Mathematica[®] for Theoretical Physics

Classical Mechanics and Nonlinear Dynamics

Second Edition

Gerd Baumann

Gerd Baumann Department of Mathematics German University in Cairo GUC New Cairo City Main Entrance of Al Tagamoa Al Khames Egypt Gerd.Baumann@GUC.edu.eg

This is a translated, expanded, and updated version of the original German version of the work "*Mathematica*[®] in der Theoretischen Physik," published by Springer-Verlag Heidelberg, 1993 ©.

Library of Congress Cataloging-in-Publication Data Baumann, Gerd. [Mathematica in der theoretischen Physik. English] Mathematica for theoretical physics / by Gerd Baumann.-2nd ed. p. cm. Includes bibliographical references and index. Contents: 1. Classical mechanics and nonlinear dynamics — 2. Electrodynamics, quantum mechanics, general relativity, and fractals. ISBN 0-387-01674-0 1. Mathematical physics—Data processing. 2. Mathematica (Computer file) I. Title. QC20.7.E4B3813 2004 530'.285'53—dc22 2004046861 ISBN-10: 0-387-01674-0 e-ISBN 0-387-25113-8 Printed on acid-free paper.

© 2005 Springer Science+Business Media, Inc.

ISBN-13: 978-0387-01674-0

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Mathematica, MathLink, and Math Source are registered trademarks of Wolfram Research, Inc.

Printed in the United States of America. (HAM)

987654321

springeronline.com

To Carin, for her love, support, and encuragement.

Preface

As physicists, mathematicians or engineers, we are all involved with mathematical calculations in our everyday work. Most of the laborious, complicated, and time-consuming calculations have to be done over and over again if we want to check the validity of our assumptions and derive new phenomena from changing models. Even in the age of computers, we often use paper and pencil to do our calculations. However, computer programs like *Mathematica* have revolutionized our working methods. *Mathematica* not only supports popular numerical calculations but also enables us to do exact analytical calculations by computer. Once we know the analytical representations of physical phenomena, we are able to use *Mathematica* to create graphical representations of these relations. Days of calculations by hand have shrunk to minutes by using *Mathematica*. Results can be verified within a few seconds, a task that took hours if not days in the past.

The present text uses *Mathematica* as a tool to discuss and to solve examples from physics. The intention of this book is to demonstrate the usefulness of *Mathematica* in everyday applications. We will not give a complete description of its syntax but demonstrate by examples the use of its language. In particular, we show how this modern tool is used to solve classical problems.

This second edition of *Mathematica in Theoretical Physics* seeks to prevent the objectives and emphasis of the previous edition. It is extended to include a full course in classical mechanics, new examples in quantum mechanics, and measurement methods for fractals. In addition, there is an extension of the fractal's chapter by a fractional calculus. The additional material and examples enlarged the text so much that we decided to divide the book in two volumes. The first volume covers classical mechanics and nonlinear dynamics. The second volume starts with electrodynamics, adds quantum mechanics and general relativity, and ends with fractals. Because of the inclusion of new materials, it was necessary to restructure the text. The main differences are concerned with the chapter on nonlinear dynamics. This chapter discusses mainly classical field theory and, thus, it was appropriate to locate it in line with the classical mechanics chapter.

The text contains a large number of examples that are solvable using Mathematica. The defined functions and packages are available on CD accompanying each of the two volumes. The names of the files on the CD carry the names of their respective chapters. Chapter 1 comments on the basic properties of Mathematica using examples from different fields of physics. Chapter 2 demonstrates the use of Mathematica in a step-by-step procedure applied to mechanical problems. Chapter 2 contains a one-term lecture in mechanics. It starts with the basic definitions, goes on with Newton's mechanics, discusses the Lagrange and Hamilton representation of mechanics, and ends with the rigid body motion. We show how Mathematica is used to simplify our work and to support and derive solutions for specific problems. In Chapter 3, we examine nonlinear phenomena of the Korteweg-de Vries equation. We demonstrate that *Mathematica* is an appropriate tool to derive numerical and analytical solutions even for nonlinear equations of motion. The second volume starts with Chapter 4, discussing problems of electrostatics and the motion of ions in an electromagnetic field. We further introduce Mathematica functions that are closely related to the theoretical considerations of the selected problems. In Chapter 5, we discuss problems of quantum mechanics. We examine the dynamics of a free particle by the example of the time-dependent Schrödinger equation and study one-dimensional eigenvalue problems using the analytic and

numeric capabilities of *Mathematica*. Problems of general relativity are discussed in Chapter 6. Most standard books on Einstein's theory discuss the phenomena of general relativity by using approximations. With *Mathematica*, general relativity effects like the shift of the perihelion can be tracked with precision. Finally, the last chapter, Chapter 7, uses computer algebra to represent fractals and gives an introduction to the spatial renormalization theory. In addition, we present the basics of fractional calculus approaching fractals from the analytic side. This approach is supported by a package, FractionalCalculus, which is not included in this project. The package is available by request from the author. Exercises with which *Mathematica* can be used for modified applications. Chapters 2–7 include at the end some exercises allowing the reader to carry out his own experiments with the book.

