccoiviiiiiiiiicice e 540
Compiling OPLIONS ..couviuiiiiriiriieiieiieieeeeteee sttt 540
Analyzing Your First Windows Form Applicationccccceevenenenenennnnne. 542
Understanding the Application.Run Methodccccocceciiiiiinininininie 543
Customizing a Formccccoceviiiiininncnncn.
Customizing the Caption Bar on a Form
SIZING @ FOTM c.eiiiiiiiicic e
Changing the Colors and Background of a Formc..cccoccvniiiininnnnnn. 550
Changing the Form’s Borderscccccoevininiininiiniciciccncncneececeeen 554
Adding Controls t0 @ FOTM ..c..coeiiririiiiiiieiiiieseeeeeeeeeeesese e 556
Working with Labels and Text Displayccoccooevevenieiienineninenceeeeee 557
A Suggested Approach for Using Controlsc..ceceeeeevevvenienenencnenennnn. 561
Working with BULLONS ...c..ooviviiiiiiiiiieicice e
Working with Text Boxes
Working with Other Controls
SUMMATY .ottt b e be e
QEA e
WOTKSROD e s
QUIZ o ettt e et e et e e e e e aeeeeaaeeeaneas
EXETCISES ...uvuiiiiiiiiiciieieec e
Creating Windows Applications 577
Working with Radio BULtONSc.ccccieiriiiiiiiiniiniiccceececee e 578
Grouping Radio BULtONScccoueiriiniiiniiiiinicenicecreecce e 578
Working With CONAINETSc.couevieuirieiiiiiieiinieirtcee sttt 582
Working With LiSt BOXES ...c.ccevieiriiiiirieiniiieicinieeeneeesee e 586
Adding Items t0 the LIStc.ccviiiiiniiiiiieincieecrceee e 587
Adding Menus to YOUr FOIMScceciviiiniiiiiniciniiieeneteeee et 591
Creating a Basic Menu
Creating Multiple Menus
Using Checked MENUSccovuirieiirieiriinieenieieieeesiee et
Creating a Pop-Up Menu
Displaying Pop-Up Dialog Boxes and FOrmscccccoeoivineininiincinenne 604
Working with the MessageBox Classcccoecvinieiinieiinienieinicieenecreieiens 604
Using Pre-existing Microsoft Windows Dialog BoXesc.ccccccevecvncniencne 607
Popping Up Your Own Dialog Box
SUMMATY ettt
QEA ettt e
WOTKSROD et st
QUIZ oottt ettt ettt et e ettt e et aa e e aa e aeeeae e beeebeebeenbeereenaaas

XVi

Sams Teach Yourself the C# Language in 21 Days

TyrPe & Run 4

CHAPTER 18

CHAPTER 19

TyrPe & Run 5

CHAPTER 20

Tic Tac Toe 617
The Tic Tac Toe COAEc.ccoiuiiiiiiiiiiiiiiiieee e 618
Working with Data and Databases 629
Understanding Key Database CONCEPLSccecevveeirienieerieinenieinieieieneeeeieeenens 630
Understanding the Terminology
Introducing ADO.INET oiiiiiiiiiiiicce ettt
Connecting to and Working with a Databasec..cccocevevincnnincincnncnneenn 632
Making the Connection to the Databaseccccccveeireneiincninicneinenenens 633
Executing @ Commandcccocoeveirieiiinieinieineeereee e 635
Retrieving Data with a DataReader —..........c..ccooiveiniiiniinicnccieene 635
Closing the Databaseccccceveiriinieiniiinieneeneceeereee et 637
Pulling It All TOZEhErccccoviiiiiniiiiiicicee e 637
Adding, Updating, and Deleting Datacc.cccoceivinieiiniinieneineecnecneenene 641
Other Database Concepts ...
SUMMATY .ottt s
QLA bbbttt
WOTKSROD ettt st
QUIZ oottt ettt ettt e e et et e e ab e ra e e aa e aaeeaeeeaeebeebeenbeenreenaaas
EXEICISES uveuvintititietieiieie ettt ettt ettt ettt ettt ettt ettt b e b bt ene e enee
Creating Remote Procedures: Web Services 647
Creating Web APPLCAtIONScc.eeveriiriiriiiieieietererenteet e 648
Examining the Concept of @ COMPONENT cceevueruiriniriiniieieierenenenereeeeiene 648
WED SEIVICES ..ttt 648
Creating a Simple COMPONENt ...cc.eeuieuiiiiiiieniirireeeeeeecee e 649
Creating @ Web SerVICEcccceviririeieiiiiiceseneeeeeceetceesee e 652
Creating a Proxy
Calling a Web Service
SUIMMATY ettt ettt b e b eee
QELA et
WOTKSROD it
QUIZ ot ettt et e et e et e e e e e aeeeeaaeeeareas
EXETCISES ...uvuiiiiieiiiciietce e
Quote of the Day Web Service 663
The Web Service Filecocoveiiiriiiiiiiiiieieieeeeee e 663
The Proxy FIlEc.coooiiiiiiiiiiiciceec ettt 666
USING the SEIVICEeouiiiiiiiiiiiiieiieieteieeee ettt 668
Creating Web Applications 673
Creating Regular Web Applicationsccccoevererenenenieieicieeneeeeeeeeeene 674
Working with Web FOrmsccccoooviiiiiiiiiiiiniecceeceee 676
Creating a Basic ASP.NET Applicationc..cececeveeieicnicncnenenenenceeenee 676

Using ASPNET CONtrolS ...ooueoiririeiieieieenienienieeeeei ettt 679

Contents Xxvii

SUMIMATY 1ottt sttt sb et et st eatesatesaeesbeenaeenees 687
QEA .o 688
WOTKSROD ettt et 688
QUIZ o 688
EXEICISES ..ouviiiiiiieiiciicieicect e 689
CHAPTER 21 A Day for Reflection and Attributes 691
Reflecting on RefleCtionc.coeveririniiieiiieieeneeeeeeeee e 692
Understanding AUITDULESc.evveruereriiririeieieietesteeteete et 697
What Are AHITDULES? ..o 698
USING ALIDULES .ottt 698
Using Multiple ADULEScc.eeveririiieieierienenesieeiee e 700
Using Attributes That Have Parametersc..cococeveviiiiniincnincncneneee 700
Defining Your Own ADULEcoevveeieieiiienienienieeiceiceceeeeseereeie e 701
Accessing the Associated Attribute Informationcccccceeeeveneneneneennns 706
Pulling It All TOZEthErc.ccooiriiiiieiciceee e 708
Single-Use Versus Multiuse AtribULEScccoerererieieienienenieneneeeeeeeenen 711
Reflecting on the Future of CH#coooiiiiiiiiiiiieceeeeeee 712
GEINETICS ..ttt 712
What Are Iterators?ccooiiiiiiiiiiiieicecee e 714
What Are Partial TYPES?coeviriririiiiieiererer e 714
What Are Anonymous MethodS?cccoeverininininieiieieeseeeeieeeee 715
SUIMMATY oottt ettt ettt et bbb b eae 715
CoNGratulationS! ..cc.eoueeuieieieiiereereee bbb 716
QLA ettt 716
WOTKSHOD ettt 717
QUIZ ot e ettt e et et e e et e e e teeearneeeareas 717
EXETCISES ...ttt 717
WEeek 3 Week In Review 719
Apply What You KNOWccocooiiiiiiiiiiiiiiciccceceeeee e 719
Show What YOU KNOWccooiiiiiiiiiiiiiiiecceeeee e 719
Appendices 721

ArPENDIX A C# Keywords 723

xviii

Sams Teach Yourself the C# Language in 21 Days

checked
CLASS ettt
(oo 1 13 S P TP OO PP O PP PPPPPN
continue
decimal
default
delegate
o N

[T = 0

explicit

extern

interface
internal

PANAMS ceiiiieeteeeeeeeititi e e e et ettt ettt bbb e s e et e ettt e et bbbt e e et e e e et et tabb bbb e e aees
PAPTIAL i et et e b e ea et e et e ta e aa s eaaeabeenans

APPENDIX B

Contents XiX
PPAVATE ciiiiieeiieiiieeeeceie e ettt e e ettt e e eeeae e e e e e ta e e e e eetta e e eearaeeeeeetaaeeeentareeeearreeeens 730
PPOTECEERA uvvieieieiiiieeeeiiee e e ettt eeeete e e e eetteeeeeetreeeeeetaeaeeeeareeeeeessaeeeennssseeeenanseeeens 730
public
readonly

=3 RN
return
shyte
sealed ..

string
struct
switch

ulong

UNCRECKEA tntieutieiieeiieeite ettt ettt ettt ettt et et e e et e e sebeeatesatesbeesaee bt enbeenaeenees 733
UNSATE tettetteteete et et ettt st e ett e s te e bt et e e bt et e et e et e eabeeaaesabeeatesh s e sbte st e e bt e beeaeenes 733
USNOMT ottt ettt et et et e et et ee e bt sa e sat e st e bt et b enes 733

OULPUL ettt ettt ettt b e bbbt et et et et b beebeeaeene
F LT RS i 3 - USSP
/target:<type> or /t:<type>
/define:<symbol 1list> or /d:
JAOCISTLLE> ittt

Contents XXi

ArpPENDIX D Using SharpDevelop 745
Installing SharpDevelopccccoevereririnieicce e 746
Running SharpDevelopcccoeeerereririeieieenienereer et 746
Creating Applications from This BOOKccccocevirininininnininiineneeeeeee 747
Index 751
On CD-ROM

Answers

About the Author

BRADLEY L. JONES (BradeTeachYourselfCSharp.com) is the site manager for a number of
high-profile developer sites—including CodeGuru.com, Developer.com, and
VBForums.com—and is an executive editor of Jupitermedia’s EarthWeb channel, which
is a part of Internet.com. Bradley has been working with C# longer than most developers
because he was invited to Microsoft before the official beta release. Bradley’s back-
ground includes experience developing in C, C++, PowerBuilder, SQL Server, and
numerous other tools and technologies. Additionally, he is an internationally best-selling
author who wrote the original 21 Days book: Sams Teach Yourself C in 21 Days. On
Developer.com and CodeGuru.com, you find a number of articles from Bradley on topics
ranging from .NET to mobile development to general developer topics.

Dedication

This book is dedicated to my wife, Melissa.

Acknowledgments

As I stated earlier, although I create the structure and write the words, I don’t create a
book like this on my own. Many people’s contributions helped to make this a much bet-
ter book.

First, however, let me thank my wife and family for being patient and understanding
while I set the normal flow of life aside in order to focus on writing this book.

I’d also like to give my personal thanks to Mattias Sjogren and Anand Narayanaswamy.
Mattias proved to be one of the best technical editors that I have had review one of my
books. His suggestions and corrections to the first edition of this book truly brought it to
a higher level of quality. Anand, a Microsoft MVP, stepped in to review the second edi-
tion. Although his suggestions caused more work for me, I believe the end result is an
even better book for you, the reader.

In addition to the offical technical editor, this book has been read by thousands of others.
I want to thank the readers who took the time to suggest changes, improvements, or clar-
ifications. I take this feedback seriously and work a lot of it into reprints and errata.

I’d also like to thank the editors at Sams Publishing for their effort in building this book.
This includes Candy Hall, Mark Renfrow, Krista Hansing, Matt Purcell, Brad Shannon,

Nancy Albright, and others also spent large amounts of time focused on making this the
best book possible. They deserve to be acknowledged as well.

On a different note, this book would have been impossible to do without the support of a
number of people at Microsoft. Over the last several years, I have gained help from too
many people to list all of them. A number of people on the C# team—such as Nick
Hodapp, Tony Goodhew, and Eric Gunnerson—helped provide information on C# in
addition to answering many of my questions.

Because this book provides the chance to publicly acknowledge people, I'd also like to
thank a number of other people at Microsoft for their help over the last several years—
either on this book or on many other projects. This includes Eric Ewing, Stacey Giard,
Brad Goldberg, Tony Goodhew, Rob Howard, Jeff Ressler, Scott Guthrie, Connie
Sullivan, Dee Dee Walsh, Dennis Bye, Bob Gaines, Robert Green, David Lazar, Greg
Leake, Lizzie Parker, Charles Sterling, Susan Warren, and lots of others.

I’d like to thank you, the reader. There are a number of books on C# that you could have
bought or could use. I appreciate your giving me the chance to teach you C#.

Finally, thanks goes to Bob, who still seems to always be blue.

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an Executive Editor for Sams, I welcome your comments. You can e-mail or write me
directly to let me know what you did or didn’t like about this book—as well as what we
can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. [will carefully review your comments and share them
with the author and editors who worked on the book.

E-mail: feedback@samspublishing.com

Mail: Candace Hall, Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Introduction

Welcome to Sams Teach Yourself the C# Language in 21 Days. As you can guess from
the title of this book, I have written this book with the expectation that you will spend 21
days learning the C# programming language. The book is divided into 21 lessons that
can each be accomplished in a couple of hours or a single evening. If you dedicate 2 to 3
hours for 21 days, you should easily be able to work through this book. This doesn’t
have to be consecutive evenings, nor does it even have to be evenings.

Each lesson can be read in an hour or two. Some will take longer to read; some will take
less time. If you expect to learn C# by just reading, you will be greatly disappointed.
Instead, you should expect to spend half your time reading and the other half entering the
code from the daily lesson, doing the quizzes, and trying out the exercises. That might
sound like a lot, but you can do each lesson in an evening, if you try.

The quizzes and exercises are part of the 21-day series, designed to help you confirm
your understanding of that day’s material. After reading a day’s lesson, you should be
able to answer all the questions in the quiz. If you can’t, you may need to review parts of
that lesson.

The exercises present you with a chance to apply what you've learned. The exercises
generally focus on understanding code, identifying common code problems, and writing
code based on the day's lesson.

Answers to the quizzes and most of the exercises are provided on the CD-ROM,
"Answers”, which can be found on the CD-ROM included with the book. Try to come up
with the answers on your own before jumping to the CD-ROM.

You will notice several other features when reading this book. You'll find tips, notes, and
caution boxes throughout the book. Tips provide useful suggestions. Notes provide addi-
tional information that you might find interesting. Cautions alert you to a common prob-
lem or issue that you might encounter. A special element of this series of books is the
Q&A section at the end of each day. The Q&A section provides questions—along with
the answers—you might have while reading that day’s lesson. These questions might
involve peripheral topics to the lesson.

A second special element is provided simply for fun. Throughout this book, you will find
Type & Runs (T&Rs), which provide listings that you can enter, compile, and run. More
important, you can make changes with the code in these listings; you an experiment and
play. In most cases, you should find the T&Rs a bit more functional and fun than the
more standard listings used to teach specific topics.

Sams Teach Yourself the C# Language in 21 Days

Assumptions I've Made

I’ve made a few assumptions about you. I’ve assumed that you have a C# compiler and a
NET runtime environment. Although you can read this book without them, you will
have a harder time fully understanding what is being presented. To help ensure this
assumption, this book comes with a CD-ROM that includes a C# editor and a C# run-
time.

I’ve assumed that you are a beginning-level programmer. If you are not, you will still
gain a lot from this book; however, you might find that in some areas you will progress
slower than you’d like.

This book does not assume that you are using Microsoft Visual C# .NET or the
Microsoft Visual Studio .NET development environment. You can use Microsoft’s tools
or a number of other tools. You’ll learn more about this within the book. I don’t even
assume that you are using Microsoft Windows. After all, there are now C# compilers for
other platforms such as Linux and FreeBSD.

Web Site Support

No one is perfect—especially me. Combine this with a programming language that is rel-
atively new and that faces future changes. You can expect problems to crop up.

This book has been based on a previous edition, which has been read by thousands.
Editorial, technical, and development reviews of the book have been done. Even with all
the reviews, errors still happen. In case a problem did sneak through, errata for this
book can be found on a number of Web sites. The publisher’s Web site is located at

www . samspublishing.com/.

Additionally, I have created a site specifically for the support of this book:
www . TeachYourselfCSharp.com. I will post errata at this location.

Source Code

I believe that the best way to learn a programming language is to type the code and see it
run. I believe that the best way to learn a programming language is to type in the pro-
grams. I also understand, however, that my beliefs are not the same as everyone else’s.
For that reason, the source code for this book is provided on the included CD.

Introduction

3

This book is for learning. You can use the source code contained within it. You can adapt
it. You can extend it. You can give it to your mom. Learn from it. Use it. By purchasing
this book, you gain the right to use this code any way you see fit, with one exception:
You can’t repurpose this code for a C# tutorial.

CD-ROM

As already stated, this book includes a CD-ROM that contains the source code for this
book, as well as a number of tools and utilities. When you run the CD-ROM, you will
get information on its contents.

