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Chapter 1
Igraph

1.1 About igraph

For the purposes of this book, igraph is an extension package for R. It is a
collection or R functions to explore, create, manipulate and visualize graphs.
Originally most of igraph was optimized for running time, to perform all of
its computations as quickly as possible. While this is still an important goal,
in recent years the development shifted and we tried to make it easier to use.
It often hard to meet these goals together, so we were (and still are) trying
to find a good balance between them.

Igraph is open source software. All of its source code is available online
at the igraph homepage: http://igraph.org. It also includes and builds on
several other open source packages, without which it would not have been
possible to create it.

All the program code in this book is available at the igraph homepage, and
also in the igraphbook R package. The reader can simply load this package
into R and follow the code interactively while reading the book.

The igraph homepage is at http://igraph.org. It contains detailed doc-
umentation about each igraph function, tutorials and demos. It is a great
place to keep track of what’s going on around igraph.

1.1.1 About the code in this book

This book uses igraph version 1.1.0 and R version 3.2.3. Because of the dy-
namically changing nature of both R and igraph, it is inevitable that some of
the program code from the book will not work with future igraph and/or R
versions. We will keep the program code in the igraphbook package, and on
the igraph homage up to date, and make sure that they work with the latest
R and igraph versions.

1

http://igraph.org
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In the book, blocks of text are interweaved with chunks of program code.
All code chunks are numbered, within chapters. The same numbering will be
kept in future versions of the igraphbook R package and on the homepage.
While the individual code chunks build on the results of previous chunks,
each chapter is self-contained. To run a code chunk in Chapter 10, the reader
probably needs to also run all previous code chunks in Chapter 10, but noth-
ing more. This can be done easily with the ‘igraphbook’ R package, that
can jump to a code chunk, and run the required other chunks automatically.

For much of the code in the package, we will use the magrittr R package.
This package defines the %>% forward piping operator. This is similar to the
classic Unix pipes, and simply applies a sequence of operators on a data
set (most often a graph in this book), one after the other. The input of
an operation is the output of the previous operation. magrittr pipes result
much more readable program code, eliminating many temporary variables,
and deeply nested function calls. An example will probably make all this
clear. We create a small graph, add some labels to it, place its parts in a
visually pleasing way, and finally plot it. Here is the tradidional syntax with
temporary variables:

1.1.1) g <- make_graph(’Diamond’)
2) g2 <- set_vertex_attr(g, ’name’, value = LETTERS[1:4])
3) g3 <- set_graph_attr(g2, ’layout’, layout_with_fr)
4) plot(g3)

The same with nested function calls:

1.2.1) plot(
2) g <- set_graph_attr(
3) set_vertex_attr(
4) make_graph(’Diamond’),
5) ’name’,
6) value = LETTERS[1:4]),
7) ’layout’,
8) layout_with_fr)
9) )

With the pipe operator this can be written as

1.3.1) g <- make_graph(’Diamond’) %>%
2) set_vertex_attr(’name’, value = LETTERS[1:4]) %>%
3) add_layout_(with_fr()) %>%
4) plot()

The pipe operator eliminates the need of temporary variables that usually
keep lying around, without making the code much harder to read with nested
function calls.
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1.1.2 Data sets

The data sets that appear in this book, are part of the igraphdata R package.
(The igraphbook package automatically installs igraphdata as well.)

Here is the current list of data sets in the igraphdata package:

1.4.1) library(igraphdata)
2) data(package="igraphdata")

Data sets in package ’igraphdata’:

Koenigsberg Bridges of Koenigsberg from Euler’s
times

UKfaculty Friendship network of a UK
university faculty

USairports US airport network, 2010 December
enron Enron Email Network
foodwebs A collection of food webs
immuno Immunoglobulin interaction network
karate Zachary’s karate club network
kite Krackhardt’s kite
macaque Visuotactile brain areas and

connections
rfid Hospital encounter network data
yeast Yeast protein interaction network

The first graph we will use is the ‘macaque’ data set. It is a directed
graph containing the anatomical connections between the brain areas of the
macaque monkey. A graph is stored in an igraph object, i.e. ‘macaque’ is an
igraph object in igraphdata.

1.5.1) library(igraph)
2) library(igraphdata)
3) data(macaque)

1.2 Exploring graphs

In this section we introduce the most basic graph theoretical concepts, and
illustrate them with igraph on two data sets.
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1.2.1 Igraph graphs

In igraph graphs are special objects, with a given internal representation and
a set of R functions (the igraph application programming interface, API),
to perform various operations on them: calculate properties, manipulate the
graph structure, visualize the graphs, etc. This book deals with the API, and
not with the internal representation.

The igraphdata package contains graph data sets as igraph objects, the
‘macaque’ name refers to one of them. If the name of an igraph object is
given at the R prompt, then a short summart of the graph is printed.

1.6.1) macaque

IGRAPH f7130f3 DN-- 45 463 --
+ attr: Citation (g/c), Author (g/c), shape (v/c), name
| (v/c)
+ edges from f7130f3 (vertex names):
[1] V1->V2 V1->V3 V1->V3A V1->V4 V1->V4t
[6] V1->MT V1->PO V1->PIP V2->V1 V2->V3
[11] V2->V3A V2->V4 V2->V4t V2->VOT V2->VP
[16] V2->MT V2->MSTd/p V2->MSTl V2->PO V2->PIP
[21] V2->VIP V2->FST V2->FEF V3->V1 V3->V2
[26] V3->V3A V3->V4 V3->V4t V3->MT V3->MSTd/p
[31] V3->PO V3->LIP V3->PIP V3->VIP V3->FST
+ ... omitted several edges

This is the standard way of showing (printing) an igraph graph object on
the screen. The top line of the output declares that the object is an igraph
graph, and also lists its most important properties. A four-character long
code is printed first:

‘D/U’ The first character is either ‘D’ or ‘U’ and encodes whether the graph
is directed or undireted.

‘N’ The second letter is ‘N’ for named graphs (see Section 1.2.5). A dash
here means that the graph is not named.

‘W’ The third letter is ‘W’ if the graph is weighted (in other words, if the
graph is a valued graph, Section 2.4). Unweighted graphs have a dash in
this position.

‘B’ Finally, the fourth is ‘B’ if the graph is bipartite (two-mode, Section ??).
For unipartite (one-mode) graphs a dash is printed here.

This notation might seem quite dense at first, but it is easy to get used to and
conveys much information in a small space. Then two numbers are printed,
these are the number of vertices and the number of edges in the graph, 45
and 463 in our case. At the end of the line the name of the graph is printed,
if there is any. The next line(s) list attributes, meta-data that belong to the
vertices, edges or the graph itself. Finally, the edges of the graph are listed.
Except for very small graphs, this list is truncated, so that it fits to the screen.
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1.2.2 The igraph data model

The number of vertices in a graph is the order of the graph, see gorder(), order
gorder()the number of edges is the size of the graph, see gsize(). In the text of this
size
gsize()

book we will denote the order of the graph by |V | and the size of the graph
by |E|.

1.7.1) gorder(macaque)

[1] 45

3) gsize(macaque)

[1] 463

Although the graph seems to be a straightforward concept, different scien-
tific fields have different definitions. It is important that we make sure what
exactly a graph means throughout the rest of this book. Here are the rules.

A directed graph G = (V, E) is a multiset of ordered pairs over a finite
set of vertices V. For simplicity we usually denote a set of n vertices by the
numbers 1, 2, . . . n. An ordered pair of vertices is (i, j) ∈ E, which is different
from the ordered pair (j, i), unless i = j. In a multiset, every element has
a multiplicity, so a directed graph may contain the same ordered pair more
than once.

An undirected graph is a multiset of unordered pairs and singletons over
a finite set of vertices. An unordered pair means the set {i, j} if i 6= j, and a
singleton is simply {i}. A singleton defines an undirected loop, an undirected
edge from a vertex to itself.

Some important consequences of these definitions:

1. An igraph graph is either directed or undirected. Igraph does not support
mixed graphs that have both directed and undirected edges, although
they can be simulated with attributes. Note that a directed graph with
only mutual edges is different from an undirected graph.

2. An igraph graph may have multiple edges between the same pair of ver-
tices. (In social network terminology, it is a multi-graph.)

3. An igraph graph can have loops, i.e. (directed or undirected) edges that
are incident to only one vertex.

4. An igraph graph is binary, an edge is a relationsship between two vertices
(for loop edges these two vertices are the same). Hypergraphs are not
supported.

1.2.3 Vertices and edges

As in standard graph theory notation, the set of vertices in a graph is queried
with V(), and the set of edges is with E(). Just like for graphs, igraph will not V()
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print more vertices or edges than what fits on the screen, so for larger graphs,
some vertices or edges will be omitted from the screen output. Of course V()
and E() refer to all vertices and edges, including the ones not printed.

1.9.1) V(macaque)

+ 45/45 vertices, named, from f7130f3:
[1] V1 V2 V3 V3A V4 V4t VOT VP
[9] MT MSTd/p MSTl PO LIP PIP VIP DP
[17] 7a FST PITd PITv CITd CITv AITd AITv
[25] STPp STPa TF TH FEF 46 3a 3b
[33] 1 2 5 Ri SII 7b 4 6
[41] SMA Ig Id 35 36

9) E(macaque)

+ 463/463 edges from f7130f3 (vertex names):
[1] V1 ->V2 V1 ->V3 V1 ->V3A V1 ->V4
[5] V1 ->V4t V1 ->MT V1 ->PO V1 ->PIP
[9] V2 ->V1 V2 ->V3 V2 ->V3A V2 ->V4
[13] V2 ->V4t V2 ->VOT V2 ->VP V2 ->MT
[17] V2 ->MSTd/p V2 ->MSTl V2 ->PO V2 ->PIP
[21] V2 ->VIP V2 ->FST V2 ->FEF V3 ->V1
[25] V3 ->V2 V3 ->V3A V3 ->V4 V3 ->V4t
[29] V3 ->MT V3 ->MSTd/p V3 ->PO V3 ->LIP
[33] V3 ->PIP V3 ->VIP V3 ->FST V3 ->TF
[37] V3 ->FEF V3A->V1 V3A->V2 V3A->V3
+ ... omitted several edges

In graph theory, the vertices of a graph are often denoted by the natural
numbers 1, 2, . . . , |V |, and igraph supports this notation, both for vertices and
for edges: 1, 2, . . . , |E|.

However, graph data sets often have natural vertex identifiers, e.g. names
of people, URLs of web pages, etc. In this case it is easier to refer to vertices
using the natural identifiers, or as they are called in igraph, symbolic vertex
names. In case of the macaque graph, the vertex identifiers are names of brain
areas, and whenever you refer to a vertex in this graph, you can simply use
the name of the brain area, in single or double quotes.

Similarly, edges can be referred to via the names of the vertices they con-
nect, and a vertical bar between them: ’V1|V2’ means the directed edge from
vertex ’V1’ to vertces ’V2’. In undirected graphs, the order of the vertices
are ignored and ’X|Y’ refers to the same edge as ’Y|X’. Note that this nota-
tion might be ambiguous if the graph has multiple edges between the same
pair of vertices.

We say that an edge is incident to the vertices it connects, and that theseincident
vertices are also incident to the edge. The two incident vertices of an edge are
called the ends (see ends()) of the edge. For a directed edge, the first vertexend

ends()
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of the ordered pair is the tail (see tail_of()), the second vertex is the head
tail

tail_of()
head

(see head_of()) of the edge. (For directed loops the head and the tail are the head_of()
same.) Two vertices that are connected by an edge are adjacent , or neighbors. adjacent

neighborsSee neighbors(). In directed graphs, a vertex has a potentially different set
neighbors()of out-neighbors and in-neighbors, depending on whether the vertex is the

tail or the head of the common edge:

1.11.1) macaque %>% ends(’V1|V2’)

[,1] [,2]
[1,] "V1" "V2"

4) macaque %>% tail_of(’V1|V2’)

+ 1/45 vertex, named, from f7130f3:
[1] V1

7) macaque %>% head_of(’V1|V2’)

+ 1/45 vertex, named, from f7130f3:
[1] V2

10) macaque %>% neighbors(’PIP’, mode = "out")

+ 8/45 vertices, named, from f7130f3:
[1] V1 V3 V4 VP MT PO DP 7a

13) macaque %>% neighbors(’PIP’, mode = "in")

+ 8/45 vertices, named, from f7130f3:
[1] V1 V2 V3 V4 VP MT PO DP

A directed path is a sequence of zero or more edges, such that the tail of path
an edge is the head of the previous edge. If the graph does not have multiple
edges, then a path can also be given by a sequence of vertices, starting with
the tail of the first edge, and ending at the head of the last edge.

Igraph can select a sequence of edges or vertices that belong to a path.
For vertices, simply list them in the index of V():

1.16.1) V(macaque)[c(’V1’, ’V2’, ’V3A’, ’V4’)]

+ 4/45 vertices, named, from f7130f3:
[1] V1 V2 V3A V4

To select the edges of a path, you can similarly list the edges, or use a
shorter form. The shorter form has the additional benefit that igraph checks
that the given vertices indeed form a path.

1.17.1) E(macaque)[c(’V1|V2’, ’V2|V3A’, ’V3A|V4’)]

+ 3/463 edges from f7130f3 (vertex names):
[1] V1 ->V2 V2 ->V3A V3A->V4
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4) E(macaque, path = c(’V1’, ’V2’, ’V3A’, ’V4’))

+ 3/463 edges from f7130f3 (vertex names):
[1] V1 ->V2 V2 ->V3A V3A->V4

1.2.4 Subgraphs and components

We say that a G2 = (V2, E2) graph is a subgraph of G1 = (V1, E1), if V2 ⊆ V1subgraph
and E2 ⊆ E1. G2 is an induced subgraph of G1 if it is a subgraph, and for
every edge (i, j) ∈ V1, it also holds that (i, j) ∈ V2, and i, j ∈ E2. In other
words, on its restricted vertex set, G2 contains exactly the edges that G1
contains.

subgraph() creates a subgraph from a graph, and induced_subgraph()subgraph()
induced_subgraph() creates an induced subgraph. For example, an indiced subgraph consisting of

’V1’ and V2, and all their neighbor vertices can be created as:

1.19.1) V(macaque)[’V1’, ’V2’, nei(’V1’), nei(’V2’)] %>%
2) induced_subgraph(graph = macaque) %>%
3) summary()

Warning: ’nei’ is deprecated.
Use ’.nei’ instead.
See help("Deprecated")

Warning: ’nei’ is deprecated.
Use ’.nei’ instead.
See help("Deprecated")

IGRAPH 63f47db DN-- 16 156 --
+ attr: Citation (g/c), Author (g/c), shape (v/c), name
| (v/c)

An undirected graph is called connected if there is a path from every vertexconnected
to every other vertex. A directed graph is weakly connected if its underlying
undirected graph is connected. In other words, in contains an undirected path
from each vertex to every other vertex. A directed graph is strongly connected
if there is a directed path from each vertex to every other vertex. The is_
connected() function decides if a graph is (weakly or strongly for directedis_connected()
graphs) connected.

1.20.1) is_connected(macaque, mode = "weak")

[1] TRUE

3) is_connected(macaque, mode = "strong")

[1] TRUE
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A graph that is not (weakly or strongly) connected consists of multiple
components (also called connected components). A component is a maximalcomponents
connected subgraph. Maximal means that you cannot add other vertices to
the subgraph and keep it connected. A directed graph has weakly and strongly
connected components, corresponding to weak and strong connectedness.

1.2.5 Vertex and edge sequences

Internal, numeric ids

The graph we have been dealing with so far had natural vertex identifiers:
the names of brain areas in tha macaque graph.

This is not always the case. If a graph does not have symbolic vertex ids,
igraph uses natural numbers between one and |V | to identify vertices. Note
that even if a graph has symbolic ids, the user can still use the (internal)
numeric ids. ‘V(macaque)’ contains the vertices in the order of the numeric
ids, so the following two lines are equivalent:

1.22.1) V(macaque)[1:4]

+ 4/45 vertices, named, from f7130f3:
[1] V1 V2 V3 V3A

4) V(macaque)[c(’V1’, ’V2’, ’V3’, ’V3A’)]

+ 4/45 vertices, named, from f7130f3:
[1] V1 V2 V3 V3A

Using the internal ids in inconvenient if the structure of the graph changes,
and one intends to follow individual vertices or edges. This is because it is
impossible to have a hole in the numbering of the vertices or the edges; if a
graph has 4 vertices and 5 edges, then the vertex ids are always 1, 2, 3 and
4, and the edge ids are always 1, 2, 3, 4 and 5.

Because the numeric ids have to be consecutive, igraph reassigns them
when a smaller graph (e.g. a subgraph) is created. This means that brain
area V4 does not necessarily have the same numeric ids in both graphs here:

1.24.1) sub_macaque <- induced_subgraph(macaque, c(’V1’, ’V2’, ’V4’, ’MT’))
2) V(macaque)[1:3]

+ 3/45 vertices, named, from f7130f3:
[1] V1 V2 V3

5) V(sub_macaque)[1:3]

+ 3/4 vertices, named, from 451915d:
[1] V1 V2 V4
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We suggest that the user uses vertex names, these are kept across graphs.
Vertex names can be character strings, and while arbitrary characters can be
used, it is best if one restricts oneself to alphanumeric characters if portability
is a concern. Symbolic vertex names seem so handy that it is a valid question
why don’t all igraph graphs have them. The reason is that they introduce
an overhead in terms of storage space and processing time. This overhead
is negligible if one works with graphs of moderate size, but important for
graphs with millions of vertices.

Vertex and edge sequences

Much of graph exploration and manipulation means performing operations on
sequences and sets of vertices and edges. Igraph has data types and functions
to do this. A vertex sequence is simply a vector of vertex ids and an edgevertex sequence
sequence is a vector of edge ids. Whenever igraph functions expect a sequenceedge sequence
or set of vertices, a vertex sequence should be given, similarly, for functions
operating on edges, an edge sequence should be given. Similarly, many igraph
functions return vertex and/or edge sequences as their results.

Vertex sequences are created using the V() function, which we have seen
already. ‘V(kite)’ means the sequence of all vertices in the ‘kite’ graph,
in the order of their internal numeric ids. Vertex sequences can be indexed
like regular R vectors, and they also have some additional operations defined.
Table 1.1 summarizes them.

Edge sequences are created with E(), and have similar operations, see
Table 1.2.

Vertex and edge sequences interact nicely with vertex and edge attributes,
see more about this in Sec. 1.2.7.

Reference to the graph.

A vertex sequence knows which graph it was created from, and it can be only
used with this graph. This is important to keep this in mind when working
with vertices from multiple graphs. In particular, to combine vertices from
different graphs, you need to convert them to vertex names or ids with as_
ids(). The same applies to edge sequences. This does not work:

1.26.1) c(V(macaque)[11:20], V(sub_macaque))

Warning in parse_op_args(..., what = "a vertex", is_fun = is_igraph_vs, : Combining vertex/edge sequences from different graphs.
This will not work in future igraph versions

Warning in parse_op_args(..., what = "a vertex", is_fun = is_igraph_vs, : Combining vertex/edge sequences from different graphs.
This will not work in future igraph versions
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V(kite) Select all vertices in the order of
their numeric id.

V(kite)[1:3, 7:10] Select vertices in the given posi-
tions.

V(kite)[degree(kite) < 2] Select vertices that satisfy a condi-
tion.

V(kite)[nei(’D’)] Select vertices that are neighbors of
a given vertex.

V(macaque)[innei(’V1’)] Like nei(), but for incoming edges
only.

V(macaque)[outnei(’V1’)] Like nei(), but for outgoing edges
only.

V(kite)[inc(’A|D’)] Select vertices that are incident to
a given edge.

V(kite)[’A’, ’B’, ’D’] Select vertices with the given
names.

c(V(kite)[’A’], V(kite)[’D’]) Concatenate two or more vertex se-
quences.

rev(V(kite)) Reverse a vertex sequence.
unique(V(kite)[’A’, ’A’]) Remove duplicates from a vertex se-

quence.

union(V(kite)[1:5], V(kite)[6:10]) Union of vertex sequences. (Set op-
eration.)

intersection(V(kite)[1:7], V(kite)[5:10]) Intersection of vertex sequences.
(Set operation.)

difference(V(kite), V(kite)[1:5]) Difference of vertex sequences. (Set
operation.)

Table 1.1 Operations on vertex sequences.

+ 14/45 vertices, named, from f7130f3:
[1] MSTl PO LIP PIP VIP DP 7a FST PITd PITv V1
[12] V2 V4 MT

But the following does:

1.27.1) c(V(macaque)[11:20] %>% as_ids(), V(sub_macaque) %>% as_ids())

[1] "MSTl" "PO" "LIP" "PIP" "VIP" "DP" "7a" "FST"
[9] "PITd" "PITv" "V1" "V2" "V4" "MT"

as_ids() creates a character vector of names for named graphs, and an in-
teger vector of internal numeric ids for others.
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E(kite) Select all edges, in the order of their
numeric id.

E(kite, path = c(’A’, ’D’, ’C’)) Select edges along a path.
E(kite)[ vs %--% vs2 ] Select all edges between the vertices

of two vertex sequences.
E(macaque)[ vs %->% vs2 ] The same, but consider edge direc-

tions.
E(kite)[1:3, 7:10] Select edges in the given positions.
E(kite)[seq_len(gsize(kite)) %% 2] Select edges that satisfy a condi-

tion.
E(kite)[inc(’D’)] Select edges incident to a vertex.
E(macaque)[from(’V1’)] Like inc(), but only if the vertex is

the tail of the edge.
E(macaque)[to(’V1’)] Like inc(), but only if the vertex is

the head of the edge.
E(kite)[’A|B’, ’B|C’, ’D|A’] Select edges with the given names.

c(E(kite)[’A|B’], E(kite)[’D|A’]) Concatenate two or more edge se-
quences.

rev(E(kite)) Reverse an edge sequence.
unique(E(kite)[1:5, 1:10]) Remove duplicates from an edge se-

quence.

union(E(kite)[1:5], E(kite)[6:10]) Union of edge sequences. (Set oper-
ation.)

intersection(E(kite)[1:7], E(kite)[5:10]) Intersection of edge sequences. (Set
operation.)

difference(E(kite), E(kite)[1:5]) Difference of edge sequences. (Set
operation.)

Table 1.2 Operations on edge sequences. ‘vs’ and ‘vs2’ are vertex sequences from the
same graph.

1.2.6 Queries

Before we continue our tutorial on igraph, we need to take a small detour
and learn about how graphs can be represented using adjacency matrices, or
adjacency lists. While igraph does not use this representations, the various
graph queries and manipulationsare easier to understand if one thinks about
igraph graphs as adjacency matrices, or adjacency lists.

In the rest of this chapter we will also use a small graph known as Krack-
hardt’s kite, see Fig. 1.1:

1.28.1) data(kite)
2) kite

IGRAPH 6b7ddad UN-- 10 18 -- Krackhardt’s kite
+ attr: name (g/c), layout (g/n), Citation (g/c),
| Author (g/c), URL (g/c), label (v/c), Firstname
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| (v/c), name (v/c)
+ edges from 6b7ddad (vertex names):
[1] A--B A--C A--D A--F B--D B--E B--G C--D C--F D--E D--F
[12] D--G E--G F--G F--H G--H H--I I--J

A

B

C

D

E

F

G

H I J

1 – André
2 – Beverly
3 – Carol
4 – Diane
5 – Ed
6 – Fernando
7 – Garth
8 – Heather
9 – Ike

10 – Jane

Fig. 1.1 Krackhardt’s kite, a fictional social network of ten actors. The right hand side
shows the mapping of the vertices to numeric vertex ids. The kite is an example of a
graph in which the most central actor is different according to the three classic centrality
measures. You will see more about centrality and this graph in Chapter ??.

Adjacency matrices

A straightforward way of representing a graph is the adjacency matrix. This adjacency matrix
is a square matrix. The number of rows and the number of columns in the
table equal the number of vertices in the graph. We assign integer number to
vertices of the graph: 1, 2, . . ., and refer to the vertices using these numbers.
The table element in row i and column j is equal to 1 if and only if there in
an edge between vertices i and j. Otherwise the table element is zero. You
can see the adjacency matrix of the kite graph in Fig. ??.

The adjacency matrix of an undirected graph is always symmetric, i.e.
matrix element (i, j) (in row i and column j) is the same as matrix element
(j, i). This is because the existence of an edge between vertices i and j is
exactly equivalent to the existence of an edge between vertices j and i in
undirected graphs. This is, however, not necessarily true for directed graphs
(unless all edges are reciprocated), so the adjacency matrix of a directed
graph can be (and usually is) non-symmetric.

Adjacency lists

A third possible representation is called the adjacency list. An adjacency adjacency list



14 1 Igraph

list is a list consisting of smaller lists. There is one (smaller) list for each
vertex, and the list for vertex i contains the successors of i. igraph sometimes
prints graphs to the screen as adjacency lists, either using symbolic names or
numeric ids.

As we mentioned earlier,igraph’s internal data structure is none of the ones
discussed in this book, but it is closest to the adjacency list representation.
Luckily, igraph users do not need to know anything about this representation,
they just need to know the igraph functions that work on igraph graphs.

The imaginary adjacency matrix

While igraph graph objects are not matrices, they behave as if they were,
in that the square bracket indexing operator works for them the same way
as it does for matrices. This adjacnecy matrix is imaginary, because it is
never created internally. We can use the imaginary adjacency matrix to make
queries and to manipulate the graph, as if it was an adjacency matrix.

Querying edges

Firstly, the ‘[’ operator can be used to query whether an edge exists in a
graph. It returns 1 for existing, and 0 for non-existing edges.

1.29.1) kite[’A’, ’B’]

[1] 1

3) kite[’A’, ’J’]

[1] 0

If multiple vertices are specified as indices, the ‘[’ operator returns the whole
submatrix that corresponds to the given vertices:

1.31.1) kite[c(’A’, ’B’, ’C’), c(’A’, ’B’, ’C’, ’D’)]

3 x 4 sparse Matrix of class "dgCMatrix"
A B C D

A . 1 1 1
B 1 . . 1
C 1 . . 1

Your output might be slightly different, depending on whether your igraph
version and setup uses sparse matrices from the Matrix R package or regular
R matrices. In sparse matrices zeros are shown as dots when printed. The
result is a (sparse or dense) submatrix of the imaginary adjacency matrix of
the kite graph.
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The usual R matrix indexing rules apply to indexing igraph graphs as
well. If one of the indices are omitted, this is equivalent to giving all vertices.
Querying the existence of edges between ‘A’ and all vertices is then easy:

1.32.1) kite[’A’,]

A B C D E F G H I J
0 1 1 1 0 1 0 0 0 0

If both indices are omitted, then the full adjacency matrix is given. Note
that for large graphs, this might consume all memory if there is not sparse
matrix support or it is turned off.

1.33.1) kite[]

10 x 10 sparse Matrix of class "dgCMatrix"

[[ suppressing 10 column names ’A’, ’B’, ’C’ ... ]]

A . 1 1 1 . 1 . . . .
B 1 . . 1 1 . 1 . . .
C 1 . . 1 . 1 . . . .
D 1 1 1 . 1 1 1 . . .
E . 1 . 1 . . 1 . . .
F 1 . 1 1 . . 1 1 . .
G . 1 . 1 1 1 . 1 . .
H . . . . . 1 1 . 1 .
I . . . . . . . 1 . 1
J . . . . . . . . 1 .

Negative indices specify vertices to be omitted:

1.34.1) kite[1,-1]

B C D E F G H I J
1 1 1 0 1 0 0 0 0

queries all edges between the first vertex, other vertices. You cannot mix
negative indices and regular positive ones, this will give an error message.

Logical indices are also allowed:

1.35.1) degree(kite)

A B C D E F G H I J
4 4 3 6 3 5 5 3 2 1

4) kite[ degree(kite) >= 4, degree(kite) < 4 ]
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5 x 5 sparse Matrix of class "dgCMatrix"
C E H I J

A 1 . . . .
B . 1 . . .
D 1 1 . . .
F 1 . 1 . .
G . 1 1 . .

gives an adjacency submatrix for vertices with degree at least 4 against ver-
tices with degree less than 4. As one might suspect, the degree() functiondegree()
calculates the vertex degree and returns it in a numeric vector, ordered ac-
cording to vertex ids.

It often happens that one wants to test the existence of edges between
several pairs of vertices. One solution to this is to query the submatrix of the
adjacency matrix involving these vertices. This is, however quite inefficient.
A much simpler solution is to use the ‘from’ and ‘to’ arguments of the
indexing operator:

1.37.1) kite[ from = c(’A’, ’B’, ’C’), to = c(’C’, ’D’, ’E’) ]

[1] 1 1 0

This form does exactly what we want, in this case, it queries that edges
(A − C), (B − D) and (C − E), out of which 2 exist. Note that the ‘from’
and ‘to’ arguments must have the same length, otherwise it is not possible
to make vertex pairs out of them and an error message will be given.

For directed graphs the ‘[’ operator indexes the (usually) non-symmetric
adjacency matrix, the first index specifies the tails, the second the heads of
the queried edges.

So for the directed macaque brain graph, the order or the indices matters
when querying edges:

1.38.1) macaque[’V2’, ’PIP’]

[1] 1

3) macaque[’PIP’, ’V2’]

[1] 0

since there is a directed edge from ‘V1’ to ‘PIP’, but there is no directed
edge from ‘PIP’ to ‘V1’. Similarly, if the ‘from’ and ‘to’ arguments are
used, then the former gives the tail vertices, the latter gives the heads.

The imaginary adjacency list

The imaginary adjacency list is similar to the imiaginary adjacency matrix. It
is an adjacency list, however, and supports the ‘[[’ double bracket indexing
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operator. We can use it to query adjacent vertices, incident edges and edges
between two sets of vertices.

Adjacent vertices

A common operation is querying the adjacent vertices of a vertex or a set of
vertices. The neighbors() function does exactly this for a single vertex: neighbors()

1.40.1) neighbors(kite, "A")

+ 4/10 vertices, named, from 6b7ddad:
[1] B C D F

A more convenient way to do the same is to use the ‘[[’ double bracket
operator on the imaginary adjacency list. The advantage of ‘[[’ is that is
it more readable than neighbors(), and it works for multiple vertices. Of
course it also works with symbolic vertex names:

1.41.1) kite[["A"]]

$A
+ 4/10 vertices, named, from 6b7ddad:
[1] B C D F

5) kite[[c("A","B")]]

$A
+ 4/10 vertices, named, from 6b7ddad:
[1] B C D F

$B
+ 4/10 vertices, named, from 6b7ddad:
[1] A D E G

Note that for directed graphs, it does matter whether you put a comma before
or after the index:

1.43.1) macaque[[’V2’, ]]

$V2
+ 15/45 vertices, named, from f7130f3:
[1] V1 V3 V3A V4 V4t VOT VP MT
[9] MSTd/p MSTl PO PIP VIP FST FEF

6) macaque[[, ’V2’]]

$V2
+ 13/45 vertices, named, from f7130f3:
[1] V1 V3 V3A V4 V4t VOT VP MT
[9] MSTd/p MSTl PO FST FEF
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The first form gives the successors, the second form the predecessors of the
specified vertices.

Also note that, unlike neighbors(), the ‘[[’ operator always returns a list,
even if only one vertex is queried. The list is named according to the vertex
names if the graph itself is named.

Incident edges

The ‘[[’ double bracket operator can just as well query the incident edges
of some vertices, the only difference is that one needs to set the ‘edges’
argument to ‘TRUE’:

1.45.1) kite[[’A’, edges = TRUE]]

$A
+ 4/18 edges from 6b7ddad (vertex names):
[1] A--B A--C A--D A--F

gives the ids of the edges incident on vertex ‘A’. Again, note, that the result
is a list, always.

Edges between two sets of vertices

The ‘[[’ can be also used to query all edges between two sets of vertices.
For this both vertex sets must be given (their order only matters for directed
graphs, in which case the first one contains the tail vertices), and also the
‘edges = TRUE’ option.

1.46.1) kite[[ c(’A’, ’B’, ’C’), c(’C’, ’D’, ’E’, ’F’), edges = TRUE]]

[[1]]
+ 3/18 edges from 6b7ddad (vertex names):
[1] A--C A--D A--F

[[2]]
+ 2/18 edges from 6b7ddad (vertex names):
[1] B--D B--E

[[3]]
+ 2/18 edges from 6b7ddad (vertex names):
[1] C--D C--F
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1.2.7 Storing meta-data as attributes

In this section we will use the ‘UKfaculty’ data set. This is a social network
of staff at a UK university faculty consisting of three schools (Nepusz et al,
2008). Since for some studies it is important which school a faculty member
belongs to, the igraph object contains this information as well, as a vertex
attribute named ‘Group’: vertex attribute

1.47.1) data(UKfaculty)

Vertex attributes contain non-structural data associated with vertices. Ver-
tex attributes always have a unique name, like ‘Group’ above, and they are
always defined for all vertices. In other words, it is not possible to define a
vertex attribute for a subset of vertices only. (Of course it is always possible
to set a vertex attribute to ‘NA’, the R ‘not available’ value.) The ‘$’ op-
erator, together with the V() function can be used to query and set vertex
attributes.

1.48.1) V(UKfaculty)$Group

[1] 3 1 3 3 2 2 2 1 3 2 1 2 2 1 1 2 3 1 1 1 1 2 2 1 1 1 2 2 1
[30] 2 1 1 2 1 1 3 1 3 1 2 1 2 1 3 3 1 2 1 2 4 1 1 3 1 1 1 1 1
[59] 3 3 3 3 2 1 2 2 2 2 2 4 2 2 3 3 3 2 2 3 1 1 3

In the ‘UKfaculty’ graph, ‘Group’ is a numeric vertex attribute, a single
(integer) number for each vertex. This is not necessarily so in general. Vertex
attributes can be of other types as well: strings, logical values, lists, etc.

Just like for vertices, it is also desirable to assign attributes to the edges of
the graph. In our social network we have an edge attribute called ‘weight’, edge attribute
which is the strength of the friendship tie, calculated based on questionnaire
response of both parties involved in the connection. The E() function can be
used to query and set edge attributes. E.g. the weights of the first ten edges
of our faculty network are:

1.49.1) E(UKfaculty)$weight[1:10]

[1] 4 14 4 4 10 2 6 2 4 4

Finally, some meta-data belong to the graph itself. For each network in
the igraphdata R package, there is a graph attribute called ‘Citation’ that graph attribute
contains the reference to the paper in which it is discussed. Graph attributes
can be queried by using the ‘$’ operator on the graph object itself. (We
nicely break the long string into several lines with the strwrap() function.)

1.50.1) cat(sep="\n", strwrap(UKfaculty$Citation))

Nepusz T., Petroczi A., Negyessy L., Bazso F.: Fuzzy
communities and the concept of bridgeness in complex
networks. Physical Review E, 77:016107, 2008.
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So far we ignored the line starting with ‘attr:’ in the output when print-
ing or summarizing graphs to the screen:

1.51.1) summary(UKfaculty)

IGRAPH 6f42903 D-W- 81 817 --
+ attr: Type (g/c), Date (g/c), Citation (g/c), Author
| (g/c), Group (v/n), weight (e/n)

This line (and the following ones if one line is not enough) lists the various
attributes of the graph. After each attribute name, it is given whether it is
a graph (‘g’), vertex (‘v’), or edge (‘e’) attribute, and also its R class,
which can be numeric (‘n’), character (‘c’), logical (‘l’) or something else
which we call complex (‘x’). Igraph does not distinguish between the complex
attributes types currently.

Setting attributes is just as easy as querying them, V(), E() and the ‘$’
operator can be used on the left hand side of an assignment, both to create
new attributes and to assign new values to already existing ones. E.g. to create
a copy of the faculty graph with randomly permuted groups, one would do

1.52.1) UKfaculty_perm <- UKfaculty
2) V(UKfaculty_perm)$Group <- V(UKfaculty)$Group %>% sample()

If you specify a vector that is shorter than the number of vertices (or edges,
in case of E()), then it will be recycled, according to the usual R recycling
rules.

In addition to the V()/E() and ‘$’ notation, igraph includes some func-
tions that are perhaps more convenient when attributes are used programat-
ically. Think of querying all vertex attributes and printing them individually
to the screen or writing them to a file as an example. See Table ?? These
functions, just like all graph manipulating igraph functions, do not modify
the graph in place, but create new graph objects, so don’t forget to assign
the result to an R variable.

Special attributes

Igraph treats some attributes specially. Perhaps the most important of them
is the ‘name’ vertex attribute that contains the symbolic names of the graph
vertices in named graphs. In fact, what we have seen as named graphs pre-
viously in Section 1.2.5 are nothing else but graphs that have a vertex at-
tribute called ‘name’. Other such vertex attributes are ‘color’, ‘size’, etc.,
these are considered for visualization. The ‘weight’ edge attribute is used by
many igraph functions (such as max_flow(), diameter(), etc.) for invoking
the weighted versions of graph algorithms. See Section 2.4 for more about
weighted graphs. You can find the most commonly used specially treated
attributes in Table 1.3.
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Name Type Meaning

‘color’ edge Gives the color of the edges, when plotting.
‘color’ vertex Plotting functions use this for the color of the vertices.
‘layout’ graph The layout (a function or matrix) of the graph when plotting it.
‘name’ vertex Defines symbolic vertex names. Symbolic vertex names can be

used to refer to vertices, in all igraph functions. Graphs that
have this attribute are called named graphs.

‘shape’ vertex The shape of the vertices when plotting the graph.
‘type’ vertex For bipartite (two-mode) graphs it defines the vertex groups.
‘weight’ edge Edge weights. Used by several functions, e.g. shortest path related

functions, community structure finding functions, maximal flow
functions, etc.

Table 1.3 The most commonly used graph, vertex and edge attributes that are treated
specially by igraph. For a complete list of plotting-related attributes see Chapter 3.

Be aware of the special treatment of some vertex/edge attributes, other-
wise igraph functions might behave in a surprising way. The ‘name’ vertex
attribute is used to print the graph to the screen in a human readable way,
but if one stores something else but character strings in it, the output might
not make sense at all, or igraph might not be even able to interpret the at-
tribute as vertex names. To make things worse, future igraph versions will
probably treat even more attributes specially. So the best practice is to use
attribute names starting with an uppercase letter to make sure that they
have no influence on igraph’s internal functions. Igraph special attributes are
never capitalized.

Queries with attributes

Attributes interact nicely with vertex and edges sequences. It is easy to se-
lect edges and vertices based on attributes, and it is easy to query and set
attributes for members in a vertex or edge set.

Attributed graphs as data frames

1.3 Creating and manipulating graphs

1.3.1 Creating graphs

There are several ways of representing graphs on the computer: adjacency
matrices, edge lists, etc. Igraph needs that the data is in a special format,
the igraph graph object. This is to ensure that operations on the data are
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consistent and fast. There are several functions that create igraph graph
objects, the most frequently used ones are listed in Table 1.4. They can be
classified into four categories:

1. Predefined graph structures. These are useful to experiment with graph
measures, or as building blocks of larger graphs.

2. Converters from other graph representations, they are most often used
to convert graph data sets to igraph objects.

3. Random graph models.
4. The read_graph() function, that reads files in various graph data for-

mats.

Once an igraph graph object is created, you can use igraph functions to
explore its structure and visualize it.

Let us now create a graph from scratch. We want to work with the social
network illustrated in Fig. 1.1; this graph has 10 vertices and 18 edges. We
will build the graph step by step: first we create an empty graph, then add the
vertices, and finally the edges to it. We first show the complete R command
that creates the graph, and will explain each step afterwards.

1.53.1) kite <- make_empty_graph(directed = FALSE) +
2) vertices(LETTERS[1:10]) +
3) edges(’A’,’B’, ’A’,’C’, ’A’,’D’, ’A’,’F’,
4) ’B’,’D’, ’B’,’E’, ’B’,’G’,
5) ’C’,’D’, ’C’,’F’,
6) ’D’,’E’, ’D’,’F’, ’D’,’G’,
7) ’E’,’G’,
8) ’F’,’G’, ’F’,’H’,
9) ’G’,’H’,
10) ’H’,’I’,
11) ’I’,’J’)

The simplest possible graph is an empty graph, a graph without vertices
and edges, and the function make_empty_graph() creates such a graph. Anmake_empty_graph()
empty graph seems useless, but we will only use it as a starting point anyway.
By default make_empty_graph() creates directed graphs, so we also set the
optional ‘directed’ argument to ‘FALSE’, as our graph is undirected.

The next step will be to add vertices to the graph. To save ourselves from
typing, we will use the first letters of the first names of the actors as ids. We
simply list the vertex ids in vertices().vertices()

Next, we add the edges to the graph. Each pair of ids in edges() willedges()
correspond to an undirected edge. Note that since in an undirected graph
(’A’,’B’) and (’B’,’A’) mean the same edge, we only need to list each
edge once. The ‘kite’ graph is ready to use:

1.54.1) kite
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1 Predefined structures
make_directed_graph() Directed graph with given edges.
make_undirected_graph() Undirected graph with given edges.
make_empty_graph() Empty graph with given order and zero size.
make_full_graph() Full graph of given order.
make_full_bipartite_graph() Full bipartite graph.
make_graph("Petersen") Predefined graph structures, see ?make_graph for

a list.
make_ring() Ring graph.
make_lattice() Regular lattice.
make_star() Star graph.
make_tree() Regular, almost complete trees.

2 Convert a graph representation to igraph
graph_from_adjacency_matrix() From a dense or sparse adjacency matrix.
graph_from_edgelist() From edge lists.
graph_from_adj_list() From adjacency lists.
graph_from_data_frame() From data frame(s).
graph_from_incidence_matrix() From incidence matrices.
graph_from_graphnel() From the graphNEL representation of the graph

package.
graph_from_literal() From a simple formula-like notation.

3 Sample from random graph models
sample_gnp() G(n, p) Erdős-Rényi random graphs, also called

Bernoulli graphs.
sample_gnm() G(n,m) Erdős-Rényi random graphs.
sample_degseq() Random graphs with given degree sequence.
sample_grg() Geometric random graphs.
sample_pa() Preferential attachment model.
sample_sbm() Stochastic block-models.
sample_smallworld() Small-world graphs.
sample_hrg() Hierarchical random graphs.
sample_bipartite() Bipartite random graphs.

4 From graph files
read_graph() From various file formats, including GraphML,

GML and Pajek.

Table 1.4 The most frequently used functions that create igraph graph objects.
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IGRAPH 3c60b3a UN-- 10 18 --
+ attr: name (v/c)
+ edges from 3c60b3a (vertex names):
[1] A--B A--C A--D A--F B--D B--E B--G C--D C--F D--E D--F
[12] D--G E--G F--G F--H G--H H--I I--J

The vertices and the edges were added to the graph via the plus (+) op-+ operator
erator. This operator is very versatile in igraph, and can add vertices, edges,
paths, or other graphs to an existing graph.