Acknowledgments Since the first printing of this text, many people made valuable contributions and gave excellent input. Because the number of responses are so numerous, I give my thanks to all who contributed by remarks and enhancements to the text. Concerning the historical pictures used in the text, I acknowledge the support of the http://www-gapdcs.st-and.ac.uk/~history/ webserver of the University of St Andrews, Scotland. My special thanks go to Norbert Südland, who made the package FractionalCalculus available for this text. I'm also indebted to Hans Kölsch and Virginia Lipscy, Springer-Verlag New York Physics editorial. Finally, the author deeply appreciates the understanding and support of his wife, Carin, and daughter, Andrea, during the preparation of the book.

Ulm, Winter 2004

Gerd Baumann

Contents

Volume I

	Prefa	ce		vii
1	Intro	duction		1
	1.1	Basics		1
		1.1.1	Structure of Mathematica	2
		1.1.2	Interactive Use of Mathematica	4
		1.1.3	Symbolic Calculations	6
		1.1.4	Numerical Calculations	11
		1.1.5	Graphics	13
		1.1.6	Programming	23
2	Classical Mechanics			
	2.1	Introduction		
	2.2	Mathe	matical Tools	35
		2.2.1	Introduction	35
		2.2.2	Coordinates	36
		2.2.3	Coordinate Transformations and Matrices	38
		2.2.4	Scalars	54
		2.2.5	Vectors	57
		2.2.6	Tensors	59
		2.2.7	Vector Products	64
		2.2.8	Derivatives	69
		2.2.9	Integrals	73
		2.2.10	Exercises	74

2.3	Kinem	atics	76
	2.3.1	Introduction	76
	2.3.2	Velocity	77
	2.3.3	Acceleration	81
	2.3.4	Kinematic Examples	82
	2.3.5	Exercises	94
2.4	Newto	nian Mechanics	96
	2.4.1	Introduction	96
	2.4.2	Frame of Reference	98
	2.4.3	Time	100
	2.4.4	Mass	101
	2.4.5	Newton's Laws	103
	2.4.6	Forces in Nature	106
	2.4.7	Conservation Laws	111
	2.4.8	Application of Newton's Second Law	118
	2.4.9	Exercises	188
	2.4.10	Packages and Programs	188
2.5	Centra	1 Forces	201
	2.5.1	Introduction	201
	2.5.2	Kepler's Laws	202
	2.5.3	Central Field Motion	208
	2.5.4	Two-Particle Collisons and Scattering	240
	2.5.5	Exercises	272
	2.5.6	Packages and Programs	273
2.6	Calcul	us of Variations	274
	2.6.1	Introduction	274
	2.6.2	The Problem of Variations	276
	2.6.3	Euler's Equation	281
	2.6.4	Euler Operator	283
	2.6.5	Algorithm Used in the Calculus of Variations	284
	2.6.6	Euler Operator for q Dependent Variables	293
	2.6.7	Euler Operator for $q + p$ Dimensions	296
	2.6.8	Variations with Constraints	300
	2.6.9	Exercises	303
	2.6.10	Packages and Programs	303
2.7	Lagrar	nge Dynamics	305
	2.7.1	Introduction	305
	2.7.2	Hamilton's Principle Hisorical Remarks	306

3

	2.7.3	Hamilton's Principle	313
		Symmetries and Conservation Laws	341
	2.7.5	Exercises	351
	2.7.6	Packages and Programs	351
2.8	Hamilt	onian Dynamics	354
	2.8.1	Introduction	354
	2.8.2	Legendre Transform	355
	2.8.3	Hamilton's Equation of Motion	362
	2.8.4	Hamilton's Equations and the Calculus of Variation	366
	2.8.5	Liouville's Theorem	373
	2.8.6	Poisson Brackets	377
	2.8.7	Manifolds and Classes	384
	2.8.8	Canonical Transformations	396
	2.8.9	Generating Functions	398
	2.8.10	Action Variables	403
	2.8.11	Exercises	419
	2.8.12	Packages and Programs	419
2.9	Chaoti	c Systems	422
	2.9.1	Introduction	422
	2.9.2	Discrete Mappings and Hamiltonians	431
	2.9.3	Lyapunov Exponents	435
	2.9.4	Exercises	448
2.10	Rigid I	Body	449
	2.10.1	Introduction	449
	2.10.2	The Inertia Tensor	450
	2.10.3	The Angular Momentum	453
	2.10.4	Principal Axes of Inertia	454
	2.10.5	Steiner's Theorem	460
	2.10.6	Euler's Equations of Motion	462
	2.10.7	Force-Free Motion of a Symmetrical Top	467
	2.10.8	Motion of a Symmetrical Top in a Force Field	471
	2.10.9	Exercises	481
	2.10.10	0 Packages and Programms	481
Nonlin	ear Dyr	namics	485
3.1	Introdu	iction	485
3.2	The Ko	orteweg-de Vries Equation	488
	a 1 .		40.0