Getting Started

I applaud your efforts in reading this introduction; however, you’re most likely more
interested in learning about C#. “Week 1 at a Glance” gives you an overview of what you
can expect in your first week of learning the C# programming language. What better
time to get started than now?

WEEK 1

At a Glance

Welcome to Sams Teach Yourself the C# Language in 21
Days, Second Edition. If you are unsure what you need to
know to get the most out of this book, you should review the
Introduction. The Introduction also explains the elements
used within this book.

You are getting ready to start the first of three weeks of
lessons. These first lessons will help you gain a solid founda-
tion for writing C# programs. Regardless of what C# com-
piler you are using, as long as it follows the C# standards,
you should be able to learn and apply all of the information
learned in this first week.

Starting with Day 1, “Getting Started with C#,” you will be

entering C# programs. In addition to learning about C# and

some of the editors and tools available, you will learn how a
C# program is created and run.

On Day 2, “Understanding C# Programs,” you will learn how
C# fits into the Microsoft .NET Framework. You will also be
taught about the fundamental principles of an object-oriented
language, and you will learn how basic information is held
within a C# program.

Day 3, “Manipulating Values in Your Programs” and Day 4,
“Controlling Your Program’s Flow,” teach you the core pro-
gramming concepts required for C# programming. This
includes manipulating data and controlling your program
flow.

Days 5, “The Core of C# Programming: Classes,” and 6,
“Packaging Functionality: Class Methods and Member
Functions,” cover classes and class methods. Classes are a

| 6

Week 1

core concept to object-oriented programming and, therefore, a core concept to C# pro-
gramming.

The first week ends with coverage of a number of more complex ways for holding infor-
mation in a program on Day 7, “Storing More Complex Stuff: Structures, Enumerators,
and Arrays.” On this day, you will learn how to organize your program’s data in a num-
ber of ways.

By the end of the first week, you will have learned many of the foundational concepts
for C# programming. You’ll find that by the time you review this first week, you will
have the tools and knowledge to build basic C# programs on your own.

WEEK 1

DAY 1

Getting Started with C#

Welcome to Sams Teach Yourself C# in 21 Days! In today’s lesson, you begin
the process of becoming a proficient C# programmer. Today you...

e Learn why C# is a great programming language to use.

» Discover the steps in the program-development cycle.

* Understand how to write, compile, and run your first C# program.

* Explore error messages generated by the compiler and linker.

* Review the types of solutions that can be created with C#.

* Create your first console and Windows forms program.

¢ Learn about object-oriented concepts.

What Is C#?

It would be unusual if you bought this book without knowing what C# is.
However, it would not be unusual if you didn’t know a lot about the language.
Released to the public as a beta in June 2000 and officially released in the
spring of 2002, C#—pronounced “see sharp”—has not been around for very
long.

| 8

Day 1

C# is a language that was created by Microsoft and submitted to ECMA for standardiza-
tion. Its creators were a team of people at Microsoft that included the guidance of Anders
Hejlsberg. Interestingly, Hejlsberg is a Microsoft Distinguished Engineer who has cre-
ated other products and languages, including Borland Turbo C++ and Borland Delphi.
With C#, he and the team at Microsoft focused on using what was right about existing
languages and adding improvements to make something better.

Although C# was created by Microsoft, it is not limited to just Microsoft platforms. C#
compilers exist for FreeBSD, Linux, the Macintosh, and several of the Microsoft plat-
forms.

C# is a powerful and flexible programming language. Like all programming languages, it
can be used to create a variety of applications. The C# language does not place con-
straints on what you can do; therefore, your potential with it is limited only by your
imagination. C# has already been used for projects as diverse as dynamic Web sites,
development tools, and even compilers.

In the following section, you learn a process for creating and running a C# program. This
is followed by some additional background information on the C# language.

Preparing to Program

You should take certain steps when solving a problem. First, you must define the prob-
lem. If you don’t know what the problem is, you will never find the solution. After you
know what the problem is, you can devise a plan to fix it. When you have a plan, you
can usually implement it. After the plan is implemented, you must test the results to see
whether the problem actually has been solved. This same logic can be applied to many
other areas, including programming.

When creating a program in C# (or in any language), you should follow a similar
sequence of steps:

1. Determine the objective(s) of the program.

2. Determine the methods you want to use in writing the program.

3. Create the program to solve the problem.

4. Run the program to see the results.
An example of an objective (see Step 1) is to write a word processor or database pro-

gram. A much simpler objective is to display your name on the screen. If you don’t have
an objective, you won’t be able to write an effective program.

Getting Started with C#

The second step is to determine the method you want to use to write the program. Do
you need a computer program to solve the problem? What information must be tracked?
What formulas will be used? During this step, you should try to determine what you
need and in what order the solution should be implemented.

As an example, assume that someone asks you to write a program to determine the area
inside a circle. Step 1 is complete because you know your objective: Determine the area
inside a circle. Step 2 is to determine what you need to know to calculate the area. In this
example, assume that the user of the program will provide the radius of the circle.
Knowing this, you can apply the formula 7’ to obtain the answer. Now you have the
pieces you need, so you can continue to Steps 3 and 4, which are called the program-
development cycle.

The Program-Development Cycle

The program-development cycle has its own steps. In the first step, you use an editor to
create a file that contains your source code. In the second step, you compile the source
code to create an intermediate file called either an executable file or a library file. The
third step is to run the program to see whether it works as originally planned.

Creating the Source Code

Source code is a series of statements or commands used to instruct the computer
to perform your desired tasks. These statements and commands are a set of key-
words that have special meaning along with other text. As a whole, this text is readable
and understandable.

As mentioned, the first step in the program-development cycle is to enter source code
into an editor. For example, here is a snippet of C# source code:

System.Console.WriteLine("Hello, Mom!");

This single line of source code instructs the computer to display the message Hello, Mom!

on the screen. Even without knowing how to program, you could speculate that this line

of source code writes a line (WriteLine) to the system’s console window (System.Console).
It is also easy to understand that the line written will be Hello Mom!.

Using an Editor

An editor is a program that can be used to enter and save source code. A number
of editors can be used with C#. Some are made specifically for C#, and others
are not.

|10

Day 1

.

Microsoft has added C# capabilities to Microsoft Visual Studio .NET, which now
includes Microsoft Visual C# .NET. This is the most prominent editor available for C#
programming; however, you don’t need Visual Studio .NET or Visual C# .NET to create
C# programs.

Other editors also are available for C#. Like Visual Studio .NET, many of these enable
you to do all the steps of the development cycle without leaving the editor. Most of these
editors also provide features such as color-coding the text that you enter. This makes it
much easier to find possible mistakes. Many editors even give you information on what
you need to enter and by providing a robust help system.

If you don’t have a C# editor, don’t fret. Most computer systems include a program that
can be used as an editor. If you’re using Microsoft Windows, you can use either Notepad
or WordPad as your editor. If you’re using a Linux or UNIX system, you can use such
editors as ed, ex, edit, emacs, or Vvi.

The editor SharpDevelop is included on the CD with this book. For more on this editor,
see Appendix D, “Using SharpDevelop.”

Word processors can also be used to enter C# source code. Most word processors use
special codes to format their documents. Other programs can’t read these codes correctly.
Many word processors—such as WordPerfect, Microsoft Word, and WordPad—are capa-
ble of saving source files in a text-based form. When you want to save a word processor
file as a text file, select the Text option when saving.

Nﬂtﬂ To find alternative editors, check computer stores or computer mail-order
catalogs. Another place to look is in the ads in computer-programming mag-

azines. The following are a few editors that were available at the time this
book was written:

¢ SharpDevelop, by Mike Kriiger—SharpDevelop is a free editor for C#
and VB .NET projects on Microsoft’s .NET platform. It is an open-
source editor (GPL), so you can download both source code and exe-
cutables from www.icsharpcode.net. This editor includes a forms
designer, code completion, and more. A copy of this editor is included
on the CD with this book.

¢ CodeWright—CodeWright is an editor that provides special support
for ASP, XML, HTML, C#, Perl, Python, and more. A 30-day trial version
of this editor is available at www.premia.com. CodeWright is now asso-
ciated with Borland.

Getting Started with C#

11|

¢ Poorman IDE—Poorman provides a syntax-highlighted editor for both
C# and Visual Basic .NET. It also enables you to run the compiler and
capture the console output so that you don’t need to leave the
Poorman IDE. Poorman is located at www.geocities.com/duncanchen/
poormanide.htm.

e EditPlus—EditPlus is an Internet-ready text editor, HTML editor, and
programmer’s editor for Windows. Although it can serve as a good
replacement for Notepad, it also offers many powerful features for
Web page authors and programmers, including the color-coding of
code. It is located at www.editplus.com.

¢ JEdit—JEdit is an open-source editor for Java; however, it can be used
for C#. It includes the capability of color-coding the code. It is located
at http://jedit.sourceforge.net.

¢ Antechinus C#—This editor supports the C# programming language,
provides color-coded syntax, and allows you to compile and run appli-
cations from the integrated environment. Other features include easy
project generation, integration with .NET tools, unlimited undo/redo
capability, bookmarks and brace matching, and Intellisense. It is
located at www.c-point.com.

Naming Your Source Files

When you save a source file, you must give it a name. The name should describe what
the program does. Although you could give your source file any extension, .cs is recog-
nized as the appropriate extension to use for a C# program source file.

]’ip The name should describe what the program does. Some people suggest
that the name of your source file should be the same as the name of your
C# class.

Understanding the Execution of a C# Program

It is important to understand a little bit about how a C# program executes. C# programs
are different from programs that you can create with many other programming lan-
guages.

C# programs are created to run on the .NET Common Language Runtime (CLR). This
means that if you create a C# executable program and try to run it on a machine that
doesn’t have the CLR or a compatible runtime, the program won’t execute.

|12

Day 1

The benefit of creating programs for a runtime environment is portability. If you wanted
to create a program that could run on different platforms or operating systems with an
older language such as C or C++, you had to compile a different executable program for
each. For example, if you wrote a C application and you wanted to run it on a Linux
machine and a Windows machine, you would have to create two executable programs—
one on a Linux machine and one on a Windows machine. With C#, you create only one
executable program, and it runs on either machine.

If you want your program to execute as fast as possible, you want to create a true

executable. To become a true executable, a program must be translated from
source code to machine language (digital, or binary, instructions). A program called a
compiler performs this translation. The compiler takes your source code file as input and
produces a disk file containing the machine-language instructions that correspond to your
source-code statements. With programs such as C and C++, the compiler creates a file
that can be executed with no further effort.

With C#, you use a compiler that does not produce machine language. Instead, it pro-
duces an Intermediate Language (IL) file. This IL file can be copied to any machine with
a .NET CLR. Because this IL file isn’t directly executable by the computer, you need
something more to happen to translate or further compile the program for the computer.
The CLR or a compatible C# runtime does this final compile just as it is needed.

Compiling the program is one of the first things the CLR does with an IL file. In this
process, the CLR converts the code from the portable, IL code to a language (machine
language) that the computer can understand and run. The CLR actually compiles only the
parts of the program that are being used. This saves time. This final compile of a C# pro-
gram is called Just In Time (JIT) compiling, or jitting.

Because the runtime needs to compile the IL file, it takes a little more time to initially
run portions of a program than it does to run a fully compiled language such as C++.
After the first time a portion of the program is executed, the time difference disappears
because the fully compiled version is used from that point. In most cases, this initial time
delay is minor. You can also choose to JIT a C# program when you install it to a specific
platform.

Nlltﬂ At the time this book was written, the .NET CLR and a command-line C#
compiler were available for free from Microsoft as a part of the .NET

Framework. Check the Microsoft Web site (www.microsoft.com) for the latest
version of the .NET Framework.

Getting Started with C# 13 |

Additionally, limited versions of C# and the .NET Framework are available
for other platforms. This includes the mono version of .NET. The mono pro-
ject (www.go-mono.com) includes a compiler and a runtime that works for
.NET. Currently, the mono project targets Windows, Linux, and the
Macintosh.

Compiling C# Source Code to Intermediate Language

To create the IL file, you use the C# compiler. If you are using the Microsoft NET
Framework SDK, you can apply the csc command, followed by the name of the source
file, to run the compiler. For example, to compile a source file called Radius.cs, you type
the following at the command line:

csc Radius.cs

If you are not using Microsoft’s .NET Framework, a different command may be neces-
sary. For example, the mono compiler is mcs. To compile for mono, you use the
following:

mcs Radius.cs

If you’re using a graphical development environment such as Microsoft Visual C# .NET,
compiling is even simpler. In most graphical environments, you can compile a program
by selecting the Compile icon or selecting the appropriate option from the menu. After
the code is compiled, selecting the Run icon or the appropriate option from the menus
executes the program.

N"tﬂ You should check your compiler’s manuals for specifics on compiling and
running a program.

After you compile, you have an IL file. If you look at a list of the files in the
directory or folder in which you compiled, you should find a new file that has the
same name as your source file, but with an .exe (rather than a .cs) extension. The file
with the .exe extension is your compiled program (called an assembly). This program is
ready to run on the CLR. The assembly file contains all the information that the CLR
needs to know to execute the program. According to .NET terminology, the code inside
the assembly file is called managed code.

New TERM

Getting Started with C# 15 |

If you run the program and receive different results than you thought you would, you
need to go back to the first step of the development process. You must identify what
caused the problem and correct it in the source code. When you make a change to the
source code, you need to recompile the program to create a corrected version of the
executable file. You keep following this cycle until you get the program to execute
exactly as you intended.

The C# Development Cycle

Use an editor to write your source code. C# source-code files are usually given the .cs
extension (for example, a_program.cs, database.cs, and so on).

Compile the program using a C# compiler. If the compiler doesn’t find any errors in the
program, it produces an assembly file with the extension .exe or .dll. For example,
Myprog.cs compiles to Myprog.exe by default. If the compiler finds errors, it reports
them. You must return to Step 1 to make corrections in your source code.

Execute the program on a machine with a C# runtime, such as the CLR. You should test to
determine whether your program functions properly. If not, start again with Step 1, and
make modifications and additions to your source code.

Figure 1.2 shows the program-development steps. For all but the simplest programs, you
might go through this sequence many times before finishing your program. Even the
most experienced programmers can’t sit down and write a complete, error-free program
in just one step. Because you’ll be running through the edit-compile-test cycle many
times, it’s important to become familiar with your tools: the editor, compiler, and runtime
environment.

|16

Day 1

FIGURE 1.2

The steps involved in
C# program develop-
ment.

Enter source

/ <) } Step 1

\ N

Compile

> Step 2

J

\
> Step 3

J

Creating Your First C# Program

You're probably eager to create your first program in C#. To help you become familiar
with your compiler, Listing 1.1 contains a quick program for you to work through. You
might not understand everything at this point, but you should still try to get a feel for the
process of writing, compiling, and running a real C# program.

This demonstration uses a program named Hello.cs, which does nothing more than dis-
play the words Hello, World! on the screen. This program is the traditional one used to
introduce people to programming. The source code for Hello.cs is in Listing 1.1. When
you type this listing, don’t include the line numbers on the left or the colons.

Getting Started with C# 17 |

LisTING 1.1 Hello.cs

1 class Hello

2: {

3 public static void Main()

4: {

5: System.Console.WriteLine("Hello, World!");
6 }

70}

Be sure that you have installed your compiler as specified in the installation instructions
provided with the software. If you have installed the .NET Framework SDK, then you
already have a C# compiler installed. It comes with a C# compiler.

When your compiler and editor are ready, follow the steps in the next section to enter,
compile, and execute Hello.cs.

Entering and Compiling Hello.cs

To enter and compile the Hello.cs program, follow these steps:

1. Start your editor.

2. Enter the Hello.cs source code shown in Listing 1.1. Don’t enter the line numbers
or colons; these are provided only for reference within this book. Press Enter at the
end of each line. Make sure that you enter the code using the same case. C# is case
sensitive, so if you change the capitalization, you will get errors.

[:ﬂ“ti““ In C and C++, main() is lowercase. In C#, Main() has a capital M. In C#, if you
type a lowercase m, you will get an error.

3. Save the source code. You should name the file Hello.cs.

4. Verify that Hello.cs has been saved by listing the files in the directory or folder.

5. Compile Hello.cs. If you are using the Microsoft C# command-line compiler, enter
the following:

csc Hello.cs

If you are using a mono command-line compiler, enter the following:

mcs Hello.cs

If you are using an Integrated Development Environment (IDE), select the appro-

priate icon, hot key, or menu option. You should get a message stating that there
were no errors or warnings.

|18

Day 1

If you are using Microsoft Visual Studio .NET, you can launch the command
prompt from Start, Program Files, Microsoft Visual Studio .NET, Visual Studio
.NET Tools, Visual Studio .NET Command Prompt. If you choose to use the
command line, | recommend that you use this prompt for compiling and
executing your C# programs because it has the correct path settings for the
C# compiler.