There are by and large three ways to manipulate igraph graphs in R. We
have already touched upon one of them, the use of the plus and minus opera-
tors to add and delete vertices and edges. Now we start our detailed discussion
of graph manipulation with another method, the indexing operators.

The single bracket (‘[’) and double bracket (‘[[’) operators are used in‘[’ operator
‘[[’ operator R to index vectors, matrices and lists. They can also be used to index the

imaginary adjacency matrix of an igraph graph. We stress the word ‘imagi-
nary’ here. The actual adjacency matrix of the graph is never created, this
would be inefficient for large graphs. The igraph graph only pretends to be
an adjacency matrix. Let us know discuss what this imaginary matrix is good
for. We will use the kite graph that we created in the Section 1.2.5.

The bracket operators can be used with numeric vertex ids and symbolic
vertex names as well. To illustrate this, we query the mapping of vertex names
to vertex ids:

1.55.1) rbind(as.vector(V(kite)), V(kite)$name)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
[2,] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J"

The idiom ‘as.vector(V(kite))’ gives the numeric ids of the vertices, we
have already seen that ‘V(kite)$name’ lists the vertex names, in an order
that matches our listed vertex ids. The rbind() function puts them together
in a two-row matrix.

Adding edges

The ‘[’ operator can also be used to add edges to the graph, the code

1.56.1) kite[’F’, ’I’] <- 1
2) kite

IGRAPH c5c0873 UN-- 10 19 --
+ attr: name (v/c)
+ edges from c5c0873 (vertex names):
[1] A--B A--C A--D A--F B--D B--E B--G C--D C--F D--E D--F
[12] D--G E--G F--G F--H G--H H--I I--J F--I
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adds an undirected edge from Fernando to Ike. Quite logically, all the previ-
ously shown indexing variants can be used to specify the edges to be added.
As another example, we create a star graph, where all other vertices point to
the center vertex:

1.57.1) star <- make_empty_graph(10)
2) star[-1,1] <- 1
3) star

IGRAPH 5e4a5b1 D--- 10 9 --
+ edges from 5e4a5b1:
[1] 2->1 3->1 4->1 5->1 6->1 7->1 8->1 9->1 10->1

First, the 10 optional argument of make_empty_graph() specifies the number
of isolate vertices in the graph. Then we add the edges using the matrix
notation. The first −1 index defines the tails of the edges, and it means “all
vertices, except vertex 1”; the second index defines the head vertex, which is
now vertex 1. The whole expression reads “Add edges from all vertices, except
1, to vertex 1”.

An interesting feature of the ‘[’ based edge addition is that it does not
create multiple edges, but just ignores the already existing edges:

1.58.1) star[-1,1] <- 1 #label{vrb:star2:add}
2) star

IGRAPH 3fcdd29 D--- 10 9 --
+ edges from 3fcdd29:
[1] 2->1 3->1 4->1 5->1 6->1 7->1 8->1 9->1 10->1

Nothing happens here, since all the edges we are trying to add in line ?? are
already present in the graph.

The ‘from’ and ‘to’ arguments are handy when one wants to add many
edges and they are given by their endpoints. To illustrate this we create a
graph of roman letters, where two vertices are connected by a directed edge if
and only if they are adjacent in the expression “adjacency matrix” (ignoring
the space character).

1.59.1) adjletters <- strsplit("adjacencymatrix", "")[[1]] #label{vrb:adj:split}
2) adj <- make_empty_graph()
3) adj <- adj + unique(adjletters) #label{vrb:adj:unique}
4) adj[ from=adjletters[-length(adjletters)], #label{vrb:adj:set1}
5) to =adjletters[-1] ] <- 1
6) adj

IGRAPH 545faf5 DN-- 12 14 --
+ attr: name (v/c)
+ edges from 545faf5 (vertex names):
[1] a->d d->j j->a a->c c->e e->n n->c c->y y->m m->a a->t
[12] t->r r->i i->x
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The strsplit() function in line ?? splits the given word into letters. Then
we use these letters as vertex names in line ??, where the unique() function
makes sure that each letter appears only once. Line ?? add the edges between
the letters. As usually in R, the negative indices specify the elements to omit
from the vector, in this case we omit the last and then the first element.

Let’s stop for a second to examine what exactly happens when we add
edges to a graph using the matrix notation. The reader might remember, that
we stressed earlier that igraph functions never modify igraph graph objects
in place, but they always make copies of them; our latest examples, however,
seem to modify the graph in place. The truth is, they only seem to do that,
but in fact when one writes ‘tree6[1,5] <- 1’, R first creates a copy of the
object named ‘tree6’, then performs the operation on this copy, and finally
names the copy as ‘tree6’. Most of the time we don’t need to know about
this internal mechanism, it is only important if one works with large graphs,
where copying must be avoided, if possible.

Deleting edges

Not very surprisingly, the matrix notation and the ‘[’ operator can also be
used to delete edges from the graph. To achieve this, one should use the value
0 (or ‘FALSE’) at the right hand side of the assignment:

1.60.1) kite[’F’, ’I’] <- 0
2) kite

IGRAPH cb00454 UN-- 10 18 --
+ attr: name (v/c)
+ edges from cb00454 (vertex names):
[1] A--B A--C A--D A--F B--D B--E B--G C--D C--F D--E D--F
[12] D--G E--G F--G F--H G--H H--I I--J

removes the recently added edge from the kite graph.
All the different methods (negative, logical indices, the ‘from’ and ‘to’

arguments, etc.) can be used to select the edges to be removed.

Simple graphs, loops, multiple edges

1.4 Exercises

I EXERCISE 1.1. Create a graph that is weakly connected, but not strongly
connected. Which one is the smallest such graph, in terms of order and size?
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I EXERCISE 1.2. Show at least three ways to delete the isolated vertices
from an undirected graph. (Hint: (1) use the ‘-’ operator, (2) use the
delete.vertices() function, (3) use the subgraph() function.)

I EXERCISE 1.3. Show at least three ways to delete edges that are incident
on vertex ‘E’ in the kite graph. (Hint: (1) use the ‘-’ operator, (2) use the ‘[’
operator, (3) use the delete.edges() function. You might need to use the
‘[[’ operator as well, with the ‘edges’ argument, to select the edges to be
deleted.)

I EXERCISE 1.4. What is wrong with the following code? (‘letters’ is a
builtin R character array, and contains the 26 letters of the Roman alphabet,
in lowercase; seq_len() creates a sequence of integers; runif() generates
uniformly distributed random numbers. See their manual pages for details.)

1.61.1) R <- graph.ring(10)
2) V(R)$name <- letters[seq_len(vcount(R))]
3) add.edges(R, c(’a’, ’e’, ’b’, ’h’))
4) E(R)$weight <- runif(ecount(R))
5) E(R)[’a|e’]$weight





Chapter 2
Paths

2.1 Introduction

Recall that a path in a graph is a sequence of (zero or more) edges. The path
is the most important concept when dealing with network data, because ev-
erything else is based on it. When trying to find central actors in a network,
we can look for vertices that fall on a lot of paths, or vertices that are con-
nected to all others via short paths. When measuring the connectedness of a
network, we look for many independent paths between vertices, so that if one
is cut, the others still keep the network together. When modeling epidemics,
the modeled disease speads on the paths.

Dealing with paths means that we need special tools, and table-based data
analysis software is, however sophisticated, not enough. Table-based software
tools, such as relational databases, or R packages that deal with data frames
focus on individual relationships, and are typically not capable of handling a
chain of relationships, a path.

In this Chapter we will use a sample the network of US airports. Each air-
port is a vertex, and each directed edge denotes a flight between two airports,
by a specific carrier. If a route is served by multiple carriers, then multiple
edges are added between the two airports.

2.1.1) library(igraph)
2) library(igraphdata)
3) data(USairports)
4) summary(USairports)

IGRAPH bf6202d DN-- 755 23473 -- US airports
+ attr: name (g/c), name (v/c), City (v/c), Position
| (v/c), Carrier (e/c), Departures (e/n), Seats (e/n),
| Passengers (e/n), Aircraft (e/n), Distance (e/n)

The network has some metadata, for the vertices we know the correspond-
ing City and Position. For edges we have the name of the Carrier, the

29
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number of Departures, the total number of Seats on these, and number of
Passengers, the Aircraft type, the the Distance in miles. It is usually worth
peeking at the vertex and edge metadata, to get a better sense of what they
are:

2.2.1) V(USairports)[[1:5]]

+ 5/755 vertices, named, from bf6202d:
name City Position

1 BGR Bangor, ME N444827 W0684941
2 BOS Boston, MA N422152 W0710019
3 ANC Anchorage, AK N611028 W1495947
4 JFK New York, NY N403823 W0734644
5 LAS Las Vegas, NV N360449 W1150908

9) E(USairports)[[1:5]]

+ 5/23473 edges from bf6202d (vertex names):
tail head tid hid Carrier Departures Seats

1 BGR JFK 1 4 British Airways Plc 1 226
2 BGR JFK 1 4 British Airways Plc 1 299
3 BOS EWR 2 7 British Airways Plc 1 216
4 ANC JFK 3 4 China Airlines Ltd. 13 5161
5 JFK ANC 4 3 China Airlines Ltd. 13 5161
Passengers Aircraft Distance

1 193 627 382
2 253 819 382
3 141 627 200
4 3135 819 3386
5 4097 819 3386

Even if a network is not supposed to have self-loops, i.e. flights that went
back to the site of departure, it is a good idea to check for them, because the
presence of self-loops can modify the behavior of many graph algorithms.

2.4.1) sum(which_loop(USairports))

[1] 53

Indeed, the network has 53 self-loops. These might be mistakes, or aircrafts
that really returned to the departure airport because of some reasons. We
don’t want to consider them in the further analysis, and remove them:

2.5.1) USairports <- simplify(USairports, remove.loops = TRUE,
2) remove.multiple = FALSE)
3) any(which_loop(USairports))

[1] FALSE
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2.2 Paths in graphs and multigraphs

Because of the multiple edges corresponding to several carriers flying a route,
the network is not a simple graph (in other words, it is a multi-graph). E.g.
there are 14 edges from Boston to JFK, New York City. They belong to
different carriers and different aircraft types. Here is the first five of them:

2.6.1) length(USairports[["BOS", "JFK", edges = TRUE]][[1]])

[1] 14

3) USairports[["BOS", "JFK", edges = TRUE]][[1]][[1:5]]

+ 5/23420 edges from d71bfa8 (vertex names):
tail head tid hid Carrier

22558 BOS JFK 2 4 Lufthansa German Airlines
21946 BOS JFK 2 4 Chautauqua Airlines Inc.
19859 BOS JFK 2 4 American Eagle Airlines Inc.
19858 BOS JFK 2 4 American Eagle Airlines Inc.
18195 BOS JFK 2 4 Atlantic Southeast Airlines

Departures Seats Passengers Aircraft Distance
22558 1 221 202 696 187
21946 2 100 92 675 187
19859 65 2860 2441 676 187
19858 72 2664 2295 674 187
18195 1 65 35 631 187

The data on multiple carriers might or might not be useful, depending
on the analysis we are to perform. In the following we don’t need it, so we
simplify the network and remove all multiple edges. Note that we still keep
some edge attributes and we sum their values over the multiple edges between
the same pair of vertices. The rest of the edge attributes we ignore.

2.8.1) air <- simplify(USairports, edge.attr.comb =
2) list(Departures = "sum", Seats = "sum", Passengers = "sum", "ignore"))
3) is_simple(air)

[1] TRUE

5) summary(air)

IGRAPH ce25b00 DN-- 755 8228 -- US airports
+ attr: name (g/c), name (v/c), City (v/c), Position
| (v/c), Departures (e/n), Seats (e/n), Passengers
| (e/n)

Often, we want to select a path in a network, to visualize it, or to manip-
ulate the attributes of its edges or vertices. In a simple directed graph this
is easy. As there is at most one edge between each pair of vertices, we can
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simply list the vertices along the path. The edges along the path can also
easily selected and manipulated:

2.10.1) flight <- V(air)[’BDL’, ’FLL’, ’BOS’, ’PBI’]
2) E(air)$width <- 0
3) E(air, path = flight)$width <- 1

In graphs with multiple edges, it is often not sufficient to list the vertices
along a path, since these may not uniquely determinte the edges. In this case
the edges must be listed, usually based on some edge attributes. E.g. to select
the edges along all paths for the route from BDL to PBI we can write

2.11.1) BDL_PBI <- E(USairports)[ ’BDL’ %->% ’FLL’, ’FLL’ %->% ’BOS’,
2) ’BOS’ %->% ’PBI’]
3) BDL_PBI[[]]

+ 8/23420 edges from d71bfa8 (vertex names):
tail head tid hid Carrier Departures

5007 BDL FLL 25 109 JetBlue Airways 59
9392 BDL FLL 25 109 Delta Air Lines Inc. 43
11830 BDL FLL 25 109 Southwest Airlines Co. 30
5090 FLL BOS 109 2 JetBlue Airways 156
7589 FLL BOS 109 2 Continental Air Lines Inc. 1
23142 FLL BOS 109 2 Spirit Air Lines 84
5032 BOS PBI 2 16 JetBlue Airways 29
5033 BOS PBI 2 16 JetBlue Airways 117

Seats Passengers Aircraft Distance
5007 8850 6990 694 1173
9392 6127 4530 655 1173
11830 4110 2668 612 1173
5090 23400 17608 694 1237
7589 160 110 614 1237
23142 12180 8775 698 1237
5032 2900 1926 678 1197
5033 17550 14707 694 1197

and then filter this for a given carrier:

2.12.1) BDL_PBI[ Carrier == ’JetBlue Airways’ ][[]]

+ 4/23420 edges from d71bfa8 (vertex names):
tail head tid hid Carrier Departures Seats

5007 BDL FLL 25 109 JetBlue Airways 59 8850
5090 FLL BOS 109 2 JetBlue Airways 156 23400
5032 BOS PBI 2 16 JetBlue Airways 29 2900
5033 BOS PBI 2 16 JetBlue Airways 117 17550

Passengers Aircraft Distance
5007 6990 694 1173
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5090 17608 694 1237
5032 1926 678 1197
5033 14707 694 1197

2.3 Shortest paths

In the airport network, there are a lot of paths that get to PBI from BDL.
One path corresponds to a single edge, a direct flight, others require multiple
steps. This is true for most networks and vertices in general: usually there are
many paths between vertices, and these probably contain different number
of edges and vertices. In fact, if a directed network contains cycles, then the
number of paths between a vertex pair can be infinite, as the path may go
around a cycle any number of times. A path that has no repeated vertices is
called a simple path.

The number of edges included in a path is called the length of the path. Of
all the different paths from a vertex to another one, the one(s) that contain
the fewest number of edges is (are) called the shortest paths (or geodesics).
Shortest paths are important in many optimization problems. When search-
ing for flights, one usually prefers the smallest number of transfers, i.e. the
shortest paths in the network. The length of the shortest path between two
vertices is also called their distance.

The distances() igraph function calculates the lengths of shortest paths
between the specified vertices, and the shortest_paths() igraph function shortest_paths()
returns the paths themselves.

2.13.1) distances(air, c(’BOS’, ’JFK’, ’PBI’, ’AZO’),
2) c(’BOS’, ’JFK’, ’PBI’, ’AZO’))

BOS JFK PBI AZO
BOS 0 1 1 2
JFK 1 0 1 2
PBI 1 1 0 1
AZO 2 2 1 0

8) shortest_paths(air, from = ’BOS’, to = ’AZO’)$vpath

[[1]]
+ 3/755 vertices, named, from ce25b00:
[1] BOS PBI AZO

Often shortest paths are not unique, and shortest_paths() only computes
a single (arbitrary) shortest path between each requestes pair of vertices. all_
shortest_paths() lists all of them: all_shortest_

paths()
2.15.1) all_shortest_paths(air, from = ’BOS’, to = ’AZO’)$res
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[[1]]
+ 3/755 vertices, named, from ce25b00:
[1] BOS ORD AZO

[[2]]
+ 3/755 vertices, named, from ce25b00:
[1] BOS MSP AZO

[[3]]
+ 3/755 vertices, named, from ce25b00:
[1] BOS DTW AZO

[[4]]
+ 3/755 vertices, named, from ce25b00:
[1] BOS PBI AZO

2.4 Weighted graphs

A simple (binary) graph corresponds to a binary relation, edges are either
present or absent between any pair of vertices. An edge-weighted graph, or
simply weighted graph mathematically corresponds to a graph (as before),
plus a mapping from the edges of the graph, to a set of numbers, typically
(but not always) the R set of real numbers. These numbers are called the
edge weights. Often an unweighted graph can be considered the special case
of a weigthed graph, with all the edge weights being one.

Edge weights are often crucial for network analysis and modeling, and
many data sets include natural edge weights. They often represent the
strength of a connection, or distance, or some other quantity. Whereas they
might have different meaning in different graphs, it is very important to be
clear what they represent, when interpreting the results of graph algorithms
on weighted graphs.

Edge weights are represented in igraph as the ‘weight’ edge attribute. We
will now create a simple weigthed graph from the original airport network,
and set the distance between airports as edge weight.

2.16.1) wair <- simplify(USairports, edge.attr.comb =
2) list(Departures = "sum", Seats = "sum", Passangers = "sum",
3) Distance = "first", "ignore"))
4) E(wair)$weight <- E(wair)$Distance

Distance = "first" specifies to take the Distance value of the (arbitrary)
first edge from the multiple edges between each vertex pair. Since these are
phyisical distances between airports they are independent of the actual flight.
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We keep and sum over some other edge attributes and ignore the rest of them.
wair is now a weighted graph, as it has a weight edge attribute:

2.17.1) summary(wair)

IGRAPH bcd7add DNW- 755 8228 -- US airports
+ attr: name (g/c), name (v/c), City (v/c), Position
| (v/c), Departures (e/n), Seats (e/n), Distance (e/n),
| weight (e/n)

In a weighted graph, it is often natural to consider paths that contain the
smallest total edge weight as shortest paths. In the airport network, these are
the paths that require the shortest distance of travel. By default distances(),
shortest_paths() and all_shortest_paths() consider weighted paths if
the graph is weighted:

2.18.1) distances(wair, c(’BOS’, ’JFK’, ’PBI’, ’AZO’),
2) c(’BOS’, ’JFK’, ’PBI’, ’AZO’))

BOS JFK PBI AZO
BOS 0 187 1197 745
JFK 187 0 1028 621
PBI 1197 1028 0 1116
AZO 745 621 1116 0

8) shortest_paths(wair, from = ’BOS’, to = ’AZO’)$vpath

[[1]]
+ 3/755 vertices, named, from bcd7add:
[1] BOS DTW AZO

12) all_shortest_paths(wair, from = ’BOS’, to = ’AZO’)$res

[[1]]
+ 3/755 vertices, named, from bcd7add:
[1] BOS DTW AZO

Igraph finds shortest paths in unweighed graphs using the Breadth first
search (BFS) algorithm. This is fast, and requires linear time to find shortest
paths from one vertex to all others in the network. For weighted graphs, the
algorithms are more difficult, especially if the edge weights can be zero or
negative. For a graph with negative edge weights and cycles, the shortest
path might not even exist, if the total edge weight of the cycle is negative,
then there is always a shorter path between its vertices: just go over the cycle
one more.

In weighted graphs with strictly positive edge weights distances(), short-
est_paths() and all_shortest_paths() use Dijkstra’s algorithm, requiring
O(n logn) time for a single source vertex in a graph with n vertices. This is
fast even for large graphs.
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If negative edge weights are present, then disances() uses either Johnson’s
algorithm or the Bellman-Ford algorithm is used, depending on the number
of input vertices. These require at least O(nm) time for a single source vertex
and a graph of n vertices and m edges. Note that negative cycles are still not
allowed, and lead to error messages.

Currently, shortest_paths() and all_shortest_paths() do not work on
graphs with negative edge weights.

2.4.1 The Pocket Cube graph

It is often natural to represent turn-based single- or multi-person games as
graphs. Each state of the game is a vertex in the graph, and if it is possible
to get to state w from the current state v, then the graph contains a v,w
edge.

The Pocket Cube is a 2x2 Rubik’s Cube, that consists of 8 smaller cubes
(cubies). The goal is to get to the state where all faces of the large cube
have a single color, by turning the sides (i.e. the cubies) of the large cube. In
the graph representation of the cube, each state consist of the positions and
orientation of the cubies, and two states are connected by an edge, if there is
a turn that takes the first state to the second. It is clear that an “opposite”
turn brings back to the previous state, so the graph is undirected.

Many interesting questions about the Pocket Cube can be formalized in
terms paths and distances of its graph:

• How many states does the cube have?
• How many different turns can we make from a given state?
• At least how many turns do we need to solve the cube from a given state?
• What are these turns?
• Is the sequence of turns to the solution always unique?
• At most how many turns do we need from an arbitrary state?
• How many turns do we need on average?
• Can we solve the cube from any state?
• Can we reach any state from any other?

While some concepts that neatly describe these problems mathematically
only come later in this book, we suggest the reader to take a couple minutes
and think about what they mean in terms of the graph of the game.

2.5 Diameter and mean shortest path length

It is sometimes useful to describe an undirected graph with the distances
between its vertices. In this description one extreme graph is the full graph,



2.5 Diameter and mean shortest path length 37

containing has all possible edges. Another extreme is a graph that looks like
a straight line, each vertex is connected only to the next one. For n vertices
this graph has a distance of n − 1, the largest possible, and also all smaller
distances between 0 and n− 1.

The largest distance of a graph is called its diameter. A graph with a
small diameter is bound to have only short distances. It is an interesting
observation that most real networks have a small diameter compared to their
size.

In the special case when some vertices are not reachable via a path from
some others, the diameter of the graph is infinite. Note that the igraph di-
ameter() function works differently in this case, and it returns the longest diameter()
finite distance.

The diameter of a directed graph is rarely used, because in network data
sets if happens very often, that some vertex pairs are not connected by a
directed path at all, and then the diameter would be infinite.

For the airport network, that largest finite distance corresponds to the
most transfers we have to have when flying within the US:

2.21.1) diameter(air)

[1] 9

This is surprisingly high, so it is worth inspecting the vertices and edges
along it.

2.22.1) dia_v <- get_diameter(air)
2) dia_e <- E(air, path = dia_v)
3) dia_v[[]]

+ 10/755 vertices, named, from ce25b00:
name City Position

416 HYG Hydaburg, AK N551223 W1324942
413 DOF Dora Bay, AK N551400 W1321300
253 WFB Ketchikan, AK N552040 W1313948
375 KTN Ketchikan, AK MIAMI
161 SEA Seattle, WA N472656 W1221834
3 ANC Anchorage, AK N611028 W1495947
232 ADQ Kodiak, AK N574460 W1522938
236 KKB Kitoi Bay, AK N581127 W1522214
246 SYB Seal Bay, AK N581000 W1523000
239 KPR Port Williams, AK N582924 W1523456

16) dia_e[[]]

+ 9/8228 edges from ce25b00 (vertex names):
tail head tid hid Departures Seats Passengers width

7018 HYG DOF 416 413 2 12 1 0
7014 DOF WFB 413 253 2 12 1 0



38 2 Paths

5953 WFB KTN 253 375 59 482 59 0
6829 KTN SEA 375 161 88 11034 8664 0
4828 SEA ANC 161 3 451 69591 59116 0
109 ANC ADQ 3 232 181 9692 5064 0
5876 ADQ KKB 232 236 6 24 2 0
5894 KKB SYB 236 246 4 16 3 0
5916 SYB KPR 246 239 4 16 5 0

It turns out that many of these routes had only 2-6 flights with 1-5 pas-
sengers, and maybe it is better to exclude these flight completely from this
calculation:

2.24.1) air_filt <- delete_edges(air,
2) E(air)[ Passengers <= 10 ])
3) summary(air_filt)

IGRAPH 6db6386 DN-- 755 7472 -- US airports
+ attr: name (g/c), name (v/c), City (v/c), Position
| (v/c), Departures (e/n), Seats (e/n), Passengers
| (e/n), width (e/n)

8) diaf_v <- get_diameter(air_filt)
9) diaf_e <- E(air_filt, path = diaf_v)
10) diaf_v[[]]

+ 9/755 vertices, named, from 6db6386:
name City Position

181 TIQ Tinian, TT N145949 E1453705
180 SPN Saipan, TT N150708 E1454346
178 GUM Guam, TT N132900 E1444746
196 HNL Honolulu, HI N211907 W1575521
5 LAS Las Vegas, NV N360449 W1150908
372 BLI Bellingham, WA N484734 W1223215
517 FRD Friday Harbor, WA N483119 W1230128
657 LKE Seattle, WA N473744 W1222019
656 KEH Kenmore, WA N474526 W1221526

22) diaf_e[[]]

+ 8/7472 edges from 6db6386 (vertex names):
tail head tid hid Departures Seats Passengers width

5256 TIQ SPN 181 180 262 1572 1544 0
5253 SPN GUM 180 178 164 7544 4684 0
5250 GUM HNL 178 196 31 7831 6731 0
5354 HNL LAS 196 5 101 26739 23094 0
279 LAS BLI 5 372 89 13519 12243 0
6289 BLI FRD 372 517 140 698 57 0
6909 FRD LKE 517 657 9 58 20 0
7327 LKE KEH 657 656 24 200 41 0
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The diameter is not an accurate description of the distances in a network,
it is only an upper bound. It is often better to consider the mean of all
distances instead. Note that by default the mean_distance() igraph function mean_distance()
only considers finite distances. The distance_table() creates a histogram distance_table()
of all distances

2.27.1) mean_distance(air)

[1] 3.52743

3) air_dist_hist <- distance_table(air)
4) air_dist_hist

$res
[1] 8228 94912 166335 163830 86263 15328 2793 291
[9] 27

$unconnected
[1] 31263

11) barplot(air_dist_hist$res, names.arg = seq_along(air_dist_hist$res))



40 2 Paths

1 2 3 4 5 6 7 8 9

0
50

00
0

10
00

00
15

00
00

Most routes need three or four individual flights, in other words, two or
three transfers. It is probably also true that most passengers travel on routes
that only need at most one transfer.

2.6 Components

An undirected graph is connected if there is a path from any vertex to any
other. A graph that is not connected is said to be unconnected. An uncon-
nected graph has multiple components. A component of a graph is a maximal
induced subgraph that is connected. It is maximal in the sense that is is not
a subgraph of any other connected subraph.

Connectedness is a property of a graph that is often important in practice.
If a network of internet routers is connected, then we can send packets from
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any machine to any other. If an organizational network is connected then it
has the potential to spread information to everybody.

It is an interesting question whether the Pocket Cube graph is connected.
If it is connected, then we can start from any (valid) painting of the cubies,
and get to the solved state with a finite number of legal turns.

2.30.1) is_connected(pc)
2) count_components(pc)
3) components(pc)$csize

is_connected() checks if a graph is connected. count_components() re- is_connected()
count_components()ports its number of components. The Pocket Cube graph is not connected

and has three components. The components have the same size. This means
that if we are to remove the stickers from the cubies and then put them back
(uniformly) randomly, we have 1/3 chance to make a cube that is solvable.

The decompose() function decomposes a graph into its connected com- decompose()
ponents and returns a list of graphs. This is sometimes useful if we want to
work with the components individually, e.g. to visualize them.

2.6.1 Biconnected components

Connected networks can further classified according to the strength of their
connectedness. The intuition is that if there tend to be more independent
paths between vertices, then the graph is more strongly connected. An undi-
rected graph that has at least two paths between each pairs of vertices is said
to be biconnected. A graph that is not biconnected has biconnected com-
ponents. Biconnected components are maximal induced subgraphs that are
biconnected. The biconnected_components() function finds them. biconnected_

components()Note that in contrary to components, biconnected components are not
necessarily disjunct. For example, in the bowtie network the center node
is clearly part of both biconnected components. This node is also special,
because if removed from a graph, the remainder is not connected any more.
These kind of vertices are called articulation points

2.31.1) bow_tie <- make_graph( ˜ A - B - C - A - D - E - A)
2) biconnected_components(bow_tie)$components

[[1]]
+ 3/5 vertices, named, from 6dea8b8:
[1] C B A

[[2]]
+ 3/5 vertices, named, from 6dea8b8:
[1] E D A

10) articulation_points(bow_tie)
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+ 1/5 vertex, named, from 6dea8b8:
[1] A

If the biconnected components of the Pocket Cube graph coincide with
its connected components, that means that there are at least two genuinely
different paths to get from any state to any other. Two paths that have no
common vertices, except from the source and target vertices of course.

2.33.1) pc_comps <- decompose(pc)
2) vapply(pc_comps, function(g) biconnected_components(g)$no)

2.6.2 Strongly connected components

A directed network is called weakly connected if its corresponding undirected
network that ignored edge directions, is connected. A directed network is
strongly connected, if and only if it has a directed path from each vertex to
all other vertices. The airport network is not weakly connected, so it cannot
be strongly connected, either:

2.34.1) is_connected(air, mode = "weak")

[1] FALSE

3) is_connected(air, mode = "strong")

[1] FALSE

A directed graph has strongly connected components. These are its max-
imal induced subgraphs that are strongly connected. Within a strongly con-
nected component, there is a directed path between each ordered pair of
vertices. The airport network has 30 strongly connected components:

2.36.1) count_components(air, mode = "strong")

[1] 30

3) table(components(air, mode = "strong")$membership)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 1 1 1 1 2 1 2 1 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
2 1 1 1 1 1 1 1 1 723 1 1 1 1 1

The sizes of the connected components show that most airports are strongly
connected, and a few vertices are only connected to the rest of the network
via a single uni-directional route.

In terms of strongly connectedness, directed networks typically have a
bow-tie like structure, with four parts:
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1. The left side of the bow-tie contains the vertices from which all other
bow-tie vertices are reachable.

2. The middle part is a large strongly connected component.
3. The right part of the bow-tie contains the vertices that are reachable

from all other bow-tie vertices.
4. The rest of the vertices are in very small strongly connected components.

2.7 Trees

An undirected graph is called a tree if there is exactly one simple path between
all pairs of its vertices. This also implies for each vertex pair, the shortest
path is unique. Tree graphs are important for engineering algorithms and
data structures. A forest is a graph if there is at most one simple graph
between all pairs of its vertices.

Igraph can create regular trees with the make_tree() function. In a regular make_tree()
tree the number of incident edges is the same for all vertices, except for the
one at the “lower right corner” of the tree:

2.38.1) tree3 <- make_tree(10, children = 3) %>%
2) add_layout_(as_tree())
3) plot(tree3)
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2.7.1 Minimum spanning trees

For each weighted graph G, we can define its minimum spanning tree
MST(G). This is a tree that contains the same vertices as G, and a a subset
of its edges (i.e. it is a spanning tree), such that the sum the edge weighs is
less than in any other spanning tree.

Minimum spanning trees are useful in various algorithmic problems, and
also in network visualization. Networks are often too dense to visualize, but
a minimum spanning tree is always sparse, and often conveys information
about the original network. Let’s visualize the backbone of the US airport
network. Plotting all edges would not lead to an attractive figure, but we
can plot a minimum spanning tree (or forest) of the network, the one that
corresponds to the most transported passangers. For this we need to set the
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edge weights to the opposite of the carried passengers, and then calculate the
minimum spanning tree:

2.39.1) tree_air <- air
2) E(tree_air)$weight <- - E(tree_air)$Passengers
3) air_mst <- mst(tree_air)
4) # air_plot(air_mst)

2.7.2 DAGs

A tree cannot contain cycles, in other words it is an acyclic graph. The
analog concept in directed graphs is a directed acyclic graph, a DAG. DAGs
are an important class of directed graphs, because of their applications in
algorithmic problems. A DAG is often weighted.

Consider the following example. The current version of the igraph R pack-
age uses some functions from the Matrix R package, which means that Matrix
must be installed on a system before igraph is installed. Matrix on the other
hand uses functions from the lattice R package, so lattice must be installed
before Matrix. The dependency graph of igraph is this:

2.40.1) igraph_deps <- make_graph( ˜ lattice -+ Matrix -+ igraph )

Because of technical limitations a package dependency graph must always
be a DAG. In other words, it is not possible to have circular package depen-
dencies. When R installs a package, it downloads and installs all its direct and
indirect dependencies as well. First it has to order these dependencies such
that each package only depends on others that come earlier in the ordering.
This is called the topological ordering of the graph, and it exists if and only if
the graph is a DAG. Once the topological order is determined, the packages
can be installed one after the other, according to the ordering. Note that the
topological ordering might not be unique.

The is_dag() function checks if a directed graph is a DAG. topo_sort() is_dag()
gives a topological ordering of the graph.

2.41.1) is_dag(igraph_deps)

[1] TRUE

3) topo_sort(igraph_deps)

+ 3/3 vertices, named, from 92e980e:
[1] lattice Matrix igraph

Because of the acyclic property, some graph problems can be solved much
faster on DAGs. An example is finding shortest and longest paths. First of
all, it is true that v comes before w in some topological ordering of a DAG,



46 2 Paths

then it contains no directed paths from w to v. If just a path existed, that
would mean that w must come before v in all topological orderings.

Additionally, the following recursive equation is also true for all vertices:

d(s,wi) = min
(wj,wi)∈E

{d(s,wj) + c(wj, xi)}, (2.1)

where c(wj, wi) is the weight of the (wj, wi) edge, and d(s,wi) is the distance
from s to wi. We can calculate the distances from a given s to all other
vertices in the topological order. This is because when we calculate d(s,wi)
the d(s,wj) distances were already calculated for all (wj, wi) edges, since wj
must come before wi in the topological ordering.

A common application of DAGs and topological ordering comes from
scheduling and planning. If a project is divided into subprojects that depend
on each other, and each of which takes possibly different amount of time to
complete. It is natural to represent these relationships with a directed graph,
which has to be a DAG. A natural question is then the minimum time that
is needed to complete the project, if the subprojects can be done by different
people or teams, in parallel.

It is not hard to see that the minimum time needed for the project is
the longest path in the graph. Finding the longest path in a DAG is closely
related to finding the shortest path in it, and all we need to do is replacing
min · in Eq. 2.1 with max ·.

2.8 Transitivity

Especially in social network analysis, parts of networks are often analyzed in
isolation. An ego-network contains a distinguised vertex (ego), its neighbors
and all edges among them, including edges between the neighbors. An ego
network is a localized structural summary of the ego vertex. Ego networks
are useful in various settings:

• Focused, detailed analysis on the most important vertices of a graph.
• Comparing and classifying roles of vertices, in a supervised or unsupervised

way.
• Detecting local changes in network structure, by focusing on the structural

properties of all ego networks in a graph.
• Visualization, if visualizing the complete graph is hard or infeasible.

An ego network is embedded into a larger network, although the larger
network is sometimes partially or fully unknown. igraph can extract ego net-
works from via a the make_ego_graph() function. It extracts one or more egomake_ego_graph()
networks, and note that it always returns a list of graphs, for consistency:
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2.43.1) make_ego_graph(air, nodes = c("BOS", "PBI")) %>%
2) lapply(summary) %>%
3) invisible()

IGRAPH 090008a DN-- 84 2446 -- US airports
+ attr: name (g/c), name (v/c), City (v/c), Position
| (v/c), Departures (e/n), Seats (e/n), Passengers
| (e/n), width (e/n)
IGRAPH 8b9b765 DN-- 41 757 -- US airports
+ attr: name (g/c), name (v/c), City (v/c), Position
| (v/c), Departures (e/n), Seats (e/n), Passengers
| (e/n), width (e/n)

Related functions ego_size() and ego() calculate the size and the ver- ego_size()
ego()tirces of the ego network(s), respectively.

A generalization of an ego network is called a neighborhood. A k-neighborhood
of a vertex contains all vertices within k steps from it, and all edges among
them. An ego-network is a special k = 1 neighborhood. k-neighborhoods
of vertices can be creates by setting the order argument of the make_ego_
graph() function.

The most basic property of an ego network is its order: the number vertices
in it. This of course always equals to the degree of ego, minus one for the ego
vertex itself.

Another basic property is the edge density of the ego networks. This is the
ratio of the realized edges and the possible edges, and can be calculated with
edge_density(). edge_density()

2.44.1) air_deg <- degree(air)
2) air_ego_dens <- make_ego_graph(air) %>%
3) vapply(edge_density, numeric(1))

An extremely simple classification of US airports could use these two ego
properties:

2.45.1) air_clusters0 <- data.frame(stringsAsFactors = FALSE,
2) deg = air_deg, dens = air_ego_dens) %>%
3) na.omit() %>%
4) kmeans(centers = 4)
5) air_clusters0$size

[1] 626 31 12 85

In the third cluster, we clearly have the large regional hubs. The first
cluster contains the opposite, the smallest airports, with typically just a few
connections and because of the few connections, a highly variable ego network
density. The second and fourth clusters contain the airports in between.

2.46.1) which(air_clusters0$cluster == 3)
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LAS LAX CLT DTW MSP PHL MCO IAH ORD ATL DEN DFW
5 10 37 44 64 71 112 124 131 148 151 152

4) air_deg[ air_clusters0$cluster == 2 ] %>% summary()

Min. 1st Qu. Median Mean 3rd Qu. Max.
93.0 105.5 129.0 131.5 150.0 183.0

7) air_deg[ air_clusters0$cluster == 4 ] %>% summary()

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.00 34.00 45.00 48.69 60.00 85.00

Being in an ego-network, the edge density is somewhat constrained because
the edges between ego and the alters (non-egos) are always present. The mea-
sure that only calculates the density between the alters is called transitivity.
Two alters from the same ego network are always connected through a path
of length two, through ego. Transitivity measures how often they are also
directly connected and form a triangle. The transitivity() function calcu-transitivity()
lates transitivity directly on the embedding graph, no need to create the ego
networks first:

2.49.1) transitivity(air, vids = c("BOS", "LAS"), type = "local")

[1] 0.3529239 0.2238521

3) ego_size(air, nodes = c("BOS", "LAS"))

[1] 84 131

The transitivity value for Boston is higher than for Las Vegas, meaning
that cities you can fly from to Boston (or the other way around) are more
likely to be connected, compared to Las Vegas. Given that the ego network
of Las Vegas is bigger, this is not very surprising.

There are various types of transitivity measures. The one we defined here
is the local transitivity of the egos in a network: the ratio of closed and open
triangles centered on ego. The global transitivity (or clustering coefficient)
simply measures this for the whole network, i.e. it is the ratio of the number
of triangles and the number of connected triples.

2.51.1) transitivity(air, type = "global")

[1] 0.3384609

The global transitivity is a crude summary of the structure of a network.
A (relatively) high value means that vertices are connected well locally, in
other words the network has dense subgraphs. Network data sets typically
show high transitivity.
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2.9 Maximum flows and minimum cuts

The Seats edge attribute in the air network shows the number of seats on
all flights between a departure and a destination airport, per month:

2.52.1) E(air)[[ "BOS" %->% "JFK" ]]

+ 1/8228 edge from ce25b00 (vertex names):
tail head tid hid Departures Seats Passengers width

12 BOS JFK 2 4 491 39403 31426 0

Considering non-direct flights, this number is of course much higher. In this
section we calculate how many passengers the US airport network can trans-
port from a given airport to another one, without introducing new flights or
changing existing ones.

Questions about moving goods or people from one vertex to another,
through the network, naturally translate to maximum flow problems. A flow
between a source and a sink vertex on a (potentially weighted) directed graph
is a mapping of the edges to non-negative numbers, such that at every vertex
the in-flow equals the out-flow, except for the source vertex, where the in-flow
is zero, and the sink vertex, where the out-flow is zero. The value of the flow
is the in-flow at the sink vertex. The maximum flow from source to sink is
the flow with the largest value.

In the airports example, the edges of the network are labeled by the number
of passengers traveling over them, during one month. The value of the flow is
the number of passengers transported to the sink vertex corresponding to the
destination airport. For maximum flow problems wdge weights are considered
to be edge capacities, i.e. the number of passengers that can be transported
along that edge. It is important to realize that with our maximum flow model
we already made some implicit assumptions:

• We ignored the actual departure and arrival times. The existance of a flight
from A to B, and another one from B to C does not imply that passengers can
fly from A to C in practice. The second flight might leave before the arrival
of the first, or the second flight might be a weekly flight and passengers
will not wait for days to get on it. So our model will gives un an upper
bound on the number of passengers that can be transported.

• We do not consider that some flights are missing from our data because
they were canceled. Other flights were diverted, so their arrival airport is
incorrect.

• When calculating a maximum flow from a departure to a destination, we
ignore that passengers also travel between other airports and interfere with
the flights along out maximum flow.

We assume that these assumptions are reasonable if we are only interested
in the general throughput of the airport system, especially when comparing
different networks or the same network over time.
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The maximum flow problem is algorithmically not very difficult, but it is
also not easy. There are many algorithms for it, one of the most popular ones
is the push-relabel algorithm by Goldberg and Tarjan. Very superficially the
algorithm tries to assign height labels to the vertices, so that the flow along
the edges is always going down or at least never up. Then it pushes down flow
from the source towards the sink. It iteratively relabels the vertex heights, as
it discovers the structure of the network.

The push-relabel algorithm is implemented in the max_flow() function.max_flow()
It requires the source and target vertices. The edge attribute capacity is
used automatically if present in the graph, otherwise all edges are assumed
to have unit capacity:

2.53.1) E(air)$capacity <- E(air)$Seats
2) max_flow(air, ’BOS’, ’PBI’)$value

[1] 337730

4) max_flow(air, ’BOS’, ’LAX’)$value

[1] 1218036

The value of the maximum flow is returned in the value entry of the result
list, and the flow entry gives the actual flow values for each edge.

Minimum network cuts are strongly related to maximum flows. First we
motivate them with an example. In a transportation network it is often im-
portant to know how much the delivery of goods or passengers from one place
to another relies on a single or a small number of roads or flights. Formally, we
seek for the minimum number of edges, that disconnect a destination vertex
from a departure vertex. This is called the minimum cut between the vertices.
In a weighted network with edge capacities the minimum cut calculates the
total capacity needed to disconnect the vertex pair.

It is easy to show that the minimum cut in a graph from a source vertex to
a target vertex always equals the maximum flow between the same vertices.
This is often called the max-flow min-cut theorem, and was proven in 1956,
independently by two teams of researchers: Elias, Feinstein, and Shannon,
and by Ford and Fulkerson.

The igraph function min_cut() calculates a minimum cut. Internally itmin_cut()
uses the same machinery as max_flow(), not very surprisingly. It also uses
the capacity edge attribute, if available. By default it only returns the value
of the minimum cut:

2.55.1) min_cut(air, ’BOS’, ’LAX’)

[1] 1218036

We are in this case interested in the number of edges to be removed to
disconnect LAX from BOS, instead of the total capacity of these edges, so we
ignore edge capacities:
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2.56.1) min_cut(air, ’BOS’, ’LAX’, capacity = rep(1, gsize(air)))

[1] 74

A minimum cut (or any cut, really) can be also viewed as the most nat-
ural separation of a connected graph into two partitions. It is most natural,
because it gives the partitions that are the least connected. The min_cut()
and max_flow() functions also calculate these partitions.