3.3 Solution of the Korteweg-de Vries Equation 492

	3.3.1	The Inverse Scattering Transform	492	
	3.3.2	Soliton Solutions of the Korteweg-de Vries		
		Equation	498	
3.4	Conse	rvation Laws of the Korteweg-de Vries Equation	505	
	3.4.1	Definition of Conservation Laws	506	
	3.4.2	Derivation of Conservation Laws	508	
3.5	Nume	Numerical Solution of the Korteweg-de Vries Equation		
3.6	Exerci	ises	515	
3.7	Packages and Programs 5			
	3.7.1	Solution of the KdV Equation	516	
	3.7.2	Conservation Laws for the KdV Equation	517	
	3.7.3	Numerical Solution of the KdV Equation	518	
Refere	nces		521	
Index			529	

Volume II

	Prefa	Preface		
4	Electrodynamics			
	4.1	Introduction		
	4.2	Potential and Electric Field of Discrete Charge		
		Distributions	548	
	4.3	Boundary Problem of Electrostatics	555	
	4.4	Two Ions in the Penning Trap	566	
		4.4.1 The Center of Mass Motion	569	
		4.4.2 Relative Motion of the Ions	572	
	4.5	Exercises	577	
	4.6	Packages and Programs	578	
		4.6.1 Point Charges	578	
		4.6.2 Boundary Problem	581	
		4.6.3 Penning Trap	582	
5	Quar	Quantum Mechanics		
	5.1	Introduction	587	
	5.2	The Schrödinger Equation	590	

6

5.3	One-D	Dimensional Potential	595
5.4	The H	larmonic Oscillator	609
5.5	Anhar	monic Oscillator	619
5.6	Motio	n in the Central Force Field	631
5.7	Secon	d Virial Coefficient and Its Quantum Corrections	642
	5.7.1	The SVC and Its Relation to Thermodynamic	
		Properties	644
	5.7.2	Calculation of the Classical SVC $B_c(T)$ for the	
		(2n-n)-Potential	646
	5.7.3	Quantum Mechanical Corrections $B_{q_1}(T)$ and	
		$B_{q_2}(T)$ of the SVC	655
	5.7.4	Shape Dependence of the Boyle Temperature	680
	5.7.5	The High-Temperature Partition Function for	
		Diatomic Molecules	684
5.8	Exerci	ises	687
5.9	Packa	ges and Programs	688
	5.9.1	QuantumWell	688
	5.9.2	HarmonicOscillator	693
	5.9.3	AnharmonicOscillator	695
	5.9.4	CentralField	698
Gener	al Relat	tivity	703
6.1	Introd	uction	703
6.2	The O	brbits in General Relativity	707
	6.2.1	Quasielliptic Orbits	713
	6.2.2	Asymptotic Circles	719
6.3	Light	Bending in the Gravitational Field	720
6.4	Einste	in's Field Equations (Vacuum Case)	725
	6.4.1	Examples for Metric Tensors	727
	6.4.2	The Christoffel Symbols	731
	6.4.3	The Riemann Tensor	731
	6.4.4	Einstein's Field Equations	733
	6.4.5	The Cartesian Space	734
	6.4.6	Cartesian Space in Cylindrical Coordinates	736
	6.4.7	Euclidean Space in Polar Coordinates	737
6.5	The S	chwarzschild Solution	739
	6.5.1	The Schwarzschild Metric in Eddington-Finkelste	in
		Form	739

		6.5.2 Dingle's Metric	742
		6.5.3 Schwarzschild Metric in Kruskal Coordinates	748
	6.6	The Reissner–Nordstrom Solution for a Charged	
		Mass Point	752
	6.7	Exercises	759
	6.8	Packages and Programs	761
		6.8.1 EulerLagrange Equations	761
		6.8.2 PerihelionShift	762
		6.8.3 LightBending	767
7	Fract	als	773
	7.1	Introduction	773
	7.2	Measuring a Borderline	776
		7.2.1 Box Counting	781
	7.3	The Koch Curve	790
	7.4	Multifractals	795
		7.4.1 Multifractals with Common Scaling Factor	798
	7.5	The Renormlization Group	801
	7.6	Fractional Calculus	809
		7.6.1 Historical Remarks on Fractional Calculus	810
		7.6.2 The Riemann–Liouville Calculus	813
		7.6.3 Mellin Transforms	830
		7.6.4 Fractional Differential Equations	856
	7.7	Exercises	
	7.8	Packages and Programs	883
		7.8.1 Tree Generation	883
		7.8.2 Koch Curves	886
		7.8.3 Multifactals	892
		7.8.4 Renormalization	895
		7.8.5 Fractional Calculus	897
	Appe	Appendix	
	A.1	Program Installation	899
	A.2	Glossary of Files and Functions	900
	A.3	Mathematica Functions	910
	Refer	rences	923
	Index	K	931