6. Check the compiler messages. If you receive no errors or warnings, everything

should be okay.

If you made an error typing the program, the compiler will catch it and display an
error message. For example, if you misspelled the word console as Consol, you
would see a message similar to the following:

Hello.cs(5,7): error CS0234: The type or namespace name 'Consol' does not
exist in the class or namespace 'System' (are you missing an assembly
reference?)

Go back to Step 2 if this or any other error message is displayed. Open the
Hello.cs file in your editor. Compare your file’s contents carefully with Listing 1.1,
make any necessary corrections, and continue with Step 3.

. Your first C# program should now be compiled and ready to run. If you display a

directory listing of all files named hello (with any extension), you should see the
following:

Hello.cs, the source code file you created with your editor
Hello.exe, the executable program created when you compiled hello.cs

. To execute, or run, Hello.exe, enter Hello at the command line. The message Hello,

world! is displayed onscreen.

Nﬂtﬂ If you are using Windows and you run the hello program by double-clicking
in Microsoft’s Windows Explorer, you might not see the results. This pro-

gram runs in a command prompt window. When you double-click in
Windows Explorer, the program opens a command prompt window, runs the
program, and—because the program is done—closes the window. This can
happen so fast that it doesn’t seem like anything happens. It is better to
open a command prompt window, change to the directory containing the
program, and then run the program from the command line.

Getting Started with C# 19 |

Nﬂtﬂ If you are not using the Microsoft .NET compiler and runtime, you might
have to run the program differently. For example, to run the program using
the mono runtime, you will need to enter the following on a command line:

mono Hello.exe

If you are using a different runtime, you will want to check its documenta-
tion for specific instructions for running a .NET program.

Congratulations! You have just entered, compiled, and run your first C# program.
Admittedly, Hello.cs is a simple program that doesn’t do anything overly useful, but it’s
a start. In fact, most of today’s expert programmers started learning in this same way—
by compiling a “hello world” program.

Understanding Compilation Errors

A compilation error occurs when the compiler finds something in the source code that it
can’t compile. A misspelling, a typographical error, or any of a dozen other things can
cause the compiler to choke. Fortunately, modern compilers don’t just choke; they tell
you what they’re choking on and where the problem is. This makes it easier to find and
correct errors in your source code.

This point can be illustrated by introducing a deliberate error into the Hello.cs program
that you entered earlier. If you worked through that example (and you should have), you
now have a copy of hello.cs on your disk. Using your editor, move the cursor to the end
of Line 5 and erase the terminating semicolon. Hello.cs should now look like Listing 1.2.

LisTING 1.2 Helloerr.cs—Hello.cs with an Error

1 class Hello

2: |

3 public static void Main()

4: {

5: System.Console.WriteLine("Hello, World!")
6 }

70}

Next, save the file. You’re now ready to compile it. Do so by entering the command for
your compiler. Remember, the command-line command is this:

csc Helloerr.cs

|20

Day 1

“I] If the compiler reports multiple errors and you can find only one, fix that

Because of the error you introduced, the compilation is not completed. Instead, the com-
piler displays a message similar to the following:

Helloerr.cs(5,48): error CS1002: ; expected
Looking at this line, you can see that it has three parts:

Helloerr.cs The name of the file where the error was found

(5,48): The line number and position where the error
was noticed: Line 5, position 48

error CS1002: ; expected A description of the error

This message is quite informative, telling you that when the compiler made it to the 48th
character of Line 5 of Helloerr.cs, the compiler expected to find a semicolon but didn’t.

Although the compiler is very clever about detecting and localizing errors, it’s no
Einstein. Using your knowledge of the C# language, you must interpret the compiler’s
messages and determine the actual location of any errors that are reported. They are often
found on the line reported by the compiler, but if not, they are almost always on the pre-
ceding line. You might have a bit of trouble finding errors at first, but you should soon
get better at it.

Before leaving this topic, take a look at another example of a compilation error. Load
Helloerr.cs into your editor again, and make the following changes:

1. Replace the semicolon at the end of Line 5.

2. Delete the double quotation mark just before the word Hello.

Save the file to disk, and compile the program again. This time, the compiler should dis-
play an error message similar to the following:

Helloerr.cs(5,46): error CS1010: Newline in constant

The error message finds the correct line for the error, locating it in Line 5. The error
messages found the error at location 46 on Line 5. This error message missed the point
that a quotation mark was missing from the code. In this case, the compiler took its best
guess at the problem. Although it was close to the area of the problem, it was not perfect.

error and recompile. You might find that your single correction is all that's
needed, and the program will compile without errors.

Getting Started with C#

Understanding Logic Errors

You might get one other type of error: logic errors. Logic errors are not errors that you
can blame on the code or the compiler; they are errors that can be blamed only on you. It
is possible to create a program with perfect C# code that still contains an error. For
example, suppose that you want to calculate the area of a circle by multiplying 2 multi-
plied by the value of pi, multiplied by the radius:

Area = 27r

You can enter this formula into your program, compile, and execute. You will get an
answer. The C# program could be written syntactically correct; however, every time you
run this program, you will get a wrong answer. The logic is wrong. This formula will
never give you the area of a circle; it gives you its circumference. You should have used
the formula 7tr’.

No matter how good a compiler is, it will never be able to find logic errors. You have to
find these on your own by reviewing your code and by running your programs.

Types of C# Programs

Before continuing with another program, it is worth reviewing the types of applications
you can create with C#. You can build a number of types:

* Console applications—Console applications run from the command line.
Throughout this book, you will create console applications, which are primarily
character- or text-based and, therefore, remain relatively simple to understand.

* Window forms applications—You can also create Windows applications that take
advantage of the graphical user interface (GUI) provided by Microsoft Windows.

¢ Web Services—Web Services are routines that can be called across the Web.
* Web form/ASP.NET applications—ASP.NET applications are executed on a Web

server and generate dynamic Web pages.

In addition to these types of applications, C# can be used to do a lot of other things,
including create libraries, create controls, and more. As you progress through this book,
you will learn to create applications based on these four main types of applications.

Creating Your First Window Application

One of the most common types of application you will most likely create with C# is a
Windows form application. You might also see these applications referred to as WinForm

|22

Day 1

applications. These applications use the graphical-style windows like those that you see
in Microsoft Windows. Because a standardized library (from the .NET Framework) is
used, you can actually expect the Windows application to match your operating system’s
look and feel. In Listing 1.3, an extremely simple windows form is created. You’ll notice
that this application takes a little more code than the previous console application that
was created. However, you will also notice that the application’s output is much nicer.

If you are using the Microsoft .NET runtime, you will be able to do forms-based
(Windows) applications. If you are using a different runtime, you will need to check its
documentation to determine whether Window forms is currently supported. At the time
this book was written, the support for Window forms applications were fully available
only within the Microsoft Framework. The go-mono project was working to build the
routines for doing forms-based (Windows) applications. Other versions of the .NET
Framework are expected to support Windows forms as well as the other .NET
Framework routines. This means that if your framework doesn’t support these routines
today, it will most likely support them in the future. More important, the routines follow
Microsoft’s structure, to make them portable.

NI]IE The routines for doing forms are a part of the .NET Framework rather than
a part of the C# language. However, the C# language can tap into these

routines.

LisTING 1.3 MyForm.cs: Hello Windows World!

1 using System;

2 using System.Windows.Forms;

3

4 namespace HelloWin

5: {

6 public class MyForm : Form

7 {

8: private TextBox txtEnter;

9: private Label 1lblDisplay;

10: private Button btnOk;

11:

12: public MyForm()

13: {

14: this.txtEnter = new TextBox();
15: this.lblDisplay = new Label();
16: this.btnOk = new Button();
17: this.Text = "My HelloWin App!";

Getting Started with C#

23|

LisTiING 1.3 continued

19: /] txtEnter

20: this.txtEnter.Location = new System.Drawing.Point (16, 32);
21: this.txtEnter.Size = new System.Drawing.Size (264, 20);
22:

23: /1 1lblDisplay

24: this.lblDisplay.Location = new System.Drawing.Point (16, 72);
25: this.lblDisplay.Size = new System.Drawing.Size (264, 128);
26:

27: /] btnOk

28: this.btnOk.Location = new System.Drawing.Point (88, 224);
29: this.btnOk.Text = "OK";

30: this.btnOk.Click +=

31: new System.EventHandler(this.btnOK_Click);
32: /1 MyForm

33: this.Controls.AddRange(new Control[] {

34: this.txtEnter, this.lblDisplay, this.btnOk});
35: }

36:

37: static void Main ()

38: {

39: Application.Run(new MyForm());

40: }

41:

42: private void btnOK_Click(object sender, System.EventArgs e)
43:

44: 1blDisplay.Text = txtEnter.Text + "\n" + lblDisplay.Text;
45: }

46: }

47: }

Just as you did with the previous program, enter the code from Listing 1.3 into your edi-
tor. Remember that the line numbers and colons are for reference in the book; you do not
enter them when entering the listing. After you’ve entered the listing, you will compile it
as shown earlier. If you are compiling at the command line, you enter this:

csc /t:winexe MyForm.cs

Nﬂtﬂ You can actually leave out the /t:winexe, and this program will still compile
and run. By including /t:winexe on the command line, you tell the C# com-
piler to target this application as a Windows executable. Non-Microsoft com-
pilers use a similar command.

Getting Started with C# 25 |

As you can see, much more code is needed to display a form than is needed to display a
simple message in a console window. Look through the code in Listing 1.3; however,
don’t expect to understand all of it right now. You’ll see there is code for creating a text
box (txtEnter), a button (btnok), and a label control (1b1pisplay). You’ll learn more about
this code when you learn about Windows forms.

Why C#?

Now that you’ve created your first applications in C#, it is time to step back and answer
a simple question: Why C#? Many people believed that there was no need for a new pro-
gramming language. Java, C++, Perl, Microsoft Visual Basic, and other existing lan-
guages were believed to offer all the functionality needed.

C# was created as an object-oriented programming (OOP) language. Other programming
languages include object-oriented features, but very few are fully object-oriented. As you
go through this book, you will learn all the details of what makes up an object-oriented
language.

C# is a language derived from C and C++, but it was created from the ground up.
Microsoft started with what worked in C and C++, and included new features that would
make these languages easier to use. Many of these features are very similar to what is
found in Java. Ultimately, Microsoft had a number of objectives when building the lan-
guage. These objectives included the creation of a simple, yet modern language that was
fully object-oriented.

Ea“ti““ The following contains a lot of technical terms. Don’t worry about under-
standing these; most of them don't matter to C# programmers. The ones

that do matter are explained later in this book.

Other reasons exist for using C#, beyond Microsoft’s reasons. C# removes some of the
complexities and pitfalls of languages such as Java and C++, including macros, multiple
inheritance, and virtual base classes. These are all areas that cause either confusion or
potential problems for C++ developers. If you are learning C# as your first language, rest
assured—these are topics that you won’t have to spend time learning. Statements, expres-
sions, operators, and other functions are taken directly from C and C++, but improve-
ments make the language simpler. Some of the improvements include eliminating
redundancies. Other areas of improvement include additional syntax changes. For
example, C++ uses a number of different operators when working with members of a

|26

Day 1

structure: ::, ., and ->. Knowing when to use each of these three operators can be very
confusing. In C#, these all have been replaced with a single symbol—the “dot” operator.
For newer programmers, changes like these make learning C# easier. You’ll learn more
about all of these features throughout this book.

C# is also a modern language. Features such as exception handling, garbage collection,
extensible data types, and code security are expected in a modern language; C# contains
all of these. If you are a new programmer, you might be asking what all these compli-
cated-sounding features are. Again, you don’t need to understand these now. By the end
of your 21 days, you will understand how all of them apply to your C# programming.

C# Is Object-Oriented

As mentioned earlier, C# is an object-oriented language. The keys to an object-
NEw TErRM

oriented language are encapsulation, inheritance, and polymorphism. C# sup-
ports all of these. Encapsulation is the placing of functionality into a single package.
Inheritance is a structured way of extending existing code and functionality into new
programs and packages. Polymorphismis the capability of adapting to what needs to be
done. Detailed explanations of each of these terms and a more detailed description of
object orientation are provided in Day 5’s lesson, “The Core of C# Programming:
Classes.” Additionally, because OOP is central to C#, these topics are covered in greater
detail throughout this book.

C# Is Modular

C# code can (and should) be written in chunks called classes, which contain rou-
NEw TERM

tines called member methods. These classes and methods can be reused in other
applications or programs. By passing pieces of information to the classes and methods,
you can create useful, reusable code.

Another term that is often associated with C# is component. C# can also be used

to create components. Components are programs that can be incorporated into
other programs. These may or may not include the C# code. Once created, a component
can be used as a building block for other more complex programs.

C# Will Be Popular

C# is a newer programming language, but its popularity is already growing. One of the
key reasons for this growth is Microsoft and the promises of .NET.

Microsoft wants C# to be popular. Although a company cannot make a product popular,
it can help. Not long ago, Microsoft suffered the abysmal failure of the Microsoft Bob
operating system. Although Microsoft wanted Bob to be popular, it failed.

Getting Started with C#

C# stands a better chance of success than Microsoft Bob. I don’t know whether people at
Microsoft actually used Bob in their daily jobs. C#, however, is being used by Microsoft.
Many of its products have already had portions rewritten in C#. By using it, Microsoft
helps validate the capabilities of C# to meet the needs of programmers.

Microsoft .NET is another reason why C# stands a chance to succeed. .NET is a change
in the way the creation and implementation of applications is done. Although virtually
any programming language can be used with .NET, C# is proving to be the language of
choice.

Starting with Microsoft Windows Server 2003, the .NET Framework will be included
with Microsoft’s operating systems. This means that there will be no need to install the
runtime on future versions of Windows. This will give Windows developers the capabil-
ity to use all of the functionality built into the .NET Framework, without needing to dis-
tribute it with their applications. This can result in smaller applications.

C# will also be popular for all the features mentioned earlier: simplicity, object-orienta-
tion, modularity, flexibility, and conciseness.

A High-Level View of .NET

C# is a language that was created to work with the .NET Framework. The .NET
Framework consists of a number of pieces, including a runtime, a set of predefined rou-
tines, and a defined set of ways to store the information. C# programs take advantage of
these features of the platform.

You have already learned about the runtime: the Common Language Runtime (CLR).
The CLR offers a buffer between your compiled C# program and the specific operating
system you are using to run your C# program.

The standard way of storing information is accomplished through the Common Type
System (CTS). This is a set of storage types that a number of different programs can use.
More specifically, all of the programming languages used with the .NET platform use
these common types. By using a common system to define ways of storing information,
it is possible for different programming languages to share this information. You’ll learn
more about the CTS and the common types in Day 2’s lesson, “Understanding C#
Programs.”

The other key piece to the .NET platform is the set of defined routines that you can use.
These routines are a part of the .NET Base Class library (BCL). Thousands of routines
have been created that you can use from your C# programs. These include routines such
as printing information to a console window, as you did in the “Hello World” application,

| 28 Day 1

or more complex routines for creating forms and controls. Routines also exist for doing
file handling, working with XML, doing multitasking, and much more. You'll see lots of
these routines used throughout this book.

Nlltﬂ Note that these routines are fully available in the Microsoft .NET
Framework. In .NET Frameworks for other platforms, the routines were not
completed at the time this book was written. For example, the go-mono
project was still in the process of creating many of these routines. Projects

such as go-mono are working to convert the routines so that they will work
identically to the routines in Microsoft’s .NET Framework.

The routines in the BCL, the CTS, and many other features of the .NET platform apply
to other .NET languages in the same way they apply to C#. For example, the routines in
the BCL are the same routines that are used by languages such as Microsoft Visual Basic
.NET, Microsoft J# .NET, and JScript .NET.

Because of the shared features from the .NET Framework, you will find that after you
learn C#, it is very simple to learn to use other .NET programming languages. In fact,
you can create routines in C# that can be used by other .NET languages as well.

C# and Object-Oriented Programming (OOP)

You’ve covered a lot of material already today; however, one more foundational topic
needs to be covered before jumping deep into the C# programming language. This is
object-oriented programming (OOP).

As mentioned earlier, C# is considered an object-oriented language. To take full advan-
tage of C#, you should understand the concepts of object-oriented languages. The follow-
ing sections present an overview of objects and what makes a language object-oriented.
You will learn how these concepts are applied to C# as you work through the rest of this
book.