After learning about minimum cuts a natural question is whether there
is a similar notion for vertices. We can define a (minimum) vertex cut, the
smallest set of vertices that need to be removed to separate two other vertices
in the network.

2.9.1 Cohesive blocks

2.10 Exercises

I EXERCISE 2.1. Write a function that calculates the diameter of a graph.
(Without calling the diameter() function directly, of course.) Can your im-
plementation avoid storing all n2 (or n(n − 1)/2 for an undirected graph)
distances? Can you make your algorithm parallel? (Hint: look at the parallel
package and the parLapply() function.)

I EXERCISE 2.2. A is a path that visits each vertex of a graph exactly once. Hamiltonian path
Solve the following puzzle by writing a function that finds the Hamiltonian
path in the graph: write out all integer numbers from 1 to 17 in a line, such
that the sum of every consecutive pair is a square number. Show that you
cannot do this for the numbers between 1 and 18. (Hints: 1) the outer() R
function can help you create the graphs, 2) for this size of graphs, you can
use the brute-force algorithm to search for a Hamiltonian path. I.e. query
all simple paths between all pairs of vertices using all_simple_paths().) all_simple_paths()
http://stackoverflow.com/questions/10150161

I EXERCISE 2.3. Write a program that lists the steps of a Knight over a
chess board, such that it visits each square of the (empty) board exactly
once. Can you find a solution from each possible starting square?

I EXERCISE 2.4. Write a function that extracts the largest component from
a graph. Thinks about the case when the graph has multiple largest compo-
nents.

I EXERCISE 2.5. Find a graph that has a non-unique diameter.

http://stackoverflow.com/questions/10150161
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I EXERCISE 2.6. Let us consider an undirected, connected graph. Write a
program that shows that the greedy diameter finding algorithm, as shown
below, is incorrect. This naive algorithm tries to find a pair of vertices v, and
w, such that w is the farthest vertex from v, and v is the farthest vertex from
w. This property, however, does not ensure that the v−w path is a diameter
of the graph.

Algorithm 2.1. An incorrect algorithm to calculate the diameter.

Require: G = (V, E) is a connected, undirected graph.
(1) v :∈ V {Choose an arbitrary vertex.}
(2) repeat
(3) v ′ ← v
(4) w← farthest_from(v ′)
(5) v← farthest_from(w)
(6) until v = v ′
(7) return distance(v,w)

I EXERCISE 2.7. Write a function that decides if a graph is tree. Write
another function that decides id a graph is a forest. .

I EXERCISE 2.8. Write a function that calculates the bow-tie structure of a
directed graph. Hint: in addition to the components() function, you’ll prob-
ably need the neighborhood() function as well.

I EXERCISE 2.9. Reproduce the figure from the Watts-Strogatz paper.

I EXERCISE 2.10. Implement an algorithm to find an arbitrary cycle base
of an undirected, simple graph. A cycle base is a set of cycles such that any
other cycle not in the cycle base can be obtained by taking the disjoint union
of appropriately selected base cycles.

I EXERCISE 2.11. This is a problem from a German programming compati-
tion for high school students. Twin towns all over Europe celebrate their
partnership this year. The partnerships are given as an undirected graph, in
the ‘twintowns’ data set in the igraphbook package. Each town has a num-
ber of festivals it is allowed to organize (see the ‘Budget’ vertex attribute).
Is it possible to distribute the festivals among the twin-towns in a way, such
that each pair of twin-towns organizes one festival in one the two towns and
no town organizes more festivals than it is allowed to?

The problem can be solved by crafting an augmented network from the
input, and calculating the maximum flow from a newly added source vertex
to a newly added sink vertex. Create the augmented network and calculate
the maximum flow that answers the question. (Hint: each vertex and each
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edge in the input graph will be a vertex in the augmented graph.) (30. Bun-
deswettbewerb Informatik, First round, Problem 5.)

I EXERCISE 2.12. Find the connected graph of n vertices with the largest
mean distance. (Hard.)

I EXERCISE 2.13. Find the graph on n vertices and with m edges, that has
the smallest possible diameter. (Hard.)





Chapter 3
Visualization

3.1 Introduction

Graphs are abstract mathematical structures. Formally, a graph is nothing
else but a set of objects where some pairs of the objects are connected by
links, and such objects have no unique visual representation which one could
simply draw or print to a piece of paper. The figures we have seen in this book
do not show graphs; they show an arbitrarily chosen visual representation
corresponding to these graphs. Graph visualization is the art of choosing an
appropriate visual representation to an arbitrary graph that is aesthetically
pleasing and makes the most important structural properties of the graph
accessible to the viewer.

The most common visual representation of a graph, which we have used
throughout the book and with which igraph works, is the so-called node-
edge diagram. Node-edge diagrams assign the vertices to points in the two- node-edge diagram
or three-dimensional space, and connect adjacent nodes by straight lines or
curves. For directed graphs, arrowheads on the lines may be used to indi-
cate the directionality of connections. Vertices are then drawn on top the
edges using simple geometric shapes, and the most important attributes of
vertices and edges are assigned to visual properties of the shapes and lines;
for instance, one can make the area of a circle representing a vertex pro-
portional to the degree of the vertex in order to highlight hubs (i.e. highly
connected nodes). Therefore, making a graph visualization usually consists
of three distinct steps:

1. Finding an appropriate arrangement of the vertices in the 2D or 3D space.
This is probably the most important one: a good layout often reveals
interesting symmetries or densely connected regions among the vertices
which would otherwise remain hidden. For instance, the three panels of
Fig. 3.1 all show the famous Petersen graph (Holton and Sheehan, 1993),
but the random layout on the left does not reveal anything about its
inner structure.

55
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Fig. 3.1 Three layouts of the Petersen graph. The left panel shows a random layout that
does not reveal anything about the inner structure of the graph. The middle and right
panels show two different layouts that reveal some of the symmetries and highlight the
importance of choosing a proper layout.

2. Mapping the important attributes of vertices and edges to visual proper-
ties of the corresponding shapes (for vertices) and lines (for edges).

3. Drawing the edges and vertices in an appropriate order.

igraph provides tools for all the above steps. These tools will be our pri-
mary interest in this chapter.

3.2 Preliminaries

3.3 Layout algorithms

Layout algorithms are responsible for finding a suitable arrangement of the
vertices of a graph in the 2D or 3D space that is aesthetically pleasing and
informative. Since neither of these requirements can be formalized easily,
most graph layout algorithms use some kind of an indirect measure (such as
the number of edge crossings) to assess the quality of a given arrangement,
and apply a heuristic procedure that does not even guarantee to minimize the
chosen quality or to work well in all the cases. Nevertheless, these algorithms
usually work well with smaller graphs consisting of a few hundred vertices at
most, and specialized techniques exist for handling larger graphs.

Layout algorithms in igraph are all implemented as methods of the Graph
class. The names of these methods always start with layout_ (e.g., layout_
circle(), layout_drl() and so on). There is also a central entry methodlayout_circle()

layout_drl() called layout() which takes the name of a layout algorithm as the first
layout() argument, then calls the appropriate layout method and forwards all the

remaining positional and keyword argument to the called method.
Each layout method returns an instance of Layout, a list-like object thatLayout

specifies the X and Y coordinates for each vertex in the graph. Layout in-
stances also provide some convenience method to translate or rotate a layout
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or to fit it in a given bounding box. Let us experiment a little bit with the
Layout class using probably the least sophisticated layout algorithm, the
random layout.

The random layout, as its name suggests, simply places the vertices in ran-
dom positions in the unit square. It is implemented by the layout_random() layout_random()
method, but can also be invoked by passing "random" as the first argument
of layout(). Throughout this chapter, we will use the second syntax, i.e. we
will call the layout() method and specify the name of the layout algorithm
as the first argument:

3.1.1) petersen = Graph.Famous("petersen")
2) layout = petersen.layout("random")

Layout objects behave like lists; they have a length (the number of ver-
tices), and they can be indexed, iterated and sliced just like a regular Python
list. They even have an append() method to add new coordinates to the
layout:

3.2.1) len(layout)
2) layout[2]
3) layout.append((5, 7))
4) len(layout)
5) del layout[10]
6) for x, y in layout:
7) print "x=%7.4f, y=%7.4f" % (x, y)

The number of dimensions in the layout can be queried with the dim read-
only property:

3.3.1) layout.dim

You can easily calculate the centroid (i.e. center of mass) of a layout us-
ing the centroid() method and move the centroid to a given point in the centroid()
coordinate system by calling center(): center()

3.4.1) layout.centroid()
2) layout.center(1, 2)
3) layout.centroid()

The bounding box of a layout (i.e. the smallest box that contains all the
points in the layout) is returned by the bounding_box()method. The result of bounding_box()
this call is an instance of BoundingBox, another convenience class to represent BoundingBox
rectangles and their most common operations:

3.5.1) bbox = layout.bounding_box()
2) print bbox
3) print bbox.width, bbox.height
4) print bbox.left, bbox.right, bbox.top, bbox.bottom
5) print bbox.midx, bbox.midy
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Property Access Meaning

bottom read/write The Y coordinate of the bottom edge
coords read/write The coordinates of the upper left and lower right corners as

a 4-tuple
height read/write The height of the box. When setting it, the bottom edge of

the box is adjusted.
left read/write The X coordinate of the left edge
midx read/write The X coordinate of the center
midy read/write The Y coordinate of the center
right read/write The X coordinate of the right edge
shape read/write The shape of the bounding box, i.e. a tuple containing the

width and the height. When setting it, the bottom and right
edges are adjusted.

top read/write The Y coordinate of the top edge
width read/write The width of the box. When setting it, the right edge of the

box is adjusted.

Table 3.1 Properties of the BoundingBox class

Name Meaning

contract() Contracts the box by the given margin (either a single number or
a list of four numbers, referring to the left, top, right and bottom
edges).

expand() The opposite of contract(): expands the box by the given margin.
isdisjoint() Returns whether two boxes are disjoint or not.
intersection() Calculates the intersection of two boxes, and returns a new Bound-

ingBox.
union() Calculates the smallest bounding box that contains both boxes, and

returns a new BoundingBox.

Table 3.2 Methods of the BoundingBox class

The members of BoundingBox are summarized in Tables 3.1 and 3.2. You
can also ask the layout to fit the coordinates into a given bounding box,
keeping the aspect ratio of the layout by default:

3.6.1) new_bbox = BoundingBox(-1, -1, 1, 1)
2) layout.fit_into(new_bbox)
3) layout.bounding_box()

If you do not want to keep the aspect ratio, just pass keep_aspect_ra-
tio=False to fit_into():

3.7.1) layout.fit_into(new_bbox, keep_aspect_ratio=False)
2) layout.bounding_box()

Finally, we also mention the methods of layout that perform simple co-
ordinate transformations: translate() translates the layout with a giventranslate()
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vector, rotate() rotates the layout by a given angle (specified in degrees), rotate()
scale() scales the layout by given scaling factors along the axes, and trans- scale()
form() calls a user-defined function on each of the points in the layout. transform()
rotate() and scale() also allows the user to specify the origin of the trans-
formation which will stay in place. In the following examples, we will track
the effect of the transformations on the centroid of the layout:

3.8.1) layout.center(1, 2)
2) layout.centroid()
3) layout.translate(2, -2) ## shift 2 units left and 2 units down
4) layout.centroid()
5) layout.scale(2, origin=(2, 0)) ## 2x scaling around (2, 0)
6) layout.centroid()
7) layout.rotate(45, origin=(4, 0)) ## rotating by 45 degrees
8) layout.centroid()

3.3.1 Simple deterministic layouts

The layout algorithms to be introduced in this section are deterministic, i.e.
they always produce the same layout for the same graph. To be frank, they
do not even look at the structure of the graph but produce a static layout
based on the number of vertices in the graph and some general guidelines.
On the other hand, they are fast and they may be useful for some graphs
with a special structure that is known a priori.

(a) Circle layout (b) Star layout (c) Grid layout

3.3.1.1 Circle and sphere layout

The circle and sphere layouts place the vertices on a circle (in 2D) or on circle layout
sphere layoutthe surface of a sphere (in 3D) in a way that tries to equalize the distances
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between vertices. The center of the circle (or sphere) is always in the origin
of the coordinate system, and the radius is equal to one:

3.9.1) layout = petersen.layout("circle")
2) print layout
3) layout.centroid()
4) layout.bounding_box()
5)

6) layout = petersen.layout("sphere")
7) print layout
8) layout.centroid()

Figure 3.2(a) shows the Petersen graph when laid out in a circle. You can
also create such a figure in igraph by using the plot() function:plot()

3.10.1) plot(petersen, layout=layout)

The plot() function is the main function for plotting graphs in igraph. A
more detailed description will be given later in Section 3.4.1.

3.3.1.2 Star layout

The star layout is similar to the circle layout, but one of the vertices is placedstar layout
in the center of the circle. For star-like graphs, this layout will indeed draw
the graph in a way that resembles a star, hence its name. The layout lets you
specify the ID of the vertex that will be placed in the center and also the order
of vertices on the circumference of the circle. This can sometimes influence
the quality of the layout significantly. The default parameter settings of the
star layout place vertex 0 in the center and the remaining vertices around it
in increasing order of their vertex IDs, which does not reveal much about the
structure of the Petersen graph (see also Figure 3.2(b)):

3.11.1) layout = petersen.layout("star")
2) plot(petersen, layout=layout)

However, with some a priori information (namely by knowing that the
Petersen graph contains a cycle of length 9), one can specify the order of the
vertices in a way that produces a better layout, similarly to the one we have
seen already on Figure 3.1(c).

3.12.1) layout = petersen.layout("star", center=0, order=[0,1,2,3,4,9,7,5,8,6])
2) plot(petersen, layout=layout)

Note that the order parameter must include each vertex ID only once,
including the ID of the central vertex.
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3.3.1.3 Grid layout

The grid layout places the vertices on anm×k regular grid, wherem denotes grid layout
the number of rows and k denotes the number of columns. The default values
are k = d√ne andm = dn/ke, where n is the number of vertices in the graph.
If n is a square number, these settings will yield a perfect square layout, and
even if n is not a square number, igraph will strive to make the layout close to
a perfect square, but of course a few slots in the last row will be empty. This
can be seen on Figure 3.2(c) where k = 4 and m = 3, and the two rightmost
places in the last row are empty. The code which generates this layout is as
follows:

3.13.1) layout = petersen.layout("grid")
2) plot(petersen, layout=layout)

You can override the width of the layout (i.e. the number of vertices in a
row) using the width parameter:

3.14.1) layout = petersen.layout("grid", width=5)
2) for coords in layout:
3) print "x=%d, y=%d" % tuple(coords)

There is also a 3D variant of the grid layout, which can be invoked either by
using "grid_3d" as the name of the layout, or by passing dim=3 as a keyword
argument to layout(). You may override both the width (the number of
vertices in a row) and the height (the number of rows) of a 3D grid layout
using the width and height keywords arguments, respectively, and igraph
will calculate the depth of the layout (i.e. the number of layers along the Z
axis) automatically.

3.15.1) layout = petersen.layout("grid", dim=3)
2) for coords in layout:
3) print "x=%d, y=%d, z=%d" % tuple(coords)

3.3.2 Layout for trees

The Reingold–Tilford layout (Reingold and Tilford, 1981) is a layout algo- Reingold–Tilford
layoutrithm designed specially for drawing tree graphs – graphs that contain no

cycles. It is selected by using reingold_tilford, rt or tree as the name
of the layout algorithm in the call to the layout() method. The algorithm
generates a layout where vertices are organized into layers based on their
geodesic distance from a chosen root vertex. It also strives to minimize the
number of edge crossings and to make the layout as narrow as possible. Even
if the graph is not a tree (i.e. it contains cycles), the layout will select an
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(e) With different root vertex

Fig. 3.2 Reingold–Tilford layout of a regular tree with different root vertices.

arbitrary spanning tree from the root vertex and use the spanning tree to de-
termine the layout. Needless to say, the more cycles you have in your graph,
the worse layouts the algorithm will produce, therefore it is most useful for
graphs that are trees or almost trees with a few extra edges. Since the Pe-
tersen graph we have used until now is far from being a tree, we will construct
a regular tree graph first, with an incomplete lowermost layer, then calculate
a Reingold–Tilford layout with vertex 0 as the root:

3.16.1) tree = Graph.Tree(15, 4)
2) layout = tree.layout("reingold_tilford", root=0)

We can now plot the tree, which results in a plot similar to Figure 3.2(d).

3.17.1) plot(tree, layout=layout)

If you do not specify a root vertex when calling the layout method, igraph
will try to select one based on some simple criteria. For undirected graphs, the
root of the tree will be the vertex with the largest degree. For directed graphs,
you may specify whether the tree is oriented downwards or upwards by using
the mode argument (where "out" means a downward oriented tree and "in"
means the opposite), and the root will be a vertex with no incoming edges
for downward trees and a vertex with no outgoing edges for upward trees. If
the graph consists of multiple components, igraph will select a root vertex
for each component. This heuristic is not perfect; for instance, it will select
a vertex from the second layer of our tree graph, as seen on Figure 3.2(e):
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Fig. 3.3 Basic principles behind force-directed graph layout algorithms. qi and qj rep-
resent the charges of nodes i and j, ~F(r)ij is the repulsive force as given by Coulomb’s law,
~F
(a)
ij is the attractive force the spring exerts on the nodes according to Hooke’s law.

3.18.1) layout = tree.layout("reingold_tilford")
2) plot(tree, layout=layout)

3.3.3 Force-directed layouts

Force-directed layouts are a large class of layout algorithms that are suitable
for general, small to medium sized graphs. They are based on simple physical
analogies and do not rely on any assumptions about the structure of the
graph, but they can be computationally demanding and do not scale up
to graphs with many thousands of vertices. The time complexity of these
algorithms is usually O(n2h), where n is the number of vertices and h is the
number of iterations the algorithm takes until convergence.

Force-directed techniques strive to satisfy the following, generally accepted
aesthetic criteria (Fruchterman and Reingold, 1991):

1. Vertices are distributed roughly evenly on the plane.
2. The number of edge crossings is minimized.
3. The lengths of edges are approximately uniform.
4. Inherent symmetries in the graph are respected, i.e. subgraphs with sim-

ilar internal structures are usually laid out in a similar manner.

igraph implements three force-directed techniques: the Fruchterman–Reingold
algorithm (Fruchterman and Reingold, 1991), the Kamada–Kawai algorithm Fruchterman–Reingold

algorithm
Kamada–Kawai
algorithm

(Kamada and Kawai, 1989) and the GraphOpt algorithm (Schmuhl, 2003).

GraphOpt algorithm

The Fruchterman–Reingold and the Kamada–Kawai algorithms exist in 2D
and 3D variants. We will discuss the 2D variants only, the 3D versions can be
accessed by adding an extra dim=3 keyword argument to the layout() call.

The basic assumption behind force-directed algorithms is that nodes are
tiny particles with a given electrical charge, and the edges connecting them
can be modeled with springs (see Figure 3.3). All pairs of nodes repel each
other, and the magnitude of the repulsive force F(r)ij acting between nodes i
and j is given by Coulomb’s law:
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∣∣∣
∣∣∣F(r)ij

∣∣∣
∣∣∣ = ke

qiqj

||~xi − ~xj||
2

(3.1)

where qi and qj are the charges of node i and j, ~xi and ~xj are the positions
of the nodes involved, ||~v|| is the length of ~v and ke is the Coulomb constant.
Since the nodes all have the same charge, we can simply treat keqiqj as a
constant multiplicative factor for all vertex pairs, therefore the magnitude of
the repulsive force simply depends inversely on the squared distance of the
nodes involved. keqiqj is considered as a parameter of the layout algorithm.

We would not get much of a meaningful layout with only repulsive forces.
These forces are counterbalanced by the springs attached to pairs of nodes
that are connected in the original graph. Attractive spring forces are modeled
with Hooke’s law: ∣∣∣

∣∣∣F(a)ij
∣∣∣
∣∣∣ = −k(||~xi − ~xj||− lij) (3.2)

where lij is the equilibrium length of the spring between vertices i and j and
k is the spring constant. k can be considered as a parameter of the algorithm
just like keqiqj in Coulomb’s law, and it is also assumed that all the springs
between vertices have an equal equilibrium length l.

Although it is said that the force-directed algorithms are based on physi-
cal analogies and they simulate a physical system in order to determine the
final layout, this is not entirely correct – the analogies end somewhere around
where we are now. The most important difference between an actual, accurate
physical simulation and the simulation employed by these techniques is that
forces adjust the positions of the points directly, while in a real simulation,
forces would influence velocities, which, in turn, would influence the posi-
tions. The reason for this difference is that the accurate simulation leads to
dynamical equilibria (i.e. pendulums and orbits), while the layout algorithms
seek a static equilibrium.

The three techniques take a different turn here. The GraphOpt algorithmGraphOpt algorithm
(igraph name: "graphopt") simply simulates the system for a given number
of time steps, and adds a simulated friction force to prevent nodes from
moving “too far” in one step; this is motivated by the fact that the algorithm
was designed for continuous graph visualizations where the layout unfolds
gradually in front of the viewer’s eyes.

The Fruchterman–Reingold algorithm ("fr" or "fruchterman_reingold")Fruchterman–Reingold
algorithm also constraints the displacement of vertices in each time step, but the max-

imum allowed displacement starts from a large value and is gradually de-
creased in each time step, therefore the vertices are allowed to make large
jumps in the early stages of the algorithm, but the final stages allow small
refinements only. The desired spring length l is zero, and the algorithm nat-
urally terminates when the displacement limit becomes smaller than a given
threshold.

The Kamada–Kawai algorithm ("kk" or "kamada_kawai") does not useKamada–Kawai
algorithm node charges, but the desired spring length is non-zero to keep the vertices

from collapsing into the same point. The algorithm then tries to minimize
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the total energy of the graph, where the energy is defined as follows:∑
(i,j)∈E(G)

(||~xi − ~xj||− l)
2 (3.3)

where E(G) is the set of edges of a graph G. Instead of running the sim-
ulation, the Kamada–Kawai algorithm searches for configurations with low
stress using a simulated annealing algorithm. For each vertex, a new position
is proposed in each step. The proposed displacement of the vertex is drawn
from a normal distribution with zero mean and σ2(t) variance (where t is
the number of iterations so far). The proposal is then accepted or rejected;
proposals that reduce the stress are always accepted, while proposals that
increase the stress are accepted only with a probability that depends on t
and the difference between the new and old stress values and the number of
iterations so far. In the early stages of the procedure, the variance of the pro-
posed displacements is larger, and proposals that lead to worse configurations
are accepted with a relatively high probability, while later stages allow only
small displacements and reject almost all the proposals that would increase
the stress.

The parameters of the above mentioned layout algorithms are summarized
in Tables 3.3, 3.4 and 3.5.

It is important to note that although these layouts seem to be deterministic
(after all, each step involves calculating the displacement of nodes in a deter-
ministic manner), the starting configuration is completely randomized, thus
every invocation of these algorithms lead to a completely different layout. If
you need exactly the same layout for multiple invocations, you have to set the
seed value of the random number generator of Python to a given constant,
which guarantees that the same starting configuration is used. Alternatively,
you can use the seed keyword argument to specify the starting configuration
explicitly. This also allows one to refine the result of a force-directed layout al-
gorithm with another one. For instance, it is generally claimed that the best
results are obtained by using the Kamada–Kawai layout algorithm to find
an approximate placement of nodes, followed by the Fruchterman–Reingold
layout algorithm to refine the positions.

Let us experiment a bit with these algorithms on geometric random graphs, geometric random
graphswhich are generated by dropping n vertices into the unit square [0; 1]2, and

connecting all pairs of vertices that are closer to each other than a predefined
distance threshold r (see Section ?? for more details). We will use n = 25
and r = 0.5:

3.19.1) graph = Graph.GRG(25, 0.5)

Note that the geometric random graphs have a “pre-defined” layout on
the 2D plane, where the vertices are placed at the exact positions where
they were when the graph was generated. The original X and Y coordinates
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Parameter Meaning

weights Weights of each edge in the layout. It can be an iterable yielding floating
point values or the name of an edge attribute. Springs corresponding to
edges with larger weights are stronger, making the edges shorter. All
edge have equal strength if this is omitted.

maxiter The maximum number of iterations to perform; the default is 500.
maxdelta The maximum distance a vertex is allowed to move in the first step. The

default is n, the number of vertices. The displacement limit in step i is
equal to δ(i/n)α, where δ is the value of maxdelta, and α is the value
of coolexp.

area The area of the square in which the vertices are placed before the first
step. The default is n2.

coolexp The cooling exponent of the simulated annealing process that decreases
the maximum allowed vertex displacements. The default is 1.5; see
maxdelta for more information.

repulserad A constant specifying the distance where the repulsive forces of two
nodes cancel out the attractive forces of a spring between them. This
constant controls the relation between ke (the Coulomb constant), qi
(the node charges) and k (the spring constant). The default is n3.

miny, maxy Specifies the minimum and maximum Y coordinates for each vertex in
the layout. They must either be lists containing one Y coordinate for
each vertex, or None, which means that no constraint is enforced. The
default is of course None.

seed The initial layout from which the simulation will start. The default is
None, meaning a random layout.

dim The number of dimensions in the space where the vertices will be laid
out. It must be either 2 or 3, the default being 2.

Table 3.3 Parameters of the Fruchterman–Reingold layout algorithm ("fr" or
"fruchterman_reingold")

are assigned to the x and y vertex attributes, respectively, so we can easily
reconstruct this layout using the attribute values:

3.20.1) layout_orig = Layout(zip(graph.vs["x"], graph.vs["y"]))

We can also generate layouts for the same graph using the three different
force-directed layout algorithms using their default parameters, and compare
them with layout_orig:

3.21.1) layout_fr = graph.layout("fruchterman_reingold")
2) layout_kk = graph.layout("kamada_kawai")
3) layout_graphopt = graph.layout("graphopt")
4) plot(graph, layout_orig)
5) plot(graph, layout_fr)
6) plot(graph, layout_kk)
7) plot(graph, layout_graphopt)
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Parameter Meaning

maxiter The maximum number of iterations to perform; the default is 1000.
sigma The standard deviation of the position change proposals in the first step.

The default is n/4, where n is the number of vertices.
initemp Initial temperature of the simulated annealing; the default is 10.
coolexp The cooling exponent of the simulated annealing process. The tempera-

ture is multiplied by this value in each step. The default is 0.99.
kkconst The Kamada–Kawai vertex attraction constant. The default is n2.
seed The initial layout from which the simulation will start. The default is

None, meaning a random layout.
dim The number of dimensions in the space where the vertices will be laid out.

It must be either 2 or 3, the default being 2.

Table 3.4 Parameters of the Kamada–Kawai layout algorithm ("kk" or "kamada_kawai")

Parameter Meaning

niter The maximum number of iterations to perform; the default is 500.
node_charge The charge of the vertices, used to calculate the repulsive forces.

The default is 0.001.
node_mass The mass of each vertex; the calculated forces are divided by this

number in the layout algorithm to obtain the displacement. The
default is 30.

spring_length The equilibrium length l of the springs; the default is zero.
spring_constant The spring constant k; the default is 1.
max_sa_movement The maximum distance a vertex is allowed to move along a single

axis in each step. The default is 5 units.
seed The initial layout from which the simulation will start. The default

is None, meaning a random layout.

Table 3.5 Parameters of the GraphOpt layout algorithm ("graphopt")

The results are shown on Figure 3.4; of course your results are likely to be
different due to the randomized nature of both the graph generation method
and the layout algorithms, but the general conclusions are the same: all the
three algorithms managed to produce an aesthetically pleasing layout of the
original graph while also recovering the most important structural properties:
the two denser clusters of vertices and the presence of two extra nodes that
are connected only loosely to the rest of the graph.

Finally, it should be noted that force-directed layout algorithms work well
on connected graphs, but their behaviour may be strange if the graph is dis-
connected. The components of a disconnected graph repel each other in both
the Fruchterman–Reingold and the GraphOpt layout. For the GraphOpt lay-
out, the final distance between the individual components will depend on the
number of iterations taken; the more steps you take, the farther the compo-
nents will be. The Fruchterman–Reingold layout counteracts this effect by
adding an extra, invisible node that is anchored to the origin of the coordi-
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(a) Original layout (b) Fruchterman–
Reingold

(c) Kamada–Kawai (d) GraphOpt

Fig. 3.4 Comparison of force-directed layout algorithms on a geometric random graph.
The left panel shows the positions of the vertices that were used to generate the graph.
The remaining panels show layouts generated by different force-directed layout methods.

nate system, and is also connected to one randomly selected node from each
of the components. The phantom edges between the invisible node and the
components keep the layout together to some extent. For the Kamada–Kawai
layout, there is no repulsive force between vertices in different components,
therefore all the components will be laid out in the same area on top of each
other. It is thus generally advised to use force-directed layout algorithms
directly on connected graphs only; disconnected graphs should first be de-
composed into connected components using the clusters() and subgraph()clusters()

subgraph() methods of the Graph class, the components should be laid out individually,
and the layouts should be merged in a post-processing step.

3.3.4 Multidimensional scaling

Multidimensional scaling (MDS) is a name for a set of related statistical tech-
niques to explore dissimilarity relationships encoded in a dissimilarity matrix.
More precisely, classical multidimensional scaling (also known as Torgerson–
Gower scaling) takes a symmetric dissimilarity matrix of size n× n between
n objects, and assigns a point in the k-dimensional space for each of the n
objects such that the distances between points are as close to the distance
matrix as possible (Borg and Groenen, 2005). This is done by minimizing a
loss function called strain:strain

E =

n∑
i=1

n∑
j=i+1

(||~xi − ~xj||− dij)
2 (3.4)

where dij is the desired distance of objects i and j according to the distance
matrix D.

The strain is surprisingly similar to the energy function used in the
Kamada–Kawai layout (see Eq. 3.3), with two key differences: first, the dis-
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tances are not uniform; second, the sum goes over all (i, j) pairs, not only
those that are connected in the graph. As a consequence, the distance ma-
trix must be specified for disconnected and connected vertex pairs alike if
we want to use this technique for finding an appropriate layout for a graph.
But how can we define the distance matrix for a graph in general? In specific
applications, we may have such a distance a priori, but in the absence of any
other information, there is also an easy way to specify a distance matrix: we
simply use the square root of the geodesic distances of the vertices; i.e. dij
will be the square root of the minimum number of hops one has to take on
the graph in order to reach vertex j from vertex i.

It can be shown that for Euclidean distances, the strain is minimized
by calculating the eigenvectors corresponding to the eigenvalues with the k
largest magnitude of a doubly-centered squared distance matrix D̂ obtained
from the original matrix D, and using the eigenvectors to place the vertices.
More precisely, the elements of D̂ are calculated as follows:

d̂ij = −
1

2

(
d2ij −

1

n

n∑
k=1

d2ik −
1

n

n∑
k=1

d2kj +
1

n2

n∑
k=1

n∑
l=1

d2kl

)
(3.5)

The kth coordinates of the vertices in the final layout are then given by the
eigenvector corresponding to the kth eigenvalue when the eigenvalues are
sorted in decreasing order of their magnitudes.

Both the distance matrix D and the doubly-centered squared distance
matrix D̂ is usually dense, which means that this technique is also applicable
only for small and mid-sized graphs; for instance, a graph with 10,000 vertices
would require a distance matrix with 108 items. However, the algorithm works
well for up to a few hundred or thousand vertices (depending on our patience),
and it also guarantees that the distances are recovered exactly by the layout
if it is possible to do so in the metric space we are embedding the graph
in. In other words, if the distance values represent actual distances and not
estimates, the layout will be equivalent to the original placement of vertices
in the 2D (or 3D) space up to rotations, translations and reflections.

Since we already have a geometric graph which we used for testing force-
directed layouts in the previous section, it is natural to use the same graph
to test the performance of multidimensional scaling. We will generate two
layouts; one with the exact distance matrix that we calculate from the original
positions of the vertices, and one with the estimated distance matrix where
dij is the square root of the geodesic distance between vertices i and j. First
we calculate the exact distance matrix:

3.22.1) points = [Point(v["x"], v["y"]) for v in graph.vs]
2) dist = [[p1.distance(p2) for p1 in points] for p2 in points]

The layouts can then be generated by calling layout() with "mds" as the
name of the layout algorithm. The distance matrix is given in a keyword
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(a) Using exact dis-
tances

(b) Using estimated
distances

(c) Original layout

Fig. 3.5 Multidimensional layouts of a geometric random graph. Note that the layout
obtained from the exact geodesic distances (left) is equivalent to the original layout (right)
up to a rotation. The middle panel shows a layout with an estimated distance matrix.

argument called dist; if this is omitted, the estimated distance matrix will
be used with the square roots of the geodesic distances:

3.23.1) layout_exact = graph.layout("mds", dist=dist)
2) layout_est = graph.layout("mds")

The two layouts can be plotted using the plot() function as before; the
results should be similar to the ones seen on Fig. 3.5, which also shows the
original arrangement of the vertices. Note that the original arrangement is
equal to the one reconstructed by the MDS algorithm in layout_exact up
to a rotation.

Finally, we note that the MDS algorithm can also be used to obtain a three-
dimensional layout by passing dim=3 as a keyword argument to layout().

3.3.5 Handling large graphs

None of the layout algorithms mentioned so far are specifically recommended
for large graphs. The simple deterministic layouts (circle, star, grid) do not
look at the structure of the graph and hence they are unlikely to yield high-
quality layouts for more than a handful of vertices; the force-directed algo-
rithms have a computational complexity of at least O(n2h), and they are
likely to get stuck in local minima for larger graphs; the multidimensional
scaling requires a dense distance matrix on which we also have to calculate
a few eigenvectors. What can we do then when we are confronted with large
graphs of a few thousand vertices or more?

igraph provides three different layout algorithms that are specifically de-
signed for large graphs: the grid-based variant of the Fruchterman–Reingold
algorithm (Fruchterman and Reingold, 1991), the LGL (Large Graph Layout)
algorithm (Adai et al, 2004) and the DrL algorithm (Martin et al, 2011)1.

1 The algorithm is now called OpenOrd, but igraph still uses its old name.
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According to the authors, the DrL algorithm produced useable layouts for
graphs up to 849,000 vertices, and the LGL algorithm has successfully been
applied to a protein map containing more than 145,000 proteins from 50
genomes (see Adai et al (2004)), and also to draw a map of the Inter-
net on the level of autonomous systems (see http://www.opte.org/maps).
One of the authors of this book used the DrL algorithm to generate a
global map of music artists from the similarity data provided by the web-
site Last.fm (http://www.last.fm). This particular graph contained almost
75,000 artists and the DrL layout was calculated in less than 20 minutes;
see http://sixdegrees.hu/last.fm for more details. However, what works
for large graphs is not necessarily suitable for small ones: all of these layouts
tend to produce worse layouts than a simple force-directed algorithm like the
Fruchterman–Reingold or Kamada–Kawai algorithm if the graph has only a
few hundred vertices.

Each of the three algorithms use a different approach to simplify the lay-
out procedure in order to make it scalable up to large graphs. The grid-
based Fruchterman–Reingold layout (identified by the names "grid_fr", grid-based

Fruchterman–Reingold
layout

"grid_fruchterman_reingold" or "gfr") is essentially equivalent to the
Fruchterman–Reingold algorithm, but the repulsive forces between vertices
are calculated only for some of the vertex pairs. This is motivated by the
fact that the magnitude of repulsive forces inversely depend on the square
of the distance between the vertices involved, thus these forces are negligible
for vertices that are farther from each other than a given distance threshold.
The grid-based variant therefore splits the space into cells using a regular
grid, and calculates the repulsive forces only between vertex pairs that are in
neighboring cells or in the same cell (where each cell in a 2D grid is assumed
to have eight neighbors: two horizontally, two vertically and four diagonally).
This idea decreases the time complexity of the entire algorithm toO(n lognh)
from O(n2h). The algorithm has essentially the same parameters in igraph as
the original Fruchterman–Reingold algorithm (see Table 3.3); the only extra
parameter is called cellsize and it defines the sizes of the cells to be used.
The default cell size is the fourth root of the area parameter; in other words,
the square root of the length of the side of the square in which the vertices
are laid out in the first step.

The LGL algorithm (identified by "lgl" as the name of the layout) takes LGL algorithm
this idea one step further by not trying to lay out the entire graph at once.
Instead of that, the algorithm constructs a breadth-first spanning tree of the
original network, starting from a root vertex, and proceeds down the spanning
tree layer by layer. In the first step, the root vertex and its direct neighbors are
placed in a star-like configuration (with the root vertex in the center) and then
laid out using a grid-based Fruchterman–Reingold algorithm as described
above. When the vertices reached an equilibrium position, the next layer of
the spanning tree (i.e. the set of nodes that are at distance two from the root)
is added in a circle around the nodes that are laid out already, and the layout
continues until a new equilibrium is reached. This procedure is repeated by

http://www.opte.org/maps
http://www.last.fm
http://sixdegrees.hu/last.fm
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adding newer and newer layers of the spanning tree to the layout until the
entire graph is laid out. The root vertex is picked randomly by igraph, but
a specific root vertex may also be used. Most of the speedup compared to
the grid-based Fruchterman–Reingold layout is achieved by decomposing the
graph into layers. Due to its usage of a spanning tree as a guide for the layout,
the LGL layout works the best if the underlying graph has an inherent tree-
like structure, or if at least the most heavyweight edges form a tree. The
parameters of the LGL algorithm are the same as the parameters of the
Fruchterman–Reingold algorithm (see Table 3.3) with two additional keyword
arguments: cellsize defines the sizes of the cells to be used in the grid-based
Fruchterman–Reingold step, and root, which defines the root vertex to be
used for the layout. root may be None (in fact, this is the default), meaning
that a root vertex will be selected randomly.

The DrL algorithm (igraph name: "drl") also uses graph decompositionDrL algorithm
as a way to speed up the layout process, but the decomposition is achieved
by a simple clustering procedure instead of a spanning tree calculation. In
the first step of the algorithm, the graph is coarsened by collapsing densely
connected regions into single vertices. The second step lays out the graph
using a grid-based force directed layout algorithm. The third step reverts the
coarsening of the first step, and lays out the vertices by using the coarsened
layout determined in the second step as a guide. The algorithm also employs
a heuristic called edge cutting, which may removes a few edges from the graph
if those edges are responsible for a significant amount of the total stress of
the layout; the idea here is that a more aesthetically pleasing layout may be
achieved if we remove those edges that connect distant regions of the graph as
the stress on these edges cannot really be relieved anyway without compro-
mising the overall quality of the layout. The strength of the DrL algorithm
lies in the fact that the coarsening procedure may be applied multiple times
if the coarsened graph is still too large to be laid out in a single step. This
allows the algorithm to scale up to hundreds of thousands of vertices.

3.3.6 Selecting a layout automatically

In the previous subsections, we have learned about quite a few layout al-
gorithms that are supported by igraph. There is one additional layout we
should know about, which can be invoked by passing "auto" as the name of
the layout algorithm to the layout() method. The automatic layout tries to
select the most suitable layout algorithm for a graph based on a few simple
structural properties according to the following procedure:

1. If the graph has an attribute called layout, its value will be used to
determine the layout of the graph. If the layout attribute is an instance
of Layout or a list of coordinate pairs, igraph will simply return these as
the preferred layout. If the attribute is a string, it will be interpreted as
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the name of a built-in layout algorithm; this algorithm will be invoked
and the result will be returned. If the attribute is a callable function, it
will be invoked with the graph as the first (and only) argument and its
return value will be interpreted as the preferred layout.

2. If the graph has vertex attributes called x and y, these will be treated as
the X and Y coordinates of the vertices in the preferred layout. Graphs
generated by the geometric random graph generator (see the GRG()-
method of Graph) will possess these vertex attributes automatically, GRG()
therefore the vertices will always be laid out according to their original
positions unless you delete the attributes explicitly. For three-dimensional
layouts, an additional vertex attribute z is also needed.

3. If the graph is connected and has at most 100 vertices, the Kamada–
Kawai layout will be used.

4. If the graph has at most 1000 vertices, the Fruchterman–Reingold layout
will be used.

5. If everything else above has failed, the DrL layout algorithm will be used.

You can request the three-dimensional variant of these layouts by passing
dim=3 as a keyword argument when invoking the automatic layout function.
The automatic layout is also the default layout in igraph, therefore you can
simply invoke the plot() function on an arbitrary graph if you wish to draw
it quickly without thinking too much about which layout algorithm would
be the most appropriate. For instance, the Petersen graph can simply be
plotted as follows, which would lay it out according to the Kamada–Kawai
layout algorithm:

3.24.1) plot(petersen)

3.4 Drawing graphs

3.4.1 The plot() function

Throughout the previous section, we have used the plot() function without plot()
knowing exactly what it does. It is not hard to guess that plot() plots
graphs, but the whole truth is more complicated than that: this function can
be used just as well to save the visualization in PNG, PDF, SVG or Postscript
formats.

This section will be devoted entirely to the usage of the plot() function,
which draws a graph (or, as we will see later in Section 3.5, many other igraph
objects as well) to a given canvas. The canvas itself means an image file on
the disk, which can be in any format that is supported by the Cairo plotting
backend. Even if you do not specify an output file name to indicate that you
simply wish to see the graph on the screen, igraph will plot to a temporary
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PNG file in the background and show this file to you using the default image
viewer of your platform.

The plot() function has three positional arguments and three keyword
arguments, most of which are optional. The positional arguments are as fol-
lows:

‘obj’ Specifies the object being plotted. Throughout this section, obj will
always be an instance of the Graph class. This is the only argument of
plot() that is mandatory.

‘target’ Specifies the canvas where Cairo will plot the given object. The
target is usually None (the default value), which means that the graph
has to be plotted to a temporary file and this graph has to be shown on
the screen using the default image viewer of the operating system. You
may also specify a string here, which will be treated as the name of a file
where the plot should be saved. The supported formats are PNG, PDF,
SVG and PostScript. Finally, you can also pass an arbitrary Cairo surface
object here, which is useful if you are embedding an igraph plot in an
application that draws to the screen using Cairo, as you can simply pass
in the Cairo surface that the application itself draws to.

‘bbox’ Specifies the bounding box in which the plot will be drawn on the
canvas. This is usually a tuple specifying the width and height of the plot.
PNG files and on-screen plots assume that the width and height are given
in pixels, while PDF, SVG and PostScript plots assume points, where 72
points are equal to 1 inch (2.54 cm). The default value is (600, 600), which
yields a plot of 600× 600 pixels on the screen or in PNG format, or a plot
of 8 1/3 in × 8 1/3 in (21 1/6 cm × 21 1/6 cm) in PDF, SVG or PostScript
formats. Alternatively, you can use an instance of BoundingBox here.