Object-Oriented Concepts

What makes a language object-oriented? The most obvious answer is that the language
uses objects. However, this doesn’t tell you much. As stated earlier, three concepts gener-
ally are associated with object-oriented languages:

Getting Started with C#

29|

* Encapsulation
* Polymorphism

¢ Inheritance

A fourth concept is expected as a result of using an object-oriented language: reuse.

Encapsulation

Encapsulation is the concept of making “packages” that contain everything you need.
With object-oriented programming, this means that you can create an object (or package)
such as a circle that does everything that you would want to do with a circle. This
includes keeping track of everything about the circle, such as the radius and the center
point. It also means knowing how to handle the functionality of a circle, such as calculat-
ing its radius and possibly knowing how to draw it.

By encapsulating a circle, you allow the user to be oblivious to how the circle works; the
user needs to know only how to interact with the circle. This provides a shield to the
inner workings of the circle. Why should users care how information about a circle is
stored internally? As long as they can get the circle to do what they want, they shouldn’t.

Polymorphism

Polymorphism is the capability of assuming many forms. This can be applied to two
areas of object-oriented programming (if not more). First, it means that you can call an
object or a routine in many different ways and still get the same result. Using a circle as
an example, you might want to call a circle object to get its area. You can do this by
using three points or by using a single point and the radius. Either way, you would
expect to get the same results. In a procedure language such as C, you need two routines
with two different names to address these two methods of getting the area. In C#, you
still have two routines; however, you can give them the same name. Any programs that
you or others write will simply call the circle routine and pass your information. The cir-
cle program automatically determines which of the two routines to use. Based on the
information passed, the correct routine is used. Users calling the routine don’t need to
worry about which routine to use; they just call the routine.

A more important use of polymorphism is the capability to work with something even
though you might not know exactly what it is. Your program can adapt. For example, you
could have a number of different shapes, such as triangles, squares, and circles. You
could write a program that used polymorphism that could work with shapes. Because tri-
angles, squares, and circles are all shapes, your program could adapt to working with

all three of these. Although this type of programming is more complex than basic

|30

Day 1

programming, the power that it provides you is worth the complexity. You’ll learn to pro-
gram polymorphism in this manner on Day 12, “Tapping into OOP: Interfaces.”

Inheritance

Inheritance is the most complicated of the object-oriented concepts. Having a circle is
nice, but what if a sphere would be nicer? A sphere is just a special kind of circle: It has
all the characteristics of a circle, with a third dimension added. You could say that a
sphere is a special kind of circle that takes on all the properties of a circle and then adds
a little more. By using the circle to create your sphere, your sphere can inherit all the
properties of the circle. The capability of inheriting these properties is a characteristic of
inheritance.

Reuse

One of the key reasons an object-oriented language is used is the concept of reuse. When
you create a class, you can reuse it to create lots of objects. By using inheritance and
some of the features described previously, you can create routines that can be used again
in a number of programs and in a number of ways. By encapsulating functionality, you
can create routines that have been tested and proven to work. This means that you won’t
have to test the details of how the functionality works—only that you are using it cor-
rectly. This makes reusing these routines quick and easy.

Objects and Classes

Now that you understand the concepts of an object-oriented language, it is

important to understand the difference between a class and an object. A class is a
definition for an item that will be created. The actual item that will be created is an
object. Simply put, classes are definitions used to create objects.

An analogy often used to describe classes is a cookie cutter. A cookie cutter defines a
cookie shape. It isn’t a cookie, and it isn’t edible. It is simply a construct that can be used
to create shaped cookies repeatedly. When you use the cookie cutter to create cookies,
you know that each cookie will look the same. You also know that you can use the
cookie cutter to create lots of cookies.

As with a cookie cutter, a class can be used to create lots of objects. For example, you
can have a circle class that can be used to create a number of circles. If you create a
drawing program to draw circles, you could have one circle class and lots of circle
objects. You could make each circle in the snowman an object; however, you would need
only one class to define all of them.

Getting Started with C# 31 |

You also can have a number of other classes, including a name class, a card class, an
application class, a point class, a circle class, an address class, a snowman class (that can
use the circle class), and more.

N“tﬂ Classes and objects are covered again in more detail throughout this book.
Today’s information gives you an overview of the object-oriented concepts
and introduces you to some of the terminology. If you don’t fully under-

stand the terminology at this time, don’t worry; you'll understand these con-
cepts by the end of your 21 days.

Summary

At the beginning of today’s lesson, you learned what C# has to offer, including its power,
its flexibility, and its object orientation. You also learned that C# is considered simple
and modern.

Today you explored the various steps involved in writing a C# program—the process
known as program development. You should have a clear grasp of the edit-compile-test
cycle before continuing.

Errors are an unavoidable part of program development. Your C# compiler detects errors
in your source code and displays an error message, giving both the nature and the loca-
tion of the error. Using this information, you can edit your source code to correct the
error. Remember, however, that the compiler can’t always accurately report the nature
and location of an error. Sometimes you need to use your knowledge of C# to track down
exactly what is causing a given error message.

You ended today’s lesson with an overview of several object-oriented concepts. You were
introduced to a number of technical concepts, including polymorphism, inheritance,
encapsulation, and reuse. You also learned the conceptual difference between a class and
an object. Because OOP is central to C#, you’ll learn more about these concepts through-
out this book.

A lot was covered in your first day of C#. Many of the concepts and technical terms will
be covered again as you progress through this book. Before moving on to Day 2, you
should make sure that you are comfortable with the steps of entering, compiling, and
running a C# program, as shown earlier. Don’t worry about understanding the actual C#
code at this time. That is the focus of the rest of this book!

|32

Day 1

Q&A

Q
A

Will a C# program run on any machine?

No. A C# program will run only on machines that have the Common Language
Runtime (CLR) installed. If you copy the executable program to a machine that
does not contain the CLR, you get an error. On versions of Microsoft Windows
without the CLR, you usually are told that a DLL file is missing.

If I want to give people a program that I wrote, which files do I need to give
them?

One of the nice things about C# is that it is a compiled language. This means that
after the source code is compiled, you have an executable program. If you want to
give the hello program to all your friends with computers, you can. You give them
the executable program, Hello.exe. They don’t need the source file, hello.cs, and
they don’t need to own a C# compiler. They do need to use a computer system that
has a .NET runtime, such as the Common Language Runtime (CLR) from
Microsoft.

After I create an executable file, do I need to keep the source file (.cs)?

If you get rid of the source file, you have no easy way to make changes to the pro-
gram in the future, so you should keep this file.

Most Integrated Development Environments create files in addition to the source
file (.cs) and the executable file. As long as you keep the source file (.cs), you can
almost always re-create the other files. If your program uses external resources,
such as images and forms, you also need to keep those files in case you need to
make changes and re-create the executable.

If my compiler came with an editor, do I have to use it?

Definitely not. You can use any editor, as long as it saves the source code in text
format. If the compiler came with an editor, you should try to use it. If you like a
different editor better, use it. I use an editor that I purchased separately, even
though all my compilers have their own editors. The editors that come with com-
pilers are getting better. Some of them automatically format your C# code. Others
color-code different parts of your source file, to make it easier to find errors.

Do I need a copy of Microsoft Visual Studio .NET or Microsoft Visual C#
.NET to do C# programming?

No. However, you do need a C# compiler and a copy of a .NET runtime. The
Microsoft NET Framework—which was free to download at the time this book
was written—contains a C# compiler as well as the runtime that you need to exe-

Getting Started with C# 33 |

(=}

cute your programs. You can also use different C# compilers and runtimes. For
example, you can download a C# compiler and runtime from www.go-mono.com. The
mono products will work with platforms such as Windows, Linux, and more.

One caution is that some of the available compilers and runtime might not fully
support all of the functionality of the Microsoft platform. If a C# compiler has
been released, it should fully support the C# language. The C# language is covered
in the first 14 days of this book. During the last week, a number of the NET
Framework classes are covered. Compilers and runtimes that are not complete
might not fully support everything in the last week. The Microsoft .NET
Framework supports everything presented in this book.

Can I ignore warning messages?

Some warning messages don’t affect how the program runs, and some do. If the
compiler gives you a warning message, it’s a signal that something isn’t right.
Most compilers let you set the warning level. By setting the warning level, you can
get only the most serious warnings, or you can get all the warnings, including the
most minute. Some compilers even offer various levels between. In your programs,
you should look at each warning and make a determination. It’s always best to try
to write all your programs with absolutely no warnings or errors. (With an error,
your compiler won’t create the executable file.)

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing to the day’s
lesson. Answers are provided on the CD.

Quiz

1.

2
3.
4

W

Give three reasons why C# is a great choice of programming language.

. What do IL and CLR stand for?

What are the steps in the program-development cycle?

. What command do you need to enter to compile a program called My_prog.cs with

your compiler?

What extension should you use for your C# source files?

6. Is Filename.txt a valid name for a C# source file?

Getting Started with C# 35 |

3. Enter and compile the following program. What does this program do?
class AClass

—_

2:

3: public static void Main()

4: {

5: int x,y;

6: for (x = 0; x < 10; x++, System.Console.Write("\n"))
7: for (y =0; y <10; y++)

8: System.Console.Write("X");

9: }

10: }

4. Bug Buster: The following program has a problem. Enter it in your editor and
compile it. Which lines generate error messages?
1: class Hello

2: {

3: public static void Main()

4: {

5: System.Console.WriteLine(Keep Looking!);
6: System.Console.WriteLine(You'll find it!);
7: }

8: }

5. Make the following change to the program in Exercise 3. Recompile and rerun this
program. What does the program do now?

8: System.Console.Write("{0}", (char) 1);

TYPE & RUN 1

Numbering Your Listings

Throughout this book, you will find a number of Type & Run sections. These
sections present a listing that is a little longer than the listings within the daily
lessons. The purpose of these listings is to give you a program to type in and
run. The listings might contain elements not yet explained in the book.

These programs generally do something either fun or practical. For instance,
the program included here, named NumberIT, adds line numbers similar to
those included on the listings in this book. You can use this program to number
your listings as you work through the rest of this book.

I suggest that after you type in and run these programs, you take the time to
experiment with the code. Make changes, recompile, and then rerun the pro-
grams. See what happens. There won’t be explanations on how the code
works—only on what it does. Don’t fret, though. By the time you complete this
book, you should understand everything within these earlier listings. In the
meantime, you will have had the chance to enter and run some listings that are
a little more fun or practical.

|38

Type & Run 1

The First Type & Run

Enter and compile the following program. If you get any errors, make sure you entered
the program correctly.

The usage for this program is NumberlT filename.ext, where filename.ext is the source
filename along with the extension. Note that this program adds line numbers to the list-
ing. (Don’t let this program’s length worry you; you’re not expected to understand it yet.
It’s included here to help you compare printouts of your programs with the ones given in
the book.)

LisTING T&R 1.1 NumberlT.cs

1:
2:
3
4
5:
6
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

using System;

using System.IO;

: //] <summary>

/// Class to number a listing. Assumes fewer than 1000 lines.

: [/ </summary>

: class NumberIT

{
/] <summary>
//] The main entry point for the application.
/1] </summary>

public static void Main(string[] args)

{
/] check to see if a file name was included on the
// command line.
if (args.Length <=0)
{
Console.WriteLine("\nYou need to include a filename.");
I3
else
{

/| declare objects for connecting to files...
StreamReader InFile = null;
StreamWriter OutFile = null;

try

{
// Open file name included on command line...
InFile = File.OpenText(args([Q]);
/| Create the output file...

Numbering Your Listings 39 |

LisTING T&R1.1 continued

36: OutFile = File.CreateText("outfile.txt");
37:

38: Console.Write("\nNumbering...");

39:

40: // Read first line of the file...

41: string line = InFile.ReadLine();

42: int ctr = 1;

43:

44: // loop through the file as long as not at the end...
45: while (line != null)

46: {

47: OutFile.WriteLine("{@}: {1}",

48: ctr.ToString().PadLeft(3,'0'), line);
49: Console.Write("..{0}..", ctr.ToString());
50: ctr++;

51: line = InFile.ReadLine();

52: }

53: }

54: catch (System.IO.FileNotFoundException)

55: {

56: Console.WriteLine ("Could not find the file {0}", args[0]);
57: }

58: catch (Exception e)

59: {

60: console.WriteLine("Error: {0}", e.Message);
61: }

62: finally

63: {

64: if(InFile != null)

65: {

66: /| Close the files

67: InFile.Close();

68: OutFile.Close();

69: Console.WriteLine("...Done.");

70: }

71: }

72: }

73: }

74: }

You will also find that the Type & Runs don’t contain line-by-line analysis like many of
the listings within the books. Instead, a few key concepts are highlighted.

Enter the previous listing and compile it. If you need to, refer to Day 1, “Getting Started
with C#,” for the steps to enter, compile, and run a listing. When you run this listing on
the command line as follows:

|40

Type & Run 1

NumberIT

you will get this message:

You need to include a filename.
OutpuTt

This listing takes a command-line parameter that is the name of the file that you want
numbered. For example, to number the NumberIT.cs listing, you would enter this:

NumberIT NumberIT.cs

When this program executes, it displays the following to the screen:

OuTPUT

Numbering..... 1....2....8....4....56....6....7....8....9....10....11....
13....14....15....16....17....18....19....20....21....22....23....
..25....26....27....28....29....30....31....32....33....34....35....
37....38....39....40....41....42....43....44....45....46....47....
..49....50....51....52....58....54....55....56..... Done.

2....

4..
6....
8

In addition to displaying this output, the listing creates an additional file named
outfile.txt. This file contains the numbered version of the listing that you passed as a
command-line parameter. If you want the output to be a different name, you can change

the name in Line 36.

AN =

The source code for this listing is available on the included CD. Any updates
to the code will be available at www.TeachYourselfCSharp.com.

WEEK 1

DAY 2

Understanding C#
Programs

In addition to understanding the basic composition of a program, you need to
understand the structure of creating a C# program. Today you...

* Learn about the parts of a C# application.

¢ Understand C# statements and expressions.

* Explore the basic storage types for C# programs.

e Learn what a variable is.

* Discover how to create variable names in C#.

» Use different types of numeric variables.

¢ Evaluate the differences and similarities between character and numeric
values.

¢ See how to declare and initialize variables.

| 42 Day 2

Dissecting a C# Application

The first part of today’s lesson focuses on a simple C# application. Using Listing 2.1,
you will gain an understanding of some of the key parts of a C# application.

LisTING 2.1 App.cs—Example C# Application

1: // App.cs - A sample C# application

2: // Don't worry about understanding everything in
3: // this listing. You'll learn all about it later!
L R R R R R
5:

6: using System;

7:

8: class App

9: {

10: public static void Main()

11: {

12: //Declare variables

13:

14: int radius = 4;

15: const double PI = 3.14159;

16: double area;

17:

18: //Do calculation

19:

20: area = PI * radius * radius;

21:

22: //Print the results

23:

24: Console.WritelLine("Radius = {0}, PI = {1}", radius, PI);
25: Console.WritelLine("The area is {@}", area);
26: }

27: }

You should enter this listing into your editor and then use your compiler to create the
program. You can save the program as App.cs. When compiling the program, you enter
the following at the command prompt:

csc App.cs

Alternatively, if you are using a visual editor, you should be able to select a compiler
from the menu options.

Understanding C# Programs 43 |

I:Ellltillll Remember, you don’t enter the line numbers or the colons when you are
entering the listing. The line numbers help in discussing the listing in the

lessons.

When you run the program, you get the following output:

Radius = 4, PI = 3.14159
Output The area is 50.26544
As you can see, the output from this listing is pretty straightforward. The value of a

radius and the value of pP1 are displayed. The area of a circle based on these two values is
then displayed.

In the following sections, you learn about some of the different parts of this program.
Don’t worry about understanding everything. In the lessons presented on later days, you
will be revisiting this information in much greater detail. The purpose of the following
sections is to give you a first look.

Starting with Comments

The first four lines of Listing 2.1 are comments. Comments are used to enter information
in your program that can be ignored by the compiler. Why would you want to enter
information that the compiler will ignore? There are a number of reasons.

Comments are often used to provide descriptive information about your listing—for
example, identification information. Additionally, by entering comments, you can docu-
ment what a listing is expected to do. Even though you might be the only one who uses a
listing, it is still a good idea to put in information about what the program does and how
it does it. Although you know what the listing does now—because you just wrote it—
you might not be able to remember later what you were thinking. If you give your listing
to others, the comments will help them understand what the code was intended to do.
Comments can also be used to provide revision history of a listing.