Besides these, there are three extra keyword arguments that plot() han-
dles:

‘opacity’ Specifies the opacity of the object being plotted. Zero means
that the object will not be plotted at all (it is totally transparent), while
one means that the object is entirely opaque. An opacity of 0.75 thus
corresponds to 75% opacity, or 25% transparency.

‘margin’ The top, right, bottom and left margins of the plot as a 4-tuple.
This can be used to leave extra space on the sides of the plot if needed. If
the tuple contains less than 4 elements, they will be re-used. For instance, if
you specify a pair of numbers here, they will be interpreted as the vertical
(top and bottom) and horizontal (right and left) margins, respectively.
Specifying a single number is also permitted; this means that the same
margin will be used on all sides. The default margin is 20.

‘palette’ The palette of the plot. We will talk about palettes later in
Section 3.4.2.

The remaining positional and keyword arguments are passed on intact to
the __plot__() internal method of the object being plotted (along with a few__plot__()
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extra arguments that we will describe later in Section 3.5). This means that
plot() accepts many more arguments than the five described above, but most
of these are interpreted by obj and not by plot() itself. We have already seen
an example of such an argument: in all the code examples involving plot, we
have added the layout keyword argument to specify the layout that should
be used to determine the positions of the vertices of the graph.

The main purpose of the keyword arguments for Graph instances in plot()
determine how the vertices and edges should be plotted. However, before we
dive in to the full list of these arguments, let us first familiarize ourselves
with the various data sources igraph collects information from to determine
how a particular vertex or edge should look like on a graph plot.

Let us assume that the graph drawer in igraph is currently drawing vertex
i and is trying to figure out what the color of the vertex should be. The
drawer first turns to the keyword arguments of the plot() call and checks
whether there is a keyword argument called vertex_color which contains a
list of colors. If so, the drawer takes the ith element of the list (or, if the list
contains only k elements, then the i mod kth element, taking into account
that indices start from zero both for the vertices and the list items), and
uses that as the color of the vertex. If there is no keyword argument called
vertex_color, igraph turns to the vertex attributes of the graph and looks
for a vertex attribute called color, whose value will be used to determine the
color of the vertex. In the absence of such a vertex attribute, igraph takes
a look at the default settings in the config variable of the igraph module
and retrieves the value of the "plotting.vertex_color" key. If even this
attempt fails (because there is no such key), the drawer uses a hard-wired
default color, which is red.

As an illustration, let us construct a simple ring graph and play with the
vertex colors a little bit. The following code snippet constructs the graph and
plots it with the default settings (and, remember, the automatic layout, since
we did not specify the layout keyword argument either):

3.25.1) ring = Graph.Ring(9)
2) plot(ring)

You can also save the visualization in a file by adding the name of the file
as the second argument of plot:

3.26.1) plot(ring, "ring.pdf")

In the obtained visualization, all the vertices are red, since there is no ver-
tex_color keyword argument to plot(), no color vertex attribute in ring
and no default color specification in the configuration. Let us first override
the default vertex color in the configuration:

3.27.1) config["plotting.vertex_color"] = "lightblue"

Plotting the graph now would draw every vertex with a light blue color
due to the presence of the "plotting.vertex_color" configuration key. To
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return to the hard-wired default vertex color, just delete the configuration
key from the config dictionary:

3.28.1) del config["plotting.vertex_color"]

The config variable is not just a plain dictionary, although it behaves
like one. It also allows you to save the configuration to the disk using the
save() method or load it from a file using the load() method. The default
configuration of igraph is stored in a file named .igraphrc in your home
directory; this is /home/yourusername on Linux, /Users/yourusername on
Mac OS X and C:\Documents and Settings\yourusername on Windows.

If we plotted our ring graph now after having deleted the vertex color key
from the configuration, all the vertices would be red again – unless we set a
vertex attribute that specifies the color of each vertex. For instance, to turn
all the vertices green, you should type:

3.29.1) ring.vs["color"] = "green"

This is a shorthand notation for the following to save some typing when
the same attribute value is assigned to all the vertices:

3.30.1) ring.vs["color"] = ["green"] * ring.vcount()

You can also assign a list of vertex colors to the "color" vertex attribute;
if the list is shorter than the number of vertices, it will be re-used:

3.31.1) ring.vs["color"] = ["red", "red", "green"]
2) ring.vs["color"]

Plotting the graph now would draw every third vertex in green. However,
the visual properties dictated by the vertex attributes can be overridden by
the keyword arguments of plot(); for instance, the following code snippet
would draw every third vertex in red, green or blue, respectively (note that
the elements of the list are re-used again just like with attribute assignment):

3.32.1) plot(ring, vertex_color=["red", "green", "blue"])

The same principles work for any vertex or edge attribute, not just for the
color. In summary, igraph follows the following procedure when determining
the value of a visual property property of a vertex or edge with index i:

1. If a keyword argument named vertex_property (for vertices) or edge_
property (for edges) is specified in the plot() invocation, the value of
the keyword argument is used to determine the visual property. If the
argument is a number or string, it is used for all the vertices (or edges).
If the argument is a sequence of k elements, the (i mod k)th element is
used.

2. If a vertex (or edge) attribute property exists in the graph being plotted,
its value for vertex (or edge) i is used.
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Name Meaning Default

color The color of the vertex. See Section 3.4.2 for more details
about specifying colors.

"red"

label The label of the vertex. none
label_angle The angle of the label relative to the horizontal axis, in

radians. See Section 3.4.3 for more details about the label
placement algorithm.

−π/2

label_color The color of the label. See Section 3.4.2 for more details
about specifying colors.

"black"

label_dist The distance of the label from the center of the vertex
shape. See Section 3.4.3 for more details about the label
placement algorithm.

0

label_size The font size of the label. 14
shape The shape of the vertex. igraph supports the following

shapes at the moment:

• "circle": a regular circle. "circular" is an alias.
• "rectangle": a rectangle. "rect", "square" and "box"

are aliases.
• "triangle": an upright triangle. "triangle-up" and

"up-triangle" are aliases.
• "down-triangle": a downward pointing triangle.

"triangle-down" is an alias.
• "diamond": a diamond shape. "rhombus" is an alias.

"circle"

size The size of the vertex, measured in pixels for PNG and
on-screen plots, or points for PDF, SVG and PostScript
files.

20

Table 3.6 Visual properties of vertices in igraph plots

3. If a configuration key called plotting.vertex_property exists in the
config variable, its value will be used.

4. Otherwise, a hard-wired default value will be used.

Of course the property has to be replaced with the name of the visual
property we are interested in (e.g., label, size, width and so on). Tables 3.6
and 3.7 summarize the visual properties of vertices and edges that you are
allowed to control in the plots.

There are four additional keyword arguments of the plot() function that
we have not talked about so far. The first one is the layout argument, which
specifies the layout of the graph (i.e. the assignment between the vertices of
the graph and the points of the plane). The value of this argument can be
one of the following:

• A string describing the name of a layout algorithm. The graph drawer will
then invoke the layout algorithm with the default parameters and use the
resulting layout to plot the graph. This is a shortcut to calling layout()
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Name Meaning Default

arrow_size Multiplicative factor to the size of the arrowhead on directed
edges. The actual size will be 15 units of the canvas times
the factor given here.

1

arrow_width The width of the arrowhead on directed edges. This controls
the angle of the arrowhead: the angle will be 36◦ times the
value of arrow_width.

1

color The color of the edge. See Section 3.4.2 for more details
about specifying colors.

"#444"

width The width of the edge in the units of the canvas. 1

Table 3.7 Visual properties of edges in igraph plots

with the name of a layout algorithm and then using the result as the value
of the layout keyword argument.

• An instance of the Layout class which we have typically calculated before-
hand using an appropriate call to the layout() method. Of course it is
perfectly acceptable to use any hand-crafted layout as well.

• A list of coordinate pairs, which are simply converted to a Layout instance
on the fly.

The second keyword argument is called mark_groups, and it allows one to
enclose a subset of vertices in the graph using a shaded background. This is
typically used to show clusters in a graph, but it can also be used to point
out any arbitrary region of interest as long as the vertices of the region are
relatively close to each other. The usage of this argument will be described
in depth later in Section 3.4.4.

The final two keyword arguments serve the same purpose: they allow the
user to influence the order in which the vertices are drawn on the canvas. By
default, igraph draws the vertices in increasing order of the numeric vertex
IDs. If the layout is very dense, vertices drawn later may cover the vertices
that were drawn earlier. The vertex_order keyword argument lets you spec-
ify the drawing order. Each element of this list must be a vertex ID, and
igraph will simply draw the vertices in the order dictated by vertex_order.
For instance:

3.33.1) plot(ring, vertex_order=[0,8,1,7,2,6,3,5,4])

Alternatively, you can pass the name of a vertex attribute as the value of
the vertex_order_by keyword argument to use the values of this attribute to
control the order. The argument may also be a tuple where the first element
describes the name of the attribute and the second is True or "desc" if the
ordering should be reversed, and False or "asc" otherwise.

To demonstrate the usage of this keyword argument (and also the other
ones), we are going to visualize a real-world dataset: a subset of the air
transportation network of the United States, assembled for 500 cities with
the most air traffic by Colizza et al (2007). The dataset is readily available
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for download in Nexus (see Chapter ??), therefore we will simply use the
built-in Nexus interface to obtain the data:

3.34.1) air = Nexus.get("us-airport")

Let us first examine the summary of the dataset:

3.35.1) summary(air)

This dataset is a moderately small network with air.vcount() vertices
and air.ecount() weighted edges.

The vertices represent the airports considered in the dataset, and edges
correspond to air travel connections. Each edge is weighted by the total num-
ber of available passenger seats per year for a given connection. We can also
see that the dataset is anonymized as the vertex names contain numeric IDs
only:

3.36.1) air.vs["name"][:5]

This means that we do not know which node belongs to which airport,
and we cannot lay the graph out according to a map projection. Luckily, we
can still use the built-in layout algorithms to obtain a nice arrangement for
the nodes. The automatic layout selection will use the Fruchterman–Reingold
layout algorithm to find the positions of the vertices. For a graph of this size,
calculating the layout takes a couple of seconds, and since we are going to
experiment a bit with different plot parameters, it will save us some time to
save the layout to a variable before we start plotting:

3.37.1) layout = air.layout()

Note that we did not use the edge weights in the layout algorithm; doing
so would probably have pulled high-traffic network hubs too close to each
other. Let us plot the graph with the calculated layout to see what we have
so far:

3.38.1) plot(air, layout=layout)

Well, one thing is for sure: the layout of the airport network looks very
different from the geographical layout, but of course this is expected since
force-directed layout algorithms tend to pull connected vertices close to each
other, while there is no point in a high-traffic air connection between cities
that are close to each other in geographical space. We can also see that the
majority of the vertices are situated in a tightly connected core, but we do
not know how strong the edges are in or outside the core, neither can we
see how many passengers a given airport can handle per year. We will add
these features to the plot soon. We will also increase the size of the plot to
1200×1200 units (i.e. twice as large as before) to be able to see more details.

First, we are going to use the widths of the edges to show the number
of passenger seats for a given connection. Thicker edges will correspond to
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connections carrying more passengers, but how shall we calculate the width
of the edge from the connection capacity? Let us first get a rough idea of
the distribution of connection capacities by calculating the minimum and
the maximum weight and the 25th, 50th and 75th percentiles of the weight
distribution:

3.39.1) min(air.es["weight"])
2) max(air.es["weight"])
3) percentile(air.es["weight"])

percentile() is an igraph function that calculates sample percentiles of apercentile()
vector of numbers given as an argument. The second parameter specifies the
percentile(s) to calculate; the default value is (25, 50, 75) which returns
exactly those percentiles we were looking for.

We can see that the weight distribution spans several orders of magnitude,
therefore it seems reasonable to use the logarithms of the weights to calculate
the edge widths. Quite arbitrarily, we will map a weight of 104 to a line width
of 1 and a weight of 2×106 to a line width of 10 using a logarithmic scale. The
rescale() function is designed exactly for such transformations. rescale()rescale()
takes a list of numbers, an input range, an output range and an optional
transformation function f, then transforms the numbers using f and re-scales
them such that the endpoints of the input range (before applying f) are
mapped to the endpoints of the output range. The complete argument list is
as follows:

‘values’ The list of values to be re-scaled.
‘out_range’ The output range, i.e. the range in which the values within

the input range will be mapped. The range must be given as a tuple with
lower and upper limits, and it is allowed to use a lower limit that is larger
than the upper limit. The default is (0, 1).

‘in_range’ The input range, i.e. the range whose endpoints will be
mapped to the lower and upper limit of the output range. The default
is equivalent to the minimum and maximum values in values.

‘clamp’ If True, input values outside the input range will be mapped to
the lower and upper limits, depending on which one is closer. This ensures
that every number in the result is within the output range, even if the
input range is smaller than the range of input values.

‘scale’ The function f that is used to transform the input values. Typical
choices are log() or log10() from the math module for a logarithmic
transformation, or sqrt() to use the square root of values, which is useful
when we want the area of a vertex to be proportional to some value, since
igraph controls the size of a vertex and not the area.

Putting it all together, we can use the following call to determine the edge
widths:
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3.40.1) from math import log
2) air.es["width"] = rescale(air.es["weight"], out_range=(1, 10),
3) in_range=(1e4, 2e6), scale=log)

We also want the sizes of the vertices to be proportional to the number of
passengers the corresponding airport serves. This can be calculated by sum-
ming the weights of edges incident on a given vertex using the strength() strength()
method. We calculate the extrema and the percentiles as well:

3.41.1) importance = air.strength(weights="weight")
2) min(importance), max(importance)
3) percentile(importance)

As expected, the distribution of vertex strengths is just as heavily skewed
as the edge weights, therefore it is also advised to use a log-transformation
before rescaling. We will transform the strength into a size range between 1
and 50 units:

3.42.1) air.vs["size"] = rescale(importance, out_range=(1, 50),
2) scale=log)

Finally, we ask igraph to plot the vertices in increasing order of vertex
sizes so that larger vertices (i.e. more important airports) are drawn on top
of smaller ones. Since the visual properties of the vertices and edges are set
up already in the appropriate attributes, we only have to specify the size of
the plot (which is going to be 1200× 1200 pixels), the pre-calculated layout
and the desired vertex drawing order:

3.43.1) plot(air, bbox=(1200, 1200), layout=layout,
2) vertex_order_by="size")

The final plot is depicted on Figure 3.6.
When experimenting with plots, it often requires several iterations until

a satisfying visualization is obtained. A common trick to reduce the amount
of typing involved is to prepare a dictionary that contains all the keyword
arguments to be passed to plot(). This dictionary can be updated easily,
and it takes much less typing to invoke plot() again. E.g.:

3.44.1) params = dict(layout=layout, bbox=(1200, 1200),
2) vertex_order_by="size")
3) plot(air, **params)

Now if we realized that the plot would look much better with light blue
square vertices, we only have to update ‘params’ and run the plot() com-
mand again, which you can easily do in most Python IDEs by pressing the
up arrow on your keyboard until you get back to the appropriate plot() call
in the command history:

3.45.1) params["vertex_shape"] = "square"
2) params["vertex_color"] = "lightblue" #labelvrb:colorname
3) plot(air, **params)
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Fig. 3.6 The US airport network as plotted by igraph using the Fruchterman–Reingold
layout.

3.4.2 Colors and palettes

Line ?? in the previous code snippet uses the name of a color (lightblue),
but so far we have not talked about how igraph recognizes colors, and what
other ways are there to define the colors of edges and vertices on a graph
plot.

First of all, igraph recognizes all the standard X11 and HTML color names.
The full list can be retrieved by printing the keys of the known_colors dic-
tionary. We only print the first ten entries here:

3.46.1) sorted(known_colors)[:10]

This is the easiest way to specify a color – just use its X11 name and
igraph will know what to do. The other possible way is to specify the red
(R), green (G) and blue (B) components of the color as floats in the rangeRGB components
0 to 1. For instance, red=1.0, green=0.5 and blue=0 gives you a tangerine
shade:
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3.47.1) air.vs["color"] = [(1.0, 0.5, 0)] * air.vcount()

Note that we had to multiply the tuple by the number of vertices to assign
the same color to all the vertices, otherwise the color of the first three vertices
would have been assigned 1.0, 0.5 and 0, respectively, and the elements of the
tuple would have been re-used for the remaining vertices. This is something
that you have to watch out for when using tuples to specify colors for a
set of vertices rather than a single vertex. An alternative syntax lists the
components in a string, separated by commas, slashes or whitespace, therefore
strings like "1.0 0.5 0", "1/0.5/0" or "1, 0.5, 0" are all equivalent to
(1.0, 0.5, 0).

You can also add a fourth component to the color, which will describe the
alpha channel , i.e. the “opaqueness” of the surface the color is painted to. alpha channel
Zero corresponds to a fully transparent surface, and 1 corresponds to a fully
opaque one. Intermediate values describe partially translucent surfaces; for
instance, painting a red circle with an alpha value of 0.5 on top of a white
surface would yield a pink circle as red is evenly mixed with white.

Besides RGB components, you can also use CSS3 color specifications2.
These are always given in a string that follows one of the following formats:

HTML-like format. The color is given as #rrggbb, #rgb, #rrggbbaa or
#rgba, where r, g, b and a denote hexadecimal digits (0-9, A-F) corre-
sponding to the red, green, blue and alpha components, respectively. Letter
codes like rr mean that the corresponding component should be specified
in the range 00-FF (in hexadecimal), where r means that the range is 0-F
only. The orange color we have cited as an example above is then given
as #f80 or #ff8000 without alpha channel, and #f80f or #ff8000ff with
alpha channel.

RGB components. Here the format is rgb(red, green, blue) or rgba(red,
green, blue, alpha) where red, green, blue and alpha specify the corre-
sponding components of the color using either decimal numbers between 0
and 255, or using percentages between 0% and 100%. Therefore, rgb(100%,
50%, 0%) or rgba(255, 128, 0, 255) also correspond to our favourite
tangerine color.

HSL components. HSL refers to the HSL color space, which also describes HSL color space
colors using three components: hue, saturation and lightness. Hue is given hue

saturation
lightness

as degrees on the color circle between 0◦ and 360◦, where 0◦ corresponds
to red, 60◦ to yellow, 120◦ to green, 180◦ to cyan, 240◦ to blue and 300◦
to purple. Saturation and lightness is specified in percentages. Orange is
situated halfway between red and yellow, giving us a hue of 30◦; its corre-
sponding saturation and lightness is 50% and 0%, respectively, hence its
HSL specification: hsl(30, 50%, 0%). Alpha channels are also supported
if you use hsla instead of hsl; the generic format is hsl(hue, satura-
tion, lightness) and hsla(hue, saturation, lightness, alpha).

HSV components. HSV refers to the HSV color space (hue-saturation- HSV color space

2 See http://www.w3.org/TR/css3-color/

http://www.w3.org/TR/css3-color/
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value), which is similar to the HSL color space, but the lightness com-
ponent is replaced by the value component. The value is also given asvalue
a percentage and it is equal to the maximum of the values of the red,
green and blue components in the RGB space. Tangerine is hsv(30, 50%,
100%) in HSV space; the generic format is hsv(hue, saturation, value)
or hsva(hue, saturation, value, alpha).

The last option to specify colors in igraph is to supply a single integer
whenever a color is expected; in such cases, the number is used as an index
into the current palette of the plot. Roughly speaking, a palette is a mappingpalette
between integers from zero to n − 1 (where n is the size of the palette) to
colors. igraph provides a handful of default palettes that are useful for various
types of visualizations; these are stored in the palettes dictionary:

3.48.1) for name in sorted(palettes):
2) print "%-16s %r" % (name, palettes[name])

Whenever you draw a graph using the plot(), you may specify a palette
explicitly using the palette keyword argument, e.g.:

3.49.1) pal = GradientPalette("red", "blue")
2) plot(petersen, layout="fr", palette=pal)

The palette selection works similarly to other visual properties. If you
specify a palette as a keyword argument, this palette will be used. If there
is no palette argument, igraph falls back to the plotting.palette key of
the configuration settings. If no such key exists in the configuration, a hard-
wired default will be used, which always refers to a grayscale palette from
black to white.

The list of default palettes in igraph is summarized in Table 3.8. Each
entry in palettes is an instance of some subclass of the Palette class; mostPalette
frequently GradientPalette or AdvancedGradientPalette. Whenever youGradientPalette

AdvancedGradientPalette specify a palette in the palette keyword argument of plot(), or in the
configuration settings, you may use a palette name to refer to one of the
default palettes.

You can also examine any of the Palette instances using the plot()-
function:plot()

3.50.1) plot(palettes["red-black-green"], bbox=(300, 100))

GradientPalettes represent a linear gradient between two given colors in
the RGB space:

3.51.1) red_green = GradientPalette("red", "green")
2) len(red_green)
3) red_green[128]
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Name Description

gray Grayscale gradient from black to white
heat Heat-map style palette: a gradient from red to yellow to white,

where yellow is reached at palette index 192.
rainbow Rainbow palette that contains all the fully saturated colors

around the edge of the color circle. This is achieved by vary-
ing the hue from 0◦ to 360◦ while keeping saturation and value
at 100% in HSV space.

red-black-green Gradient from red to black to green; typically used to show gene
expression values in biological networks (red: down-regulated,
black: neutral, green: up-regulated)

red-blue Gradient from red to blue
red-green Gradient from red to green
red-purple-blue Gradient from red to purple to green
red-yellow-green Gradient from red to yellow to green
terrain Gradient from green (plains) to dark yellow (hills) to light gray

(mountains), just like the colors used on a topographic map.

Table 3.8 The list of default palettes in igraph. Each palette contains 256 entries.

As seen above, palettes behave like lists, but of course you cannot assign
to the entries in a palette. They can also resolve string color specifications to
RGB components using the get() method, even if the colors being queried
are not in the palette:

3.52.1) red_green.get("maroon")
2) red_green.get_many(["rosybrown", "hsv(30, 50%, 100%)"])

The default length of a gradient palette is 256 colors, but you can override
it at construction time:

3.53.1) red_green = GradientPalette(n=42)
2) len(red_green)
3) red_green[21]
4) red_green[50]

The AdvancedGradientPalette() is similar to GradientPalette(), but it AdvancedGradientPalette()
allows more than two stops in the gradient; for instance, a more saturated
gradient between the red and green colors can be obtained if we add an extra
yellow stop halfway between red and green:

3.54.1) red_yellow_green = AdvancedGradientPalette(["red", "yellow", "green"], n=9)
2) red_yellow_green[0] ## this will be red
3) red_yellow_green[2] ## this will be orange
4) red_yellow_green[4] ## this will be yellow
5) red_yellow_green[6] ## this will be lime
6) red_yellow_green[8] ## and this is green
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RainbowPalette() varies the hue between two extremes while keeping the RainbowPalette()
saturation, the value and the alpha level in HSV space constant:

3.55.1) rainbow_part = RainbowPalette(start=0.1, end=0.7, n=120)

Here, hue is specified as a floating-point value between 0 and 1 (0 corre-
sponding to 0◦ and 1 corresponding to 360◦), but you may also use values
larger than 1 or smaller than zero. For instance, to go counter-clockwise from
60◦ (yellow) to 240◦ (blue):

3.56.1) rainbow_part = RainbowPalette(start=1.0/6, end=-2.0/6, n=120)

PrecalculatedPalette() simply treats a list of color identifiers as aPrecalculatedPalette()
palette; every color in the list specified at construction time will be resolved
to RGBA components:

3.57.1) colors = PrecalculatedPalette(["red", "green", "blue", "yellow", "magenta", "black"])
2) colors[0] ## this will be red
3) colors[3] ## this will be yellow
4) colors[6] ## there is no such color in the palette

PrecalculatedPalette() can be used to plot a flat clustering of a graph
easily as you can simply assign the membership vector of a clustering to
the color attribute of the vertices or use it as the value of the vertex_
color keyword argument of plot(). The following code snippet generates a
geometric random graph, splits it up to four clusters, and then colors each of
the clusters with a different color:

3.58.1) grg = Graph.GRG(100, 0.25)
2) clusters = grg.community_fastgreedy().as_clustering(4)
3) plot(grg, vertex_color=clusters.membership, palette=colors)

Actually, there is an even easier way to plot clusterings, which is described
later in Section 3.5.1.

3.4.3 Placing vertex labels

The position of vertex labels on graph plots is controlled primarily by two
vertex attributes: label_angle and label_dist. The former specifies the
direction of the label from the center of the node, while the latter defines the
distance. The distance is actually the ratio between the real distance and the
size of the vertex, which allows us to speciy the same distance ratio for all
the vertices while still taking into account that a label must be farther from
a larger vertex than from the smaller one. We will denote the angle by α,
the distance ratio by d and the size (radius) of the vertex by r. When igraph
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Fig. 3.7 Placement of a vertex label near the vertex centered at A. d is the value of the
label_dist attribute, α is the angle given by label_angle in radians. B is the reference
point that is at distance rd from A, and the label is placed such that B is on the bounding
box of the label and A, B and the center of the bounding box lie on the same straight line.

places the labels of the vertices, it treats all the vertices as if they were circles
with radius r even if they have a different shape.

The idea behind the vertex placement algorithm of igraph is illustrated
on Figure 3.7. First, the algorithm finds the point B that is at distance rd
from the center of the vertex A in the direction specified by α. The label is
then placed such that its bounding box intersects the line connecting A with
the center of the bounding box exactly at point B. Therefore, α = 0 and
d = 1 will place the label in a way that the middle of its left edge touches
the rightmost point of the vertex; α = π/2 places the label above the vertex
such that the middle of its bottom edge touches the topmost point of the
vertex and so on. When α is either 0, π/2, π or −π/2, it is thus ensured
that the label does not overlap with the vertex. Small overlaps may occur for
non-horizontal and non-vertical angles, especially close to the diagonals, but
it is usually enough to set d to slightly larger than 1 to avoid such overlaps
as well.

3.4.4 Grouping vertices

This section will describe the mark_groups keyword argument that you can
pass to the plot() function when plotting graphs. As its name suggests,
mark_groups allows you to specify groups of vertices that will be marked by
a colored area that encloses them on the plot to a single group. A natural use-
case for this feature is to show the result of a clustering algorithm (assuming
that vertices in the same cluster are fairly close to each other on the plot),
or to highlight a group of vertices with some specific structural properties.

mark_groups can take one of the following values:

• None, meaning that no groups will be highlighted. This is the default set-
ting.

• A dictionary where the keys are collections (e.g., tuples) of vertex indices
and the corresponding values are colors (see Section 3.4.2 for color speci-
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fication formats). E.g., the following code would group vertices 1, 3 and 5
together in a red shaded area:

3.59.1) marks =
2) marks[1,3,5] = "red"
3) plot(grg, mark_groups=marks)

• A sequence or iterable that contains pairs, the first element of the pair
being a collection of vertex IDs and the second element being the corre-
sponding color:

3.60.1) marks = [((1, 3, 5), "red")]
2) plot(grg, mark_groups=marks)

Instead of collections of vertex indices, you may also use VertexSeq in-
stances in this syntax. For instance, the above code would group all the
vertices with betweenness larger than 200 in a red shaded area:

3.61.1) marks = [(grg.vs.select(_betweenness_gt=200), "red")]
2) plot(grg, mark_groups=marks)

Note that marking a group of vertices makes sense only if these vertices are
situated close to each other on the graph. igraph simply calculates the convex
hull of the selected vertices (i.e. the smallest convex polygon that contains
all the vertices), expands its boundary by a few units and creates a smooth
Bézier curve around it. Therefore, it should be ensured that other vertices
not belonging to the set being marked are not placed within the convex hull
to avoid ambiguity.

3.5 Visualization support for other igraph objects

Graphs are not the only objects that can be plotted in igraph using the
plot() function. We have already seen one example in Section 3.4.2 where
we used plot() to take a look at the colors of a palette. Many other igraph
objects also support plotting: you can also plot a VertexClustering, a Ver-VertexClustering
texDendrogram, a VertexCover, a CohesiveBlocks instance (representing theVertexDendrogram

VertexCover
CohesiveBlocks

cohesive blocking structure of a graph ) or a heatmap-style representation of
a 2D Matrix (which is igraph’s wrapper class to a list of lists of numbers).

Matrix All these objects implement a __plot__() method that igraph uses to draw
__plot__() the objects on a Cairo context.

As we remember from Section 3.4.1, the plot() function handles only a
handful of its positional and keyword arguments on its own, and the remain-
ing ones are processed by the object being plotted. What this means is that
most of the arguments are passed on to the __plot__() method of the ob-
ject being plotted, and it is the __plot__() method that interprets these
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and adjusts the plot accordingly. Section 3.4.1 already described the keyword
arguments understood by Graph.__plot__(). In the following subsections,
we will briefly describe the keyword arguments processed by other igraph
objects.

3.5.1 Plotting clusterings

Instances of VertexClustering, VertexCover and CohesiveBlocks under-
stand all the keyword arguments handled by Graph instances; after all, they
also plot a graph in the end. Besides plotting the graph, VertexClustering
also colors the vertices according to the clustering such that vertices in the
same cluster are assigned the same color. VertexCover and CohesiveBlocks
are overlapping structures, hence they do not color the vertices to avoid con-
fusion with vertices belonging to multiple groups, but they can optionally
mark groups of vertices belonging to the same cluster, just like we could
have done manually using the mark_groups keyword argument as described
in Section 3.4.4.

The following keyword arguments are handled differently by these classes:

• mark_groups accepts True as a possible value. This means that all clusters
should be enclosed in shaded areas:

3.62.1) clusters = grg.community_spinglass()
2) plot(clusters, mark_groups=True)

For VertexCover and CohesiveBlocks, this setting is required to distin-
guish the plot from a standard graph plot as these classes do not color the
vertices according to the clusters by default.
Another difference is that the default value for mark_groups is not neces-
sarily None (meaning not to mark the groups at all); igraph also looks at
the value of the plotting.mark_groups configuration key. If the value of
the key is True, igraph will mark the groups even if mark_groups is not
specified explicitly.

• mark_groups also accepts cluster indices wherever a collection of vertex
IDs is expected. For instance, mark_groups = [((1,2,3), "red")] would
mark vertices 1, 2 and 3 with a red shaded area, but mark_groups = [(1,
"red")] would mark members of the cluster with ID 1 with a similar area.

• mark_groupsmay also be a list of cluster indices that should be highlighted
on the figure; colors will be assigned to the clusters automatically.

• vertex_color is not allowed for VertexClustering instances as it would
override the coloring imposed on the graph by the cluster structure.

• The default value of palette is an instance of ClusterColoringPalette, ClusterColoringPalette
a special palette class that contains colors that are easily distinguishable
from each other. Use the following code snippet to take a look at the typical
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structure of a ClusterColoringPalette containing 35 different colors (and
thus suitable for showing 35 clusters):

3.63.1) plot(ClusterColoringPalette(35))

The first seven colors of a ClusterColoringPalette are the so-called base
colors: red, green, blue, yellow, magenta, cyan and gray. These are used forbase colors
the first seven clusters. If more colors are needed (because there are more
clusters in the plot), igraph generates darker and lighter variants of the
base colors; for instance, colors between indices 7 and 13 (inclusive) are
dark red, dark green, dark blue and so on, while colors between indices 14
and 20 (inclusive) are light red light green, light blue etc. Even darker and
lighter variants are created in blocks of seven if they are needed, potentially
ad infinitum, but the colors become harder and harder to distinguish after
about 25-30 elements. Of course you can still choose to provide your own
palette if needed.

Another subtle difference between a VertexClustering plot and a Graph
plot is that edges going between different clusters are dimmed in a Vertex-
Clustering plot by default to emphasize intra-cluster edges. An example of
a plot that can be obtained by plotting a VertexClustering directly is to be
seen on Figure 4.8(a).

3.5.2 Plotting dendrograms

igraph provides plotting support for the Dendrogram and VertexDendrogram
classes as well, allowing the user to produce simple dendrograms like the
one seen on Figure 4.8(b). igraph does not aim to be a full-fledged plotting
package for dendrograms, though, therefore only a single keyword argument
is supported for these classes: orientation, which describes the orientation of
the dendrogram. Four orientations are possible: the “left to right” orientation
plots the leaves of the dendrogram on the left and the root on the right; the
“right to left” orientation plots leaves on the right and the root on the left;
the “top-down” or “top to bottom” orientation plots leaves on the top and the
root on the bottom, while the “bottom-up” or “bottom to top” orientation
puts leaves on the bottom and the root on the top. The default orientation
is “left to right”. The orientations and their corresponding aliases are shown
on Table 3.9.

If you need more sophisticated dendrogram plots, you can always export
the dendrogram in Newick format into a string using its format() method.format()
The Newick format is read by the vast majority of dedicated dendrogram
plotting packages; a comprehensive list of such packages can be found at
http://bioinfo.unice.fr/biodiv/Tree_editors.html.

http://bioinfo.unice.fr/biodiv/Tree_editors.html
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Orientation Names

left to right left-right, lr, horizontal, horiz or h
right to left right-left or rl
top-down top-down, top-bottom, td or tb
bottom-up bottom-up, bottom-top, bu or bt

Table 3.9 Dendrogram orientations and their names in igraph.

3.5.3 Plotting matrices

Instances of the Matrix class in igraph can be used to represent matrices of Matrix
numeric values; for instance, the get_adjacency() method of the Graph class get_adjacency()
returns a Matrix that contains the (possibly weighted) adjacency matrix of
the graph. It is beyond the scope of this chapter to describe all the methods
of Matrix, most of which are self-explanatory, therefore we will focus only on
the keyword arguments accepted by Matrix.__plot__():

• style describes the style of the plot. When style = "boolean", the ma-
trix is assumed to contain Boolean values (zeros and ones) only, and a
grid will be plotted where each cell corresponding to a true value is black;
the remaining cells are white. style = "palette" means that the matrix
cells contain indices into the current palette (which can be controlled by
the palette keyword argument), and these colors are used to paint the
backgrounds of the matrix cells. style = "none" means that the back-
grounds of the matrix cells are left transparent. In both cases, None values
in matrix cells are treated specially, such cells always remain empty.

• square describes whether the matrix cells should be squares or not. If
square is True, the area where the matrix will be plotted may contain
empty padding either at the top or the bottom, or at the left and right
edges to ensure that the matrix cells are squares. If square is False, the
entire area is used for plotting the matrix even if that means that the cells
are not squares. The default value is True.

• grid_width controls the width of the lines used to separate neighboring
matrix cells. Zero or negative grid width turns the grid off. It will also be
turned off if the size of a cell is less than three times the grid width. The
default value is 1. Fractional line widths are also allowed.

• border_width controls the thickness of the border drawn around the ma-
trix. Zero or negative values turn the border off. The default value is 1.

• row_names may be a list that assigns a name to each of the matrix rows.
These will be shown to the left of each row.

• col_namesmay be a list that assigns a name to each of the matrix columns.
These will be shown above each column. If col_names is not given but row_
names is, and the matrix is square, the same names will be used for both
the rows and the columns.
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• values may be True to ask igraph to print the numeric values of each cell
in the plot, or another Matrix instance to override the values from another
matrix. The default value is False, which means that nothing should be
printed in the cells.

• value_format can be a format string or a callable function that specifies
how the values should be printed. If it is a callable, it will be called for
every cell with the cell value as the only argument, and it should return a
string that contains the formatted cell value. For instance, passing value_
format="%#.2f" will always print exactly two digits after the decimal point
in each cell.

As an example, let us plot the adjacency matrix of our geometric random
graph ‘grg’ on a canvas of 1200 × 1200 pixels:

3.64.1) plot(grg.get_adjacency(), bbox=(1200, 1200))

Interestingly enough, most of the non-zero values in the adjacency matrix
are near the diagonal; this is because vertices in geometric random graphs
generated by igraph are ordered by their y coordinates, hence it is very
unlikely that an edge is generated between two vertices in two distant rows.

3.5.4 Plotting palettes

Palettes are plotted in a way that is very similar to matrices: a row or column
of cells where each cell is colored according to an entry from the palette. It is
not too surprising that igraph actually re-uses the code that produces matrix
plots when plotting a palette, therefore the list of accepted keyword argu-
ments is very similar to a limited subset of the ones understood by Matrix:

• border_width controls the thickness of the border drawn around the
palette. Zero or negative values turn the border off. The default value
is 1.

• grid_width controls the width of the lines used to separate neighboring
cells in the palette. Contrary to Matrix plots, the default value for grid_
width is zero.

• orientation controls the orientation of the palette; horizontal plots the
colors in a horizontal strip, while vertical plots a vertical strip instead.
You may also use any of the orientation aliases seen on Table 3.9.

3.6 Compositing multiple objects on the same plot

The plot() function in igraph is a convenient wrapper around a lower-level
class called Plot(). This class allows you to show multiple objects on thePlot()
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same plot; for instance, you can plot different layouts of the same graph next
to each other. The invocation of the plot() function is roughly equivalent to
the following:

3.65.1) def plot(obj, target=None, bbox=(600, 600), *args, **kwds):
2) figure = Plot(target, bbox, background="white")
3) figure.add(obj, bbox, *args, **kwds)
4) if target is None:
5) result.show()
6) elif isinstance(target, basestring):
7) result.save()
8) return result

This means that plot() simply constructs an appropriate Plot instance,
adds the object being drawn to the plot using a bounding box that covers
the entire area, and then either shows it on the screen (if there was no target
filename or Cairo surface specified), or saves it (if target was a string).
Finally, the constructed Plot instance is returned so you can manipulate it
further.

For more complicated plots, you can repeat what plot() does and add
multiple objects at the appropriate places. For instance, the following code
plots the Petersen graph on a canvas of 400pt × 400pt, adds its adjacency
matrix in the top right corner with an opacity of 70%, and then saves the
entire plot in a file called petersen.pdf.

3.66.1) figure = Plot("petersen.pdf", bbox=(400, 400))
2) figure.add(petersen, layout="fr")
3) figure.add(petersen.get_adjacency(), bbox=(300, 0, 400, 100),
4) opacity=0.7)
5) figure.save()

The constructor of the Plot takes at most three arguments, all of which
have default values. target is the target surface where the plot will be drawn,
similarly to the target argument of the plot() function. None means that
a temporary image will be created and this will be shown on the screen;
strings mean that the plot should be saved in an appropriate PNG, PDF,
SVG or PostScript file; instances of Cairo surfaces mean that the plot should
be drawn on the given surface directly. bbox, the second argument specifies
the bounding box in which the plot will be drawn, again similarly to the bbox
argument of the plot() function. The third argument, palette, specifies the
default palette that will be used in the plot unless it is overridden explicitly
by one of the objects being plotted.

The most important methods of the Plot class are as follows.

add() Adds a new object to the plot. The first argument is the object to be
added. The remaining ones are keyword arguments: bbox specifies where
the object should draw itself, palette specifies the palette used to map
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integers into colors when the object (typically a graph) is being drawn,
and opacity specifies the opacity of the object (the default being 1.0).
The remaining positional and keyword arguments are stored and passed
on later to the __plot__() method of the object when the plot is being
drawn. bbox may be a 2-tuple or 4-tuple or an instance of BoundingBox,
just like the bbox argument of the plot() function.

remove() Removes an object from the plot. Returns True if the removal
was successful or False when the object was not part of the plot.

redraw() Draws the plot to the Cairo surface that backs the plot, without
saving the plot. This allows you to add extra decorations (such as labels
or arrows) to the plot before saving it to a file. Before drawing, redraw()
looks at the background property of the plot and if it is not None, fills the
entire area of the plot with the given color.

save() Saves the plot to the file given at construction time. It also calls
the redraw() method before saving the plot unless it was called already.

show() Saves the plot to a temporary file and shows it. igraph tries to
make an educated guess about the default image viewer application on
your platform, but if that fails or you wish to use a different image viewer,
you can specify its full path in the apps.image_viewer configuration key.

Plot also has a few useful properties: background returns or sets the back-
ground color of the plot that redraw uses to prepare the canvas; width and
height return the width and height of the area where the plot will be drawn,
respectively; bounding_box returns a copy of the bounding box of the plot,
and surface returns the Cairo surface on which the plot will be drawn. This
is useful to add decorations to the figure: first you can set up the plot, then
add the necessary igraph objects, call redraw() to draw it to the Cairo sur-
face, and use the surface property and native Cairo methods to draw the
decorations before finally calling save().

3.7 Exercises

I EXERCISE 3.1. Implement a custom layout algorithm for general graphs
that uses the Kamada–Kawai layout algorithm to find an approximate place-
ment of the nodes and then refines the layout using the Fruchterman–
Reingold algorithm.

I EXERCISE 3.2. Layouts produced by force-directed layout algorithms
(which are used most frequently when nothing else is known about the struc-
ture of a graph) are invariant to rotations and translations. However, the
human eye finds layouts with mostly horizontal and vertical edges aestheti-
cally more pleasing. Implement an algorithm that takes an arbitrary igraph
graph and its layout, and rotates the layout in a way that the edges are as
horizontal or vertical as possible. (Hint: for each edge, you can calculate its
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angle with the x axis using the atan2() function from the math module. Try
to find a goal function which is low when most of the edges are parallel either
to the x or the y axis, and try to minimize this function using its derivative).





Chapter 4
Community structure

4.1 Introduction

(Zachary, 1977; Fortunato, 2010; Porter et al, 2009) TODO: Write this
section

*

*

Fig. 4.1 The karate club network of Zachary (1977). The two communities observed by
Zachary are shown in black and white, respectively. The community leaders (the adminis-
trator and the instructor of the club) are marked by a star.

97
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(a) Flat (b) Hierarchical

(c) Multi-level (d) Overlapping

Fig. 4.2 Illustration of different community structure types on a schematic graph.

4.2 Types of community structure

4.2.1 Flat community structures

Flat community structures are probably the simplest and most widely studied
representations of communities in real networks. In a flat community struc-
ture, every vertex belongs to one and only one of the communities; in other
words, there are neither outlier vertices nor overlaps between the communi-
ties. Fig. 4.2(a) shows a possible flat community structure on a simple graph
with 20 vertices.