The main thing to understand about comments is that they are for programmers using the
listing. The compiler actually ignores them. In C#, you can use three types of comments:
¢ One-line comments
e Multiline comments

¢ Documentation comments

Understanding C# Programs 45 |

You can also enter this comment as the following:

/] this is

// a comment that
// is on

// a number of

// lines

The advantage of using multiline comments is that you can “comment out” a section of a
code listing by simply adding /* and */. The compiler ignores anything that appears
between the /* and the */ as a comment.

ﬂﬂlllillll You cannot nest multiline comments. This means that you cannot place one
multiline comment inside of another. For example, the following is an error:
/* Beginning of a comment...

/* with another comment nested */
*/

Documentation Comments

C# has a special type of comment that enables you to create external documentation
automatically.

These comments are identified with three slashes instead of the two used for single-line
comments. These comments also use Extensible Markup Language (XML)—style tags.
XML is a standard used to mark up data. Although any valid XML tag can be used, com-
mon tags used for C# include <c>, <code>, <example>, <exception>, <list>, <para>, <param>,

<paramref>, <permission>, <remarks>, <returns>, <see>, <seealso>, <summary>, and <value>.

These comments are placed in your code listings. Listing 2.2 shows an example of
these comments being used. You can compile this listing as you have earlier listings. See
Day 1, “Getting Started with C#,” if you need a refresher.

LisTING 2.2 Xmlapp.cs—Using XML Comments

/] Xmlapp.cs - A sample C# application using XML
Il documentation
R R

/1] <summary>

/// This is a summary describing the class.</summary>

/1] <remarks>

//] This is a longer comment that can be used to describe

0N O~ WN =

| 46 Day 2

LISTING 2.2 continued

9: /// the class. </remarks>
10: class Xmlapp
11: {

12: /1] <summary>

13: /// The entry point for the application.

14: /] </summary>

15: /1] <param name="args"> A list of command line arguments</param>
16: public static void Main(string[] args)

17: {

18: System.Console.WriteLine("An XML Documented Program");

19: }

20: }

When you compile and execute this listing, you get the following output:

An XML Documented Program
OuTtpuT

To get the XML documentation, you must compile this listing differently from what you
have seen before. To get the XML documentation, add the /doc parameter when you
compile at the command line. If you are compiling at the command line, you enter this:

csc /doc:xmlfile Xmlapp.cs
When you compile, you get the same output as before when you run the program. The
difference is that you also get a file called xmlfile that contains documentation in XML.

You can replace xmlfile with any name that you want to give your XML file. For Listing
2.2, the XML file is this:

<?xml version="1.0"?>

<doc>
<assembly>
<name>Xmlapp</name>
</assembly>
<members>
<member name="T:Xmlapp">
<summary>
This is a summary describing the class.</summary>
<remarks>

This is a longer comment that can be used to describe
the class. </remarks>
</member>
<member name="M:Xmlapp.Main(System.String[])">
<summary>
The entry point for the application.
</summary>

Understanding C# Programs 47 |

<param name="args"> A list of command line arguments</param>

</member>
</members>
</doc>
XML and XML files are beyond the scope of this book.
Note
Nl]lﬂ If you are compiling from within an Integrated Development Environment,
you need to check the documentation or help system to learn how to gener-
ate the XML documentation. Even if you are using such a tool, you can com-
pile your programs from the command line, if you want. If you are using
Microsoft Visual Studio .NET, you can set the project to generate the XML
documentation by doing the following:
1. Go to the Solution Explorer. See the documentation if you are unsure
of what the Solution Explorer is.
2. Right-click the project name and select the Properties page.
3. Click the Configuration Properties folder to select it.
4. Click the Build option to select it.
5. In the dialog box (shown in Figure 2.1), enter a filename for the XML
Documentation File property. In the dialog box in Figure 2.1, the
name MyXMLDocs was entered.
FIGURE 2.1 atTciatePrapartyPogs
stion: [= Patform: [a B
Setting the documenta- w_mim_m_tm‘ P — ol S
tion comments switch S ek i S
Dabusggng For Crverflanll F
in Visual Studio .NET. e :B:ﬁ"::m".?..rm e
| wurwm:d — Waring vl 4

Trest Waeinge Aelivove Pl
B iitpasts

Cutpak Fagh

[
SRR R oo ooce
G ot Doty Indcruicn Trum

| Sphciad tha nesa oF Fila it which documantation commackt vl b
| processed. Path mest be reletive Lo the profect deedtory (dech.

[Cocel | ook | Hee |

| 48 Day 2

Basic Parts of a C# Application

A programming language is composed of a bunch of keywords that have special mean-
ings. A computer program is the formatting and use of these words in an organized
manner, along with a few additional words and symbols. The key parts of a C# language
include the following:

* Whitespace
o C# keywords
 Literals

¢ Identifiers

Formatting with Whitespace

Listing 2.1 has been formatted so that the code lines up and is relatively easy to

read. The blank spaces put into a listing are called whitespace. The basis of this

term is that, on white paper, you can’t see the spaces. Whitespace can consist of spaces,
tabs, linefeeds, and carriage returns.

The compiler almost always ignores whitespace. Because of this, you can add as many
spaces, tabs, and linefeeds as you want. For example, consider Line 14 from Listing 2.1:

int radius = 4;

This is a well-formatted line with a single space between items. This line could have had
additional spaces:

int radius = 4 ;

This line with extra spaces executes the same way as the original. In fact, when the pro-
gram is run through the C# compiler, the extra whitespace is removed. You could also
format this code across multiple lines:

int

radius

4

Although this is not very readable, it still works.

The exception to the compiler ignoring whitespace has to do with the use of text within
quotation marks. When you use text within double quotes, whitespace is important
because the text is to be used exactly as presented. Text has been used within quotation
marks with the listings you have seen so far. In Listing 2.1, Lines 24-25 contain text

Understanding C# Programs

49|

within double quotes. This text is written exactly as it is presented between the quotation

marks.

Tip

The Heart of C#: Keywords

Because the compiler ignores whitespace, you should make liberal use of it
to help format your code and make it readable.

Keywords are the specific terms that have special meaning and, therefore, make up a lan-
guage. The C# language has a number of keywords, listed in Table 2.1.

TAaBLE 2.1 The C# Keywords
abstract as base bool break
byte case catch char checked
class const continue decimal default
delegate do double else enum
event explicit extern false finally
fixed float for foreach goto
if implicit in int interface
internal is lock long namespace
new null object operator out
override params private protected public
readonly ref return sbyte sealed
short sizeof stackalloc static string
struct switch this throw true
try typeof uint ulong unchecked
unsafe ushort using virtual void
while

Note

A few other words are used in C# programs: get, set, and value. Although
these reserved words are not keywords, they should be treated as though

they are.

In future versions of C#, partial, yield, and where might also become key-

words.

|50

Day 2

Nnte Appendix A, “C# Keywords,” contains short definitions for each of the C#
keywords.

These keywords have a specific meaning when you program in C#. You will learn the
meaning of these as you work through this book. Because all these words have a special
meaning, they are reserved; you should not use them for your own use. If you compare
the words in Table 2.1 to Listing 2.1 or any of the other listings in this book, you will see
that much of the listing is composed of keywords.

Literals

- Literals are straightforward hard-coded values. They are literally what they are!
New Term

For example, the numbers 4 and 3.14159 are both literals. Additionally, the text
within double quotes is literal text. Later today, you will learn more details on literals
and their use.

Identifiers

In addition to C# keywords and literals, other words are used within C# pro-
New Term

grams. These words are considered identifiers. Listing 2.1 contains a number of
identifiers, including System in Line 6; sample in Line 8; radius in Line 14; PI in line 15;
area in Line 16; and PI1, radius, and area in Line 22.

Exploring the Structure of a C# Application

Words and phrases are used to make sentences, and sentences are used to make para-
graphs. In the same way, whitespace, keywords, literals, and identifiers are combined to
make expressions and statements. These, in turn, are combined to make a program.

Understanding C# Expressions and Statements

Expressions are like phrases: They are snippets of code made up of keywords.

For example, the following are simple expressions:
PI = 3.14159

PI * radius * radius

Statements are like sentences; they complete a single thought. A statement generally ends
with a punctuation character—a semicolon (;). In Listing 2.1, Lines 14-16 are examples
of statements.

Understanding C# Programs 51 |

The Empty Statement

One general statement deserves special mention: the empty statement. As you learned
previously, statements generally end with a semicolon. You can actually put a semicolon
on a line by itself. This is a statement that does nothing. Because there are no expres-
sions to execute, the statement is considered an empty statement. You’ll learn on Day 4,
“Controlling Your Program’s Flow,” when you need to use an empty statement.

Analyzing Listing 2.1
It is worth taking a closer look at Listing 2.1 now that you’ve learned of some of
the many concepts. The following sections review each line of Listing 2.1.

Lines 1-4: Comments

As you already learned, Lines 1-4 contain comments that the compiler ignores. These
are for you and anyone who reviews the source code.

Lines 5, 7, 13, 17, 21, and 23: Whitespace

Line 5 is blank. You learned that a blank line is simply whitespace that the compiler
ignores. This line is included to make the listing easier to read. Lines 7, 13, 17, 21, and
23 are also blank. You can remove these lines from your source file, and there will be no
difference in how your program runs.

Line 6—The using Statement

Line 6 is a statement that contains the keyword using and a literal system. As with most
statements, this ends with a semicolon. The using keyword is used to condense the
amount of typing you need to do in your listing. Generally, the using keyword is used
with namespaces. Namespaces and details on the using keyword are covered in some
detail on Day 5, “The Core of C# Programming: Classes.”

Line 8—Class Declaration

C# is an object-oriented programming (OOP) language. Object-oriented languages use
classes to declare objects. This program defines a class called App. Although classes are
used throughout this entire book, the coding details concerning classes start on Day 5.

Lines 9, 11, 26, and 27: Punctuation Characters

Line 9 contains an opening bracket that is paired with a closing bracket in Line 27. Line
11 has an opening bracket that is paired with the closing one in Line 26. These sets of

| 52 Day 2

brackets contain and organize blocks of code. As you learn about different commands
over the next four days, you will see how these brackets are used.

Line 10: Main()

The computer needs to know where to start executing a program. C# programs
start executing with the main() function, as in Line 10. A function is a grouping
of code that can be executed by calling the function’s name. You’ll learn the details about
functions on Day 6, “Packaging Functionality: Class Methods and Member Functions.”
The main() function is special because it is used as a starting point.

Lines 14-16: Declarations

Lines 14-16 contain statements used to create identifiers that will store information.
These identifiers are used later to do calculations. Line 14 declares an identifier to store
the value of a radius. The literal 4 is assigned to this identifier. Line 15 creates an identi-
fier to store the value of PI. This identifier, p1, is filled with the literal value of 3.14159.
Line 16 declares an identifier that is not given any value. You’ll learn more about creat-
ing and using these identifiers, called variables, later today.

Line 20: The Assignment Statement

Line 20 contains a simple statement that multiplies the identifier 1 by the radius twice.
The result of this expression is then assigned to the identifier area. You’ll learn more
about creating expressions and doing operations in tomorrow’s lesson.

Lines 24-25: Calling Functions

Lines 24-25 are the most complex expressions in this listing. These two lines call a pre-
defined routine that prints information to the console (screen). You learned about these
routines yesterday, and you’ll see them used throughout this entire book.

Storing Information with Variables

When you start writing programs, you will quickly find that you need to keep track of
different types of information. This might be tracking your clients’ names, the amounts
of money in your bank accounts, or the ages of your favorite movie stars. To keep track
of this information, your computer programs need a way to store the values.

Storing Information in Variables

A variable is a named data storage location in your computer’s memory. By using a vari-
able’s name in your program, you are, in effect, referring to the information stored there.

Understanding C# Programs

53|

For example, you could create a variable called my_variable that holds a number. You
would be able to store different numbers in the my_variable variable.

You could also create variables to store information other than a simple number. You
could create a variable called BankAccount to store a bank account number, a variable
called email to store an email address, or a variable called address to store a person’s
mailing address. Regardless of what type of information will be stored, a variable is used
to obtain its value.

Naming Your Variables

To use variables in your C# programs, you must know how to create variable names. In
C#, variable names must adhere to the following rules:

* The name can contain letters, digits, and the underscore character (_).

* The first character of the name must be a letter. The underscore is also a legal first
character, but its use is not recommended at the beginning of a name. An under-
score is often used with special commands. Additionally, it is sometimes hard to
read.

* Case matters (that is, upper- and lowercase letters). C# is case sensitive; thus, the
names count and Count refer to two different variables.

» C# keywords can’t be used as variable names. Recall that a keyword is a word that
is part of the C# language. (A complete list of the C# keywords can be found in
Appendix A.)

The following list contains some examples of valid and invalid C# variable names:

Variable Name Legality

Percent Legal

y2x5__w7h3 Legal

yearly cost Legal

_2010_tax Legal, but not advised
checking#account Illegal; contains the illegal character #
double Illegal; is a C keyword

9byte Illegal; first character is a digit

Understanding C# Programs 55 |

Using Your Variables

Before you can use a variable in a C# program, you must declare it. A variable declara-
tion tells the compiler the name of the variable and the type of information that the vari-
able will be used to store. If your program attempts to use a variable that hasn’t been
declared, the compiler generates an error message.

Declaring a variable also enables the computer to set aside memory for the variable. By
identifying the specific type of information that will be stored in a variable, you can gain
the best performance and avoid wasting memory.

Declaring a Variable

A variable declaration has the following form:
typename varname;

typename specifies the variable type. In the following sections, you will learn about the
types of variables that are available in C#. varname is the name of the variable. To declare
a variable that can hold a standard numeric integer, you use the following line of code:

int my_number;

The name of the variable declared is my_number. The data type of the variable is int. As
you will learn in the following section, the type int is used to declare integer variables,
which is perfect for this example.

You can also declare multiple variables of the same type on one line by separating the
variable names with commas. This enables you to be more concise in your listings.
Consider the following line:

int count, number, start;

This line declares three variables: count, number, and start. Each of these variables is type
int, which is for integers.

Nl]tﬂ Although declaring multiple variables on the same line can be more concise,
| don’t recommend that you always do this. Sometimes it is easier to read
and follow your code by using multiple declarations. There will be no
noticeable performance loss by doing separate declarations.

|56

Day 2

Assigning Values to Your Variables

Now that you know how to declare a variable, it is important to learn how to store val-
ues. After all, the purpose of a variable is to store information.

The format for storing information in a variable is as follows:
varname = value;

You have already seen that varname is the name of the variable. value is the value that
will be stored in the variable. For example, to store the number 5 in the variable,
my_variable, you enter the following:

my_variable = 5;

You can assign a value to a variable any time after it has been declared. You can even do
this at the same time you declare a variable:

int my_variable = 5;

A variable’s value can also be changed. To change the value, you simply reassign a new
value:

my_variable = 1010;

Listing 2.3 illustrates assigning values to a couple of variables. It also shows that you can
overwrite a value.

LisTING 2.3 var_values.cs—Assigning Values to a Variable

01: // var_values.cs - A listing to assign and print the value

02: // of variables

N R R
04:

05: using System;

06:

07: class var_values

08: {

09: public static void Main()

10: {

11: /] declare first_var

12: int first_var;

13:

14: /| declare and assign a value to second_var
15: int second_var = 200;

16:

17: /] assign an initial value to first_var...
18: first_var = 5;

19:

Understanding C# Programs 57 |

LisTING 2.3 continued

20: // print values of variables...

21: Console.WriteLine("\nfirst_var contains the value {0}", first_var);
22: Console.WritelLine("second_var contains the value {0}", second_var);
23:

24: /] assign a new value to the variables...

25: first_var = 1010;

26: second_var = 2020;

27:

28: // print new values...

29: Console.WritelLine("\nfirst_var contains the value {0}", first_var);
30: Console.WritelLine("second_var contains the value {0}", second_var);
31: }

32: }

first_var contains the value 5

O JULUN ccond var contains the value 200

second_var contains the value 2020

Enter this listing into your editor, compile it, and execute it. If you need a
refresher on how to do this, refer to Day 1. The first three lines of this listing are
comments. Lines 11, 14, 17, 20, 24, and 28 also contain comments. Remember that com-
ments provide information; the compiler ignores them. Line 5 includes the system
namespace that you need to do things such as write information. Line 7 declares the class
that will be your program (var_values). Line 9 declares the entry point for your program,
the mMain() function. Remember, main() must be capitalized or you’ll get an error.

ANALYSIS

first_var contains the value 1010

Line 12 declares the variable first_var of type integer (int). After this line has executed,
the computer knows that a variable called first_var exists and enables you to use it.
Note, however, that this variable does not yet contain a value. In Line 15, a second vari-
able called second_var is declared and also assigned the value of 2¢e. In Line 18, the
value of 5 is assigned to first_var. Because first_var was declared earlier, you don’t
need to include the int keyword again.