A flat community structure with n vertices and k communities can be
described in two ways. The first option is the membership vector , which ismembership vector
simply an integer vector of length n. Communities are indexed by integers
from 1 to k, and element i of the membership vector is j if vertex i belongs
to community j. One could theoretically use any k distinct integers to denote
the communities; igraph uses indexes from 1 to k by convention, but also
understands any membership vector as long as the members are integers.
Membership vectors using indices 1, 2, . . . , k are called canonical membership
vectors.canonical membership

vector
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The other representation of a flat community structure is a list of k lists,
where list i contains the indices of the vertices corresponding to community
i. Note that it must be ensured that each vertex appears in one and only one
of the lists.

igraph uses the membership vector representation internally, but the com-
munity detection methods wrap the membership vectors in a more convenient
interface provided by the communities class. Whenever you are working with communities class
flat community structures in igraph, you are dealing with communities in-
stances. As an example, let us construct the example graph on Fig. 4.3 and
its corresponding communities representation:

4.1.1) graph <- make_graph( ˜ A-B-C-D-A, E-A:B:C:D,
2) F-G-H-I-F, J-F:G:H:I,
3) K-L-M-N-K, O-K:L:M:N,
4) P-Q-R-S-P, T-P:Q:R:S,
5) B-F, E-J, C-I, L-T, O-T, M-S,
6) C-P, C-L, I-L, I-P)
7) flat_clustering <- make_clusters(
8) graph,
9) c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4))
10) flat_clustering

IGRAPH clustering unknown, groups: 4, mod: 0.51
+ groups:
$‘1‘
[1] 1 2 3 4 5

$‘2‘
[1] 6 7 8 9 10

$‘3‘
[1] 11 12 13 14 15

$‘4‘
+ ... omitted several groups/vertices

As seen above, communities instances are constructed by specifying the
membership vector. The clustering object can then be indexed like a regular
R list to retrieve the members of the communities:

4.2.1) flat_clustering[[1]]

[1] 1 2 3 4 5

3) flat_clustering[[3]]

[1] 11 12 13 14 15
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A B F G

E J

D C I H

K L P Q

O T

N M S R

Fig. 4.3 Close-up view of the graph on the panels of Fig. 4.2.

You can also retrieve the number of clusters using the length() function
or iterate over the clusters in a ‘for’ loop:

4.4.1) length(flat_clustering)

[1] 4

3) for (cluster in groups(flat_clustering)) {
4) print(V(graph)[cluster])
5) }

+ 5/20 vertices, named, from 06a2207:
[1] A B C D E
+ 5/20 vertices, named, from 06a2207:
[1] F G H I J
+ 5/20 vertices, named, from 06a2207:
[1] K L M N O
+ 5/20 vertices, named, from 06a2207:
[1] P Q R S T

communities also provides a convenience method to retrieve the sizes of
the clusters, and creating a subgraph from a community is also easy:

4.6.1) sizes(flat_clustering)

Community sizes
1 2 3 4
5 5 5 5

5) induced_subgraph(graph, flat_clustering[[1]])
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IGRAPH d09011f UN-- 5 8 --
+ attr: name (v/c)
+ edges from d09011f (vertex names):
[1] A--B A--D A--E B--C B--E C--D C--E D--E

4.2.2 Hierarchical community structures

Hierarchical communities are typically produced by top-down or bottom-up
clustering algorithms. A top-down clustering algorithm initially considers the top-down clustering

algorithmwhole graph as a single cluster and iteratively divides each cluster contain-
ing at least two vertices into two nonempty subclusters. At the end of the
process, each vertex will belong to a separate cluster. A bottom-up clustering
algorithm proceeds the opposite way, agglomerating initial communities con- bottom-up clustering

algorithmtaining single vertices into larger ones by merging two clusters at each and
every step until only one cluster remains.

The outcome of both algorithms can be represented as a dendrogram, i.e. dendrogram
a tree-like diagram that illustrates the order in which the clusters are merged
(in the bottom-up case) or split (in the top-down case). Such a dendrogram
can be seen on Fig. 4.2(b). The nodes in the bottom layer of the dendro-
gram are called leaves, and each leaf represents one of the original vertices leaves
of the graph. The remaining nodes in the dendrogram are the branches; each branches
branch corresponds to a split or a merge of two leaves or other branches. The
tip of the uppermost branch is called the root of the dendrogram. One can root
obtain flat clusterings from a dendrogram by cutting it at a specified level,
essentially stopping the merging or splitting process after a given number of
steps. The dashed line on Fig. 4.2(b) shows a possible cut of the dendrogram;
this particular cut will yield two clusters with the leftmost and rightmost five
vertices, respectively.

igraph can represent dendrograms as instances of the communities class:
it can store instance store the structure of the dendrogram in the form of a
merge matrix that contains the whole merge history of the clustering process. merge matrix
Each row in the merge matrix corresponds to one merge, therefore the merge
matrix of a complete dendrogram with n leaf vertices has n − 1 rows and
two columns. The numbers in row i of the merge matrix refer to the nodes
of the dendrogram. Integers between 1 and n (inclusive) are the leaf nodes,
and therefore the original nodes of the graph as well. Integers larger than n
correspond to branches that were created in earlier merge steps. Branch n+1
is created after the first merge, branch n+2 is created after the second merge
and so on. A concrete example dendrogram and its merge matrix is shown on
Fig. 4.4. Top-down clusterings are represented in the same way as bottom-up
ones; in other words, a dendrogram obtained from a top-down clustering is
treated as if it were created by a bottom-up one.

Let us construct our dendrogram using the merge matrix seen on Fig. 4.4:
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→ 10→ 11→ 12→ 13→ 14→ 15→ 16→ 17→ 18

Fig. 4.4 Close-up view of the dendrogram on Fig. 4.2(b) along with its corresponding
merge matrix. The indices in the vertices refer to the numbers used in the merge matrix.
The gray numbers next to each row of the merge matrix show the index of the branch that
was created by merging the two nodes referred by the row. A horizontal line in the merge
matrix is drawn above the first merge which is not performed if the dendrogram is cut at
the dashed line.

4.8.1) dummy_graph <- make_full_graph(5) * 2 + edge(1, 6)
2) merge_matrix <- rbind(c(1, 2), c(3, 4), c(6, 7), c(9, 10),
3) c(12, 5), c(8, 14), c(11, 15), c(13, 16), c(17, 18))
4) dendrogram <- make_clusters(dummy_graph, merges = merge_matrix)
5) dendrogram

IGRAPH clustering unknown, groups: NA, mod: NA
+ groups not available

The bridge between dendrograms and flat clusterings is the cut_at()-
method of the communities class. The method cuts the dendrogram appro-cut_at()
priately to obtain a specified number of clusters:

4.9.1) cut_at(dendrogram, 2)

[1] 2 2 2 2 2 1 1 1 1 1

3) cut_at(dendrogram, 5)

[1] 4 4 1 1 1 3 3 5 2 2
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4.2.3 Multi-level community structures

Multi-level communities represent another step forward towards modeling the
whole complexity of community structures found in real networks. They are
similar to the hierarchical community structures introduced in the previous
section, but it is allowed to merge more than two communities into a larger
super-community in a step. In contrast, hierarchical community structures
always merge exactly two chosen communities at every given step.

Most multi-level community detection algorithms are built on top of a
flat community detection algorithm as follows. The input network is first
decomposed into disjoint communities. The communities are then used to
construct a meta-network where each community of the original network is
contracted into a single node. Edges between the communities are usually
kept in the meta-network, but multiple edges between the same communities
are collapsed into a single one whose weight is equal to the total weight of
the collapsed edges. The meta-network is then re-clustered using the same
algorithm, and the whole process is repeated until only one giant community
remains. Fig. 4.2(c) shows an example of multi-level community structure in
a network. The four communities at the lowest level are shown inside dark
grey shaded areas. The two upper and the two lower communities are then
aggregated into larger communities in the middle layer (see the light gray
shaded areas). The dashed line represents the single higher level community
that encloses the two mid-level communities.

Multi-level community structures in igraph are represented simply by
list of VertexClustering instances, one item belonging to each level. Sec-
tion 4.4.4.1 will present one particular multi-level community detection algo-
rithm that is natively implemented in igraph.

4.2.4 Overlapping community structures

Up to now, all the representations we have seen classify a single vertex of
the network into one and only one of the communities. Even with hierar-
chical and multi-level community structures, a vertex cannot be a member
of two communities at the same “resolution level”. Overlapping community
structures lift this limitation by allowing a vertex to belong to one or more
communities, or to none of them at all. Fig. 4.2(d) shows a possible over-
lapping community structure of the same example graph that we have been
using throughout the last few sections. Note that the four nodes in the middle
of the figure participate in two communities instead of one.

R igraph does not currently have a separate class that represents an over-
lapping community structure, but one easy way around this is to just store
the overlapping groups of vertices in a list:
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4.11.1) clusters <- list(
2) V(graph)[1, 2, 3, 4, 5],
3) V(graph)[5, 6, 7, 8, 9],
4) V(graph)[10, 11, 12, 13, 14],
5) V(graph)[15, 16, 17, 18, 19],
6) V(graph)[2, 8, 11, 15]
7) )

This concludes our short overview of the possible representation of com-
munity structures, but before we move on to the actual community detection
algorithms, we should first discuss how to distinguish good communities (i.e.
the ones that are representative of the underlying structure of the network)
from bad ones.

4.3 How good is a community structure?

Community detection is a heuristic process; different community detection
methods usually provide different results on the same graph (unless the graph
has a very clear-cut community structure), and it is usually up to the user
to decide which one of the results represents the ground truth the most ac-
curately. Researchers have nevertheless invented measures to quantify how
good a given community structure is according to some internal or external
criterion, and one can make use of such measures before coming to a decision.
Such measures are usually defined for flat community structures, mostly be-
cause little is known yet about the “true” overlapping communities of a real
network, while a flat clustering of real networks is known in advance in many
cases, providing us a yardstick to measure detected communities with.

There are basically two types of quality functions for community struc-
tures. External quality measures compare the set of detected communitiesExternal quality

measures with another set that was given in advance. These measures are therefore
useful in cases when the ground truth (i.e. the set of communities we are
looking for) is given in advance; in other words, when we are benchmark-
ing community detection algorithms against each other to find out which
one is the best for some particular task. For instance, suppose you would
like to find out which proteins are likely to form protein complexes, given a
protein-protein interaction network where the nodes represent proteins and
the edges represent connections between them. In this case, you can take
another protein-protein interaction network from a different organism where
the complexes are known already, compare the different community detection
methods with each other using an external quality measure, and then choose
the one which performed the best to find the complexes in the dataset you
are actually interested in.

Contrary to the external ones, internal quality measures do not require theinternal quality
measures ground truth to quantify how good the clusters are, but need an assumption
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about how the “good” clusters should look like. For instance, a measure may
assume that a good clustering has only a few edges that go between different
clusters, or that clusters in a good clustering are as dense as possible. Later
on, we will see what the problem is with these assumptions and how can they
be resolved in order to obtain useful internal quality measures.

4.3.1 External quality measures

External quality measures compare a set of detected communities to a gold
standard set, which is thought to represent the ground truth. igraph imple-
ments four external quality measures natively: the Rand index (Rand, 1971)
and its adjusted variant (Hubert and Arabie, 1985), the split-join distance
(van Dongen, 2000), the variation of information metric (Meilă, 2003) and
the normalized mutual information (Danon et al, 2005). With the exception
of the split-join distance and the variation of information, these measures are
similarity measures, meaning that higher values represent a better agreement
between the two sets being compared. The split-join distance and the varia-
tion of information are distance metrics, i.e. the farther the clusterings are,
the higher the value of the measure is. Table 4.1 lists the supported measures
and their basic properties.

Measure Type Range igraph name Citation

Rand index similarity 0 to 1 rand Rand (1971)
Adjusted
Rand index

similarity -0.5 to 1 adjusted.rand Hubert and Arabie (1985)

Split-join
distance

distance 0 to 2n split.join van Dongen (2000)

Variation of
information

distance 0 to logn vi Meilă (2003)

Normalized
mutual
information

similarity 0 to 1 nmi Danon et al (2005)

Table 4.1 External quality measures implemented in igraph and their basic properties.
Similarity scores are higher for similar clusterings, while distance scores are higher for
dissimilar ones.

Let us first load the Zachary karate club network (shown on Fig. 4.1) into
igraph. The annotated version of this network is available in the igraphdata
package:

4.12.1) data(karate)

Zachary’s original publication also gives us which faction each of the mem-
bers of the club belong to. This is available as the ‘Faction’ vertex attribute.
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This will be our ground truth with which we wish to compare other cluster-
ings:

4.13.1) ground_truth <- make_clusters(karate, V(karate)$Faction)
2) length(ground_truth)

[1] 2

4) ground_truth

IGRAPH clustering unknown, groups: 2, mod: 0.37
+ groups:
$‘1‘
[1] 1 2 3 4 5 6 7 8 11 12 13 14 17 18 20 22

$‘2‘
[1] 9 10 15 16 19 21 23 24 25 26 27 28 29 30 31 32 33 34

For the sake of studying external quality measures, let us assume a very
simple clustering method that takes two vertices of the graph as input, and
classifies each vertex v to one of two communities depending on whether it
is closer to the first or second in terms of the shortest paths in the graph. A
natural choice for the two vertices would be the instructor and the adminis-
trator of the club; these are represented by vertices named ‘Mr Hi‘ and ‘John
A’. We have already seen how to work with shortest paths in Chapter 2,
therefore it is easy to decide for each vertex whether it is closer to Mr Hi or
John A.

4.15.1) dist_memb <- karate %>%
2) distances(v = c("John A", "Mr Hi")) %>% #label{brv:commdistance}
3) apply(2, which.min) %>%
4) make_clusters(graph = karate)

Line ?? calculates the distance of all the vertices from Mr Hi and from
John A. The result is a matrix with two rows, one for each vertex. The
next line creates the membership vector. The ith element of the vector is
one if the distance to Mr Hi is smaller than the distance to John A and 2
otherwise. Finally, we convert the membership vector to a communities. Note
that vertices that are equally far from Mr Hi and John A automatically get
assigned to John A’s community, due to which.min() returning the index on
the first minimum.

Now that we have the ground truth in ‘ground_truth’ and our clustering
in ‘dist_memb’, we can try comparing them using any of the external quality
measures igraph provides. All the external measures are provided by the
compare() function, which accepts the two clusterings and the name of thecompare()
measure to be calculated, and returns the value of the measure.
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4.3.1.1 Rand index

The Rand index (Rand, 1971) is one of the earliest measures for comparing Rand index
communities. To calculate the Rand index, one has to consider all possible
pairs of items and check whether the two clusterings being compared agree or
disagree regarding the affiliations of the vertices in the pair. Two clusterings
are said to agree about vertices v1 and v2 if v1 and v2 either belong to the
same community in both clusterings, or belong to different communities in
both clusterings. We call such pairs congruent, and it is obvious that a higher
number of congruent pairs means that the two clusterings are closer to each
other. The Rand index is then simply the number of congruent pairs divided
by the number of possible vertex pairs.

The Rand index is a similarity metric and its maximal value is 1, which
is being attained if the clusterings are identical. Note that compare() also
works on simple numeric membership vectors:

4.16.1) compare(c(1,1,2,2,2,2), c(2,2,1,1,1,1), method = "rand")

[1] 1

Note that the measure is maximal even though cluster 0 in the first cluster-
ing matches with cluster 1 in the second clustering is vice versa. This is true
for more general cases as well; the Rand index (and all the other measures
we present here) are insensitive to the permutations of cluster indices.

The minimum value of zero can also be easily attained if one of the clus-
terings puts every vertex in the same cluster and the other one puts every
one of them in a cluster of its own:

4.17.1) compare(c(1,1,1,1), c(1,2,3,4), method = "rand")

[1] 0

Now let us see how our simple algorithm performed with respect to the
ground truth:

4.18.1) rand_index <- compare(ground_truth, dist_memb, method = "rand")
2) rand_index

[1] 0.6292335

This is not bad, especially when taking into account how simple our al-
gorithm is. Also note that the two clusterings are interchangeable; the result
does not change if we provide the clusterings in the opposite order:

4.19.1) compare(dist_memb, ground_truth, method = "rand")

[1] 0.6292335

Note that we can also calculate the exact number of congruent pairs by
multiplying the Rand index with the total number of pairs:
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4.20.1) n <- gorder(karate)
2) rand_index * n * (n-1) / 2

[1] 353

4.3.1.2 Adjusted Rand index

In the previous subsection, we have seen how can one attain the maximum
value for the Rand index (by making the clustering equal to the ground truth
it is compared with) and have also seen a case where the index attained its
lower bound of zero. However, that case was quite special: a trivial cluster-
ing of one cluster was compared with another trivial clustering where each
cluster had only one member. What happens if we compare clustering that
are created totally randomly?

First, let us create a function that assigns n vertices randomly to one of
k clusters and returns a membership vector of length n:

4.21.1) random_partition <- function(n, k = 2) { sample(k, n, replace = TRUE) }
2) random_partition(10)

[1] 2 2 2 2 1 2 2 1 2 1

4) random_partition(10)

[1] 2 1 1 1 1 2 1 1 1 1

Each invocation generates a different partition of n vertices into (by de-
fault) 2 clusters. Now, what happens if we generate 100 random community
structures of 100 vertices each, pair them and calculate the average Rand
index of each pair?

4.23.1) total <- numeric(100)
2) for (i in seq_len(100)) {
3) c1 <- random_partition(100)
4) c2 <- random_partition(100)
5) total[i] <- compare(c1, c2, method = "rand")
6) }
7) mean(total)

[1] 0.4988929

This number is suspiciously close to 1/2, and it is indeed the case: when
we generate clusterings at random, there is a 1/2 probability that a vertex
pair becomes congruent by chance. Since the Rand index is the fraction of
congruent vertex pairs, it will also be equal to 1/2. Feel free to repeat our
experiment for k > 2 – no matter how many clusters we use, the expected
Rand index between random clusterings will never be zero, although its exact
value will of course depend on the number of clusters and their expected sizes.



4.3 How good is a community structure? 109

This means that we can start to worry about the value of the Rand index
we obtained in the previous subsection for our simple clustering: what if its
value is also a result of random chance?

The non-zero expectation of the Rand index was the motivation of Hu-
bert and Arabie (1985) when they introduced the adjusted Rand index . The adjusted Rand index
adjustment calculates the expected value of the Rand index under the as-
sumption that the clusterings are generated randomly with the same cluster
sizes, subtracts the expected value from the actual value of the index and
then re-scales the result so that the maximum becomes 1 again, effectively
making the expected value after adjustment equal to zero.

igraph can also calculate the adjusted Rand index – all you have to do
is to specify ‘method = "adjusted.rand"’ in compare(). Let’s repeat our
experiment with random clusterings to confirm that the expected value of
the adjusted Rand index is indeed zero for random clusterings:

4.24.1) total <- numeric(100)
2) for (i in seq_len(100)) {
3) c1 <- random_partition(100)
4) c2 <- random_partition(100)
5) total[i] <- compare(c1, c2, method = "adjusted.rand")
6) }
7) mean(total)

[1] 0.001395469

The adjusted Rand index between the ground truth of the Zachary karate
club network and our simple clustering then confirms that our method does
not perform too bad after all:

4.25.1) compare(ground_truth, dist_memb, method = "adjusted.rand")

[1] 0.2579365

The adjusted Rand index is therefore more suitable for comparing com-
munity structures than the original, unadjusted variant, as positive values
mean that the agreement between the two clusterings is at least better than
random chance.

4.3.1.3 Split-join distance

The Rand index gave us a similarity measure: the more similar the two clus-
terings being compared are, the higher the value of the index is. Some people
find distance measures more intuitive; such measures are high for dissimilar
clusterings, and gradually decrease as clusterings become more similar to each
other. This and the following subsection will present two distance measures
that are implemented in igraph.

Loosely speaking, the split-join distance (van Dongen, 2000) is propor- split-join distance
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tional to the number of vertices that have to be moved between clusters in
order to transform one clustering to the other. The whole truth is more com-
plicated than that, and we will return to a more detailed definition shortly,
but first let us focus on the major properties of this distance measure.

Let d(C1, C2) denote the split-join distance between clusterings C1 and
C2. The split-join distance then satisfies four very important conditions for
all C1, C2 clustering pairs:

1. d(C1, C2) ≥ 0, i.e. the distance of any two clustering is non-negative.
2. d(C1, C2) = 0 if and only if C1 = C2. Every clustering is at zero distance

from itself, and different clusterings always have some non-zero distance
to each other.

3. d(C1, C2) = d(C2, C1); the measure is symmetric.
4. d(C1, C3) ≥ d(C1, C2) + d(C2, C3) for any C3. This is the equivalent of

the well-known triangle equality in the space of clusterings.

The above four conditions are the so-called metric axioms. Since the split-
join distance satisfies these conditions, it is a metric; in other words, the
split-join distance in the space of clustering works similarly to the ordinary
Euclidean distance we know so well from geometry.

The split-join distance can be calculated in two ways in igraph. The first
method is to call compare() with ‘method = "split.join"’. The other way
is to call the split_join_distance() function directly.split_join_

distance()
4.26.1) c1 <- c(1,1,1,2,2,2)

2) c2 <- c(1,1,2,2,2,2)
3) compare(c1, c2, method = "split.join")

[1] 2

5) split_join_distance(c1, c2)

distance12 distance21
1 1

The curious reader may have two immediate questions here:

1. One can obtain ‘c2’ from ‘c1’ by moving the third vertex from com-
munity 1 to community 2, so why does the measure return 2 instead of
1? Does it always return twice the number of steps?

2. Why does split_join_distance() return two numbers instead of one,
and why do they sum up exactly to the result of compare()?

To answer these questions, we have to introduce the concept of subcluster-
ing first. Clustering C is a subclustering of clustering A if a vertex pair thatsubclustering
is in the same cluster in clustering C is also in the same cluster in clustering
A; in other words, the clusters in C can be obtained by splitting the clusters
in cluster A. This relationship is denoted by C ⊆ A. If clustering C is a
subclustering of A, then it is also said that A is a superclustering of C. Ofsuperclustering



4.3 How good is a community structure? 111

course the trivial clustering where every vertex is in the same cluster is a su-
perclustering of every other clustering, and the other trivial clustering where
every vertex is in its own cluster is a subclustering of every other clustering.
Note that this implies that every pair of clustering (A, B) has at least one
common subclustering C; in the worst case, this is the trivial clustering con-
sisting of singleton clusters, but its existence is guaranteed. These concepts
are illustrated on Fig. 4.5.

T0

X

Y

Z

T1

A B C D E F G H

A B C D E F G H

A B C D E F G H

A B C D E F G H

A B C D E F G H

Fig. 4.5 Subclusters and superclusters. T0 is the trivial clustering where every vertex
belongs to the same cluster; T1 is the trivial clustering where every vertex is in its own
cluster. X, Y and Z are non-trivial clusterings such that T1 ⊆ Z ⊆ Y ⊆ X ⊆ T0.

This leads us to the formal definition of the split-join distance. For any
clusterings A and B, one must first find the common subclustering C that
satisfies the following requirements:

• C ⊆ A and C ⊆ B (C is a common subclustering)
• For any clustering D, C ⊆ D implies that either D 6⊆ A or D 6⊆ B. In

other words, there exists no superclustering of C that is also a common
subclustering of A and B.

The split-join distance is then the number of vertices that have to be
splitted into different clusters to reach C from A plus the number of vertices
that have to be joined with other clusters to reach B from C; hence the name
of the measure. That’s why moving a vertex to a different cluster counts as
two steps: one step is required to split the vertex to its separate cluster in C,
and one step is required to join the vertex with a different cluster to reach B.

The curious reader may have a hunch now: the two numbers in the out-
put of split_join_distance() actually belong to the distance of C from A
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and B, respectively, and since the split-join distance is the sum of these two
distances, the two numbers returned by split_join_distance() always sum
up to the output of compare(). Let us see how our simple clustering method
performs when the performance is measured using the split-join distance:

4.28.1) split_join_distance(ground_truth, dist_memb)

distance12 distance21
8 8

Finally, note that if one clustering is almost a subclustering of the other,
the corresponding number in the tuple returned by split_join_distance()
would be close to zero.

4.3.1.4 Measures based on information theory

The split-join distance is very useful and intuitive, but it suffers from the so-
called “problem of matching”. In other words, the algorithm of the split-join
distance constructs the common subclustering of a clustering pair A and B
by finding the best one-to-one match between each cluster in A and B, and it
is only the best matching part that counts in the value of the final index; the
measure completely ignores the unmatched parts of the clusterings. Consider
the example on Fig. 4.6.

C

C′

C′′

S

Fig. 4.6 A desired clustering C and two disrupted clusterings C′ and C′′. Each row is a
clustering, and vertices with the same shade and pattern are in the same cluster. Intuitively,
C is closer to C′′ than to C′. However, C is exactly as far from C′ as from C′′ according
to the split-join distance. S is the common subclustering of C, C′ and C′′.

Fig 4.6 shows three clusterings: C, C′ and C′′. Each clustering has three
clusters. The clusters in C′ were obtained from the clusters of C by redis-
tributing 40% of the vertices in each cluster among the other two clusters
evenly. The clusters in C′′ were obtained by moving 40% of the vertices from
cluster i to cluster i mod 3+ 1 (where i ∈ 1, 2, 3). Our intuition says that C′′
is farther from C than C′ is because it seems more “disorganised” than C′.
However, the split-join distance is exactly the same:
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4.29.1) c <- c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3)
2) c1 <- c(1, 1, 1, 2, 3, 2, 2, 2, 3, 1, 3, 3, 3, 1, 2)
3) c2 <- c(1, 1, 1, 3, 3, 2, 2, 2, 1, 1, 3, 3, 3, 2, 2)
4) compare(c, c1, method = "split.join")

[1] 12

6) compare(c, c2, method = "split.join")

[1] 12

To this end, Meilă (2003) proposed the variation of information (VI) mea- variation of
informationsure from information theory to quantify the distance of two clusterings from

one another. The variation of information is also a metric, but it makes a
distinction between C′ and C′′. We will shortly see how.

Imagine that a random vertex is drawn from a clustering A. The probabil-
ity of drawing a vertex from cluster i is given by pi = ni/n, where ni is the
number of vertices in cluster i and n is the total number of vertices in the
clustering. The set of probabilities pi define a discrete random variable cor-
responding to clustering A. Similarly, we can define a set of probabilities qi
for another clustering B. We then define the entropy of the random variable entropy
corresponding to the clusterings as follows:

H(A) = −

kA∑
i=1

pi log pi (4.1)

H(B) = −

kB∑
i=1

qi logqi (4.2)

where kA and kB denote the number of clusters in A and B, respectively.
The entropy of a random variable quantifies the uncertainty in the value of
the random variable; in other words, higher entropy means that we are less
certain about the cluster affiliation of a randomly drawn vertex from the
given clustering. The lowest possible value of the entropy is zero when there
is only one cluster. Note that the entropy does not depend on the number of
vertices, only on the relative sizes of each cluster in the clustering.

The other concept we will need besides the entropy is the mutual infor-
mation between two clusterings. Loosely speaking, the mutual information mutual information
between clusterings A and B quantifies how much we would know about clus-
tering B if we knew clustering A. Let pij denote the number of vertices that
are in cluster i in clustering A and in cluster j in clustering B. The mutual
information between A and B is then defined as:

I(A,B) =

kA∑
i=1

kB∑
j=1

pij log
pij

piqj
(4.3)
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Here we assume that 0 log 0 = 0. The mutual information is always non-
negative and symmetric, and it can never exceed the entropy of any of the two
clusterings involved. The variation of information is then defined as follows:

VI(A,B) = [H(A)−I(A,B)]+[H(B)−I(A,B)] = H(A)+H(B)−I(A,B) (4.4)

The first term in square brackets in Eq. 4.4 is the amount of information in
clustering A that is left “unexplained” even if we know clustering B; similarly,
the second term is the amount of unexplained information in clustering B even
if we know clustering A. The sum of the two terms gives us the variation of
information metric. Since the sums in Eq. 4.3 take into account every possible
pairing of clusters, the measure does not suffer from the problem of matching
and gives a different distance for our clusters C, C′ and C′′ on Fig. 4.6:

4.31.1) compare(c, c1, method = "vi")

[1] 1.900541

3) compare(c, c2, method = "vi")

[1] 1.346023

The variation of information metric is really in agreement with our intu-
ition about the distances of C′ and C′′ from C. Finally, let us see how our
simple clustering algorithm introduced in Section 4.3.1 performs according
to the VI measure:

4.33.1) vi <- compare(ground_truth, dist_memb, method = "vi")
2) vi

[1] 1.090122

Since the theoretical maximum of the VI metric for a clustering of n ver-
tices is logn, the above value is relatively small, indicating that the clustering
our algorithm has found is indeed close to the ground truth:

4.34.1) vi / log(gorder(karate))

[1] 0.3091352

An alternative measure called normalized mutual information (NMI) wasnormalized mutual
information also suggested by Fred and Jain (2003), and it was later applied to commu-

nity detection in graphs by Danon et al (2005). Contrary to the variation
of information metric, the NMI is a similarity measure, but it can also be
calculated from the mutual information and the entropies as follows:

NMI(A,B) = 2
I(A,B)

H(A) +H(B)
(4.5)

The normalized mutual information takes its maximum value of 1 when
the clusterings are equivalent, and its minimum value of zero is attained when
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they are independent from each other in a probabilistic sense. igraph can also
calculate the normalized mutual information by using ‘method = "nmi"’ in
compare():

4.35.1) compare(ground_truth, dist_memb, "nmi")

[1] 0.2116744

4.3.2 Internal quality measures

Internal quality measures are the counterparts of external quality measures
presented in Section 4.3.1. They differ in one fundamental aspect: no gold
standard clustering is required in order to calculate an internal quality mea-
sure on a clustering. This makes them very useful in scenarios where the
ground truth is not known, which is the case in almost all research problems.

An internal quality measure is always built upon some kind of a prior
assumption about how good clusters should look like. Intuitively, we expect
clusters to be dense (at least when compared to the density of the network as
a whole) and we also expect that there are only a small number of edges that
are situated between different clusters. Given a good internal quality measure,
one can devise a clustering algorithm that optimizes this measure directly or
indirectly in order to obtain a good clustering of a network. However, we will
see that naïve internal quality measures often attain their optima at trivial
clusterings, necessitating the development of more sophisticated scores that
are significantly harder to optimize.

4.3.2.1 Density and subgraph density

igraph can readily calculate the density of an entire graph, which is simply density
defined as the number of edges in the graph divided by the total number
of possible edges (assuming that there is at most edge between vertex pairs
and that there are no loop edges). Since there are n(n − 1)/2 possibilities
to create an edge in a simple undirected graph with n vertices and n(n− 1)
possibilities to do the same in a simple directed graph, the density formula
of a graph G with n vertices and m edges is straightforward:

ρ(G) =

{
2m

n(n−1) if G is undirected
m

n(n−1) if G is directed
(4.6)

Density calculation is performed by calling the density() function. We density()
still use the Zachary karate club network here:

4.36.1) density(karate)
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Error in density.default(karate): argument ’x’ must be numeric

To see how dense the two factions are in the karate club network, we will
create a helper function to calculate the density of a subgraph:subgraph density

4.37.1) subgraph_density <- function(graph, vertices) {
2) graph %>%
3) induced_subgraph(vertices) %>% #label{vrb:subgraph}
4) density()
5) }

Line ?? simply creates the subgraph consisting of the vertex indices given
in ‘vertices’ and then returns its density. It could not be simpler. Since
we already have the ground truth of the Zachary karate club network in
‘ground_truth’, we can start with checking whether our assumptions about
the intra-cluster edge densities hold:

4.38.1) subgraph_density(karate, ground_truth[[1]])

Error in density.default(.): argument ’x’ must be numeric

3) subgraph_density(karate, ground_truth[[2]])

Error in density.default(.): argument ’x’ must be numeric

Indeed the two subgraphs are denser than the network as a whole. So,
what is wrong with using the densities of the subgraphs as a quality score?
Take a look at the graph shown on Fig. 4.7 and one of its many possible
clusterings. Obviously, a ring graph has no clear-cut community structure;
every vertex in the graph is connected to two neighbors, and each of them
are essentially equal from a topological point of view. However, the density of
each cluster in the clustering on the figure is 1, which is the maximal possible
density for simple graphs. Clearly, the cluster densities alone are not enough,
and there is a similar problem with the inter-cluster edge density as well: a
trivial clustering that puts every vertex in the same cluster would obviously
minimize the inter-cluster edge density to zero.

Fig. 4.7 A ring graph of 8 vertices and one of its possible clusterings. Each cluster has
maximal density, but the whole clustering is still meaningless.
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4.3.2.2 Modularity

Newman (2004) recognized that it is not the density or the number of edges
within a cluster that is important when one judges the quality of a cluster-
ing. Good clusters are not only dense, but the edges within a cluster are
also unlikely to have been placed there by random chance. To this end, he
introduced the modularity measure, which since then became one of the most modularity
widely used internal quality measures for graph clustering.

Let pij be the probability of the event that the edge between vertices i and
j in a graph exists purely by chance; in other words, it has nothing to do with
the modular structure of the graph. The matrix of pij values is often called
the null model of the graph, as it represents our prior assumption about how null model
a randomly organized graph would look like. The popular choices for pij will
be discussed later. The modularity of a clustering C of the graph G (having n
vertices and m edges) is then defined as the difference between the observed
number of edges within clusters and the number of edges that would have
been expected if all the edges were placed randomly:

Q(G) =
1

2m

n∑
i=1

n∑
j=1

(Aij − pij) δij (4.7)

where Aij is the element in row i and column j of the adjacency matrix
(see Section 1.2.6) and δij is 1 if and only if vertices i and j are in the
same cluster and zero otherwise. The double sum effectively iterates over all
intra-cluster vertex pairs in the graph, and calculates the difference between
the observed edge count (Aij) and the edge count we expect from the null
model (pij) for each such pair. The initial 1/2m term is for normalization
purposes only – it allows one to compare the modularity scores of graphs
with different edge counts. A clustering with zero modularity has exactly as
many edges within clusters as we would expect in a graph that was generated
by the null model, positive modularity scores represent good clusterings and
negative scores represent bad ones where there are less edges in clusters
than what we would expect in a randomly generated graph. It is commonly
said that a modularity score larger than 0.3 is usually considered to be an
indicator of significant modular structure, but this is not always the case:
graphs that are designed to be random may show significant fluctuations in
their maximal modularity scores, and it is easy to find structureless graphs
with high modularity. We will talk about the limitations of the modularity
measure later in Section 4.4.2.4.

In the overwhelming majority of the cases, the null model used in the
definition of modularity is the so-called configuration model of Molloy and
Reed (1995). This model generates graphs where the expected degree of each
vertex is prescribed. It can be shown that the probability of the existence
of an edge between vertex i with degree ki and vertex j with degree kj is
kikj/2m, yielding the most widely used form of the modularity measure:
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Q(G) =
1

2m

n∑
i=1

n∑
j=1

(
Aij −

kikj

2m

)
δij (4.8)

In this null model, an edge is more likely to exist between vertices with
higher degrees than between vertices with lower degrees. This is a plausi-
ble assumption in many cases: a connection between two people in a social
network is less likely to be significant if those people have large social cir-
cles (since popular people are more likely to know others only because they
are popular in general), and an observed interaction between proteins in a
protein-protein interaction network may also be of small importance if one of
the proteins is promiscuous and can interact with almost any other protein
in the cell because of its general biochemical properties. The bottom line
is that higher modularity scores correspond to partitions where the edges
within the communities are not likely to have been intra-cluster edges in a
randomly generated graph which has the same degree sequence as the graph
being studied and the same vertex partition. Obviously, the trivial cluster-
ing where every vertex is in the same community has zero modularity as we
would see exactly the same number of edges in the community if we rewired
the graph while preserving the degrees of the vertices. (For a more formal
proof, see Newman (2004)). The other trivial clustering where every vertex is
in a separate community has a negative modularity. The optimum lies some-
where between the two extremities, and this optimum is the one that many
community detection algorithms try to find. However, finding the partition
that yields the optimal modularity is a hard problem; we will learn more
about that in Section 4.4.2.1.

igraph can readily calculate the modularity of any clustering of a given
graph using the modularity() function. This can be called on a communi-modularity()
ties object, or directly on graph, supplying the community structure as a
membership vector:

4.40.1) modularity(karate, membership(ground_truth))

[1] 0.3714661

3) modularity(ground_truth)

[1] 0.3714661

Let us also check the modularity of the two trivial clusterings for the karate
club network:

4.42.1) modularity(karate, rep(1, gorder(karate)))

[1] 0

3) modularity(karate, seq_len(gorder(karate)))

[1] -0.04980276
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The modularity score also has a weighted variant:

Q(G) =
1

w

n∑
i=1

n∑
j=1

(
wij −

wiwj

w

)
δij (4.9)

where W = [wij] is the weighted adjacency matrix, wi is the total weight
of edges incident on node i, and w =

∑n
i=1wi. The weighted variant is

similar to the unweighted case, but the elements of the adjacency matrix
are replaced by the elements of the weighted adjacency matrix W, and the
strength of a vertex (wi) is used instead of its degree. The strength of a vertex strength
is the sum of the weights of the edges incident on that vertex, and it can be
calculated using the strength(), just like regular degrees are calculated by
the degree() method. The strength() method also takes the name of the
edge attribute containing the edge weights (or a list of the weights themselves)
as a parameter.

4.3.2.3 The dynamical formulation of modularity

One can also obtain the modularity score as a quality function from an en-
tirely different approach. Let us consider a set of random walkers that move
on the nodes of the graph. At any given time step, each random walker is
on exactly one of the nodes of the graph. At the end of the time step, the
random walker chooses one of the edges incident on the node and moves along
the edge to arrive at the other end when the next time step beings. Let the
density of random walkers on node i at time step n denoted by p(n)i . The
dynamics is then given by the following simple equation:

p
(n+1)
i =

∑
j

Aij

kj
p
(n)
j (4.10)

Assuming that the graph is undirected, connected, non-bipartite and simple,
it is easy to show that the densities ~p(n) converge to a stationary distribution
~p∞ as n approaches infinity. Furthermore, the stationary solution of the
dynamics is generically given by p∞i = ki/2m.

Let us now imagine a graph with densely connected modules and only a
few links between them. A random walker that starts in one of the mod-
ules is likely to get stuck there for a long time before eventually finding an
edge that leads out of the module and into another one. In other words, the
probability of a random walker being in community Cl in time step n and
staying there in time step n+ 1 is larger than the probability of finding two
independent random walkers both in Cl as the community affiliations of con-
secutive locations of a random walker are correlated. In the stationary state,
the probability of finding a random walker in Cl is equal to:
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i,j∈Cl

Aij

kj

kj

2m
(4.11)

which was obtained by simply replacing p(n)j with p∞j in Eq. 4.10 and sum-
ming it for all i, j pairs where both of them are in Cl. At the same time,
the probability of two independent walkers both being in Cl is simply the
product of the stationary probabilities p∞i and p∞j :

∑
i,j∈Cl

kikj

4m2
(4.12)

Let us then take the differences between the two probabilities and add them
together for all communities and all internal vertex pairs:∑

Cl∈C

∑
i,j∈Cl

(
Aij

2m
−
kikj

4m2

)
(4.13)

Is it getting familiar? By moving 1
2m

outside the parentheses and introducing
δij to denote whether there exists an l such that i ∈ Cl and j ∈ Cl, we obtain
the now familiar modularity score in Eq. 4.8.

4.4 Finding communities in networks

In the previous section, we have introduced a few measures that can be used
to quantify how good a given set of communities are, but nothing has been
said about how to find an optimal or near-optimal community structure in
a network. This section will describe a few methods implemented by igraph
that can be used to solve this problem and also a few other popular methods
that are not implemented natively but can be added in only a few lines of
code.

4.4.1 The Girvan-Newman algorithm

The Girvan-Newman algorithm (also called the edge betweenness method)Girvan-Newman
algorithm was one of the earliest community detection methods published in the network

science literature (Girvan and Newman, 2002). The algorithm builds on the
idea that the number of shortest paths passing through an intra-community
edge should be low (since a community is densely connected, hence there
are many alternative paths between vertices of the same community), while
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inter-community edges are likely to act as bottlenecks that participate in
many shortest paths between vertices of different communities.

We already know from Section ?? that the number of shortest paths
passing through a given edge is given by its edge betweenness. The Girvan- edge betweenness
Newman algorithm proceeds by iteratively removing the edge with the largest
edge betweenness from the graph until it falls apart into separate compo-
nents. The output of the algorithm is therefore a hierarchical clustering, or a
communities() instance in igraph terms:

4.44.1) dendrogram <- cluster_edge_betweenness(karate)
2) dendrogram

IGRAPH clustering edge betweenness, groups: 6, mod: 0.35
+ groups:
$‘1‘
[1] "Mr Hi" "Actor 2" "Actor 4" "Actor 8" "Actor 12"
[6] "Actor 13" "Actor 18" "Actor 20" "Actor 22"

$‘2‘
[1] "Actor 3" "Actor 10" "Actor 14" "Actor 29"

$‘3‘
[1] "Actor 5" "Actor 6" "Actor 7" "Actor 11" "Actor 17"

+ ... omitted several groups/vertices

For a visual representation of the dendrogram, use the plot_dendro-
gram() command. The dendrogram should be similar to the one you see plot_dendrogram()
on Fig. 4.8(b).

Unfortunately the algorithm has two drawbacks. First, it is computation-
ally intensive since the edge betweenness scores have to be re-calculated after
every edge removal. Calculating the edge betweenness is anO(nm) process on
an unweighted graph with n vertices and m edges using Brandes’ algorithm
(Brandes, 2001), and this is repeatedm−1 times (once for each edge removal),
therefore the time complexity of the algorithm is O(nm2), which renders it
unusable for large networks. The other disadvantage is that the algorithm is
not able to select the level where the dendrogram should be cut in order to
obtain a flat clustering. However, it is fairly easy to use the modularity score
to flatten the clustering at the level where the modularity is maximal. igraph
even calculates this level for you in advance, so membership() returns the
community structure of the best cut in terms of modularity.

4.45.1) membership(dendrogram)

Mr Hi Actor 2 Actor 3 Actor 4 Actor 5 Actor 6 Actor 7
1 1 2 1 3 3 3

Actor 8 Actor 9 Actor 10 Actor 11 Actor 12 Actor 13 Actor 14
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1 4 2 3 1 1 2
Actor 15 Actor 16 Actor 17 Actor 18 Actor 19 Actor 20 Actor 21

4 4 3 1 4 1 4
Actor 22 Actor 23 Actor 24 Actor 25 Actor 26 Actor 27 Actor 28

1 4 5 5 5 6 5
Actor 29 Actor 30 Actor 31 Actor 32 Actor 33 John A

2 6 4 4 4 4

Finally, since we know the ground truth for the Zachary karate club net-
work, we can compare the clustering proposed by the edge betweenness al-
gorithm with the ground truth:

4.46.1) compare_using_all_methods <- function(cl1, cl2) {
2) ## List all possible values of compare ’methods’
3) methods <- args(compare) %>% as.list()%>% .$method %>% eval()
4) sapply(methods, compare, comm1 = cl1, comm2 = cl2)
5) }
6) compare_using_all_methods(dendrogram, ground_truth)

vi nmi split.join rand
1.1355464 0.5178731 17.0000000 0.6844920

adjusted.rand
0.3581858

These results are not very impressive; even our simple clustering algorithm
that we experimented with in Section 4.3.1 produced similar scores to this.
However, note that our algorithm was more informed than the edge between-
ness algorithm: we knew in advance that we should look for two clusters and
that ‘Mr Hi’ and ‘John A’ are in different clusters. Let us cut the dendrogram
at a different place to obtain two clusters and see whether the results have
improved!