Lines 21-22 print the values of first_var and second_var. In Lines 25-26, new values are
assigned to the two variables. Lines 29-30 then reprint the values stored in the variables.
You can see when the new values print that the old values of 5 and 200 are gone.

-) You must declare a variable before you can use it.
Gaution

|58

Day 2

N“tﬂ In other languages, such as C and C++, this listing would compile. The value
printed for the uninitialized first_var in these other languages would be

Issues with Uninitialized Variables

You will get an error if you don’t assign a value to a variable before it is used. You can
see this by modifying Listing 2.3. Add the following line of code after Line 12:

Console.WriteLine("\nfirst_var contains the value {0}", first_var);

You can see that in Line 12, first_var is declared; however, it is not assigned any value.
What value would you expect first_var to have when the preceding line tries to print it
to the console? Because first_var hasn’t been assigned a value, you have no way of
knowing what the value will be. In fact, when you try to recompile the listing, you get an
error:
var_values2.cs(13,63): error CS0165: Use of unassigned local variable

'first_var'
It is best to always assign a value to a variable when you declare it. You should do this
even if the value is temporary.

garbage. C# prevents this type of error from occurring.

Understanding Your Computer’s Memory

Variables are stored in your computer’s memory. If you already know how a computer’s
memory operates, you can skip this section. If you’re not sure, read on. This information
is helpful to understanding how programs store information.

What is your computer’s memory (RAM) used for? It has several uses, but only data
storage need concern you as a programmer. Data is the information with which your C#
program works. Whether your program is maintaining a contact list, monitoring the stock
market, keeping a budget, or tracking the price of snickerdoodles, the information
(names, stock prices, expense amounts, or prices) is kept within variables in your com-
puter’s memory when it is being used by your running program.

A computer uses random access memory (RAM) to store information while it is operat-
ing. RAM is located in integrated circuits, or chips, inside your computer. RAM is
volatile, which means that it is erased and replaced with new information as often as
needed. Being volatile also means that RAM “remembers” only while the computer is
turned on and loses its information when you turn the computer off.

Understanding C# Programs

A byte is the fundamental unit of computer data storage. Each computer has a certain
amount of RAM installed. The amount of RAM in a system is usually specified in
megabytes (MB), such as 64MB, 128MB, 256MB, or more. IMB of memory is 1,024
kilobytes (KB). 1KB of memory consists of 1,024 bytes. Thus, a system with 8MB of
memory actually has 8 x 1,024KB, or 8,192KB of RAM. This is 8,192KB x 1,024 bytes,
for a total of 8,388,608 bytes of RAM. Table 2.2 provides you with an idea of how many
bytes it takes to store certain kinds of data.

TABLE 2.2 Minimum Memory Space Generally Required to Store Data

Data Bytes Required
The letter x 2

The number 500 2

The number 241.105 4

The phrase “Teach Yourself C#” 34

One typewritten page Approximately 4,000

The RAM in your computer is organized sequentially, with one byte following another.
Each byte of memory has a unique address by which it is identified—an address that also
distinguishes it from all other bytes in memory. Addresses are assigned to memory loca-
tions in order, starting at 0 and increasing to the system limit. For now, you don’t need to
worry about addresses; it’s all handled automatically.

Now that you understand a little about the nuts and bolts of memory storage, you can get
back to C# programming and how C# uses memory to store information efficiently.

Introducing the C# Data Types

You know how to declare, initialize, and change the values of variables; it is important
that you know the data types that you can use. You learned earlier that you have to
declare the data type when you declare a variable. You’ve seen that the int keyword
declares variables that can hold integers. An integer is simply a whole number that does-
n’t contain a fractional or decimal portion. The variables that you’ve declared to this
point hold only integers. What if you want to store other types of data, such as decimals
or characters?

|60

Day 2

Numeric Variable Types

C# provides several different types of numeric variables. You need different types of vari-
ables because different numeric values have varying memory storage requirements and
differ in the ease with which certain mathematical operations can be performed on them.
Small integers (for example, 1, 199, and -8) require less memory to store, and your com-
puter can perform mathematical operations (addition, multiplication, and so on) with
such numbers very quickly. In contrast, large integers and values with decimal points
require more storage space and more time for mathematical operations. By using the
appropriate variable types, you ensure that your program runs as efficiently as possible.

The following sections break the different numeric data types into four categories:

* Integral
* Floating point
* Decimal
* Boolean
The amount of memory used to store a variable is based on its data type. Listing 2.4 is a

program that contains code beyond what you know right now; however, it provides you
with the amount of information needed to store some of the different C# data types.

You must include extra information for the compiler when you compile this listing. This
extra information is referred to as a ’flag” to the compiler and can be included on the
command line. Specifically, you need to add the /unsafe flag, as shown:

csc /unsafe sizes.cs

If you are using an Integrated Development Environment, you need to set the unsafe
option as instructed by its documentation.

Nﬂtﬂ If you are using Microsoft Visual Studio .NET, you can set the unsafe flag in
the same dialog box where you set the XML documentation filename.

LisTING 2.4 Sizes.cs—Memory Requirements for Data Types

/| Sizes.cs--Program to tell the size of the C# variable types

1
2
3:
4: using System;
5:
6

class Sizes

Understanding C# Programs 61 |

LisTING 2.4 continued

7:

8: unsafe public static void Main()

9: {

10: Cconsole.WriteLine("\nA byte is {0} byte(s)", sizeof(byte));

11: Console.WriteLine("A sbyte is {0} byte(s)", sizeof(shyte));

12: console.WriteLine("A char is {0} byte(s)", sizeof(char));

13: console.WriteLine("\nA short is {0} byte(s)", sizeof(short));

14: Console.WriteLine("An ushort is {0} byte(s)", sizeof(ushort));

15: console.WriteLine("\nAn int is {0} byte(s)", sizeof(int));

16: Cconsole.WriteLine("An uint is {0} byte(s)", sizeof(uint));

17: Console.WriteLine("\nA long is {0} byte(s)", sizeof(long));

18: console.WriteLine("An ulong is {0} byte(s)", sizeof(ulong));

19: console.WriteLine("\nA float is {0} byte(s)", sizeof(float));

20: Console.WriteLine("A double is {0} byte(s)", sizeof(double));

21: Cconsole.WriteLine("\nA decimal is {0} byte(s)", sizeof(decimal
-));

22: Console.WriteLine("\nA boolean is {0} byte(s)", sizeof(bool));

23: }

24: }

[: t' The C# keyword sizeof can be used, but you should generally avoid it. The

dution , . .) :
sizeof keyword sometimes accesses memory directly to find out the size.

Accessing memory directly should be avoided in pure C# programs.

You might get an error when compiling this program, saying that unsafe
code can appear only if you compile with /unsafe. If you get this error, you
need to add the /unsafe flag to the command-line compile:

csc /unsafe sizes.cs

If you are using an IDE, you need to set the /unsafe flag in the IDE settings.

A byte is 1 byte(s)
OUTPUT [N S

A char is 2 byte(s)

A short is 2 byte(s)
An ushort 1is 2 byte(s)

An int is 4 byte(s)
An uint is 4 byte(s)

A long is 8 byte(s)
An ulong is 8 byte(s)

A float is 4 byte(s)
A double is 8 byte(s)

|62

Day 2

A decimal is 16 byte(s)

A boolean 1is 1 byte (s)

Although h t1 d all the data t t, it is valuable t t thi
ough you haven’t learned all the data types yet, it 18 valuable to present this

listing here. As you go through the following sections, refer to this listing and its
output.

This listing uses a C# keyword called sizeof. The sizeof keyword tells you the size of a
variable. In this listing, sizeof is used to show the size of the different data types. For
example, to determine the size of an int, you can use this:

sizeof(int)

If you had declared a variable called x, you could determine its size—which would actu-
ally be the size of its data type—by using the following code:

sizeof(x)

Looking at the output of Listing 2.4, you see that you have been given the number of
bytes that are required to store each of the C# data types. For an int, you need 4 bytes of
storage. For a short, you need 2. The amount of memory used determines how big or
small a number that is stored can be. You’ll learn more about this in the following sec-
tions.

The sizeof keyword is not one that you will use very often; however, it is useful for illus-
trating the points in today’s lesson. The sizeof keyword taps into memory to determine
the size of the variable or data type. With C#, you avoid tapping directly into memory. In
Line 8, the extra keyword unsafe is added. If you don’t include the unsafe keyword, you
get an error when you compile this program. For now, understand that unsafe is added
because the sizeof keyword has the potential to work directly with memory.

The Integral Data Types

Until this point, you have been using one of the integral data types, int. Integral data
types store integers. Recall that an integer is basically any numeric value that does not
include a decimal or a fractional value. The numbers 1, 1,000, 56,000,000,000,000,

and -534 are integral values.

C# provides nine integral data types, including the following:

* Integers (int and uint)
e Shorts (short and ushort)

* Longs (1ong and ulong)

Understanding C# Programs 63 |

* Bytes (byte and sbyte)

¢ Characters (char)

Integers

As you saw in Listing 2.4, an integer is stored in 4 bytes of memory. This includes both
the int and uint data types. This data type cannot store just any number; it can store any
signed whole number that can be represented in 4 bytes or 32 bits—any number between
-2,147,483,648 and 2,147,483,647.

A variable of type int is signed, which means that it can be positive or negative.
Technically, 4 bytes can hold a number as big as 4,294,967,295; however, when you take
away one of the 32 bits to keep track of positive or negative, you can go only to
2,147,483,647. You can, however, also go to -2,147,483,648.

Nllll} As you learned earlier, information is stored in units called bytes. A byte is
actually composed of 8 bits. A bit is the most basic unit of storage in a com-
puter. A bit can have one of two values—0 or 1. Using bits and the binary

math system, you can store numbers in multiple bits. In Appendix C,
“Understanding Number Systems,” you can learn the details of binary math.

If you want to use a type int to go higher, you can make it unsigned. An unsigned num-
ber can be only positive. The benefit should be obvious. The uint data type declares an
unsigned integer. The result is that a uint can store a value from o to 4,294,967,295.

What happens if you try to store a number that is too big? What about storing a number
with a decimal point into an int or a uint? What happens if you try to store a negative
number into a uint? Listing 2.5 answers all three questions.

LisTING 2.5 int_conv.cs—Doing Bad Things

// int_conv.cs
// storing bad values. Program generates errors and won't compile.

using System;

class int_conv

{

public static void Main()
{

- 0 WO NOU A~ WN =

—_

int valt, val2; // declare two integers

Understanding C# Programs 65 |

the extra room, you’ll want to use ushort. The values that can be stored in a short are
from -32,768 to 32,767. If you use a ushort, you can store whole numbers from o to
65,535.

Longs

If int and uint are not big enough for what you want to store, you can use the 1ong data
type. As with short and int, there is also an unsigned version of the 1ong data type called
ulong. In the output from Listing 2.4, you can see that 1ong and ulong each use 8 bytes of
memory. This gives them the capability of storing very large numbers. A long can store
numbers from -9,223,372,036,854,775,808 t0 9,223,372,036,854,775,807. A ulong can
store a number from o to 18,446,744,073,709,551,615.

Bytes

As you have seen, you can store whole numbers in data types that take 2, 4, or 8 bytes of
memory. When your needs are very small, you can also store a whole number in a single
byte. To keep things simple, the data type that uses a single byte of memory for storage
is called a byte. As with the previous integers, there is both a signed version, sbyte, and
an unsigned version, byte. An sbyte can store a number from -128 to 127. An unsigned
byte can store a number from o to 25s.

[:ﬂllli[lll Unlike the other data types, it is byte and sbyte instead of byte and ubyte;
there is no such thing as a ubyte.

Characters

In addition to numbers, you will often want to store characters. Characters are letters,
such as A, B, or ¢, or even extended characters such as the smiley face. Additional charac-
ters that you might want to store are $, %, or *. You might even want to store foreign char-
acters.

A computer does not recognize characters; it can recognize only numbers. To get around
this, all characters are stored as numbers. To make sure that everyone uses the same val-
ues, a standard was created called Unicode. Within Unicode, each character and symbol
is represented by a single whole number. This is why the character data type is consid-
ered an integral type.

To know that numbers should be used as characters, you use the data type char. A char is
a number stored in 2 bytes of memory that is interpreted as a character. Listing 2.6 pre-
sents a program that uses char values.

|66 Day 2

LisTING 2.6 Chars.cs—Working with Characters

1: // Chars.cs

// A listing to print out a number of characters and their numbers
e

2

3

4:

5: using System;
6 .

7: class Chars
8

A
9: public static void Main()
10: {
11: int ctr;
12: char ch;
13:
14: Console.WriteLine("\nNumber Value\n");
15:
16: for(ctr = 63; ctr <= 94; ctr = ctr + 1)
17: {
18: ch = (char) ctr;
19: Console.WritelLine("{@} is {1}", ctr, ch);
20: }
21: }
22: '}
Number Value
63 is ?
64 is @
65 is A
66 is B
67 is C
68 is D
69 is E
70 is F
71 is G
72 is H
73 is I
74 is J
75 is K
76 is L
77 is M
78 is N
79 is O
80 is P
81 is Q
82 is R
83 is S
84 is T

Understanding C# Programs 67 |

85 is
86 is
87 is
88 is
89 is
90 is
91 is
92 is
93 is
94 is

> —— N <X X =< C

This listing displays a range of numeric values and their character equivalents.
Line 11 declares an integer called ctr. This variable is used to cycle through a
number of integers. Line 12 declares a character variable called ch. Line 14 prints head-
ings for the information that will be displayed.

Line 16 contains something new. For now, don’t worry about fully understanding this
line of code. On Day 4, you will learn all the glorious details. For now, know that this
line sets the value of ctr to 63. It then runs Lines 18—19 before adding 1 to the value of
ctr. It keeps doing this until ctr is no longer less than or equal to 94. The end result is
that Lines 1819 are run using the ctr with the value of 63, then 64, then 65, and on and
on until ctr is 94.

Line 18 sets the value of ctr (first 63) and places it into the character variable ch.
Because ctr is an integer, you have to tell the computer to convert the integer to a char-
acter, which the (char) statement does. You’ll learn more about this later.

Line 19 prints the values stored in ctr and ch. As you can see, the integer ctr prints as a
number. The value of ch, however, does not print as a number; it prints as a character. As
you can see from the output of this listing, the character A is represented by the value 65.
The value of 66 is the same as the character .

Character Literals

How can you assign a character to a char variable? You place the character between
single quotes. For example, to assign the letter a to the variable my_char, you use the fol-
lowing:

my_char = 'a';

In addition to assigning regular characters, you will most likely want to use several
extended characters. You have actually been using one extended character in a number of
your listings. The \n that you’ve been using in your listings is an extended character that
prints a newline character. Table 2.3 contains some of the most common characters you
might want to use. Listing 2.7 shows some of these special characters in action.

|68 Day 2

TABLE 2.3 Extended Characters

Characters Meaning

\b Backspace

\n Newline

\t Horizontal tab

\\ Backslash

\! Single quote

\" Double quote

mi;\ The extended characters in Table 2.3 are often called e.sca;.)e characters

because the slash “escapes” from the regular text and indicates that the fol-
lowing character is special (or extended).

LisTING 2.7 chars_table.cs—The Special Characters

1: // chars_table.cs
R R TR
3:

4: using System;

5:

6: class chars_table

7: |

8: public static void Main()

9: {

10: char ch1 = 'Z';

11: char ch2 = 'x';

12:

13: Console.WriteLine("This is the first line of text");

14: console.WriteLine("\n\n\nSkipped three lines");

15: Console.WritelLine("one\ttwo\tthree <-tabbed");

16: Console.WriteLine(" A quote: \' \ndouble quote: \"");
17: Console.WriteLine("\n ch1 = {0} ch2 = {1}", ch1, ch2);
18: }

19: 1}

This is the first line of text
OuTpPUT

Skipped three lines
one two three <-tabbed
A quote: '

Understanding C# Programs

double quote: "
chi =72 c¢ch2 = x

This listing illustrates two concepts. First, in Lines 10-11, you see how a charac-

ter can be assigned to a variable of type char. It is as simple as including the
character in single quotes. In Lines 13—17, you see how to use the extended characters.
There is nothing special about Line 13. Line 14 prints three newlines followed by some
text. Line 15 prints one, two, and three, separated by tabs. Line 16 displays a single quote
and a double quote. Notice that there are two double quotes in a row at the end of this
line. Finally, line 17 prints the values of ch1 and ch2.