4.47.1) clustering <- cut_at(dendrogram, no = 2)
2) clustering

[1] 2 2 1 2 2 2 2 2 1 1 2 2 2 1 1 1 2 2 1 2 1 2 1 1 1 1 1 1 1
[30] 1 1 1 1 1

5) compare_using_all_methods(clustering, ground_truth)

vi nmi split.join rand
0.3685289 0.7307867 4.0000000 0.8859180

adjusted.rand
0.7718469

This is much better; for instance, the split-join distance shows that it is
enough to move two vertices from one cluster to the other in our clustering
to recover the ground truth exactly, and the edge betweenness method was
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able to detect the two clusters without knowing in advance that ‘Mr Hi‘ and
‘John A’ should be in different clusters.

Now we briefly show how can one inspect the results of a clustering visually.
Cluster plots will be discussed in detail in Section 3.5.1.

4.49.1) V(karate)[Faction == 1]$shape <- "circle"
2) V(karate)[Faction == 2]$shape <- "square"
3) plot(dendrogram, karate)
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The first two lines assign shapes to the vertices based on the ground
truth. Colors are be used to distinguish the members of the different clus-
ters. Fig. 4.8(a) shows the result. The dendrogram on Fig. 4.8(b) can also be
drawn with igraph:

4.50.1) plot_dendrogram(dendrogram, direction = "downwards")
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4.4.2 Modularity-based methods

This subsection presents several clustering methods implemented in igraph
that have at least one thing in common: they all strive to maximize the mod-
ularity of the obtained partition. The problem of modularity maximization
was shown to be NP-hard by Brandes et al (2008) – informally speaking,
this means that modularity maximization is at least as hard as the hardest
problems in NP, and we cannot expect to find an algorithm that runs in
polynomial time and provides a clustering with the highest modularity in an
arbitrary graph G, unless it turns out that P = NP. (For more information
about P, NP, NP-hardness and other concepts in computational complexity
theory. Most of the algorithms in igraph trade off the exactness of the solu-
tion for a reasonable computational cost in large graphs, with one notable
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(a) Clustering

01 234 56 7 8910 11 12 13 141516 17 1819 2021 2223 242526 27 2829 30 313233

(b) Dendrogram

Fig. 4.8 Left: clusters detected in the Zachary karate club network using the Girvan-
Newman algorithm (Girvan and Newman, 2002). Circles and squares represent the original
division observed by Zachary (1977); shades of gray show the detected clusters when the
dendrogram is cut to obtain two clusters. Right: the dendrogram from which the clustering
was obtained.

exception which sacrifices performance but always provides a clustering with
maximum modularity.

4.4.2.1 Exact modularity maximization

Brandes et al (2008) has shown that modularity maximization can be cast into
the form of a linear integer optimization problem. Linear integer optimization
problems are a special case of optimization problems in general. In these
problems, the variables are integers which are subjects of linear equality and
inequality constraints. The goal is to maximize the value of a goal function
which is also a linear function of the variables.

The formulation of Brandes et al (2008) contains n2 binary decision vari-
ables δuv for a graph with n vertices. δuv will be one if and only if vertices
u and v are in the same cluster and zero otherwise. The constraints are as
follows:

Reflexivity constraints. For all u, δuu = 1; in other words, each vertex
is in the same cluster with itself.

Symmetry constraints. For all u and v, δuv = δvu; in other words, if u
and v are in the same (different) cluster, then v and u are also in the same
(different) cluster.

Transitivity constraints. For all u, v and w, it holds that δuv + δvw −
2δuw ≤ 1. This can be true only if δuv = 1 and δvw = 1 implies δuw = 1,
therefore it cannot happen that u is in the same cluster with both v and
w, but v and w are in different clusters.
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The goal function to be optimized is the modularity function itself, as
presented in Eq. 4.8:

Q(G) =
1

2m

n∑
i=1

n∑
j=1

(
Aij −

kikj

2m

)
δij (4.14)

where Aij is 1 if and only if vertices i and j are connected (zero otherwise),
ki is the degree of vertex i and m is the number of edges in G.

Pruning redundant variables leaves us with
(
n
2

)
variables and

(
n
3

)
con-

straints, which is clearly a cause for concern in the case of large graphs: a
relatively modest graph with 1000 vertices would require 499,500 variables
and more than 166 million constraints. Even the state-of-the-art solvers for
linear integer optimization problems can not cope with problems of this size,
therefore this approach is mainly of theoretical interest. igraph nevertheless
includes an algorithm that re-formulates modularity optimization as a lin-
ear integer problem and uses the GNU Linear Programming Kit (GLPK, see
http://www.gnu.org/software/glpk/) to solve it. The corresponding igraph
function is cluster_optimal(). Since Zachary’s karate club network is wellcluster_optimal()
below the practical size limit of this approach, we can use igraph to find the
partition corresponding to the maximum modularity and compare it with the
modularity of the five-cluster partition we have obtained from the Girvan-
Newman method:

4.51.1) optimal <- cluster_optimal(karate)
2) girvan_newman <- cluster_edge_betweenness(karate)
3) rbind(girvan_newman %>% membership(),
4) optimal %>% membership(),
5) ground_truth %>% membership())

Mr Hi Actor 2 Actor 3 Actor 4 Actor 5 Actor 6 Actor 7
[1,] 1 1 2 1 3 3 3
[2,] 1 1 1 1 2 2 2
[3,] 1 1 1 1 1 1 1

Actor 8 Actor 9 Actor 10 Actor 11 Actor 12 Actor 13
[1,] 1 4 2 3 1 1
[2,] 1 3 3 2 1 1
[3,] 1 2 2 1 1 1

Actor 14 Actor 15 Actor 16 Actor 17 Actor 18 Actor 19
[1,] 2 4 4 3 1 4
[2,] 1 3 3 2 1 3
[3,] 1 2 2 1 1 2

Actor 20 Actor 21 Actor 22 Actor 23 Actor 24 Actor 25
[1,] 1 4 1 4 5 5
[2,] 1 3 1 3 4 4
[3,] 1 2 1 2 2 2

Actor 26 Actor 27 Actor 28 Actor 29 Actor 30 Actor 31

http://www.gnu.org/software/glpk/
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[1,] 5 6 5 2 6 4
[2,] 4 3 4 4 3 3
[3,] 2 2 2 2 2 2

Actor 32 Actor 33 John A
[1,] 4 4 4
[2,] 4 3 3
[3,] 2 2 2

An important lesson to learn here is that the partition with the maxi-
mal modularity (i.e. ‘optimal’) is not necessarily the partition which is the
ground truth (i.e. ‘ground_truth’), at least when such an external ground
truth is available. In fact, the result of the Girvan-Newman method is much
closer to the optimal partition than the ground truth, both in terms of mod-
ularity and in terms of external quality measures. Here we calculate both
the modularity scores of the three partitions and their distances using the
variation of information metric of Meilă (2003):

4.52.1) modularity(girvan_newman)

[1] 0.345299

3) modularity(optimal)

[1] 0.4449036

5) modularity(ground_truth)

[1] 0.3714661

7) compare(girvan_newman, optimal, method = "vi")

[1] 0.7790644

9) compare(ground_truth, optimal, method = "vi")

[1] 0.629254

Since the variation of information is a distance metric, a lower VI score
of ‘girvan_newman’ also indicates that it is closer to the optimum than the
ground truth is.

4.4.2.2 Heuristic optimization strategies

It was shown in the previous subsection that the exact optimization of mod-
ularity is not feasible in large graphs. To this end, many heuristics have
been proposed in the literature that may not return a clustering with maxi-
mal modularity but are capable of returning a clustering whose modularity
is close to the optimum. The first heuristic we will discuss here is the fast
greedy modularity optimization, the method originally proposed by Newman fast greedy modularity

optimization
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(2004) in the paper that describes modularity as a quality function.
The procedure starts from a configuration where every vertex is considered

to be in a separate community. The modularity of such a partition can be
calculated easily. Assuming no loop edges (which is usually the case):

Q(G) =
1

2m

n∑
i=1

(
aii −

d2i
2m

)
= −

(
di

2m

)2
(4.15)

The algorithm maintains a matrix of ´Qij values where ´Qij represents the
change in modularity when the clusters corresponding to vertices i and j are
merged. The matrix is sparse; most of its values will be zeros as no modularity
gain could be achieved by merging two clusters that are not connected to each
other at all.

In each step of the algorithm, the ´Q matrix is scanned and the element
yielding the maximum increase in modularity is selected. The corresponding
two clusters are merged, the values of the ´Q matrix are re-calculated and
the process continues until only one cluster remains. It can be shown that
only a small part of the ´Q matrix has to be updated after a merge, making
the algorithm scalable up to hundreds of thousands of vertices. For more
details see the paper of Clauset et al (2004). The result of the process is a
dendrogram, similarly to the Girvan-Newman algorithm, but the algorithm
readily provides the point where the dendrogram should be cut: exactly at
the point where the maximal ´Q value becomes negative for the first time.

The algorithm is implemented by the cluster_fast_greedy() function,
and it supports both weighted and unweighted graphs. We are going to use the
unweighted version of the karate club network, and the weighted UKfaculty
network from the igraphdata package as examples here.

4.57.1) karate <- delete_edge_attr(karate, "weight")
2) data(UKfaculty)

This network describes the social interactions between the lecturers of
three schools in a faculty of a UK university. The interactions are directed and
weighted. Since the modularity maximization method works with undirected
graphs only, we have to get rid of the directions of the edges first using the
as.undirected() function:as.undirected()

4.58.1) UKfaculty <- as.undirected(UKfaculty, edge.attr.comb = "sum")
2) summary(UKfaculty)

IGRAPH 87a8668 U-W- 81 577 --
+ attr: Type (g/c), Date (g/c), Citation (g/c), Author
| (g/c), Group (v/n), weight (e/n)

The ‘edge.attr.comb = "sum"’ argument specifies that the weights of
the edges pointing in opposite directions (i.e. from A to B and from B to
A) should be added up to obtain the weight of the corresponding undirected
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edge. Other choices are also possible; e.g., we could have used ‘"mean"’ to
take the mean of the two weights, or ‘"max"’ to keep the larger weight only,
etc.

First, let us calculate a near-optimal clustering of the Zachary karate club
network using the fast greedy modularity optimization, and compare its mod-
ularity score with the optimal one that we determined in the previous sub-
section!

4.59.1) dendrogram <- cluster_fast_greedy(karate)
2) dendrogram

IGRAPH clustering fast greedy, groups: 3, mod: 0.38
+ groups:
$‘1‘
[1] "Mr Hi" "Actor 5" "Actor 6" "Actor 7" "Actor 11"
[6] "Actor 12" "Actor 17" "Actor 20"

$‘2‘
[1] "Actor 9" "Actor 15" "Actor 16" "Actor 19" "Actor 21"
[6] "Actor 23" "Actor 24" "Actor 25" "Actor 26" "Actor 27"
[11] "Actor 28" "Actor 29" "Actor 30" "Actor 31" "Actor 32"
[16] "Actor 33" "John A"

+ ... omitted several groups/vertices

For weighted graphs, the weights are automatically detected and used:

4.60.1) dendrogram <- cluster_fast_greedy(UKfaculty)
2) dendrogram

IGRAPH clustering fast greedy, groups: 5, mod: 0.56
+ groups:
$‘1‘
[1] 2 8 11 15 18 19 21 25 29 31 34 35 39 41 43 46 57 58 79

$‘2‘
[1] 24 32 37 38 48 50 52 54 55 64 70

$‘3‘
[1] 1 3 4 9 17 36 44 45 53 59 60 61 62 73 74 75 78 81

$‘4‘
+ ... omitted several groups/vertices

Later on, Newman (2006) proposed an alternative optimization strategy
for the modularity score. The so-called leading eigenvector method is a top- leading eigenvector

methoddown method that starts from a single giant community that contains every
vertex, and splits it iteratively into smaller fragments such that each split
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creates two new communities from one. This means that instead of solving
the general modularity problem for any number of communities, one has to
find only an optimal split within a community.

Given a single giant community, let us introduce a vector ~s = [s1, s2, . . . , sn]
such that si is 1 if vertex i should be on one side of the split and -1 if the
vertex should be on the other side. The modularity of the split can then be
written as:

Q =
1

4m

n∑
i=1

n∑
j=1

bijsisj (4.16)

where bij is the well-known term from the original modularity formula in
Eq. 4.8:

bij = Aij −
kikj

2m
(4.17)

By denoting the matrix of bij values with B, we can reduce the modularity
formula to two matrix-vector multiplications:

Q =
1

4m
~sTB~s (4.18)

Newman (2006) proposed to choose ~s by finding the leading eigenvector ~s∗
(i.e. the eigenvector corresponding to the largest eigenvalue) of B and re-
placing positive coordinates in ~s∗ with 1 and negative coordinates with -1
to obtain ~s and thus the split itself. Cases when all the coordinates of ~s∗
are positive (or negative) correspond to situations when it is not possible to
improve modularity by splitting a community further, serving as a natural
stopping condition for the algorithm. Newman’s leading eigenvector method
therefore proceeds as follows:

1. Create an empty queue that will contain clusters, and an empty set that
will contain the clusters of the final result.

2. Initialize the queue with a cluster containing all the vertices.
3. If the queue is empty, terminate the algorithm and return the result set.
4. Remove the first cluster from the queue and find the corresponding mod-

ularity matrix B.1
5. Find the leading eigenvector ~s∗ of B.
6. Calculate ~s = sgn(~s∗) where sgn denotes the signum function. Vertices

corresponding to zeros in ~s∗ may be grouped with either side of the
clustering without any change in modularity.

7. If all the values in ~s are positive (or all the values are negative), append
the cluster to the result set. Otherwise, split the cluster according to ~s
and append the two new clusters to the end of the queue.

1 Newman (2006) showed that one should not consider the cluster in isolation but also
take into account the edges that lead out of the cluster to other clusters in the network,
effectively yielding a matrix B that corresponds to a submatrix of the modularity matrix
of the network as a whole.
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8. Return to step 3.

The algorithm is implemented in igraph by the cluster_leading_eigen()-
function: cluster_leading_

eigen()
4.61.1) clusters <- cluster_leading_eigen(karate)

2) clusters

IGRAPH clustering leading eigenvector, groups: 4, mod: 0.39
+ groups:
$‘1‘
[1] "Mr Hi" "Actor 5" "Actor 6" "Actor 7" "Actor 11"
[6] "Actor 12" "Actor 17"

$‘2‘
[1] "Actor 9" "Actor 10" "Actor 15" "Actor 16" "Actor 19"
[6] "Actor 21" "Actor 23" "Actor 27" "Actor 30" "Actor 31"
[11] "Actor 33" "John A"

$‘3‘
+ ... omitted several groups/vertices

The leading eigenvector method can also be asked to stop when a given
number of clusters has been obtained. For instance, the following statement
asks for at most two clusters (which means that the algorithm takes at most
one step only):

4.62.1) clusters <- cluster_leading_eigen(karate, steps = 1)
2) clusters

IGRAPH clustering leading eigenvector, groups: 2, mod: 0.37
+ groups:
$‘1‘
[1] "Mr Hi" "Actor 2" "Actor 3" "Actor 4" "Actor 5"
[6] "Actor 6" "Actor 7" "Actor 8" "Actor 11" "Actor 12"
[11] "Actor 13" "Actor 14" "Actor 17" "Actor 18" "Actor 20"
[16] "Actor 22"

$‘2‘
[1] "Actor 9" "Actor 10" "Actor 15" "Actor 16" "Actor 19"
[6] "Actor 21" "Actor 23" "Actor 24" "Actor 25" "Actor 26"
[11] "Actor 27" "Actor 28" "Actor 29" "Actor 30" "Actor 31"
+ ... omitted several groups/vertices

It is noteworthy that the above clustering is exactly the ground truth, since
their split-join distance is zero:

4.63.1) compare(clusters, ground_truth, method = "split.join")

[1] 0
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4.4.2.3 Spinglass clustering

The clustering method of Reichardt and Bornholdt (2006) is motivated by
spin glass models from statistical physics. Such models are used to describe
and explain magnetism at the microscopic scale at finite temperatures. Re-
ichardt and Bornholdt (2006) drew an analogy between spin glass models
and the problem of community detection on graphs and proposed an algo-
rithm based on the simulated annealing of the spin glass model to obtain
well-defined communities in a graph.

A spin glass model consists of a set of particles called spins that are coupled
by ferromagnetic or antiferromagnetic bonds. Each spin can be in one of k
possible states. The well-known Potts model then defines the total energy of
the spin glass with a given spin configuration as follows:

H(~σ) = −
∑
i,j

Jijδij (4.19)

where Jij is the strength of the interaction between spins i and j and δij is
1 if and only if σi = σj, zero otherwise. Jij > 0 corresponds to ferromagnetic
interactions where the spins seek to align to each other, while Jij < 0 repre-
sents antiferromagnetic interactions where the spins involved prefer to be in
different states. Jij = 0 means a noninteracting spin pair. Spin flips then oc-
cur in the system randomly, and the probability of a given spin configuration
is proportional to e−βH(~σ), where β = 1/T is the inverse temperature of the
system. At infinite temperature, all the configurations occur with equal prob-
ability. At low temperatures, spin configurations with a smaller total energy
occur more frequently.

Spins and interactions in the Potts model are very similar to graphs: each
spin in the model corresponds to a vertex, and each interaction corresponds
to an edge. When all the interactions are ferromagnetic (Jij = Aij, i.e. all the
spin pairs are either noninteracting or prefer to align with each other), the
spin states can be thought about as community indices, and the spin glass
model becomes equivalent to a community detection method driven by the
total energy function and the temperature of the system.

Reichardt and Bornholdt (2006) proposed to extend the energy function
of the Potts model as follows:

H(~σ) = −
∑
i,j

aijAijδij +
∑
i,j

bij(1−Aij)δij (4.20)

where aij denotes the contribution of the interaction between vertices i and
j to the total energy when the two vertices are interacting (Aij = 1), and bij
denotes the contribution when they are noninteracting (Aij = 0). Choosing
aij = 1− γpij and bij = γpij (where pij is the probability of the interaction
between vertices i and j in an appropriately chosen null model, similar to the
case of the modularity function), the energy function is further simplified to:
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H(~σ) = −
∑
i,j

(Aij − γpij)δij (4.21)

With γ = 1, this energy function becomes proportional to the modularity
score with a multiplicative factor of −2m (cf. Eq. 4.7). In other words, finding
a spin configuration with low H(~σ) is equivalent to finding a flat community
structure with high modularity if γ = 1.

Reichardt and Bornholdt (2006) gave efficient update rules for the above
energy function, making it possible to apply a simulated annealing procedure
to find the ground state of the model that corresponds to a low energy con-
figuration. Their algorithm starts from a random configuration of spins and
tries to flip all the spins once in each time step. After each individual spin
flip, the energy of the new configuration is evaluated. If the new spin configu-
ration has a lower energy, the flip is accepted unconditionally; otherwise the
flip is accepted with probability e−β(H(~σnew)−H(~σold)). At high temperatures
(when β is low), proposals that lead to states with a higher energy have a
higher chance to get accepted, while low temperatures tend to reject spin
flips that increase the total energy of the system. In order to avoid getting
stuck in a local minimum in the first few steps, the algorithm starts from
a high temperature T . T is then decreased according to a cooling schedule,
and the algorithm terminates when T reaches a lower threshold T0. The spin
configuration at T0 is then returned as the final clustering.

igraph implements the spinglass clustering algorithm in the cluster_sp-
inglass() method. The method has the following parameters: cluster_spinglass()

‘weights’ The name of the edge attribute storing the edge weights, or a
list of weights, one item corresponding to each edge.

‘spins’ The number of possible spin states. This is equivalent to the max-
imal number of communities. The actual number of detected communities
may be less as some spin states may become empty.

‘parupdate’ Whether the spins should be updated in parallel or one after
another. The default is ‘FALSE’, which corresponds to the asynchronous
update; i.e. spins that are considered later during a sweep use the new
values of spins that have been considered already in this step when the
energy function is calculated. During a synchronous (parallel) update, each
spin uses the old values of other spins, irrespectively of the order they are
considered.

‘start.temp’ The initial temperature T1 of the system. The default value
is 1, and there should be little reason to adjust it to anything else.

‘stop.temp’ The final temperature T0 of the system. The default value is
0.01.

‘cool.fact’ The cooling factor α, a real number between 0 and 1. At
each time step, the current temperature is multiplied by the cooling factor
to obtain the new temperature, resulting in an exponentially decaying
temperature curve. The total number of steps taken by the algorithm is
thus given by d(log T0 − log T1)/ logαe.
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‘update.rule’ Specifies the null model used in the simulation (i.e. the
values of pij). The default value is ‘"config"’, which corresponds to the
configuration model and optimizes the modularity function if γ = 1. The
other choice is ‘"simple"’, which corresponds to a simple null model
where the edges are placed randomly with equal probabilities (all pij values
are equal) and the expected number of edges is equal to the actual edge
count of the graph.

‘gamma’ The γ argument of the algorithm that specifies the balance be-
tween the importance of present and missing edges within a community.
γ = 1 makes the energy function proportional to the modularity of the
partition and assigns equal importance to present and missing edges.

The real power of the spinglass clustering method lies in its γ parameter.
As written above, γ adjusts the relative importance of existing edges within
a community with respect to the missing edges. In other words, a larger γ
parameter would prefer to create communities where the vast majority of
edges are present, even if that means creating smaller communities. On the
other hand, a smaller γ parameter creates larger and sparser communities.
This allows one to explore the community structure of a graph at multiple
scales by scanning over a range of γ parameters, possibly discovering different
sets of communities in the presence of multi-level structures such as the one
seen on Fig. 4.2(c). To illustrate this, we repeat the analysis of Reichardt
and Bornholdt (2006) on an artificial graph with a multi-level community
structure.

Our artificial graph will be generated as follows. First, we take a graph
with 512 vertices. These vertices are grouped into four communities, each
community having 128 vertices. For sake of simplicity, community i will con-
tain vertices from index 128(i−1)+1 to index 128i. Each community will then
have four sub-communities consisting of 32 nodes each. Each vertex is then a
member of one community and one of its subcommunities. Vertices have an
average of ten links towards other vertices within the same subcommunity,
an average of 7.5 links towards other vertices within the same community
but in a different subcommunity, and an average of five links towards other
vertices not in the same community. In the following, we shall call the larger
communities outer communities and the subcommunities inner communities.

First we create an n×nmatrix that contains the edge probabilities between
all pairs of vertices. Since we want an undirected network, we only consider
each pair of vertices once, corresponding to the upper right triangle of the
matrix. (There are actually much better way to create these kind of random
graphs, especially if they are large and sparse, but we don’t go into the details
here.)

4.64.1) library(Matrix)
2) comm_id <- rep(1:4, each = 128)
3) sub_comm_id <- rep(1:16, each = 32)
4) pref_matrix <- outer(1:512, 1:512, function(i, j) {
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5) ifelse(sub_comm_id[i] == sub_comm_id[j], 10 / (32 - 1),
6) ifelse(comm_id[i] == comm_id[j], 7.5 / (128 - 32),
7) 10 / (512 - 128)))
8) })
9) pref_matrix[lower.tri(pref_matrix, diag = TRUE)] <- 0
10) image(Matrix(pref_matrix))

Dimensions: 512 x 512
Column

R
ow

100

200

300

400

500

100 200 300 400 500

Now we are ready to generate the graph. We draw an edge between each
pair with the probability specified in the matrix.

4.65.1) multilevel <- runif(length(pref_matrix)) %>%
2) is_less_than(pref_matrix) %>%
3) graph_from_adjacency_matrix(mode = "upper")

Finally, we run the clustering algorithm at two different resolution scales;
the figures of Reichardt and Bornholdt (2006) were created with γ = 1 and
γ = 2.2, but the implementation in igraph works better with γ = 3 for the
latter case:
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4.66.1) outer <- cluster_spinglass(multilevel, spins = 32, gamma = 1)
2) inner <- cluster_spinglass(multilevel, spins = 32, gamma = 3)

Since the membership vectors are fairly large, let us simply print the sizes
of the clusters first:

4.67.1) sizes(outer)

Community sizes
1 2 3 4 5 6 7
2 1 128 127 127 1 126

5) sizes(inner)

Community sizes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
31 32 2 31 31 32 27 30 2 5 32 30 32 6 30 32 32 32 33 1 29

The result is not perfect, but it is very close to the expected result; the
misclassified vertices seem to be put into their own clusters, which can prob-
ably be attributed to random noise in the benchmark graph. Your results
are likely to be different from the one above because both the graph gen-
eration method and the community detection method is randomized. Let us
compare the clusterings with the ground truth using the variation of informa-
tion metric! «>= compare(outer, comm_id, method = "vi") compare(inner,
sub_comm_id, method = "vi") @

The split-join distance also shows us that indeed ‘inner’ is a subcluster-
ing of ‘outer’, since one of the two components of the score is nearly zero.
This is not necessarily true for clusterings generated with different γ val-
ues, and indicates the presence of a strong hierarchical relationship between
communities found at different resolution levels in this graph:

4.69.1) split_join_distance(inner, outer)

distance12 distance21
7 380

4.4.2.4 Limitations of modularity-based methods

The popularity of modularity-based methods in network science is undeni-
able, but nevertheless the modularity metric itself has a few limitations that
one should be aware of. This section will discuss such limitations and how to
work around them.

The first misconception related to the concept of modularity is that there
exists some kind of a threshold above which it can safely be said that the
graph has a significant modular structure. Guimerà et al (2004) have shown
that even the so-called Erdős-Rényi networks (where only a randomly se-
lected fraction p of all the possible edges are present, see later on page 151)
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have non-zero maximal modularity despite the fact that these networks do
not exhibit any modular structure by definition. The maximal modularity of
random Erdős-Rényi networks with n vertices and a connection probability
of p (denoted by ER(n, p)) agrees well with the following function:

Qmax(ER(n, p)) ≈
(
1−

2√
n

)(
2

np

)2/3
(4.22)

The above formula yields a value very close to 0.5 for n = 500 and p = 0.01,
and this is far above the threshold of 0.3 that some sources cite as a rule
of thumb for deciding whether there is a significant modular structure in a
network. In other words, modularity maximization algorithms may overfit
the communities to the data in cases when no real modules are present.

A possible way to work around the problem is to evaluate the maximal
modularity of random networks that have the same degree distribution as the
original data. Let us assume that a community algorithm detection produced
a community structure C for the original network G, and the modularity of
C is denoted by Q(C). In order to evaluate the significance of C, we generate
a large number of random networks G1, G2, . . . , Gk such that the degree dis-
tribution of each network is equal to the degree distribution of G. Note that
the definition of modularity implies that the expected modularity C on the
ensemble {G1, G2, . . . , Gk} is zero by definition, but running our community
detection algorithm on each Gi may uncover a different Ci community struc-
ture that maximizes the modularity of Gi (but not G). We are interested in
whether the modularity of C (possibly overfitted to G by the algorithm) is
significantly higher than the modularities of Ci’s (which are possibly over-
fitted to the corresponding Gi’s). This procedure will be illustrated on the
Zachary karate club network:

4.70.1) degrees <- degree(karate)
2) q <- karate %>%
3) cluster_fast_greedy() %>%
4) modularity()
5) qr <- replicate(100, sample_degseq(degrees, method = "vl"),
6) simplify = FALSE) %>%
7) lapply(cluster_fast_greedy) %>%
8) sapply(modularity)
9) sum(qr > q) / 100

[1] 0

The above procedure generates 100 randomized instances of the Zachary
karate club network (with the same degree distribution) using the sample_
degseq() function. We will learn more about this algorithm and its ‘method’
argument later in Section ??; for now, it is enough to know that ‘method =
"vl"’ ensures that there are no loop edges in the generated network. For
each network, we check whether the modularity of the randomized instance
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is larger than the modularity ‘q’ which we have observed for the karate club
network, and calculate the ratio of such networks, in the total 100.

Our result indicates that no randomized networks have community struc-
ture with a modularity score that is higher than the one obtained from the
original karate club network. This means that this network has significant
community structure.

We should note that it is important to use the same community detection
method for Gi’s as we used for G because the whole procedure is meant to
estimate the bias of the specific community detection method that was used
to find C. The accuracy of the significance estimation depends on the number
of random instances used. In cases when the estimated significance is close
to the significance threshold, it is advised to use more random instances in
order to come to a more definite conclusion.

The second caveat of modularity-based methods is known as the so-called
resolution limit of the modularity measure. Fortunato and Barthélemy (2007)resolution limit
have pointed out that the modularity measure has a built-in, intrinsic scale√
m (where m is the number of links) such that real modules containing

less than
√
m edges are merged in the configuration that maximizes the

modulaity. In case of weighted graphs, the resolution limit is at
√
w/2. A

schematic example is shown on Fig. 4.9(a).

Kn Kn

Kn Kn

Kn Kn

Kn Kn

(a) Clique ring graph (b) Resolution limit with repli-
cates

Fig. 4.9 Left: a network containing k identical cliques of n vertices that are connected
by single edges. Each clique is denoted by Kn, and the individual vertices are not shown.
When k is larger than n(n − 1) + 2, modularity optimization joins adjacent cliques into
groups of two or more. These groups are represented by gray shaded areas. Right: the
optimal partition of the upper graph consists of three clusters with two vertices each. The
lower graph contains two replicates of the upper graph, and the original partition of the
upper graph now falls below the resolution limit.

In this example, k identical cliques (complete subgraphs) containing n
vertices each are connected by single edges in the shape of a ring. The total
number of edges m is kn(n − 1)/2 + k. Intuitively, the communities in this
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network should correspond to the k single cliques. The modularity of this
configuration is then:

Qsingle = 1−
2

n(n− 1) + 2
−
1

k
(4.23)

Let us now assume that k is even and consider a community structure where
adjacent cliques are paired to form k/2 communities, each community con-
taining two cliques. The modularity is then:

Qpaired = 1−
1

n(n− 1) + 2
−
2

k
(4.24)

Modularity maximization would find the intuitively correct community struc-
ture if Qsingle > Qpaired, which is true if and only if n(n− 1) + 2 > k. This
can further be re-written as k < m/k+1, or, neglecting the additive constant,
as k <

√
m. It is easy to confirm this on a specific example using igraph:

4.71.1) clique_ring <- function(n, k) {
2) g <- make_full_graph(n) * k
3) g + path(n * 1:k, n)
4) }
5) clique_ring(4, 13) %>% cluster_optimal() %>% sizes()

Community sizes
1 2 3 4 5 6 7 8 9 10 11 12 13
4 4 4 4 4 4 4 4 4 4 4 4 4

9) clique_ring(4, 16) %>% cluster_optimal() %>% sizes()

Community sizes
1 2 3 4 5 6 7 8
8 8 8 8 8 8 8 8

An alternative example of the resolution limit was published by Brandes
et al (2008). Consider the graph shown on the upper part of Fig. 4.9(b).
The optimal modularity score is attained when the graph is partitioned into
three communities (denoted by shaded areas). However, these communities
are below the resolution limit in a graph that contains two exact replicas of the
original graph (see the lower part of Fig. 4.9(b)). Kumpula et al (2007) have
shown that this limitation is applicable not only to the modularity function
Q but also to the goal function used by the spinglass clustering method of
Reichardt and Bornholdt (2006) that was introduced in Section 4.4.2.3.

A possible solution to the problem of the resolution limit is the addition
of loop edges with weight γ to each of the nodes (Arenas et al, 2008). Loop
edges increase the total weight of edges within a community of size n by nγ,
which is enough to push the total weight above the resolution limit if γ is
large enough.
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In case of the ring of cliques shown on Fig. 4.9(a), we have seen that the
optimal modularity score merges adjacent cliques if the clique size is 4 and
there are 16 cliques. Adding loop edges with γ = 0.5 increases the number
of edges within a clique and makes them valid communities on their own. In
fact, much smaller γ values also suffice because the difference between the
8-community and the 16-community case is so small:

4.73.1) clique_ring_loops <- clique_ring(4, 14)
2) gamma <- 0.5
3) E(clique_ring_loops)$weight <- 1
4) clique_ring_loops[from = 1:52, to = 1:52] <- gamma
5) clique_ring_loops %>% cluster_optimal() %>% sizes()

Community sizes
1 2 3 4 5 6 7 8 9 10 11 12 13 14
4 4 4 4 4 4 4 4 4 4 4 4 4 4

Finally, we should also mention the sensitivity of the modularity measure
to the presence of “satellite nodes”, i.e. nodes that have only one neighbor.
Brandes et al (2008) have shown that satellite nodes never form a community
on their own in the optimal partition: they are always grouped together with
their single neighbor. A simple example graph where this causes problems is
a clique of n vertices, extended by n satellite nodes such that each satellite
connects to one of the vertices in the original clique and vice versa. Since
satellite nodes are always grouped together with their neighbors, the optimum
of the modularity will have n clusters, and each vertex in the original clique
will be in a different cluster:

4.74.1) cliques_and_satellites <- function(n) {
2) make_full_graph(n) + n + edges(rbind(1:n, 1:n + n))
3) }
4) g <- cliques_and_satellites(6)
5) g %>% cluster_optimal()

IGRAPH clustering optimal, groups: 6, mod: 0.12
+ groups:
$‘1‘
[1] 1 7

$‘2‘
[1] 2 8

$‘3‘
[1] 3 9

$‘4‘
+ ... omitted several groups/vertices
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A possible solution to the problem of satellites is to remove the satellite
vertices before the community detection process and then post-process the
membership vector in order to connect the satellite vertices to the communi-
ties of their neighbors. However, care must be taken when the satellite nodes
are removed, as other nodes may become satellites after the original ones are
removed.

For a more thorough review of the caveats of the modularity function, refer
to Fortunato and Barthélemy (2007) and Good et al (2010).

4.4.3 Label propagation algorithm

The label propagation algorithm was proposed by Raghavan et al (2007), and
it is one of the few community detection algorithms that run in nearly linear
time (and the only such algorithm in igraph). The basic idea of the algorithm
is as follows. Let us assume that each node carries a label that identifies
the community it belongs to. Initially, each node has a unique label. The
algorithm consists of rounds. In each round, each node updates its label and
joins the community to which the maximum number of its neighbors belong.
Ties between labels are broken randomly. Labels are updated asynchronously;
in other words, nodes are considered one by one in a random order in each
round, and the label of vertex i is updated before the algorithm moves on to
the next vertex j in the ordering so that vertex j will already “see” the new
label of vertex i instead of the old one. The algorithm terminates when it holds
for each node that it belongs to a community to which a maximum number
of its neighbors also belong. It is easy to see that the algorithm takes O(m)
steps per iteration where m is the number of edges in the network, hence the
total time complexity is O(mh), where h is the number of iterations. Since
h is small compared to m, the algorithm runs in nearly linear time.

The implementation of the label propagation algorithm in igraph is pro-
vided by the cluster_label_prop() function. It is an extension of the origi- cluster_label_

prop()nal label propagation algorithm of Raghavan et al (2007) as it allows the user
to specify an initial label configuration (and even let the user leave some of
the nodes unlabeled) and can also handle nodes with fixed labels. However,
it should be noted that the algorithm itself is randomized and may converge
to different final clusterings even with identical starting conditions as ties are
broken randomly. Sometimes it also happens that two or more disconnected
groups of nodes have the same label. These should be taken into account
when working with the label propagation algorithm.

The cluster_label_prop() fucntion has the following parameters:

‘weights’ The name of the edge attribute storing the edge weights, or a
list of weights, one item corresponding to each edge.

‘initial’ The name of the vertex attribute storing the initial labels, or
a list of labels, one item corresponding to each vertex. Labels are denoted
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by integers from zero; negative integers represent vertices that should be
unlabeled at the start of the algorithm. The default value is ‘NULL’, which
means that all the vertices have unique labels.

‘fixed’ The name of the vertex attribute containing ‘TRUE’ for vertices
with fixed labels and ‘FALSE’ for vertices whose label may change during
the course of the algorithm. Unlabeled vertices may not be fixed of course.
The default value is ‘NULL’, which means that none of the labels are fixed.

As an example, let us find the communities of the Zachary karate club
network using the label propagation algorithm. Since the method is random-
ized, we will run the algorithm five times and calculate the pairwise distances
between each pair of solutions:

4.75.1) num_tries <- 5
2) cls <- replicate(num_tries, cluster_label_prop(karate))
3) outer(cls, cls, function(cl1, cl2) {
4) mapply(compare, cl1, cl2, method = "split.join")
5) })

[,1] [,2] [,3] [,4] [,5]
[1,] 0 20 11 11 11
[2,] 20 0 12 12 12
[3,] 11 12 0 0 0
[4,] 11 12 0 0 0
[5,] 11 12 0 0 0

It is easy to see that not all the distances are zero: the algorithm indeed
converged to different solutions from different initial conditions. This is not
necessarily a bad thing; with the presence of overlaps between modules pos-
sible hierarchical relationships between them, it is perfectly sensible to think
that there does not exist one single division of a network into disjoint com-
munities that captures the whole diversity of the modular structure. Good
et al (2010) have shown that even the modularity function exhibits similar
behavour: there are exponentially many local optima of the modularity func-
tion in the space of partitions, and these local optima are in general dissimilar
to each other.

The ‘initial’ and ‘fixed’ arguments of the label propagation algorithm
can also be used to incorporate a priori information about the communities
into the detection process. For instance, if we know that some vertices belong
to different groups, we may give them fixed labels while leaving the others
unlabeled and let these labels propagate to the entire network. This approach
is very similar to our simple community detection algorithm that we used in
Section 4.3.1. In the Zachary karate club network, we know that ‘Mr Hi’ and
‘John A’ belong to different communities, and we can communicate that to
the algorithm to find a good clustering:

4.76.1) initial <- rep(-1, gorder(karate))
2) fixed <- rep(FALSE, gorder(karate))
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3) names(initial) <- names(fixed) <- V(karate)$name
4) initial[’Mr Hi’] <- 1
5) initial[’John A’] <- 2
6) fixed[’Mr Hi’] <- TRUE
7) fixed[’John A’] <- TRUE
8) cluster_label_prop(karate, initial = initial, fixed = fixed)

IGRAPH clustering label propagation, groups: 2, mod: 0.35
+ groups:
$‘1‘
[1] "Mr Hi" "Actor 2" "Actor 3" "Actor 4" "Actor 5"
[6] "Actor 6" "Actor 7" "Actor 8" "Actor 9" "Actor 11"
[11] "Actor 12" "Actor 13" "Actor 14" "Actor 17" "Actor 18"
[16] "Actor 20" "Actor 22" "Actor 31"

$‘2‘
[1] "Actor 10" "Actor 15" "Actor 16" "Actor 19" "Actor 21"
[6] "Actor 23" "Actor 24" "Actor 25" "Actor 26" "Actor 27"
[11] "Actor 28" "Actor 29" "Actor 30" "Actor 32" "Actor 33"
+ ... omitted several groups/vertices

4.4.4 Multi-level and overlapping community detection

Earlier in Section 4.1, we have learned that the community structure of real-
world networks is exceedingly complex: communities may overlap with each
other and a community may also consist of further sub-communities. Sec-
tion 4.2 went into great details in describing how igraph represents such
multi-level and overlapping community structures, but none of the algorithms
presented so far was able to work at multiple resolution levels simultaneously
or to detect communities that overlap with each other only partially. This
section will present a multi-level method that is implemented natively in
igraph and also show how two of the most popular overlapping community
detection methods can be implemented in only a few lines of code.

4.4.4.1 The Louvain method

The Louvain method , named after the Catholic University of Louvain where Louvain method
it was conceived by Blondel et al (2008) is a multi-level community detection
algorithm that produces not only a single clustering but a list of clusterings,
each at a different meaningful resolution scale. It is built on a greedy opti-
mization scheme of the modularity function (see Section 4.3.2.2), but in some
cases it is able to discern communities below the resolution limit.
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The algorithm starts from the trivial community structure where each ver-
tex belongs to a separate community, and optimizes the modularity score by
iteratively moving vertices between communities in a way that greedily op-
timizes the modularity. Some communities may become empty at this stage.
After a while, it becomes impossible to improve the modularity score by mov-
ing single vertices – further improvements would require moving more than
one vertex at the same time. The algorithm then stores the current com-
munity structure, merges the vertices of the same community into a single
meta-node, and continues the optimization process on the graph consisting
of the meta-nodes. When a community is collapsed into a single meta-node,
the edges within the community are also collapsed into a loop edge incident
on the meta-node, and the weight of the loop edge will be equal to twice the
number of edges in the community. Edges between a pair of comunities (both
of which are collapsed into a meta-node) are also merged into a single edge
whose weight is equal to the number of edges between the two communities.
The optimization process terminates when all the communities have been
merged and only a single meta-node remains. The stored community struc-
tures before each aggregation step then correspond to meaningful hierarchical
levels of flat communities embedded in each other, resulting in a multi-level
community structure. Fig. ?? illustrates the optimization and the aggrega-
tion stages and shows how a network of 16 nodes is gradually collapsed while
detecting communities at three meaningful scales.

Another advantage of the Louvain method is that it runs faster than most
of the other community detection methods. Analyzing a real-world network
dataset with over 2 million nodes can be done in less than two minutes on a
desktop computer.

4.4.4.2 Other approaches

The hierarchical link clustering algorithm used a simple trick to obtain over-
lapping communities from a non-overlapping community detection algorithm:
instead of grouping the vertices, the algorithm calculates pairwise similari-
ties between edges and uses a hierarchical clustering algorithm to group the
edges into edge communities. However, why should we limit ourselves to the
admittedly simple hierarchical clustering when there are more sophisticated
algorithms that we could use? This is the basic idea of the meta-algorithm of
Evans and Lambiotte (2009), which can turn any non-overlapping clustering
method into an overlapping one by clustering the edges instead.

The techinique of Evans and Lambiotte (2009) starts from the dynamical
formulation of modularity that we have briefly discussed in Section 4.3.2.3.
However, instead of considering a random walk on the nodes, they investi-
gated two types of random walks where the walkers jump from edge to edge
instead of from node to node, and have shown that optimizing the classical
modularity of the so-called line graph of the original graph is equivalent toline graph
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finding clusters of edges in the original graph where a random edge walker
is more likely to stay within. The line graph is constructed as follows. Each
node in the line graph will correspond to one of the edges in the original
graph, and two nodes u and v in the line graph will be connected if the cor-
responding edges share a vertex in the original graph. (For directed graphs,
the line graph will also be directed and an edge u → v is drawn in the line
graph if the target of the edge that u represents is the source of the edge
that v represents in the original graph). Fig. 4.10 shows the so-called bow-tie
graph and its corresponding line graph to illustrate the concept. bow-tie graph
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(a) The bow-tie graph
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a
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f
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(b) Line graph of the bow-tie graph

Fig. 4.10 The bow-tie graph and its corresponding line graph. Lower-case letters associate
the edges of the bow-tie graph to the vertices of its line graph.

igraph can readily calculate the line graph of an arbitrary directed or
undirected graph using the line_graph() function, allowing us to provide
a straightforward implementation of the method of Evans and Lambiotte
(2009):

4.77.1) edge_communities <- function(graph, ...) {
2) to_vs <- function(es) V(graph)[inc(as.vector(es))]
3) graph %>%
4) make_line_graph() %>%
5) cluster_fast_greedy() %>%
6) groups() %>%
7) lapply(to_vs)
8) }

We have chosen to use the greedy modularity optimization method, but
the idea works with any other community detection method that tries to max-
imize the modularity. All the extra arguments of the edge_communities()
function are passed to the actual community detection method. The disjoint
communities of the edge graph are then converted back to overlapping vertex
communities, making use of the fact that the vertex with id i in the line
graph corresponds to the edge with id i in the original graph. However, note
that the line graph conversion does not take into account the edge weights
in the original network (if any). Readers interested in handling edge weights
with this method are referred to the paper of Evans and Lambiotte (2009)
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who propose a possible weighting scheme for the line graph that preserves
the weight information of the original one.

Let us first find overlapping communities in the bow-tie graph of Fig. 4.10(a):

4.78.1) bow_tie <- make_graph(˜ A-B-C-A, A-D-E-A)
2) edge_communities(bow_tie)

Warning: ’inc’ is deprecated.
Use ’.inc’ instead.
See help("Deprecated")

Warning: ’inc’ is deprecated.
Use ’.inc’ instead.
See help("Deprecated")

$‘1‘
+ 3/5 vertices, named, from b2a2dbf:
[1] A D E

$‘2‘
+ 3/5 vertices, named, from b2a2dbf:
[1] A B C

The algorithm has correctly placed A in both communities, agreeing with
our intuition.

Another possible extension of community detection methods was discussed
in Traag and Bruggeman (2009). They have considered networks that con-
tain positive and negative links as well. Assuming that positive links connect
nodes that are thought to be similar in some sense and negative links connect
nodes that are dissimilar, the problem of community detection becomes more
complicated. In concordance with our intuition, communities in such a net-
work should contain mostly positive links, while edges between communities
should mostly be negative. Traag and Bruggeman (2009) have extended the
spinglass clustering method of Reichardt and Bornholdt (2006) to be able
to take into account the presence of negative links, and they have kindly
contributed their code to igraph. Their method can be activated by adding
the ‘implementation = "neg"’ argument to the invocation of the cluster_
spinglass() function. The importance of negatively weighted edges can be
tuned by the ‘gamma.minus’ keyword argument.

4.5 Interfacing with external community detection
methods

There are many interesting community detection algorithms published in
the scientific literature; a recent review in the Supplementary Material of
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Kovács et al (2010) has cited 129 different methods for finding modules in
network, and the list is by no means exhaustive. Most of these methods are
not implemented in igraph directly; some of the noteworthy ones are Markov
clustering algorithm of van Dongen (2008); the concept of community land-
scapes (Kovács et al, 2010) or the extensions of the Girvan-Newman method
and the label propagation algorithm to overlapping communities (Gregory,
2007, 2010). These methods have one thing in common: the authors have
made their implementations of the methods available, therefore we can make
use of them from igraph by converting our graphs to a format suitable for the
external implementation, asking the operating system to run the algorithm
in an external process for us, and then converting the results back to one of
the data structures in igraph. In this section, we will illustrate the process
on the Markov clustering algorithm of van Dongen (2008). Markov clustering

The implementation of the algorithm can be downloaded from http://
www.micans.org/mcl. From now on, we will assume that MCL is installed
properly and that it can be invoked from the shell of the operating system
by typing its full path. According to the manual of the algoritm, the most
basic example of usage is as follows:

4.78.1) $ mcl fname --abc -o fname-out

where $ represents the shell prompt, fname stands for the name of the input
file and fname-out is the name of the file where the result will be written.
--abc specifies that the input file is in a simple tab-separated format that
looks like this:

4.78.1) node1 node2 weight
2) node1 node3 weight
3) node2 node4 weight
4) ...

In this file format, each row encodes one edge of the graph. The first column
contains an identifier for the source node, the second column contains an
identifier for the target node, and the third column contains the weight of
the edge. The result of the algorithm will also be in a tab-separated format
where each line corresponds to one cluster, and the members of the cluster
are separated by tabs as well.

Luckily, MCL accepts a single dash (-) for both the name of the input and
the output file. In case of the input file, a single dash means that the input
should be read from the standard input stream of the MCL process as if we
typed it from the keyboard. In case of the output file, a single dash means
that the output should be written to the standard output stream of the MCL
process – this is usually the terminal if we launched MCL from the command
line. The interface we are going to implement will connect the standard input
of MCL to R so we can simply pass the input data to MCL without having
to write it to a temporary file, and it will also connect the standard output
of MCL back to R so we can read the result directly from MCL and not via

http://www.micans.org/mcl
http://www.micans.org/mcl
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an intermediate file on the disk. If MCL were not so well-behaved, we could
still do with temporary files if we clean them up properly after we are done.

The MCL algorithm also has an important input parameter called infla-
tion, which controls the granularity of the clustering. The usual range ofinflation
inflation is between 1.2 and 5.0, although the only strict limitation is that
it must be larger than 1. Larger inflation values result in smaller clusters,
while a small inflation value usually yields only a few large clusters. The op-
timal value of the inflation is usually found by experimentation or based on
a comparison between the obtained clusters and a known gold standard in a
dataset similar to the one being analyzed. The inflation parameter is passed
on to MCL using the -I command line switch. We will also add -V all to
suppress most of the messages printed by MCL as we are interested only in
the final result. This makes the full command line we will use as follows:

4.78.1) $ mcl - --abc -V all -I inflation -o -

The whole complexity of this command line will nicely be hidden by the
interface we are going to provide.

The bridge between igraph and MCL will be a single R function that takes
the graph to be clustered and the preferred inflation value, launches MCL
in the background with the appropriate command line arguments, reads the
result and builds an appropriate communities object to return to the user.
The heavy lifting will be handled by the system() R function that creates
and handles a connection to an external process. For instance, to launch the
ls command on a Unix-like operating system (such as Linux or Mac OS X)
with the single argument /Users, one can simply do this:

2) system("ls /Users", intern = TRUE)

[1] "Guest" "Shared" "gaborcsardi"

‘intern = TRUE’ tells system() to connect the standard output of the ls
subprocess back to R.

Now we know everything we need to drive MCL from igraph:

4.80.1) cluster_mcl <- function(graph, inflation = 1.2, verbose = FALSE) {
2) cmd <- paste("mcl", "-", "--abc")
3) if (verbose) cmd <- paste(cmd, "-V", "all")
4) cmd <- paste(cmd, "-I", inflation, "-o", "-")
5)

6) input <- graph %>%
7) as_edgelist(names = FALSE)
8) if (is_weighted(graph)) input <- cbind(input, E(graph)$weight)
9) input <- input %>%
10) apply(1, paste, collapse = "\t")
11)

12) output <- system(cmd, intern = TRUE, input = input) %>%
13) strsplit("\t") %>%
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14) lapply(as.numeric)
15)

16) membership <- numeric(gorder(graph))
17) for (line in seq_along(output)) {
18) membership[output[[line]]] <- line
19) }
20) make_clusters(graph, membership = membership, algorithm = "MCL")
21) }

Make sure you adjust the path, so that you can call MCL. The ‘input’ ar-
gument of system() takes a character vector and feeds it line by line to MCL.
MCL then returns the communities, one per line, and we parse these into a
proper communities object. The usage of the method is straightforward:

4.81.1) cluster_mcl(karate, inflation = 1.8)

IGRAPH clustering MCL, groups: 2, mod: 0.37
+ groups:
$‘1‘
[1] 9 10 15 16 19 21 23 24 25 26 27 28 29 30 31 32 33 34

$‘2‘
[1] 1 2 3 4 5 6 7 8 11 12 13 14 17 18 20 22

4.6 Exercises

I EXERCISE 4.1. Show that the expected value of the modularity of a given
clustering is zero if the underlying graph is rewired randomly while keeping
the degree distribution. (Hint: use the rewire() function to rewire a graph
in-place or the sample_degseq() function to generate a new graph with a
given degree sequence).

I EXERCISE 4.2. Find the graph with n vertices that has the partition with
the largest possible modularity value.

I EXERCISE 4.3. Find the graph with 2n vertices that has the partition with
the smallest possible modularity value. (Hint: it is 2n and not n for a reason).

I EXERCISE 4.4. Find a graph for which the leading eigenvector method
may stop at different clusterings with unequal cluster counts, depending on
the initial estimate of the eigenvector being used.
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I EXERCISE 4.5. Investigate the modularity of Erdős-Rényi random net-
works and validate the formula of Guimerà et al (2004) for the expected
maximal modularity of such networks (see Eq. 4.22) numerically.

I EXERCISE 4.6. Brandes et al (2008) have shown that satellite nodes are al-
ways grouped together with their neighbors, which may result in un-intuitive
global maxima for the modularity score. Implement a method that removes
the satellite nodes from a graph, runs an arbitrary community detection on
the trimmed graph and post-processes the resulting membership vector to
provide a clustering for the original graph. (Hint: the coreness() function
helps to find satellite nodes).

I EXERCISE 4.7. Evans and Lambiotte (2009) have proposed a weighting
scheme for line graphs that makes their meta-algorithm more accurate for
graphs with high-degree nodes. Extend our implementation in Section 4.4.4.2
with their weighting scheme and compare the results obtained on the Zachary
karate club network with and without weighting. Which one of the solutions
seems closer to our intuition regarding the placement of ‘Mr Hi’?



Chapter 5
Random graphs

5.1 Introduction

TODO: Write this section

5.2 Static random graphs

5.2.1 The Erdős–Rényi model

The Erdős–Rényi random graph model (Erdős and Rényi, 1959) is probably
one of the earliest random graph models in the literature. It comes in two
variants: the G(n, p) and the G(n,m) model, both of which start with an
empty directed or undirected graph consisting of n vertices and no edges.
The G(n, p) model then considers all the possible vertex pairs (ordered pairs
in the case of a directed graph, unordered pairs in the case of an undirected
graph) and connects each pair with probability p. The G(n,m)model chooses
m out of all the possible vertex pairs in the graph and connects them with an
edge. The two versions are related but not entirely equivalent: in the G(n,m)
model, the number of edges in the generated graph will always be m, while
in the G(n, p) model, only the expected number of edges m will be equal
to n(n − 1)p in the case of a directed graph and n(n−1)p

2
in the case of

an undirected graph1, but the actual number of edges will fluctuate around
the expected value, following a binomial distribution. In some sense, one can
think about p as a tuning parameter; barring the cases when p = 0 or p = 1,
the G(n, p) model may generate any number of edges between n vertices,
but small edge counts are more likely to occur when p is small and large edge

1 These numbers assume that loop edges are disallowed. When we allow loops, the expected
number of edges will be n2p and n(n+1)p

2
, respectively.
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counts are more likely to occur when p is large. In particular, when p = 1/2,
every graph with n vertices is equally likely to be generated by the model.

The G(n,m) and G(n, p) Erdős–Rényi models are implemented in igraph
by the sample_gnm() and sample_gnp() functions:sample_gnm()

sample_gnp()
5.1.1) g <- sample_gnp(n = 100, p = 0.2)

2) summary(g)

IGRAPH 4e08825 U--- 100 960 -- Erdos renyi (gnp) graph
+ attr: name (g/c), type (g/c), loops (g/l), p (g/n)

The above call generates an undirected Erdős–Rényi graph with no loop
edges. We can easily see that the number of edges is not exactly equal to
its expected value (which is 100×99

2
× 0.2 = 990), but it is fairly close to it.

Switching to the G(n,m) model allows us to set the number of edges exactly,
while the generated graph will still be completely random:

5.2.1) g <- sample_gnm(n = 100, m = 990)
2) summary(g)

IGRAPH bfcde57 U--- 100 990 -- Erdos renyi (gnm) graph
+ attr: name (g/c), type (g/c), loops (g/l), m (g/n)

To see that the generated graph is really random, we can try generating
another with the same parameter settings and check whether the two graphs
are isomorphic or not using the isomorphic() function. Not too surprisingly,
the two graphs will be different:

5.3.1) g2 <- sample_gnm(n = 100, m = 990)
2) summary(g2)

IGRAPH b2dca3c U--- 100 990 -- Erdos renyi (gnm) graph
+ attr: name (g/c), type (g/c), loops (g/l), m (g/n)

5) g %>% isomorphic(g2)

[1] FALSE

Both sample_gnp() and sample_gnm() allow you to specify whether you
would like a directed graph (using the ‘directed’ argument) and whether
you allow loop edges (using the ‘loops’ argument). The default values are
‘FALSE’ for both of them. To generate a directed Erdős–Rényi graph with
loop edges:

5.5.1) g <- sample_gnp(n = 100, p = 0.2, directed = TRUE, loops = TRUE)
2) summary(g)

IGRAPH 23ccee9 D--- 100 2051 -- Erdos renyi (gnp) graph
+ attr: name (g/c), type (g/c), loops (g/l), p (g/n)
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The Erdős–Rényi random graph model is a very “democratic” one: all the
vertices are born equal and treated equal; in other words, it is equally likely
for any of the vertices to gain an edge in any of the steps, irrespectively of the
number of edges they already have. Assuming that there are no loop edges and
we are using the G(n, p) model (which is usually easier to treat analytically),
we can see that each vertex has n − 1 chances to form new connections,
and each chance succeeds with probability p. It immediately follows that
the degree distribution of Erdős–Rényi random graphs follows a binomial
distribution B(n− 1, p), and the average vertex degree is (n− 1)p. Assuming
that n is very large (which we usually do when working with random graph
models), we can approximate the binomial with a Poisson distribution of
mean λ = np since n versus n− 1 does not make a difference when n→∞.

Note that knowing the number of vertices n and the average degree allows
us to derive the connection probability p easily. When one works with large
and sparse graphs, it is usually easier to specify the average degree 〈k〉 instead
of the connection probability p as the latter is usually very small.

Let us now inspect the degree distribution of a large Erdős–Rényi graph
with 105 vertices where we set the average degree of each vertex to 3 – note
how the appropriate probability value is obtained from the prescribed average
degree:

5.6.1) n <- 100000
2) avg_degree <- 3
3) p <- avg_degree / n
4) g <- sample_gnp(n = n, p = p)
5) dd <- degree(g)
6) degree_distribution(g)

[1] 0.05034 0.14867 0.22601 0.22333 0.16528 0.10169 0.05088
[8] 0.02194 0.00797 0.00300 0.00066 0.00014 0.00006 0.00001
[15] 0.00002

10) max(dd)

[1] 14

12) dd %>% table() %>% barplot()
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As it can be seen on the above histogram (and also on Figure 5.1(a)),
indeed the mean degree is very close to 3, and the distribution looks like a
Poisson distribution. It can also be seen that the vertex with the maximum
degree has only 14 incident edges. In other words, even in a large graph like
this one, it is very unlikely that we see vertices with significantly more or
significantly less edges than the average degree. If society were an Erdős–
Rényi random graph, everyone would have approximately the same number
of friends, and it would be very hard to find one who has thousands of friends,
or who has not a single one of them. This is clearly a limitation of the Erdős–
Rényi random graph model as we do not expect real networks to behave the
same way. Despite this shortcoming, Erdős–Rényi random graphs still serve
as an important “baseline” with which we can compare real networks and
quantify how different they are from a truly random network. Later on, we
will learn about other random graph models that are closer to reality, at least
in their degree distribution.
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Fig. 5.1 Degree distribution of an Erdős–Rényi random network (left) and a scale-free
network (right). Circles and crosses denote simulated results, solid lines denote the ana-
lytical ones. The expected degree is 3 in both cases. Note that the plot on the right has
logarithmic axes.

Before we move on to more sophisticated random graph models, let us
take a closer look at the degree histogram again. We can see that many of
the vertices have degree zero, which means that these vertices are completely
isolated in the network. It is reasonable to ask at this stage how the rest of
the network looks like: do the vertices form disconnected small islands or are
they organised into one giant component? To answer this question, we must
first define what a giant component is. giant component

Definition 5.1 (Giant component.). A giant component of a random
graph with n vertices is a connected component containing n0 vertices such
that n0/n→ ρ > 0 as n→∞.

(See Section 2.6 for the definition of a connected component).
Loosely speaking, a giant component is a connected component whose

relative size (compared to the entire network) does not diminish as the size
of the network grows to infinity. As the network grows, the giant component
grows with it such that its relative size tends to a non-zero constant.

As an extreme example, consider an Erdős–Rényi network with p = 0, i.e.
with no edges. We can easily see that the largest connected component of
this graph is an isolated vertex, therefore its size is 1. Since 1/n → 0, there
is clearly no giant component if p = 0. At the other extremity p = 1, all the
edges are present in the network, thus the largest component always encap-
sulates all the vertices, and its relative size is n/n = 1, showing the presence
of a giant component. Between the two extremes, there must be a tipping
point where the giant component emerges. Physicists call this transition a
percolation transition, and the point where it happens the percolation thresh- percolation transition
old . We will try to find the percolation threshold of Erdős–Rényi graphs with percolation threshold
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simulations.
We have seen before that specifying p is equivalent to specifying 〈k〉, but

it is more convenient to work with the latter. Therefore, we are going to
generate random graphs with n = 105 vertices and different 〈k〉 values to get
a rough idea about how the fraction of the largest component size behaves
as the function of 〈k〉. We will use the components()() function (which we
have used earlier in Chapter 2 as well) to find the connected components of
the graph, get the sizes of the components. The average degree of the graph
will start at zero and will be increased by 0.2 in every iteration until we
get a graph where at least 50% of the vertices are in the same connected
component.

5.9.1) find_percolation_threshold <- function(n, step = 0.2) {
2) deg <- frac <- numeric()
3) avg_deg <- 0
4) while (TRUE) {
5) p <- avg_deg / n
6) g <- sample_gnp(n = n, p = p)
7) comps <- components(g)
8) frac_largest <- max(comps$csize) / n
9) cat("<k> = ", avg_deg, "\tfraction = ", frac_largest, "\n")
10) deg <- c(deg, avg_deg)
11) avg_deg <- avg_deg + step
12) if (frac_largest > 0.5) break
13) }
14) }

5.10.1) find_percolation_threshold(1000)

<k> = 0 fraction = 0.001
<k> = 0.2 fraction = 0.006
<k> = 0.4 fraction = 0.01
<k> = 0.6 fraction = 0.015
<k> = 0.8 fraction = 0.048
<k> = 1 fraction = 0.102
<k> = 1.2 fraction = 0.2
<k> = 1.4 fraction = 0.55

Apparently, even the largest component is quite small when 〈k〉 < 1, but
something happens when 〈k〉 reaches 1 as the fraction of the largest compo-
nent suddenly starts to increase. To check whether 〈k〉 = 1 could indeed be
the percolation threshold, we repeat the same analysis with larger graphs:

5.11.1) find_percolation_threshold(20000)

<k> = 0 fraction = 5e-05
<k> = 0.2 fraction = 0.00045
<k> = 0.4 fraction = 0.00075
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<k> = 0.6 fraction = 0.00215
<k> = 0.8 fraction = 0.0051
<k> = 1 fraction = 0.02895
<k> = 1.2 fraction = 0.343
<k> = 1.4 fraction = 0.5129

10) find_percolation_threshold(100000)

<k> = 0 fraction = 1e-05
<k> = 0.2 fraction = 9e-05
<k> = 0.4 fraction = 0.00017
<k> = 0.6 fraction = 0.00042
<k> = 0.8 fraction = 0.00082
<k> = 1 fraction = 0.03046
<k> = 1.2 fraction = 0.32371
<k> = 1.4 fraction = 0.50628

We can clearly see that for 〈k〉 < 1, the fraction of the largest component
diminishes as n grows. For 〈k〉 > 1, the fractions are definitely non-zero and
seem to converge. The behaviour or 〈k〉 = 1 is somewhat ambiguous, leading
us to conjecture that the percolation threshold is there at 〈k〉 = 1.

Of course these small experiments cannot be considered as rigorous scien-
tific proofs, but the truth is that indeed the percolation threshold is exactly
at 〈k〉 = 1 (which is equivalent to p = 1/n). Erdős and Rényi have shown that
when np < 1, the graph will almost surely2 have no connected components
of size larger than O(logn). When np = 1, the graph will almost surely have
a largest component whose size is O(n2/3). When np > 1, the graph will
almost surely contain a component with size O(n), and no other component
will contain more than O(logn) vertices. Figure 5.2 shows an Erdős–Rényi
graph with 100 vertices exactly at its percolation threshold; one can clearly
see a few possible candidates for the giant component that is about to emerge,
and also the set of small disconnected islands that surround them.

Note that when p ≈ 1/n, the graph will have approximately one edge for
each vertex. It is also known that one requires at least n−1 edges to connect
n vertices, therefore the number of edges required for the emergence of the
giant component is surprisingly small.

2 “Almost surely” in this context means that as n→ ∞, the probability of the described
event tends to 1.
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Fig. 5.2 An Erdős–Rényi random graph with n = 100 vertices at its percolation threshold
(p = 0.01, 〈k〉 = 1).



Chapter 6
Epidemics on networks

6.1 Introduction

TODO: Write this section (Kermack and McKendrick, 1927) (Anderson
and May, 1992) (Keeling and Eames, 2005) (Daley and Gani, 2001)

6.2 Branching processes

Branching processes provide a fairly simple model for the spreading of infec-
tions in a population. Suppose that a randomly selected person in a popu-
lation contracts a contagious disease. He or she then meets k other people
while being contagious; these are the ones who can catch the disease via di-
rect transmission from the source. We call these people the first wave of the
epidemic. Each of the k people in the first wave then meet k different people
again, forming the second wave. People in the second wave can potentially
catch the disease from those in the first wave who are already infected. Sub-
sequent waves are then formed in a similar manner; each person in the ith
wave may spread the infection further to k people in the (i+ 1)th wave.

One can define the contact network for this simple branching process as contact network
follows. Each node in the network corresponds to one person, and a directed
edge points from node u to node v if u contacted w in one of the waves. It is
easy to see that the contact network will be an infinite, directed tree where
the root of the tree is the person who contracted a contagious disease in the
“zeroth” wave, and the people in the ith wave will be reachable from the root
via exactly i hops. Fig. 6.1 shows the first three layers (i.e. the first two waves
and the source of the infection) of the contact network of a branching process
with k = 3.

Note that we have used at least three unrealistic assumptions here: first,
that the population is infinite (as there is no upper limit on the number of

159
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Second wave

First wave

Initial infection

Fig. 6.1 The contact network of a branching process with k = 3. Gray shading corresponds
to infected nodes. Thick lines denote connections through which the infection spread.

waves); second, that everyone in the ith wave spreads the disease to different
people (there is no one in the (i + 1)th wave who was in contact with more
than one person from the ith wave); and third, that everyone has k contacts.
These assumptions do not hold in real social or technological networks, but
the model will nevertheless exhibit a peculiar behaviour that is prevalent in
almost all of the other, more complicated epidemic models.

Let us now assume that a contagious person may infect a yet healthy
person during a contact with probability p; in other words, people in the
first wave get infected with probability p, and people in subsequent waves
get infected with probability p if their parent in the first wave was infected.
Will the virus stay alive forever in the population or will it become extinct
eventually? How does the outcome depend on the value of p? Before turning
to the (admittedly simple) analytical solution, let us run a few simulations
in igraph.

Although igraph is capable of handling very large graphs, infinite contact
networks are still beyond its limits, therefore we will restrict ourselves to finite
contact networks with a given number of waves n and a constant branching
number k at each layer. We will investigate the fraction of infected people
in the nth wave, which should be a good indicator of the virulence of the
infection as almost everyone would be infected in the nth wave in case of
a highly contagious virus. Simulations will be run for different values of p,
and the virulence will be evaluated 100 times for each studied value of p to
suppress the effect of random fluctuations in the spreading process.

Let us first create a function that generates the contact network of the
branching process with n waves and a constant branching degree k:

6.1.1) def create_tree(n, k):
2) num_vertices = (k**n - 1) / (k-1)
3) return Graph.Tree(num_vertices, k, mode="out")

6.2.1) print create_tree(4, 2)

The function simply makes use of the fact that the contact network has
(kn − 1)/(k − 1) vertices and that the Tree() method of the Graph classTree()
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creates directed trees with equal branching degrees.
Next, we will create an auxiliary function that we will use many times later

on in this chapter. sample() will be a function that takes a list or iterable of
items and selects each one of them with probability p:

6.3.1) import random
2)

3) def sample(items, p):
4) return [item for item in items if random.random() < p]

The next step is a function that simulates a single instance of the infection
process. The graph will be generated outside the function by calling create_
tree(), and we will use the "infected" vertex attribute to keep track of the
states of the vertices. Note that the vertex IDs in an igraph tree increase as
we progress down the tree, which means that it is enough to do a single pass
on the vertices to propagate the infection. This will not be true in general
but is very useful here.

6.4.1) def simulate_infection(tree, p):
2) ## Set all the vertices to healthy
3) tree.vs["infected"] = False
4)

5) ## Infect the root vertex
6) tree.vs[0]["infected"] = True
7)

8) ## Infected nodes propagate the infection downwards
9) for vertex in tree.vs:
10) if not vertex["infected"]:
11) continue
12)

13) ## This is an infected node. Sample its successors
14) ## uniformly with probability p and infect them
15) neis = vertex.successors()
16) for vertex in sample(neis, p):
17) vertex["infected"] = True

The final ingredient is our main function that calls simulate_infection()
many times on the same graph and counts the number of infected nodes in
the last wave. The last wave is recognized by extracting the vertices that have
zero outdegree; this is done using the select() method of the VertexSeq- select()
class. We also use the RunningMean() class of igraph to calculate the mean; VertexSeq

RunningMean()this is a simple class that keeps track of the running mean and standard
deviation of a sequence of numbers.

6.5.1) def test_branching(n, k, p, num_trials=100):
2) ## Construct the tree
3) tree = create_tree(n, k)
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4)

5) ## Find the leaves (i.e. the last wave)
6) leaves = tree.vs.select(_outdegree=0)
7)

8) ## Run the trials and take the mean of the result
9) result = RunningMean()
10) for trial in xrange(num_trials):
11) simulate_infection(tree, p)
12) num_infected = len(leaves.select(infected=True))
13) result.add(num_infected / float(len(leaves)))
14)

15) return result.mean

Let us first run a quick test with 12 waves and a branching degree of 2:

6.6.1) for i in xrange(11):
2) p = i / 10.0
3) print "%.1f %.3f" % (p, test_branching(12, 2, p))

We may see that there seems to be a phase transition around p = 1/2.
When p < 1/2, almost none of the vertices get infected in the eighth wave:
the infection dies out quickly. When p > 1/2, almost all the vertices are
infected in the eighth wave and it seems likely that the infection will keep
on spreading. p = 1/2 is the so-called epidemic threshold which separatesepidemic threshold
cases of a relatively mild virus from a virulent one that is capable of infecting
the vast majority of the population. But is it always 1/2? Let us repeat
the experiment with 8 waves and a branching degree of 3 (to keep the total
number of vertices roughly the same):

6.7.1) for i in xrange(11):
2) p = i / 10.0
3) print "%.1f %.3f" % (p, test_branching(8, 3, p))

This time the threshold seems to be somewhere between 0.3 and 0.4; in
fact, it can be shown that it is exactly 1/3. Further simulations with k = 4,
k = 5 and so on reveal similar patterns; the plots on Fig. 6.2 show simulation
results for k = 2, 3, . . . , 6. We may begin to suspect a pattern here: it can
be shown that the epidemic threshold in this simple model is p = 1/k. The
proof is straightforward. An infected individual in a wave infects each of its
successors in the next wave with probability p, thus the expected number
of additional infections an infected individual creates is pk. This number is
called the basic reproductive rate of the infection. Given u(i) infected indi-basic reproductive rate
viduals in the ith wave, the expected number of infections in the (i + 1)th
wave will be u(i)pk. If u(i)pk is less than u(i), the prevalence of the virus
will dwindle with every new wave and eventually reaches zero in the infinite
limit, leading to the condition of an epidemic outbreak: pk > 1, i.e. p > 1/k.
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Fig. 6.2 Prevalence of the virus in the last wave of the branching process for k = 2, 3, . . . , 6
and various values of p. The dashed line corresponds to u(8) = 1 (i.e. at least one infection
on average in the eighth wave). Note that the epidemic threshold where u(8) > 1 is
approximately 1/k for all k.

The presence of an epidemic threshold has far-reaching implications. As-
sume that we are somehow able to measure the basic reproductive rate pkbasic reproductive rate
of a virus that is currently spreading in the population – this is simply the
number of additional infections an infected individual may create. We know
that a sufficient and necessary condition for an epidemic outbreak is pk > 1;
in other words, every infected individual must produce at least one new in-
fection. If the reproductive rate is only slightly larger than one, it may be
enough to reduce p or k by only a small amount to prevent a potential out-
break. The question is then as follows: is the epidemic threshold only an
artefact of the simplifications we have made in this simple branching model,
or do similar thresholds exist for real-world epidemics? As we will see, the
answer is yes, and most of the preventive measures in case of an epidemic
are aimed at either reducing p or k: closing down schools and nurseries and
advising people to avoid public places decreases k (the number of contacts
between people), while vaccinations try to reduce p.

6.3 Compartmental models on homogeneous
populations

We are already aware of the limitations of the branching processes that we
studied in Section 6.2. First of all, the population is considered infinite; sec-
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ond, infected individuals stay infected forever but they do not spread the
infection after the wave they participate in has ended; Third, every infected
individual is assumed to have the same number of contacts. The compartmen-
tal models (Kermack and McKendrick, 1927; ?; Anderson and May, 1992)compartmental models
that we will briefly introduce in this section lift the second limitation.

The name of these models stem from the fact that they divide the popula-
tion into discrete compartments; individuals in the same compartment are in
the same state and behave identically in terms of spreading the infection. The
population is assumed to be finite but very large, and it is still considered
practically homogeneous. In the simplest case, the pool of individuals does
not change over time, i.e. no new individuals are born into the pool and none
of the individuals leave the population. The two variants of compartmental
models we introduce here differ only in the number of compartments and the
equations that define how the sizes of the compartments change over time.

6.3.1 The susceptible-infected-recovered (SIR) model

This model, first described by Kermack and McKendrick (1927), assumes
three states (compartments) in which an individual can reside. The S com-
partment contains the susceptible individuals: those that are not infected yet
but may contract the infection if they meet someone contagious. Infected in-
dividuals are in the I compartment, while the R compartment contains the in-
dividuals who have already contracted the disease and successfully recovered
from it. (In the pessimistic description of the model, the latter group consists
of individuals who have contracted the disease and have been removed from
the population). Individuals are initially in the S pool, and they are moved to
the I pool when they get in contact with a contagious person. People in the I
pool eventually recover and are moved to the R pool. Recovered individuals
are assumed to have developed a lifelong immunity to the disease; in other
words, they stay in the R pool forever. Fig. 6.3(a) shows the state chart of
the model with the possible transitions.

S I R
β γ

(a) SIR model

S I

β

γ

(b) SIS model

S I R

β γ

λ

(c) SIRS model

Fig. 6.3 State charts of the SIR, SIS and SIRS models. The rate parameters are as follows:
β = rate of infection, γ = rate of recovery, λ = rate of deimmunization.
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The model has two parameters: β, the infection rate, and γ, the recovery
rate. The larger the infection rate, the faster people move from the S pool to
the I pool, and similarly, the larger the recovery rate, the faster people move
from the I pool to the R pool. The flow is strictly unidirectional: there is no
way to get susceptible again after being infected, and there is no way to get
infected or susceptible after having recovered from an infection. This implies
that the model is generally suitable to describe illnesses where the individual
gains lifetime immunity after an infection (e.g., mumps or chickenpox). It can
also be used to model terminal contagious illnesses such as AIDS.

Let us denote the number of individuals in each compartment at time step
t by S(t), I(t) and R(t), and let us denote the fraction of such individuals by
s(t), i(t) and r(t). In a constant population consisting of N individuals, it
easily follows that S(t) + I(t) + R(t) = N and s(t) + i(t) = r(t) = 1 for any
t. The homogeneity assumption means that every individual has an equal
chance to meet every other individual in the population, hence the number
of contacts involving a susceptible and an infected person in a single time
step will be proportional to the product of the sizes of the S and I pools.
This leads to the following set of difference equations1 that specify our model
formally:

S(t+∆t) − S(t)

∆t
= −βS(t)I(t) (6.1)

I(t+∆t) − I(t)

∆t
= βS(t)I(t) − γI(t) (6.2)

R(t+∆t) − R(t)

∆t
= γI(t) (6.3)

In other words, the number of contacts involving an individual from the S-
pool and another one from the I-pool is proportional to S(t)I(t), and some
of these contacts result in the actual transmission of the disease; the factor
β > 0 accounts for both the probability of transmission and the frequency
of S-I contacts. In each time step, the number of susceptible people S(t)
decreases by βS(t)I(t), and since these people are moved to the I-pool, the
number of infected people I(t) increases with the same amount. The other
part of the dynamics of the model is a steady flow from the I pool to the R
pool, modeled by the −γI(t) term in the difference equation for I(t) and the
γI(t) term in the difference equation for R(t) (where γ > 0).

We do not really need igraph to simulate the SIR model in a homogeneous
population as there is no underlying network structure. The entire simulation
can be performed in pure Python with the following code snippet which prints

1 Many textbooks assume a continuous time scale instead of discrete time steps and thus
formulate the SIR model with differential equations. The conclusions are essentially the
same in both cases; here we decided to use the discrete time formulation because the
simulations we are going to perform later require discretized time instances anyway.
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the number of people in the S, I and R compartments (in this order) after
each time step:

6.8.1) def simulate_sir(beta=0.001, gamma=0.7, n=500, dt=0.1, steps=1000):
2) s, i, r = n-1.0, 1.0, 0.0
3) while steps > 0:
4) print("%6.2f %8.2f %8.2f" % (s, i, r))
5) s_new = s - beta * s * i * dt
6) i_new = i + (beta * s - gamma) * i * dt
7) r_new = r + gamma * i * dt
8) s, i, r = s_new, i_new, r_new
9) steps -= 1

6.9.1) simulate_sir(beta=0.02, gamma=0.7, steps=10)

A word of warning to the above code snippet: the simulation does not
ensure that s_new is positive in every time step; in fact, s_new can easily get
negative if the expected number of new infections in the next ∆t time units
(which is βS(t)I(t)∆t) is larger than S(t). This usually happens after a few
time steps for large β, but can easily be resolved by decreasing the time step
dt.

There are three important properties of this model. First, the dynamics is
mainly driven by I(t). This is easy to prove as all the terms in the difference
equations include I(t), meaning that the model is in a steady state if I(t) = 0,
i.e. if everyone is either susceptible or recovered. Second, these are the only
steady states if β > 0 and γ > 0 – this also follows trivially from the difference
equations. The third property is less obvious but very important: we will show
that there is an epidemic threshold in the SIR model as well.epidemic threshold

Let us inspect how I(t) changes over time; in particular, let us focus on
I(t+1) − I(t) where ∆t = 1:

I(t+1) − I(t) = βS(t) − γ (6.4)

The number of infected people will thus increase if βS(t) > γ, stay constant
if βS(t) = γ and decrease if βS(t) < γ. Assuming that β and γ are inherent
and constant parameters depending on the virus that is infecting the popu-
lation, S(0) < γ/β implies that the infection can never turn into an epidemic
as its prevalence starts to decrease immediately. This is clearly similar to the
threshold-like behaviour that we have already seen with the branching pro-
cesses. However, there is an important difference. The growth of I(t) implies
the depletion of the S-pool, and since the growth rate of I(t) depends on S(t)
with a positive multiplicative factor, the rate of growth decreases over time:
even if the epidemic managed to gain momentum, it subsides eventually as
the S-pool becomes empty.

To confirm the validity of our approach when determining the epidemic
threshold, let us run two simulations for a given β and γ and a single infected
individual at time step zero. One of the simulations will use a population size
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N that makes the initial number of susceptible individuals S(0) = N − 1
just above the epidemic threshold, while the other one uses a population
size slightly below the epidemic threshold. We will use β = 0.2 and γ =
0.7, leading to an epidemic threshold of S(0) = N − 1 = 3.5, thus the two
simulations will be run with N = 5 and N = 4. As expected, the virus starts
spreading for N = 5 but dwindles for N = 4:

6.10.1) simulate_sir(beta=0.2, gamma=0.7, n=5, steps=10)
2) simulate_sir(beta=0.2, gamma=0.7, n=4, steps=10)

Another factor that influences the growth of I(t) is the recovery rate γ.
One can also think about the recovery rate as the inverse of the expected
duration of the infection as an infected individual experiences one recovery
in 1/γ units of time. A low recovery rate means that infected individuals
stay contagious longer, thus have more chance to cause additional infections.
From the point of view of the virus itself, a low recovery rate is advantageous.
However, note that the R in the SIR model can also stand for removed instead
of recovered, and it does not change the model equations at all, leading to
a somewhat paradoxical conclusion: aggressive terminal diseases that cause
death in a short amount of time (i.e. that have a high removal rate γ) spread
slower and cause smaller epidemics because infected individuals do not stay
in the population for a long enough time to cause more infections. Fig. 6.4
illustrates this by showing two typical courses of a SIR-type epidemic over
time, for two qualitatively different values of γ. Note that in case of γ = 0.8 on
Fig. 6.4(a), some individuals are still susceptible when the infection vanishes.
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(a) β = 0.004, γ = 0.8,N = 500
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(b) β = 0.004, γ = 0.1,N = 500

Fig. 6.4 Typical courses of an epidemic in the SIR model with different parameters.

Similarly to the case of branching processes, we can also estimate the basic
reproductive rate of the infection by calculating I(t+1)/I(t) = 1 + βS(t) − γ. basic reproductive rate
Note that it holds also in the case of the SIR model that a basic reproduc-
tive rate greater than one implies an epidemic outbreak: 1 + βS(t) − γ > 1
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if and only if βS(t) > γ. This has an important consequence: if we want to
prevent an epidemic outbreak, we may either try to decrease β (by forcing
people to stay at home, thus reducing the contact rate), increase γ (by timely
and efficient medical treatment of infected individuals), or decrease S(t). The
latter is the motivation of vaccination which moves people directly from the
S compartment to the R compartment without having to go through the
infected state. Interestingly enough, it is not necessary to immunize every-
one: vaccinating d(1−γ/β)S(t)e susceptible individuals already prevents the
outbreak.

6.3.2 The susceptible-infected-susceptible (SIS) model

The susceptible-infected-susceptible (SIS) model (Bailey, 1975) is very similar
to the SIR model but does not assume a lifelong immunity after recovery;
individuals who have recovered from the disease become susceptible again
(see Fig. 6.3(b). The equations that govern the dynamics of the model are as
follows:

S(t+∆t) − S(t)

∆t
= −βS(t)I(t) + γI(t) (6.5)

I(t+∆t) − I(t)

∆t
= βS(t)I(t) − γI(t) (6.6)

A key difference between the SIR and the SIS model is that the latter one
has a non-trivial steady state when βS(t) = γ, that is, when the number of
additional infections caused by a single infected individual per time step is
equal to the number of infected persons who recovered during the same time
step. This can happen for a non-zero I(t), which means that the infection may
never be eradicated from the population unless other preventive measures are
taken (which can be modeled by raising γ or lowering β). This behaviour is
characteristic of everyday illnesses like the common cold: in every moment,
a non-zero fraction of the population is contagious, and although infected
people recover all the time, this is counterbalanced by healthy people who
have contracted the disease recently. The model is also used for modeling the
spreading of computer viruses, assuming that each computer is equipped with
an anti-virus software that is capable to returning the machine susceptible
after an infection but is not able to make the system completely immune.
Fig. 6.5(a) shows the emergence of a non-trivial steady state in the SIS model.

It is probably not too surprising now that the SIS model also has an
epidemic threshold , which is incidentally equal to the threshold of the SIRepidemic threshold
model. Following the same train of thought, one can work out that the basic
reproductive rate of the infection is I(t+1)/I(t) = 1+βS(t)−γ, similarly to thebasic reproductive rate
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Fig. 6.5 Non-trivial steady state in the SIS model for β = 0.004 and γ = 0.7.

SIR model. When S(0) > γ/β, there are enough susceptible individuals in the
population to turn the initial infections into an epidemic, while S(0) < γ/β
implies that the infection will die out quickly. In a steady state, it is true that
S(t) = γ/β and I(t) = N − γ/β; see Fig. 6.5 where S(14) ≈ 0.7/0.004 = 175
and I(14) ≈ N− 175 = 325.

Note that the whole train of thought abve does not depend on the exact
value of S(0), the only thing that matters whether it is above or below γ/β.
The consequence is that the same steady state prevalence will be observed
in case of an epidemic, no matter how many infections are there in the ini-
tial state – as long as the number of susceptible individuals (i.e. the total
population minus the number of infected people) is still above γ/β.

6.3.3 The susceptible-infected-recovered-susceptible
(SIRS) model

The final compartmental model we are going to study stands half-way be-
tween the SIR and the SIS model. In the SIR model, infected people recover
eventually and obtain lifelong immunity. In the SIS model, infected people
simply become susceptible again. In the SIRS model, infected people recover
but stay immune to the infection only for a finite amount of time. This
is modeled by the deimmunization rate λ: in every time step, a fraction λ
of recovered (and thus immune) individuals become susceptible again (see
Fig. 6.3(c). The dynamical equations are as follows:
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S(t+∆t) − S(t)

∆t
= −βS(t)I(t) + λR(t) (6.7)

I(t+∆t) − I(t)

∆t
= βS(t)I(t) − γI(t) (6.8)

R(t+∆t) − R(t)

∆t
= γI(t) − λR(t) (6.9)

This model also has a non-trivial steady state, similarly to the SIS model,
but the equilibrium is more delicate: the flow of individuals from the S to the
I compartment and the flow from I to R is counterbalanced by the flow from
R to S. The exact condition is as follows: βS(t) = γ = λR(t)/I(t). Due to the
additional constraint of N = S(t) + I(t) + R(t) for any t, this set of equations
is uniquely solvable for a given β, γ and λ. Fig. 6.6 shows a possible course
of the SIRS model with β = 0.004, γ = 0.7 and λ = 0.3, and the observed
steady state compartment sizes agree well with the theoretical values: S(t) =
γ/β = 175, I(t) = 97.5 and R(t) = 227.5. The epidemic threshold is the same
as for the SIR model since the dynamical equation describing I(t) is the same.
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Fig. 6.6 Non-trivial steady state in the SIRS model for β = 0.004, γ = 0.7 and λ = 0.3.