Working with Floating-Point Values

Not all numbers are whole numbers. When you need to use numbers that have decimals,
you must use different data types. As with storing whole numbers, you can use different
data types, depending on the size of the numbers you are using and the amount of mem-
ory you want to use. The two primary types are float and double.

float

A float is a data type for storing numbers with decimal places. For example, in calculat-
ing the circumference or area of a circle, you often end up with a result that is not a
whole number. Any time you need to store a number such as 1.23 or 3.1459, you need a
nonintegral data type.

The float data type stores numbers in 4 bytes of memory. As such, it can store a number
. -45 38
from approximately 1.5 X 10 to 3.4 x 10 .

Nﬂtﬂ 10" is equivalent to 10 x 10, 37 times. The result is 1 folloz/sved by 38 zeros, or
100,000,000,000,000,000,000,000,000,000,000,000,000. 10 " is 10+10, 44
times. The result is 44 zeros between a decimal point and a 1, or
.001.

[‘:a““““ A float can retain only about seven digits of precision, which means that it
is not uncommon for a float to be off by a fraction. For example, subtract-
ing 9.90 from 10.00 might result in a number different from .10; it might

result in a number closer to .099999999. Generally, such rounding errors are
not noticeable.

| 70 Day 2

double

Variables of type double are stored in 8 bytes of memory. This means that they can be
much bigger than a float. A double can generally be from 5.0 x 10" to 1.7x10™. The
precision of a double is generally from 15 to 16 digits.

Nlltﬂ C# supports the 4-byte precision (32 bits) and 8-byte precision (64 bits) of
the IEEE 754 format, so certain mathematical functions return specific val-
ues. If you divide a number by 0, the result is infinity (either positive or neg-

ative). If you divide 0 by 0, you get a Not-a-Number value. Finally, 0 can be
both positive and negative. For more on this, check your C# documentation.

Gaining Precision with Decimal

C# provides another data type that can be used to store special decimal numbers: the
decimal data type. This data type was created for storing numbers with greater precision.
When you store numbers in a float or a double, you can get rounding errors. For exam-
ple, storing the result of subtracting 9.90 from 10.00 in a double could result in the string
0.099999999999999645 instead of .10. If this math is done with decimal values, the .10 is

stored.
“l] If you are calculating monetary values or doing financial calculations in
which precision is important, you should use a decimal instead of a float or
a double.

A decimal number uses 16 bytes to store numbers. Unlike the other data types, there is no
. . . -28
unsigned version of decimal. A decimal variable can store a number from 1.0 X 10 to
. 28
approximately 7.9 x 10 . It can do this while maintaining precision to 28 places.

Storing Boolean Values

The last of the simple data types is the Boolean. Sometimes you need to know whether
something is on or off, true or false, or yes or no. Boolean numbers are generally set to
one of two values: o or 1.

C# has a Boolean data type called a bool. As you can see in Listing 2.4, a bool is stored
in 1 byte of memory. The value of a bool is either true or false, which are C# keywords.
This means that you can actually store true and false in a data type of bool.

Understanding C# Programs 71 |

[‘: t' Yes, no, on, and off are not keywords in C#. This means that you cannot set
duton :
a Boolean variable to these values. Instead, you must use true or false.

Working Checked Versus Unchecked Code

Earlier in today’s lesson, you learned that if you put a number that is too big into a vari-

able, an error is produced. Sometimes you do not want an error produced. In those cases,
you can have the compiler avoid checking the code. This is done with the unchecked key-
word, as illustrated in Listing 2.8.

LisTING 2.8 Unchecked.cs—Marking Code as Unchecked

1: // Unchecked.cs

N
3:

4: using System;

5:

6: class Unchecked

7: |

8: public static void Main()

9: {

10: int vall = 2147483647,

11: int val2;

12:

13: unchecked

14: {

15: val2 = valtl + 1;

16: }

17:

18: Console.WriteLine("valil is {@}", vall);
19: console.WriteLine("val2 is {0}", val2);
20: }
21: }

vall is 2147483647
val2 is -2147483648
This listing uses unchecked in Line 13. The brackets in Line 14 and 16 enclose
the area to be unchecked. When you compile this listing, you do not get any
errors. When you run the listing, you get what might seem like a weird result. The num-
ber 2,147,483,647 is the largest number that a signed int variable can hold. As you see in
Line 10, this maximum value has been assigned to var1. In Line 15, the unchecked line, 1
is added to what is already the largest value var1 can hold. Because this line is

|72

Day 2

unchecked, the program continues to operate. The result is that the value stored in var1
rolls to the most negative number.

This operation is similar to the way an odometer works in a car. When the mileage gets
to the maximum, such as 999,999, adding 1 more mile (or kilometer) sets the odometer
to 000,000. It isn’t a new car with no miles; it is simply a car that no longer has a valid
value on its odometer. Rather than rolling to 0, a variable rolls to the lowest value it can
store. In this listing, that value is -2,147,483,648.

Change Line 13 to the following, and recompile and run the listing:
13: checked

The program compiled, but will it run? Executing the program causes an error. If you are
asked to run your debugger, you’ll want to say no. The error that you get will be similar
to the following:

Exception occurred: System.OverflowException: An exception of type

System.OverflowException was thrown.
at Unchecked.Main()

On later days, you’ll see how to deal with this error in your program. For now, you
should keep in mind that if you believe there is a chance of putting an invalid value into
a variable, you should force checking to occur. You should not use the unchecked keyword
as a means of simply avoiding an error.

Data Types Simpler Than .NET

The C# data types covered so far are considered simple data types. The simple data types
are sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, bool, and decimal
In yesterday’s lesson, you learned that C# programs execute on the Common Language
Runtime (CLR). Each of these data types corresponds directly to a data type that the
CLR uses. Each of these types is considered simple because there is a direct relationship
with the types available in the CLR and, thus, in the .NET Framework. Table 2.4 presents
the .NET equivalent of the C# data types.

TaBLE 2.4 C# and .NET Data Types

C# Data Type .NET Data Type
sbyte System.SByte
byte System.Byte
short System.Int16
ushort System.UInt16

int System.Int32

Understanding C# Programs 73 |

TABLE 2.4 continued

C# Data Type .NET Data Type
uint System.UInt32
long System.Int64
ulong System.UInt64
char System.Char
float System.Single
double System.Double
bool System.Boolean
decimal System.Decimal

If you want to declare an integer using the .NET equivalent declaration—even though
there is no good reason to do so—you use the following:

System.Int32 my_variable = 5;

As you can see, System.Int32 is much more complicated than simply using int. Listing
2.9 shows the use of the .NET data types.

LISTING 2.9 net_vars.cs—Using the .NET Data Types

1: // net_vars

2: // Using a .NET data declaration

K
4:

5: using System;

6:

7: class net_vars

8: {

9: public static void Main()

10: {

11: System.Int32 my_variable = 4;

12: System.Double PI = 3.1459;

13:

14: Console.WritelLine("\nmy_variable is {@}", my_variable);
15: Console.WriteLine("\nPI is {0}", PI);
16: }

17: }

my_variable is 4
Output

PI is 3. 1459

Understanding C# Programs 75 |

This is a tough one. If you guessed int, you are wrong. Because there is a decimal
included with the 100, it iS a double.

Understanding the Integer Literal Defaults

When you use an integer value, it is actually put into an int, uint, long, Or ulong, depend-
ing on its size. If it will fit in an int or a uint, it will be. If not, it will be put into a long
or a ulong. If you want to specify the data type of the literal, you can use a suffix on the
literal. For example, to use the number 10 as a literal 1ong value (signed or unsigned),
you write it like the following:

10L;

You can make an unsigned value by using a u or a u. If you want an unsigned literal 1ong
value, you can combine the two suffixes: ul.

Nﬂtﬂ The Microsoft C# compiler gives you a warning if you use a lowercase / to
declare a long value literal. The compiler provides this warning to make you

aware that it is easy to mistake a lowercase / with the number 1.

Understanding Floating-Point Literal Defaults

As stated earlier, by default, a decimal value literal is a double. To declare a literal that is
of type float, you include f or F after the number. For example, to assign the number 4.4
to a float variable, my_float, you use the following:

my float = 4.4f;

To declare a literal of type decimal, you use a suffix of m or m. For example, the following
line declares my_decimal to be equal to the decimal number 1.32.

my_decimal = 1.32m;

Working with Boolean Literals (true and false)

We have already covered Boolean literals. The values true and false are literal. They
also happen to be keywords.

Understanding String Literals

When you put characters together, they make words, phrases, and sentences. In program-
ming parlance, a group of characters is called a string. A string can be identified because
it is contained within a set of double quotes. For example, the Console.WriteLine routine

|76

Day 2

uses a string. A string literal is any set of characters between double quotes. The follow-
ing are examples of strings:

"Hello, World!"
"1234567890"

Because the numbers are between quotation marks, the last example is treated as a string
literal rather than as a numeric literal.

N[llﬂ You can use any of the special characters from Table 2.3 inside a string.

Creating Constants

In addition to using literals, sometimes you want to put a value in a variable and freeze
it. For example, if you declare a variable called P1 and you set it to 3.14159, you want it
to stay 3.14159. There is no reason to ever change it. Additionally, you want to prevent
people from changing it.

To declare a variable to hold a constant value, you use the const keyword. For example,
to declare P1 as stated, you use the following:

const float PI = 3.1459;

You can use PI in a program; however, you will never be able to change its value. The
const keyword freezes its contents. You can use the const keyword on any variable of any
data type.

“[l To help make it easy to identify constants, you can enter their names in all
capital letters.

A Peek at Reference Types

To this point, you have seen a number of different data types. C# offers two primary
ways of storing information: by value (byval) and by reference (byref). The basic data
types that you have learned about store information by value.

When a variable stores information by value, the variable contains the actual information.
For example, when you store 123 in an integer variable called x, the value of x is 123. The
variable x actually contains the value 123.

Understanding C# Programs 77 |

value.

FIGURE 2.2 /‘\
By reference versus by % ¢

Storing information by reference is a little more complicated. If a variable stores by ref-
erence rather than storing the information in itself, it stores the location of the informa-
tion. In other words, it stores a reference to the information. For example, if x is a “by
reference” variable, it contains information on where the value 123 is located; it does not
store the value 123. Figure 2.2 illustrates the difference.

L {
% / 123 % } Memory
/ / / /

- —~

X_byref X_byval

The data types used by C# that store by reference are listed here:

¢ Classes
* Strings
* Interfaces
e Arrays
* Delegates

Each of these data types is covered in detail throughout the rest of this book.

Summary

Today’s lesson was the longest in the book. It builds some of the foundation that will be
used to teach you C#. Today you started by learning about some of the basic parts of a
C# application. You learned that comments help make your programs easier to under-
stand.

In addition, you learned about the basic parts of a C# application, including whitespace,
C# keywords, literals, and identifiers. Looking at an application, you saw how these parts
are combined to create a complete listing. This included seeing a special identifier used
as a starting point in an application: Main().

After you examined a listing, you dug into storing basic information in a C# application
using variables. You learned how the computer stores information. You focused on the
data types that store data by value, including int, uint, long, ulong, bool, char, short,
ushort, float, double, decimal, byte, and ubyte. In addition to learning about the data
types, you learned how to name and create variables. You also learned the basics of

| 78 Day 2

setting values in these variables, including the use of literals. Table 2.5 lists the data
types and information about them.

TABLE 2.5 C# Data Types

C# Data NET Data Size Low High

Type Type in Bytes Value Value

sbyte System.Sbyte 1 -128 127

byte System.Byte 1 0 255

short System.Int16 2 -32,768 32,767

ushort System.UInt1i6 2 0 65,535

int System.Int32 4 -2,147,483,648 2,147,483,647

uint System.UInt32 4 0 4,294,967,295

long System.Int64 8 -9,223,372,036, 9,223,372,036,854,775,807
854,775,808

ulong System.UInte4 8 0 18,446,744,073,709,551,615

char System.Char 2 0 65,535

float System.Single 4 1.5x10 " 3.4x10"

double System.Double 8 5.0x10 " 1.7x1010™

bool System.Boolean 1 false (0) true (1)

decimal System.Decimal 16 1.0x10" approx. 7.9x10”

Q&A

Q Why shouldn’t all numbers be declared as the larger data types instead of the
smaller data types?

A Although it might seem logical to use the larger data types, this would not be effi-
cient. You should not use any more system resources (memory) than you need.

=)

What happens if you assign a negative number to an unsigned variable?

A The compiler returns an error saying that you can’t assign a negative number to an
unsigned variable if you do this with a literal. If you do a calculation that causes an
unsigned variable to go below o, you get erroneous data. On later days, you will
learn how to check for these erroneous values.

Q A decimal value is more precise than a float or a double value. What happens
with rounding when you convert from these different data types?

Understanding C# Programs

79|

A When converting from a float, double, Oor decimal to one of the whole-number vari-

able types, the value is rounded. If a number is too big to fit into the variable, an
€ITor OCCUrs.

When a double is converted to a float that is too big or too small, the value is rep-
resented as infinity or e, respectively.

When a value is converted from a float or a double to a decimal, the value is
rounded. This rounding occurs after 28 decimal places and occurs only if neces-
sary. If the value being converted is too small to be represented as a decimal, the
new value is set to e. If the value is too large to store in the decimal, an error
occurs.

For conversions from decimal to float or double, the value is rounded to the nearest
value that the float or double can hold. Remember, a decimal has better precision
than a float or a double. This precision is lost in the conversion.

What other languages adhere to the Common Type System (CTS) in the
Common Language Runtime (CLR)?

Microsoft Visual Basic .NET (Version 7) and Microsoft Visual C++ .NET (Version
7) both support the CTS. Additionally, versions of a number of other languages are
ported to the CTS. These include Python, COBOL, Perl, Java, and more. Check out
the Microsoft Web site for additional languages.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to understand the quiz and exercise answers before continuing to the next
day’s lesson. Answers are provided on the CD.

Quiz

1.

What three types of comments can you use in a C# program and how is each of the
three types of comments entered into a C# program?

What impact does whitespace have on a C# program?

3. Which of the following are C# keywords?

field, cast, as, object, throw, baseball, catch, football, fumble, basketball
What is a literal?

5. What by value data types are available in C#?

What is the difference between a signed variable and an unsigned variable?

|80

Day 2

7. What is the smallest data type that you can use to store the number 55?

8. What is the biggest number that a type short variable can hold?

9. What numeric value is the character B?

10. Name three of the reference data types.

11. Which floating-point data type has the best precision?

12. What .NET data type is equivalent to the C# int data type?

Exercises

1. Enter, compile, and run the following program. What does it do?

1:

9:
10:
11:
12:
13:
14:
15:

0N O WN

// Ex0201.cs - Exercise 1 for Day 2

A
class Ex0201
{
public static void Main()
{
int ctr;
for(ctr = 1; ctr <= 10; ctr++)
{
System.Console.Write("{0:D3} ", ctr);
}
}
I3

2. Bug Buster: The following program has a problem. Enter it in your editor and
compile it. Which lines generate error messages?

—_

—_

S ©Wo~NOOU~WN

// Bugbust.cs

I
class Bugbust
{
public static void Main()
{
System.Console.WriteLine("\nA fun number is {1}", 123);
}
}

3. Change the range of values in Listing 2.6 to print the lowercase letters.

4. Write the line of code that declares a variable named xyz of type float, and assign
the value of 123.456 to it.

Understanding C# Programs 81 |

5. Which of the following variable names are valid?
a. X
b. pI
C. 12months
d. sizeof
€. nine

6. Bug Buster: The following program has a problem. Enter it in your editor and
compile it. Which lines generate error messages?
1: //BugBuster

using System;

2
3
4.
5: class BugBuster
6
7
8

{
public static void Main()

: {
9: double my_double;
10: decimal my_decimal;
11:
12: my_double = 3.14;
13: my_decimal = 3.14;
14:
15: Console.WriteLine("\nMy Double: {0}", my_double);
16: Console.WriteLine("\nMy Decimal: {@}", my_decimal);
17:
18: }
19: 1}

7. On Your Own: Write a program that declares two variables of each data type and
assigns the values 10 and 1.879 to each variable.

WEEK 1

DAY 3

Manipulating Values in
Your Programs

Now that you know how to store information in variables, you’ll want to do
something with that information. Most likely, you’ll want to manipulate it by
making changes to it. For example, you might want to use the radius of a circle
to find the area of the circle. Today you...

Learn two ways of displaying basic information.

Discover the types and categories of operators available in C#.
Manipulate information using the different operators.

Change program flow using the if command.

Understand which operators have precedence over others.
Investigate variable and value conversions.

Explore bitwise operations—if you’re brave enough.

Manipulating Values in Your Programs 85 |

Notice that each word is on a separate line. If you execute the two lines using the write()
routine instead, you get the results you want:

Hello World!

As you can see, the difference between the two routines is that writeLine() automatically
goes to a new line after the text is displayed, whereas write() does not.

Displaying Additional Information

In addition to printing text between quotation marks, you can pass values to be printed
within the text. Consider the following example:

int nbr = 456;
System.Console.WriteLine("The following is a number: {0}", nbr);

This prints the following line:
The following is a number: 456

As you can see, the {0} gets replaced with the value that follows the quoted text. In this
case, the value is that of a variable, nbr, which equals 456. The format is as shown here:

System.Console.WriteLine("Text", value);

Text is almost any text that you want to display. The {e} is a placeholder for a value. The
brackets indicate that this is a placeholder. The o is an indicator for using the first item
following the quotation marks. A comma separates the text from the value to be placed in
the placeholder.

You can have more than one placeholder in a printout. Each placeholder is given the next
sequential number:

System.Console.Write("Value 1 is {0} and value 2 is {1}", 123, "Brad");
This prints the following line:
Value 1 is 123 and value 2 is Brad

Listing 3.1 presents System.Console.Write and System.Console.WriteLine in action.

LisTING 3.1 Display.cs—Using WriteLine() and write()

: // Display.cs - printing with WritelLine and Write

1
2

3:

4: class Display
5: {

6

public static void Main()

86 Day 3

LisTiING 3.1 continued

7: {

8:

9: int iNbr = 321;

10: double dNbr = 123.45;

11:

12: System.Console.WriteLine("First WritelLine Line");

13: System.Console.WriteLine("Second WriteLine Line");

14:

15: System.Console.Write("First Write Line");

16: System.Console.Write("Second Write Line");

17:

18: // Passing literal parameters

19: System.Console.WriteLine("\nWriteLine: Parameter = {0}", 123);
20: System.Console.Write("Write: Parameter = {0}", 456);

21:

22: // Passing variables

23: System.Console.WriteLine("\nWritelLine: valil = {0} val2 = {1}",
24: iNbr, dNbr);

25: System.Console.Write("Write: vall = {@} val2 = {1}", iNbr, dNbr);
26: }

27: }

Remember that to compile this listing from the command line, you enter the following:
csc Display.cs

If you are using an integrated development tool, you can select the Compile option.

First WritelLine Line

Second WriteLine Line
First Write LineSecond Write Line
WriteLine: Parameter = 123
Write: Parameter = 456
WriteLine: vall = 321 val2 = 123.45
Write: vall = 321 val2 = 123.45

This listing defines two variables that will be printed later in the listing. Line 9
ANALYSIS . . oo
declares an integer and assigns the value 321 to it. Line 10 defines a double and
assigns the value 123.45.

Lines 12—13 print two pieces of text using System.Console.WriteLine(). You can see from
the output that each of these prints on a separate line. Lines 15—-16 show the
System.Console.Write() routine. These two lines print on the same line. There is no return
linefeed after printing. Lines 19-20 show each of these routines with the use of a para-
meter. Lines 23 and 25 also show these routines printing multiple values from variables.

You will learn more about using these routines throughout this book.

Manipulating Values in Your Programs 87 |

- The first placeholder is numbered 0, not 1.
Gaution

Manipulating Variable Values with Operators

Now that you understand how to display the values of variables, it is time to focus on
manipulating the values in the variables. Operators are used to manipulate information.
You have used a number of operators in the programming examples up to this point.
Operators are used for addition, multiplication, comparison, and more.

Operators can be broken into a number of categories:

* The basic assignment operator

* Mathematical/arithmetic operators

» Relational operators

* The conditional operator

* Other operators (type, size)
Each of these categories and the operators within them are covered in detail in the fol-
lowing sections. In addition to these categories, it is important to understand the structure
of operator statements. Three types of operator structures exist:

e Unary

* Binary

e Ternary

Unary Operator Types

Unary operators are operators that impact a single variable. For example, to have a nega-
tive 1, you type this:

-1
If you have a variable called x, you change the value to a negative by using this line:
-X

The negative requires only one variable, so it is unary. The format of a unary variable is
one of the following, depending on the specific operator:

[operator][variable]

|88

Day 3

or

[variable][operator]

Binary Operator Types

Whereas unary operator types use only one variable, binary operator types work with two
variables. For example, the addition operator is used to add two values. The format of the
binary operator types is as follows:

[variablel][operator][variable2]

Examples of binary operations in action are shown here:
5+ 4

3 -2

100.4 - 92348.67

You will find that most of the operators fall into the binary operator type.

Ternary Operator Types

Ternary operators are the most complex operator type to work with. As the name implies,
this type of operator works on three variables. C# has only one true ternary operator, the

conditional operator. You will learn about it later today. For now, know that ternary oper-
ators work with three variables.

Understanding Punctuators

Before jumping into the different categories and specific operators within C#, it is impor-
tant to understand about punctuators. Punctuators are a special form of operator that
helps you format your code, do multiple operations at once, and simply signal informa-
tion to the compiler. The punctuators that you need to know about are listed here:

* Semicolon—The primary use of the semicolon is to end each C# statement. A
semicolon is also used with a couple of the C# statements that control program
flow. You will learn about the use of the semicolon with the control statements on
Day 4, “Controlling Your Program’s Flow.”

* Comma—The comma is used to stack multiple commands on the same line. You
saw the comma in use on Day 2, “Understanding C# Programs,” in a number of the
examples. The most common time to use the comma is when declaring multiple
variables of the same type:

int vari, var2, var3;

Manipulating Values in Your Programs 89 |

* Parentheses, ()—Parentheses are used in multiple places. You will see later in
today’s lesson that you can use parentheses to force the order in which your code
will execute. Additionally, parentheses are used with functions.

* Braces, {}—Braces are used to group pieces of code. You have seen braces used to
encompass classes in many of the examples. You also should have noticed that
braces are always used in pairs.

Punctuators work the same way punctuation within a sentence works. For example, you
end a sentence with a period or another form of punctuation. In C#, you end a “line” of
code with a semicolon or other punctuator. The word line is in quotation marks because a
line of code might actually take up multiple lines in a source listing. As you learned on
Day 2, whitespace and new lines are ignored.

Nﬂtﬂ You can also use braces within the routines that you create to block off
code. The code put between two braces, along with the braces, is called a
block.

Moving Values with the Assignment
Operator

It is now time to learn about the specific operators available in C#. The first operator that
you need to know about is the basic assignment operator, which is an equals sign (=).
You’ve seen this operator already in a number of the examples in earlier lessons.

The basic assignment operator is used to assign values. For example, to assign the value
142 to the variable x, you type this:

X = 142;

This compiler places the value that is on the right side of the assignment operator in the
variable on the left side. Consider the following:

X =y = 123;

This might look a little weird; however, it is legal C# code. The value on the right of the
equals sign is evaluated. In this case, the far right is 123, which is placed in the variable

y. Then the value of y is placed in the variable x. The end result is that both x and y
equal 123.

|90

Day 3

ﬂﬂlllil]ll You cannot do operations on the left side of an assignment operator. For
example, you can’t do this:

1T+x=y;
Nor can you put literals or constants on the left side of an assignment
operator.

Working with Mathematical/Arithmetic
Operators

Among the most commonly used operators are the mathematical operators. All the basic
math functions are available within C#, including addition, subtraction, multiplication,
division, and modulus (remaindering). Additionally, compound operators make doing
some of these operations more concise.

Adding and Subtracting

For addition and subtraction, you use the additive operators. As you should expect, for
addition, the plus operator (+) is used. For subtraction, the minus (-) operator is used.
The general format of using these variables is as follows:

NewvVal = Valuel + Value2;
NewvVal2 = Valuel - Value2;

In the first statement, value2 is being added to valuet and the result is placed in Newval.
When this command is done, valuet and value2 remain unchanged. Any pre-existing val-
ues in Newval are overwritten with the result.

For the subtraction statement, value2 is subtracted from valuet and the result is placed in
Newval2. Again, valuetl and value2 remain unchanged, and the value in Newval2 is over-
written with the result.

valuet and value2 can be any of the value data types, constants, or literals. You should
note that Newval must be a variable; however, it can be the same variable as valuet or
value2. For example, the following is legal as long as variablet is a variable:

Variable1l = Variableil - Variable2;

In this example, the value in variable2 is subtracted from the value in variablei. The
result is placed into variable1, thus overwriting the previous value that variablet held.
The following example is also valid:

Manipulating Values in Your Programs 91 |

Variablel = Variablel - Variableil;

In this example, the value of variable1 is subtracted from the value of variablet. Because
these values are the same, the result is e. This o value is then placed into variable1, over-
writing any previous value.

If you want to double a value, you enter the following:
Variableil = Variablel + Variablef;
variablei is added to itself, and the result is placed back into variablet. The end result is

that you double the value in variablet.

Doing Multiplicative Operations

An easier way to double the value of a variable is to multiply it by two. Three multiplica-
tive operators commonly are used in C#:

* For multiplication, the multiplier (or times) operator, which is an asterisk (*)

» For division, the divisor operator, which is a forward slash (/)

* For obtaining remainders, the remaindering (also called modulus) operator, which
is the percentage sign (%)

Multiplication and division are done in the same manner as addition and subtraction. To
multiply two values, you use the following format:

NewVal = Valuel * Value2;

For example, to double the value in val1 and place it back into itself (as seen with the
last addition example), you can enter the following:

Vali = valtl * 2;

This is the same as this line:

vall = 2 * valt;

Again, division is done the same way:
NewVal = Valuel / Value2;

This example divides valuet by value2 and places the result in Newval. To divide 2 by 3,
you write the following:

answer = 2 / 3;

Sometimes when doing division, you want only the remainder. For example, I know that
3 will go into 4 one time; however, I also would like to know that I have 1 remaining.

|92

Day 3

You can get this remainder using the remaindering (also called modulus) operator, which
is the percentage sign (%). For example, to get the remainder of 4 divided by 3, you enter
this:

Val = 4 % 3;
The result is that val is 1.

Consider another example that is near and dear to my heart. You have three pies that can
be cut into six pieces. If 13 people each want a piece of pie, how many pieces of pie are
left over for you?

To solve this, take a look at Listing 3.2.

LiSTING 3.2 Pie.cs—Number of Pieces of Pie for Me

1: // Pie.cs - Using the modulus operators

N N R R LR E R R R R

3: class Pie

4: {

5: public static void Main()

6: {

7: int PiecesForMe = 0;

8: int PiecesOfPie = 0;

9:

10: PiecesOfPie = 3 * 6;

11:

12: PiecesForMe = PiecesOfPie % 13;

13:

14: System.Console.WriteLine("Pieces Of Pie = {0}", PiecesOfPie);
15: System.Console.WriteLine("Pieces For Me = {0}", PiecesForMe);
16: }

17: }

Pieces Of Pie = 18
Output Pieces For Me 5

Listing 3.2 presents the use of the multiplication and modulus operators. Line 10

illustrates the multiplication operator, which is used to determine how many
pieces of pie there are. In this case, there are six pieces in three pies (so, 6 X 3). Line 12
then uses the modulus operator to determine how many pieces are left for you. As you
can see from the information printed in Lines 14—15, there are 18 pieces of pie, and 5
will be left for you.

Manipulating Values in Your Programs 93 |

Working with the Compound Arithmetic Assignment
Operators

You’ve learned about the basic assignment operator; however, there are also other assign-
ment operators—the compound assignment operators (see Table 3.1).

TaBLE 3.1 Compound Arithmetic Assignment Operators

Operator Description Noncompound Equivalent
+= X += 4 X =X+ 4
-= X -= 4 X =X - 4
*= X *= 4 X =x * 4
/= X /= 4 X =X/ 4
%= X %= 4 X =X % 4

The compound operators provide a concise method for performing a math operation and
assigning it to a value. For example, if you want to increase a value by 5, you use the fol-
lowing:

X = X + 5;
Or, you can use the compound operator:
X += 5;

As you can see, the compound operator is much more concise.

'I'il] Although the compound operators are more concise, they are not always
the easiest to understand in code. If you use the compound operators, make
sure that what you are doing is clear, or remember to comment your code.

Doing Unary Math

All the arithmetic operators that you have seen so far have been binary. Each has
required two values to operate. A number of unary operators also work with just one
value or variable. The unary arithmetic operators include the increment operator (++) and
the decrement operator (--).

These operators add 1 to the value or subtract 1 from the value of a variable. The follow-
ing example adds 1 to x:

+4X

Manipulating Values in Your Programs 95 |

LisTING 3.3 Prepost.cs—Using the Increment and Decrement Unary Operators

1: // Prepost.cs - Using pre- versus post-increment operators
P S R TR PR R
3:
4: class Prepost
5: {
6: public static void Main()
7: {
8: int Vall = 0;
9: int Val2 = 0;
10:
11: System.Console.WriteLine("vall = {0} Val2 = {1}", Vall, Val2);
12:
13: System.Console.WriteLine("Vall (Pre) = {0} Val2 = (Post) {1}",
14: ++Vall, Val2++);
15:
16: System.Console.WriteLine("Vall (Pre) = {0} Val2 = (Post) {1}",
17: ++Vall, Val2++);
18:
19: System.Console.WriteLine("Vall (Pre) = {0} Val2 = (Post) {1}",
20: ++Vall, Val2++);
21: }
22: }
Valt = @ Val2 =0
OIUNN .11 (pre) - 1 val2 = (Post) 0
Vali (Pre) = 2 Val2 = (Post) 1
(Pre) = 3 Val2 = (Post) 2

Vali

ANALYSIS

It is important to understand what is happening in Listing 3.3. In Lines 8-9, two

variables are again being initialized to e. These values are printed in Line 11. As
you can see from the output, the result is that val1 and val2 equal e. Line 13, which con-
tinues to Line 14, prints the values of these two variables again. The values printed,
though, are ++val1 and val2++. As you can see, the pre-increment operator is being used
on valt, and the post-increment operator is being used on va12. The results can be seen in
the output. Vall is incremented by 1 and then printed. val2 is printed and then incre-
mented by 1. Lines 16 and 19 repeat these same operations two more times.

Do Don'T
Do use the compound operators to make Don't confuse the post-increment and

your math routines concise.

pre-increment operators. Remember that
the pre-increment adds before the vari-
able, and the post-increment adds after
it.

196 Day 3

Making Comparisons with Relational
Operators

Questions are a part of life. In addition to asking questions, it is often important to com-
pare things. In programming, you compare values and then execute code based on the
answer. The relational operators are used to compare two values. The relational opera-
tors are listed in Table 3.2.

TaBLE 3.2 Relational Operators

Operator Description

> Greater than

< Less than

== Equal to

1= Not equal to

>= Greater than or equal to
<= Less than or equal to

When making comparisons with relational operators, you get one of two results: true or
false. Consider the following comparisons made with the relational operators:

5 < 10 5 is less than 10, so this is true.

5> 10 5 is not greater than 1e, so this is false.
5 == 10 5 does not equal 1o, so this is false.

5 1= 10 5 does not equal 10, so this is true.

As you can see, each of these results is either true or false. Knowing that you can check
the relationship of values should be great for programming. The question is, how do you
use these relations?

Using the if Statement

The value of relational operators is that they can be used to make decisions to change the
flow of the execution of your program. The if keyword can be used with the relational
operators to change the program flow.

The if keyword is used to compare two values. The standard format of the if command
is as follows:

if(vall [operator] val2)
statement(s);

Manipulating Values in Your Programs 97 |

operator is one of the relational operators; val1 and val2 are variables, constants, or liter-
als; and statement(s) is a single statement or a block containing multiple statements.
Remember that a block is one or more statements between brackets.

If the comparison of valt to val2 is true, the statements are executed. If the comparison
of vali to val2 is false, the statements are skipped. Figure 3.1 illustrates how the if com-
mand works.

FIGURE 3.1

The if command.

true
Statement(s)

false

Applying this to an example helps make this clear. Listing 3.4 presents simple usage of
the if command.

LisTiING 3.4 iftest.cs—Using the if Command

1: // iftest.cs- The if statement

L e

3:

4: class iftest

5: {

6: public static void Main()

7: {

8: int vall = 1;

9: int Val2 = 0;

10:

11: System.Console.WriteLine("Getting ready to do the if...");
12:

13: if (valt == Val2)

14: {

15: System.Console.WriteLine("If condition was true");
16: }

17: System.Console.WriteLine("Done with the if statement");
18: }

19: }

Getting ready to do the if...
(OJV Il Done with the if statement

98 Day 3

This listing uses the if statement in Line 13 to compare two values to see
NALYSIS whether they are equal. If they are, it prints Line 15. If not, it skips Line 15.
Because the values assigned to vali and val2 in Lines 8-9 are not equal, the if c