6.4 Compartmental models on networks

The compartmental models introduced in Section 6.3 were designed with an
implicit homogeneity assumption in mind; it was assumed that people in
different compartments are mixed evenly in the population; in other words,
there are no areas in the population that are more infected than others. Such
inhomogeneities may slow down the spreading of the infection as individuals
living in areas where everyone else is also likely to be infected can not spread
the disease as easily as others living in less affected areas. On the other hand,
an infected individual who has many contacts in different cities and commutes
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regularly between them may easily become a new source of infection for
others who would not become exposed to the infection otherwise. Network-
based infection models take such inhomogeneities into account by providing
a constraining background to the epidemic.

In this section, we will first create a general framework with which we
can easily model epidemic processes on networks using igraph, and then use
this framework to study the spread of infections in simulated and real-world
networks with various topologies.

6.4.1 A general framework for compartmental models
on networks

The first thing we will need is a data structure with the following capabilities:

1. Keep track of the states of the vertices in a graph; i.e. store which com-
partment a given vertex is in.

2. Allow the quick retrieval of the members of a given compartment. This
will be one of the most frequently used operations; for instance, the sim-
ulation of the spreading process will require us to retrieve all the infected
members of the population. It is easily achieved by using a Python dic-
tionary of lists or sets that associates compartment letter codes to the
members.

3. Allow the quick retrieval of the compartment of a single vertex. This
will be another frequently used operation as we have to know whether
a given vertex is susceptible or recovered in order to determine whether
it is allowed to contract the infection from a contagious neighbour. The
most suitable data structure for this purpose is a list of length N (the
size of the population) where each item contains the compartment code
of the corresponding vertex.

4. For displaying the results of the simulation, we should also be able to
retrieve the relative size of a compartment compared to the whole popu-
lation.

Since points 2 and 3 require different data structures for an efficient imple-
mentation, we will simply create a class that manages both representations:

6.11.1) class Compartments(object):
2) def __init__(self, graph, codes):
3) """Creates a set of compartments for the vertices of
4) the given ‘graph‘. The list of compartment codes is
5) provided by ‘codes‘.
6)

7) Initially, all the vertices will be in the first
8) compartment."""
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9) self.codes = list(codes)
10) self.n = graph.vcount()
11)

12) first_comp = self.codes[0]
13) self.states = [first_comp] * self.n
14)

15) self.compartments = dict()
16) for code in codes:
17) self.compartments[code] = set()
18) self.compartments[first_comp].update(xrange(self.n))
19)

20) def __getitem__(self, code):
21) """Returns the compartment corresponding to the given
22) compartment ‘code‘."""
23) return self.compartments[code]
24)

25) def get_state(self, vertex):
26) """Returns the state of the given ‘vertex‘ (i.e. the
27) code of its compartment)."""
28) return self.states[vertex]
29)

30) def move_vertex(self, vertex, code):
31) """Moves the vertex from its current compartment to
32) another one."""
33) self.compartments[self.states[vertex]].remove(vertex)
34) self.states[vertex] = code
35) self.compartments[code].add(vertex)
36)

37) def move_vertices(self, vertices, code):
38) """Moves multiple vertices from their current compartment
39) to another one."""
40) for vertex in vertices:
41) self.move_vertex(vertex, code)
42)

43) def relative_size(self, code):
44) """Returns the relative size of the compartment with
45) the given ‘code‘."""
46) return len(self.compartments[code]) / float(self.n)

Compartments uses two key instance variables: compartments provides theCompartments
dict-of-sets representation that is required for the efficient retrieval of the
members of a given compartment, while states contains the list of compart-
ment codes for each vertex. Compartments for a SIR model on a given graph
can then be created as:
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6.12.1) graph = Graph.GRG(100, 0.25)
2) compartments = Compartments(graph, "SIR")

The GRG() method of the Graph class creates a geometric random graph- GRG()
, where n vertices are randomly dropped into the unit square [0; 1]2 and geometric random

graphtwo vertices are connected if they are closer to each other than a predefined
distance threshold r (see Section ?? for more details). In the above example,
n = 100 and r = 0.25, and a possible realization of such a graph (with
the vertices placed at the appropriate coordinates in 2D space) is shown on
Fig. 6.7.

Fig. 6.7 A geometric random graph with n = 100 vertices and distance threshold r = 0.25.

The move_vertex() method of the Compartments class moves a vertex to
a given compartment, and the implemented __getitem__() method allows
us to use compartments as an ordinary Python dictionary:

6.13.1) compartments.move_vertex(2, "I")
2) compartments.move_vertex(5, "I")
3) compartments["I"]

We can also use get_state() to retrieve the state of a given vertex and
relative_size() to get the relative size of a compartment:

6.14.1) compartments.get_state(2)
2) compartments.get_state(42)
3) print compartments.relative_size("S")

The concrete epidemic models will be implemented as subclasses of an ab-
stract CompartmentalModel class. A CompartmentalModel holds a reference CompartmentalModel
to the graph on which the epidemic spreads and an instance of Compart-
ments to keep track of the state of the epidemic. It also has a step() method
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where the logic of a specific epidemic model will be implemented by sub-
classes, and a reset() method that takes back the model to its initial state.
By convention, abstract methods such as step() and reset() will raise a
NotImplementedError in the abstract superclass.

6.15.1) class CompartmentalModel(object):
2) """Abstract base class for compartmental epidemic
3) models."""
4)

5) def __init__(self, graph, codes):
6) """Creates a compartmental model associated to the given
7) ‘graph‘. ‘codes‘ is a list that provides the compartment
8) codes of the model."""
9) self.graph = graph
10) self.compartments = Compartments(graph, codes)
11) self.reset()
12)

13) def relative_compartment_sizes(self):
14) """Returns the relative sizes of each compartment in the
15) model."""
16) return [self.compartments.relative_size(code)
17) for code in self.compartments.codes]
18)

19) def reset(self):
20) """Resets the compartments to an initial state. This
21) method must be overridden in subclasses."""
22) raise NotImplementedError
23)

24) def step(self):
25) """Implements the logic of the epidemic model. This
26) method must be overridden by subclasses."""
27) raise NotImplementedError
28)

29) def step_many(self, n):
30) """Runs ‘n‘ steps of the epidemic model at once by
31) calling ‘step‘ multiple times."""
32) for i in xrange(n):
33) self.step()

We will implement three subclasses of the abstract CompartmentalModel
class: SIRModel, SISModel and SIRSModel. Each of these subclasses will over-SIRModel

SISModel
SIRSModel

ride the constructor of CompartmentalModel to allow the specification of
the model parameters at construction time, and of course they will also im-
plement the step() method that was left unimplemented in Compartmen-
talModel intentionally. Let us start with the simplest SIS model:
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6.16.1) class SISModel(CompartmentalModel):
2) """SIS epidemic model for networks."""
3)

4) def __init__(self, graph, beta=0.1, gamma=0.2):
5) """Constructs an SIS model on the given ‘graph‘ with
6) infection rate ‘beta‘ and recovery rate ‘gamma‘."""
7) CompartmentalModel.__init__(self, graph, "SI")
8) self.beta = float(beta)
9) self.gamma = float(gamma)
10)

11) def reset(self):
12) """Resets the model by making all the individuals
13) susceptible."""
14) vs = xrange(self.graph.vcount())
15) self.compartments.move_vertices(vs, "S")
16)

17) def step(self):
18) """Runs a single step of the SIS model simulation."""
19) ## Contagious vertices spread the infection
20) s_to_i = set()
21) for vertex in self.compartments["I"]:
22) neis = self.graph.neighbors(vertex)
23) s_to_i.update(sample(neis, self.beta))
24) self.compartments.move_vertices(s_to_i, "I")
25)

26) ## Recover some of the infected vertices
27) i_to_s = sample(self.compartments["I"], self.gamma)
28) self.compartments.move_vertices(i_to_s, "S")

When experimenting with epidemic modeling on networks, we are usu-
ally interested in how quickly the infection spreads throughout the network,
whether it vanishes eventually or converges to a steady state, and the number
of people who contracted the disease before it died out (if it did die out in
the end). We could theoretically find answers for these questions by simply
printing out the number of infected people after every time step, but the
resulting stream of numbers is rather hard to interpret and also not very
suitable for presentation in a book or on the screen. Therefore, from now on,
we will turn to the matplotlib Python module to produce nice plots of vari-
ous measures of interest (such as the size of the infected pool) versus time. If
you are not familiar with matplotlib yet, refer to its homepage2 which pro-
vides pre-compiled installers and installation instructions for Windows and
Mac OS X. Most of the major Linux distributions also include matplotlib.
If you are using Linux, the first port of call should be the package manager of
your distribution to see if it provides a pre-compiled version of matplotlib

2 http://matplotlib.sourceforge.net

http://matplotlib.sourceforge.net
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before venturing out to compile it yourself. The plots we will show in the rest
of this chapter are not produced by matplotlib but we will always provide
an equivalent Python code that draws a similar plot. If you do not wish to
install matplotlib, you may still read on as only trivial modifications are
needed for the code presented here to print its result to a file which you can
plot later with your favourite visualization toolkit.

Before we do any simulations, let us import the pylab submodule of mat-
plotlib which contains commands that simulate a Matlab-like plotting en-
vironment:

6.17.1) from matplotlib import pylab

First, let us examine the spreading of 10 random epidemics on an Erdős-
Rényi random network (see Section 5.2.1) with N = 104 individuals where
each individual has 4 contacts on average; in other words, the number of
edges in the network will be 2×104. We simulate the first 50 time steps with
β = 1/4 and γ = 1/4. Note that Erdős-Rényi networks are not necessarily
connected, therefore we take the largest connected component before setting
up our model if the network is disconnected.

6.18.1) def generate_graph(n=10000):
2) graph = Graph.Erdos_Renyi(n, m=2*n)
3) if not graph.is_connected():
4) graph = graph.clusters().giant()
5) return graph
6)

7) def simulate(model_class, runs=10, time=50, *args, **kwds):
8) results = []
9) for i in xrange(runs):
10) current_run = []
11)

12) ## Generate the graph and initialize the model
13) graph = generate_graph()
14) model = model_class(graph, *args, **kwds)
15)

16) ## Infect a randomly selected vertex
17) v = random.choice(graph.vs)
18) model.compartments.move_vertex(v.index, "I")
19)

20) ## Simulate the time steps
21) for t in xrange(time):
22) model.step()
23) frac_infected = model.compartments.relative_size("I")
24) current_run.append(frac_infected)
25)

26) results.append(current_run)
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27)

28) return results

simulate() was intentionally made generic with three parameters:

‘model_class’ The class of the model being evaluated. This will be SIS-
Model in our case since we want to simulate SIS epidemics.

‘runs’ The number of epidemic instances to simulate.
‘time’ The number of time steps to simulate in each run.

The method also accepts an arbitrary number of extra positional and key-
word arguments, which are simply passed on to the model constructor. This
will allow us to re-use it later when we are testing other epidemic models.
It is also very important to note that simulate() generates a new network
instance for each iteration; this is necessary to ensure that the obtained plots
capture the general properties of an epidemic on a specific class of networks
instead of a specific instance of a network class.

The simulate() method can be used as follows:

6.19.1) results = simulate(SISModel, beta=0.25, gamma=0.25)

Note that we have passed in SISModel, the class itself, not an instance of
it. The results variable now contains 10 lists, each of which corresponds to
a time series describing the fraction of infected people after each time step:

6.20.1) len(results)
2) print ", ".join("%.4f" % value for value in results[0][:10])

Since the spreading process is highly random, we are going to take the
mean of the fraction of infected people at each time step t across all the
simulations and create an averaged vector that should smooth out most of
the random noise in the process:

6.21.1) from itertools import izip
2) averaged = [mean(values) for values in izip(*results)]
3) print ", ".join("%.4f" % value for value in averaged[:10])

mean() is a convenience function in igraph that allows one to take the mean()
mean of values from an arbitrary iterable, and izip(*items) is a common
Python idiom to take the “transpose” of a list of lists. We can clearly see
an increasing trend in the number of infections in the averaged results; the
obvious next step is to plot them and see whether the trend continues, and
for how long. We will plot all the ten time series with black lines, and plot
the average on top of them with a red line using circle markers:

6.22.1) def plot_results(results):
2) ## Calculate the means for each time point
3) averaged = [mean(items) for items in izip(*results)]
4)
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5) ## Create the argument list for pylab.plot
6) args = []
7) for row in results:
8) args += [row, ’k-’]
9) args += [averaged, ’r-o’]
10)

11) ## Create the plot
12) pylab.plot(*args)

6.23.1) plot_results(results)

You should see something similar to the plot on Fig. 6.8. It looks like
in this particular instance, the SIS model has a non-trivial steady state,
similarly to the case of the homogeneous compartmental model we have seen
in Section 6.3.2. But does it happen for all sorts of networks or just Erdős-
Rényi ones? What happens if we increase or decrease the rate of infection β?
Is there an epidemic threshold below which there is no outbreak? Before we
answer these questions, let us also implement the SIR and SIRS models in
our framework. Both of these require only a few simple modifications in the
step() method of SISModel.
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Fig. 6.8 Ten random instances of the spreading of a SIS epidemic on an Erdős-Rényi
random network with 104 vertices and 2×104 connections (average degree = 4). The rate
of infection β and the rate of recovery γ were both set to 1/4.

We start with the SIR model:

6.24.1) class SIRModel(CompartmentalModel):
2) """SIR epidemic model for networks."""
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3)

4) def __init__(self, graph, beta=0.1, gamma=0.2):
5) """Constructs an SIR model on the given ‘graph‘ with
6) infection rate ‘beta‘ and recovery rate ‘gamma‘."""
7) CompartmentalModel.__init__(self, graph, "SIR")
8) self.beta = float(beta)
9) self.gamma = float(gamma)
10)

11) def reset(self):
12) """Resets the model by making all the individuals
13) susceptible."""
14) vs = xrange(self.graph.vcount())
15) self.compartments.move_vertices(vs, "S")
16)

17) def step(self):
18) """Runs a single step of the SIR model simulation."""
19) ## Contagious vertices spread the infection
20) for vertex in self.compartments["I"]:
21) neis = self.graph.neighbors(vertex)
22) ## We may infect susceptible neighbors only
23) for nei in sample(neis, self.beta):
24) if self.compartments.get_state(nei) == "S":
25) self.compartments.move_vertex(nei, "I")
26)

27) ## Recover some of the infected vertices
28) i_to_r = sample(self.compartments["I"], self.gamma)
29) self.compartments.move_vertices(i_to_r, "R")

The only substantial difference between SIRModel and SISModel is that SIRModel
we have to check the neighbors of an infected node one by one before spread-
ing the infection further to ensure that recovered nodes do not get infected
again. SIRSModel can then easily be derived from SIRModel by inheriting the SIRSModel
dynamics and adding an extra step that moves back some of the recovered
nodes to the susceptible state:

6.25.1) class SIRSModel(SIRModel):
2) def __init__(self, graph, beta=0.1, gamma=0.2, lambda_=0.4):
3) SIRModel.__init__(self, graph, beta, gamma)
4) self.lambda_ = lambda_
5)

6) def step(self):
7) ## Recovered vertices may become susceptible again
8) r_to_s = sample(self.compartments["R"], self.lambda_)
9) self.compartments.move_vertices(r_to_s, "S")
10)
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11) ## Re-use the dynamics of the SIR model
12) SIRModel.step(self)

6.4.2 Epidemics on regular and geometric networks

Now that we have implementations for the three major model classes, let us
turn our attention to the case of epidemic spreading in regular lattices and
geometric random graphs. We have already seen a geometric random graph
on Fig. 6.7, but we repeat it on Fig. 6.9 for clarity and contrast it with a
regular lattice.

(a) Regular lattice (b) Geometric random graph

Fig. 6.9 A regular lattice of n = 10 × 10 vertices and a geometric random graph with
n = 100 and a distance threshold of r = 0.25.

Both networks are structured on the small scale; in other words, the neigh-
bourhoods of vertices adjacent to each other are very similar. We will see that
the correlations between local neighhbourhoods limit the spreading of the net-
work, resulting in a far lower convergence in the case of the SIS model than
what we would expect from a homogeneous network where the parameters of
the virus are tuned to have a similar basic reproductive rate.

First, we extend our generate_graph() method to support different graph
types; the current implementation will be able to generate Erdős-Rényi ran-
dom graphs, regular lattices and geometric random graphs, all tuned to an
average vertex degree of 4. With Erdős–Rényi graphs and regular lattices,
this is easy to achieve: one can simply specify twice the number of vertices
as the desired edge count for Graph.Erdos_Renyi(), and 2D regular and
circular lattices satisfy the desired average vertex degree of 4 trivially. For
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geometric random graphs, the calculation is a bit more involved. A vertex
in a geometric random graph is connected to those other vertices which are
closer to the vertex than r, the distance threshold. The area of a circle with
radius r is r2π. Since the area of the unit square in which the vertices are
placed is 1, the number of other vertices that fall closer to a given vertex
than r is approximately (n − 1)r2π, neglecting the fact that vertices closer
to the edge than r have a smaller chance to gain neighbors as this bias di-
minishes as n → ∞ and r → 0. Therefore, the expected degree of a vertex
is approximately (n− 1)r2π, thus the optimal r is 2/

√
(n− 1)π if we would

like to ensure an average degree of four3.
Our extended generate_graph() method is then as follows:

6.26.1) def generate_graph(type, n=10000, only_connected=True):
2) if type == "er":
3) graph = Graph.Erdos_Renyi(n, m=2*n)
4) elif type == "lattice":
5) size = [int(n ** 0.5), int(n ** 0.5)]
6) graph = Graph.Lattice(size, circular=True)
7) elif type == "grg":
8) r = 2 / ((n-1) * pi) ** 0.5
9) graph = Graph.GRG(n, r)
10) else:
11) raise ValueError("unknown graph type: %r" % type)
12) if only_connected and not graph.is_connected():
13) graph = graph.clusters().giant()
14) return graph

6.27.1) lattice = generate_graph("lattice", 10000)
2) mean(lattice.degree())
3) geo = generate_graph("grg", 10000, only_connected=False)
4) mean(geo.degree())

We also have to tweak our simulate() method to accept a keyword ar-
gument named graph_type which specifies the graph on which the epidemic
is simulated. Remember, we cannot generate the graph outside simulate()
and pass it in because the results would then be affected by the particular
structural features of the network instance we provide to simulate().

6.28.1) def simulate(model_class, graph_type, runs=10, time=50, *args, **kwds): #labelvrb:simulatediff1
2) results = []
3) for i in xrange(runs):
4) current_run = []
5)

6) ## Generate the graph and initialize the model

3 In fact, r = 2/
√

(n− 1)π is exact when the geometric random graph is generated on a
torus and not on the unit square.
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7) graph = generate_graph(graph_type) #labelvrb:simulatediff2
8) model = model_class(graph, *args, **kwds)
9) #rm...

This is very similar to the earlier version of the simulate() method on
page 177, the only differences are in lines ?? and ??.

Let us now simulate an SIS epidemic on a 100 × 100 circular 2D lattice
with β = 0.25 and γ = 0.25. γ = 0.25 means that each infected node recovers
in each time step with probability 0.25; in other words, the expected length
of an infection is 4 time steps. β = 0.25 seems to imply that each infected
individual generates one new infection per time step, since each node has four
neighbours in the lattice. With a simple intuitive argument, we may say that
each infected node is then expected to generate four additional infections
before it recovers, one per time step, therefore we will observe an epidemic
outbreak since the basic reproductive number is greater than 1.

Looking at Fig. 6.8, we can see that a similar SIS epidemic on an Erdős-
Rényi random network converged to a steady state in less than 50 time steps.
Let us be generous and simulate the epidemic for 100 time steps since we have
already posited that the spreading will be slowed down by the local structure
of the network, and let us print the fraction of infected nodes at every 10th
time step:

6.29.1) results = simulate(SISModel, "lattice", runs=1, time=100)
2) print ", ".join("%.4f" % value for value in results[0][::10])

This is indeed a significant inhibition – there are barely any infected nodes
after 100 time steps. Since we have 10,000 nodes in the network, the actual
number of infected nodes is less than 30. Either we are dealing with an
infection that will quickly die out on this network, or it did not have time to
gain momentum yet. Fig. 6.10 explains why we see this: the infection spreads
out slowly from a single source and it takes some time until the infection
propagates to nodes far from the source of the epidemic.

With a bit of experimentation, one can find out that about 600 time steps
are needed in this particular case for the network to reach the steady state;
this is a dramatic increase compared to the case of Erdős-Rényi networks.
Fig. 6.11 shows ten random instances of the SIS epidemic on this lattice;
a figure similar to this can be plotted using matplotlib by invoking our
plot_results() method again:

6.30.1) results = simulate(SISModel, "lattice", time=600)
2) plot_results(results)

Note that despite the apparently large variance between the different
curves (especially before t = 400), the process still converges approximately
to the same fraction of infected individuals as we have seen for the Erdős-
Rényi networks on Fig. 6.8.
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(a) t = 0 (b) t = 3 (c) t = 6

Fig. 6.10 A SIS epidemic on a 9 × 9 lattice with β = 0.5 and γ = 0.1 at t = 0, 3 and
6. Note how the infection stays localized around the source of the infection (the central
node).
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Fig. 6.11 Ten random instance of the spreading of a SIS epidemic on a circular lattice of
size 100× 100. The rate of infection β and the rate of recovery γ were both set to 1/4.

Finally, we repeat our simulation with a geometric random graph of the
same average connectivity. In this case, even t = 600 is not enough to reach
the steady state, which emerges only around t = 1500.

6.31.1) results = simulate(SISModel, "grg", time=2000)
2) plot_results(results)

The plot on Fig. 6.12 shows the aggregated results of ten simulations.
Besides the late emergence of the steady state, we can also observe a very
high variance between the results of individual simulations, which makes our
estimate for the average fraction of infected individuals less reliable. The
individual curves do not seem to stabilize around the estimated average as t
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increases, which suggests that there aree local fluctuations in the prevalence
of the infection. This can be explained by the clustered structure of geometric
random graphs. Let us take a look at Fig. 6.9 again which compares regular
lattices and geometric random graphs. It can clearly be seen that a geometric
random graph can often be subdivided into dense regions which are connected
only by a few links. When an infection reaches one of these dense regions, it
can infect the whole cluster quickly, but it takes some time until it can spread
further to the next cluster as most of the nodes inside the cluster just spend
their time with re-infecting each other over and over again. The lower-most
curve on Fig. 6.12 illustrates this clearly around t = 900 when the infection
reached a large and previously uninfected cluster, and the relative prevalence
quickly rose from around 0.25 to more than 0.5 in less than 300 time steps.
Similarly, fluctuations may also arise from events when the infection is cleared
from a cluster thanks to the natural recovery process; in this case, it also takes
some time until the members of the cluster contract the contagion again from
the outside world.
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Fig. 6.12 Ten random instance of the spreading of a SIS epidemic on a geometric random
graph with 104 vertices and an average degree of 4. The rate of infection β and the rate
of recovery γ were both set to 1/4.

Let us now turn our attention to the problem of the epidemic threshold. For
homogeneous models, we have seen that the epidemic threshold corresponds
to the case where the basic reproductive rate of the virus is exactly 1, that
is, where every single infection generates exactly one new infection during
its lifetime. The lifetime of the infection is simply 1/γ, therefore a naïve
approximation of the basic reproductive rate of a virus spreading on a network
with an average degree of 〈k〉 is β 〈k〉 /γ, since a node may infect each of its
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〈k〉 neighbors with probability β in each time step. However, note that a node
may not infect another node that is already infected, and usually there is at
least one other node in the vicinity of a given node which is already infected:
the one from which the node itself contracted the infection! A more precise
approximation of the reproductive rate would therefore be β(〈k〉 − 1)/γ. In
the case of γ = 0.25 and 〈k〉 = 4 (which we have studied by simulations), the
epidemic threshold is to be expected around β = γ/(〈k〉−1) ≈ 0.083. We are
going to try and confirm or refute this conjecture with numerical simulations
in igraph.

There is one difficulty with simulations when β is small (compared to γ).
When starting the simulation with a single infected node, it is often the case
that the infected node recovers before it had the chance to start spreading the
infection. However, we have seen that the initial number of infected individu-
als does not influence the steady state in case of a homogeneous population.
If this property of the SIS model holds for networks as well, we can simply
start the simulation with, say, half the nodes being infected, and it will still
converge to the same steady state. To this end, we will add an extra argument
to simulate() that controls the initial number of infected nodes and we will
run our simulations with a higher number of initial infections; for instance,
100 vertices, which amounts for 1% of the population.

6.32.1) def simulate(model_class, graph_type, num_infected=1, runs=10, time=50, *args, **kwds):
2) results = []
3) for i in xrange(runs):
4) current_run = []
5)

6) ## Generate the graph and initialize the model
7) graph = generate_graph(graph_type)
8) model = model_class(graph, *args, **kwds)
9)

10) ## Infect randomly selected vertices
11) vs = random.sample(range(graph.vcount()), num_infected) #labelvrb:simulatediff3
12) model.compartments.move_vertices(vs, "I") #labelvrb:simulatediff4
13)

14) ## Simulate the time steps
15) for t in xrange(time):
16) model.step()
17) frac_infected = model.compartments.relative_size("I")
18) current_run.append(frac_infected)
19)

20) results.append(current_run)
21)

22) return results

This is again very similar to the previous version of the simulate()
method, the only changes are in lines ?? and ??. Let us now run the SIS model
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for Erdős–Rényi random networks with β = 0.06, 0.07, . . . , 0.1, γ = 0.25 and
an initial infection size of 100:

6.33.1) def find_epidemic_threshold(type, betas, *args, **kwds):
2) for beta in betas:
3) results = simulate(SISModel, type, 100, beta=beta,
4) *args, **kwds)
5) avg = mean(run[-1] for run in results)
6) print("%.2f %.4f" % (beta, avg))

6.34.1) >>> betas = [0.06, 0.07, 0.08, 0.09, 0.10]
2) >>> find_epidemic_threshold("er", betas, gamma=0.25, time = 100)

0.06 0.0000
0.07 0.0002
0.08 0.0081
0.09 0.0501
0.10 0.1294

Indeed there is a threshold-like behaviour here; for β = 0.06, 0.07 or 0.08,
the fraction of infected individuals decreased from the initial 1% to 0%, 0.02%
and 0.81%, respectively, while it increased to 5.01% for β = 0.09 and to
12.94% for β = 0.10. Our reasoning was proven to be surprisingly accurate
here. But does it hold for lattices or geometric random graphs? Note that the
simulation has to be run for a much longer time to allow the steady state to
emerge, so be patient.

6.35.1) >>> find_epidemic_threshold("lattice", betas, gamma=0.25, time=1000)

0.06 0.0000
0.07 0.0000
0.08 0.0000
0.09 0.0000
0.10 0.0000

This result is surprising, but not quite unexpected. In an Erdős–Rényi
network, connections are placed essentially randomly, thus the population can
still be considered homogeneous, similarly to the traditional compartmental
models. The epidemic threshold is therefore governed by the same principles.
However, the structure of a lattice is much more correlated and gives rise to
interesting phenomena like an increased epidemic threshold, which of course
stems from a decreased basic reproductive rate. But where is the real epidemic
threshold then? We can find it somewhere between 0.13 and 0.14:

6.36.1) >>> betas = [0.11, 0.12, 0.13, 0.14, 0.15]
2) >>> find_epidemic_threshold("lattice", betas, gamma=0.25, time=1000)

0.11 0.0000
0.12 0.0000
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0.13 0.0152
0.14 0.1761
0.15 0.2566

For geometric random graphs, we have to run the simulation for 5000 time
steps and use 20 runs per β to obtain a reliable result due to the high variance
in the course of the epidemic in individual runs. The epidemic threshold is
somewhere between 0.1 and 0.11, although the transition seems to be less
sharp than in the case of Erdős–Rényi networks or regular lattices:

6.37.1) >>> betas = [0.08, 0.09, 0.10, 0.11, 0.12]
2) >>> find_epidemic_threshold("grg", betas, gamma=0.25, ... time=5000, runs=20)

0.08 0.0000
0.09 0.0000
0.10 0.0018
0.11 0.0117
0.12 0.0366

6.4.3 Epidemics on scale-free networks

In the previous section, we have investigated three classes of networks on
which the SIS epidemic shows similar behaviour. For Erdős–Rényi random
networks, regular lattices and geometric random graphs, a steady state of the
SIS model emerges if β is large enough while γ and 〈k〉 is kept constant. In
the steady state, a a fixed fraction of the population stays infected although
the set of infected individuals changes all the time. Thus, the network-based
models we have seen so far preserved the non-trivial steady state and the
existence of an epidemic threshold from traditional compartmental models on
homogeneous populations, but the relationship between β, γ and the epidemic
threshold became more complicated as it now depends on the structure of
the network as well.

A common property of all the random networks we have studied in the
previous section is that they have a well-defined average connectivity value
〈k〉; in other words, node i is in contact with ki ≈ 〈k〉 other nodes. Of course
a 〈k〉 value can be calculated for any finite network, but there is a special
class of networks called scale-free networks where this value does not make
much sense. The degree distribution of this type of networks resembles a
power-law distribution; in other words, the probability of finding a node with
degree x is proportional to x−α for some exponent α > 1. Unlike the Poisson
distribution (the degree distribution of Erdős–Rényi random networks), the
mean of the power-law distribution has no special meaning as there is no such
thing as an “average” node in the network which has a characteristic degree
〈k〉; we can easily find nodes with much larger degrees than 〈k〉, but the vast
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majority of nodes have degrees smaller than 〈k〉. Therefore, it does not hold
that ki ≈ 〈k〉. You can read more about this phenomenon in Section ??. In
this section, we will see that this behaviour of scale-free networks gives rise
to a surprising behaviour of the SIS model.

Scale-free networks are especially important since many real-world net-
works were shown to have degree distributions that resemble a power-law.
One of the frequently cited examples is the network model of the Internet,
where each vertex represents an autonomous system (AS) such as a router or
a gateway machine to a local network, and each edge represents a physical
connection between two autonomous systems. This network is used by com-
puter viruses to spread from one computer to another. Pastor-Satorras and
Vespignani (2001) have observed that computer virus incidents are very rare
compared to the size of the network, and most surviving viruses live at a very
low level of persistence; in other words, only a tiny fraction of all the com-
puters connected to the Internet are affected by a given virus. If the Internet
were randomly wired like an Erdős–Rényi network, or regularly wired like a
lattice, we would know immediately what this means: the basic reproductive
rate of computer viruses are just above the epidemic threshold, and an anti-
viral campaign would probably raise γ enough to eradicate these infections
from the network. However, it is very unlikely that thousands of viruses that
were developed (probably) independently are all tuned to just slightly above
the epidemic threshold.

To understand the puzzling properties of computer viruses, Pastor-Satorras
and Vespignani (2001) have conducted simulations of the SIS model on large
scale-free networks and evaluated the persistence of viruses as a function of
1/β while keeping γ constant. We will now follow the trail of Pastor-Satorras
and Vespignani (2001) and repeat some of their analyses using igraph.

A simple random graph model that generates scale-free networks with
a power-law degree distribution is the well-known Barabási–Albert model
(Barabási and Albert (1999), see Section ?? for a more detailed description),
which is implemented by the Barabasi() method of the Graph class. We willBarabasi()
use this method to generate scale-free networks. Pastor-Satorras and Vespig-
nani (2001) used 〈k〉 = 6, and performed simulations for various numbers
of nodes ranging from N = 103 to N = 8.5 × 106. For each combination of
N and β, they have performed at least 1,000 simulations, and recorded the
prevalence of the virus (i.e. the fraction of infected nodes) for the steady state
of each simulation.

The fundamental building block will then be a function that receives N
and β, and simulates the SIS model until the steady state. Note that we
do not know in advance how many steps are required to reach the steady
state, therefore we adopt an adaptive strategy that tries to detect the steady
state automatically. We will run the simulation in blocks of 100 time steps.
In each block, we record the fraction of infected individuals after each time
step and calculate the mean and variance of this vector using an instance of
RunningMean; if the variance falls below a given threshold, we consider the



6.4 Compartmental models on networks 189

simulation to have reached the steady state and return the mean as the result.
This approach is likely to work for larger networks but fail for smaller ones
where the local fluctuations are too large. Each simulation will start from a
state where half of the nodes are infected, just like the way Pastor-Satorras
and Vespignani (2001) did:

6.38.1) def simulate_sf_single(n, beta, gamma=0.25, epsilon=0.01):
2) graph = Graph.Barabasi(n, 3)
3) model = SISModel(graph, beta=beta, gamma=gamma)
4) infected = random.sample(range(n), n // 2)
5) model.compartments.move_vertices(infected, "I")
6)

7) rm = RunningMean()
8) while len(rm) == 0 or rm.sd > epsilon:
9) rm.clear()
10) for i in xrange(100):
11) model.step()
12) rm.add(model.compartments.relative_size("I"))
13)

14) return rm.mean

A quick test first:

6.39.1) >>> simulate_sf_single(10000, 0.05)

0.192701

To save some time, we will run 10 simulations for each combination of
N and α, and calculate the average prevalence returned by simulate_sf_
single():

6.40.1) def simulate_sf(n, beta, gamma=0.25, epsilon=1, runs=10):
2) results = []
3) for i in xrange(runs):
4) frac = simulate_sf_single(n, beta, gamma, epsilon)
5) results.append(frac)
6) return mean(results)

A quick test again:

6.41.1) >>> simulate_sf(10000, 0.05)

0.1920451

The paper of Pastor-Satorras and Vespignani (2001) showed the fraction of
infected individuals in the steady state as a function of φ = γ/β for N = 105,
N = 5×105, N = 106, N = 5×106 and N = 8.5×106. We will therefore also
invoke simulate_sf() for a representative set of (N,β) combinations which
we set up now:
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6.42.1) phi_for_n = dict()
2) phi_for_n[100000] = [7.5, 8, 10]
3) phi_for_n[500000] = [9, 9.5, 10, 10.5, 11, 11.5]
4) phi_for_n[1000000] = [8.5, 9, 9.5, 10, 10.5, 11, 11.5]
5) phi_for_n[5000000] = [12, 13, 14, 15, 16]
6) phi_for_n[8500000] = [18, 20]

‘phi_for_n’ associates values of N to values of φ from which we can infer
β if γ is given in advance. We will use γ = 0.25:

6.43.1) def sf_prevalence_plot(phi_for_n):
2) gamma = 0.25
3)

4) symbols = (’b+’, ’gs’, ’rx’, ’co’, ’mD’)
5) plots = []
6) for idx, n in enumerate(sorted(phi_for_n.keys())):
7) xs, ys = [], []
8) for phi in phi_for_n[n]:
9) beta = gamma / phi
10) frac = simulate_sf(n, beta, gamma)
11) xs.append(phi)
12) ys.append(frac)
13) args.extend(xs, ys, symbol[idx])
14)

15) pylab.plot(*args)

Invoking sf_prevalence_plot() on ‘phi_for_n’ generates a plot similar
to the one on Fig. 6.13. However, this may require several hours on a standard
desktop computer, so make sure you run this only when you have plenty of
time, or run it in the background and save the values of xs and ys in a file
instead of plotting them directly.

It might be a bit disappointing to wait half a day for only a few points
on the 2D plane, but the consequences of this result make up for it. First
of all , we can conclude that the results are independent from our choice
of N as several points for different values of N are almost exactly at the
same position for the same value of φ (e.g., for φ = 11). Second, but more
importantly, note that the markers line up almost perfectly when they are
plotted using a logarithmic y axis. This means that there exists a constant
c such that I/N ∝ exp(−cγ/β), thus the fraction of infected individuals
will never reach zero, no matter how small β is. In other words, there is no
epidemic threshold, and the virus can never be eradicated completely from
the network.4

4 To be precise, we note that the absence of an epidemic threshold applies only for infinite
scale-free networks with 2 < α < 3, and finite ones do possess an epidemic threshold
(May and Lloyd, 2001; Pastor-Satorras and Vespignani, 2002a). Infinite scale-free networks
with α ≥ 4 were shown to behave like Erdős–Rényi random networks (Pastor-Satorras
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Fig. 6.13 The prevalence of the virus in the steady state of an SIS epidemic on a scale-free
network for different network sizes. The full line is a fit to the form I/N ∼ exp(−cφ) where
c is an appropriate constant.

Although this is quite baffling at first glance, there is a logical explanation
for the phenomenon. In scale-free networks, most of the nodes are low-degree,
but it is very easy to find a high-degree node in the vicinity of any low-degree
node. A node stays infected for approximately the same amount of time 1/γ,
no matter how many neighbours it has, but high-degree nodes can spread
the infection much more efficiently since the number of infections a node can
create in a time step is proportional to both β and the degree of the node
itself. Therefore, an infection of a high-degree node will cause an avalanche of
further infections in the next few time steps, while an infection of a low-degree
node can reach a high-degree node easily, which, in turn, will initiate a similar
avalanche. High-degree nodes are therefore often called super-spreaders as super-spreaders
they are responsible for a significant amount of the infections in a scale-
free network. A more formal treatment of the problem is given in Pastor-
Satorras and Vespignani (2001) and Pastor-Satorras and Vespignani (2002a).
A recent article of Castellano and Pastor-Satorras (2010) have shown that the
phenomenon is not even limited to scale-free networks; the same behaviour
is observed for networks where the maximum degree kmax diverges with the
size of the network.

and Vespignani, 2001). For finite networks, Pastor-Satorras and Vespignani (2002a) have
demonstrated that the epidemic threshold is β/γ = 〈k〉 /

〈
k2
〉
, which is in concordance

with the absence of an epidemic threshold in infinite scale-free networks since in those
networks

〈
k2
〉→ ∞.
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6.5 Vaccination strategies

Another key problem in epidemiology is the prevention of epidemics. Typ-
ically, one wishes to prevent the outbreak of an epidemics in a population
of N with the lowest possible quantity of vaccines to be used. The question
is then usually as follows: how many people shall we vaccinate to prevent
the outbreak of an epidemics? There is also an alternative formulation of the
same question: if our budget allows the distribution of m vaccines in the pop-
ulation, who should we give them to in order to prevent the outbreak with
high probability or at least slow it down as much as possible?

The simplest vaccination strategy one can consider is to immunize m in-
dividuals from the population randomly. This strategy leads to success in
homogeneous populations and in networks where the average connectivity
〈k〉 is representative of the degrees of the vertices (i.e. ki ≈ 〈k〉 for vertex i),
but not in scale-free networks. To show this, let us extend our simulate()
method again, this time with an extra argument that specifies an immuniza-
tion function which receives the graph as a parameter and returns a list of
vertices that should be immunized. We will then implement a simple function
that selects m vertices randomly.

6.44.1) def simulate(model_class, graph_type, num_infected=1, runs=10, time=50, immunizer=None, *args, **kwds):
2) results = []
3) for i in xrange(runs):
4) current_run = []
5)

6) ## Generate the graph and initialize the model
7) graph = generate_graph(graph_type)
8) model = model_class(graph, *args, **kwds)
9)

10) ## Infect randomly selected vertices
11) vs = random.sample(range(graph.vcount()), num_infected)
12) model.compartments.move_vertices(vs, "I")
13)

14) ## Immunize the vertices selected by the immunizer
15) if immunizer is not None:
16) vs = immunizer(graph) #labelvrb:simulatediff5
17) model.compartments.move_vertices(vs, "R") #labelvrb:simulatediff6
18)

19) ## Simulate the time steps
20) for t in xrange(time):
21) model.step()
22) frac_infected = model.compartments.relative_size("I")
23) current_run.append(frac_infected)
24)

25) results.append(current_run)
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26)

27) return results

The key differences are in lines ?? and ??; in line ??, we ask the immunizer
function to select which vertices are to be immunized, and we move these
vertices to the R (recovered) state in line ??. This implies that we cannot use
our present implementation of SISModel as this model does not have an R
compartment; however, SIRModel is not suitable either as vertices should be
moved back to the S compartment after recovery in the scenario we wish to
study. Therefore we are going to implement a variant of the SIS model which
we will call SISModelWithImmunity: SISModelWithImmunity

6.45.1) class SISModelWithImmunity(CompartmentalModel):
2) """SIS epidemic model for networks where a separate compartment
3) holds immunized vertices."""
4)

5) def __init__(self, graph, beta=0.1, gamma=0.2):
6) """Constructs an SIS model on the given ‘graph‘ with
7) infection rate ‘beta‘ and recovery rate ‘gamma‘, and creates
8) an R compartment for immunized nodes."""
9) CompartmentalModel.__init__(self, graph, "SIR")
10) self.beta = float(beta)
11) self.gamma = float(gamma)
12)

13) def reset(self):
14) """Resets the model by making all the individuals
15) susceptible."""
16) vs = xrange(self.graph.vcount())
17) self.compartments.move_vertices(vs, "S")
18)

19) def step(self):
20) """Runs a single step of the SIS model simulation."""
21) ## Contagious vertices spread the infection
22) s_to_i = set()
23) for vertex in self.compartments["I"]:
24) neis = self.graph.neighbors(vertex)
25) for nei in sample(neis, self.beta):
26) if self.compartments.get_state(nei) == "S":
27) s_to_i.add(nei)
28) self.compartments.move_vertices(s_to_i, "I")
29)

30) ## Recover some of the infected vertices
31) i_to_s = sample(self.compartments["I"], self.gamma)
32) self.compartments.move_vertices(i_to_s, "S")

Now we can implement the function responsible for random immunization:
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6.46.1) def random_immunizer(graph, m):
2) return random.sample(range(graph.vcount()), m)

The curious reader may have noticed that there is a discrepancy between
the number of parameters of random_immunizer() as defined above and the
number of parameters we pass to it in simulate(). random_immunizer()
requires two parameters: the graph to be immunized and the number of vac-
cines that we can use, while simulate() specifies only the graph itself. This
is intentional; we will use the partial() function of the functools module in
the standard Python library to bind the second argument of random_immu-
nizer() to a specific value before passing it in to simulate(). The following
code snippet illustrates the usage of partial():

6.47.1) g = Graph.GRG(100, 0.2)
2) random_immunizer(g, 5) ## selects 5 random vertices
3) from functools import partial
4) func = partial(random_immunizer, m=5)
5) func(g) ## the value of m was bound to 5 by partial()

In Section 6.4.2, we have conjectured that the epidemic threshold on
Erdős–Rényi networks is approximately given by β(〈k〉 − 1)/γ = 1. Vac-
cination effectively removes the immunized nodes from the network, at least
from the point of view of the virus, since immunized nodes can not be in-
fected, they do not spread the infection themselves and they never return to
the susceptible state. Therefore, we can simply consider the immunization of
a fraction ρ of the nodes as decreasing the average connectivity of the network
to (1 − ρ) 〈k〉 as each node that is not yet immune will have ρ 〈k〉 immune
neighbors. The epidemic threshold is then given by the following equation:

β(1− ρ)(〈k〉− 1)
γ

= 1 (6.10)

Let us now consider an Erdős–Rényi network with β = 0.25, γ = 0.25 and
〈k〉 = 4. The formula tells us that it is enough to vaccinate two third of the
population to lower the basic reproductive rate of the virus to 1. Let us con-
firm this with simulations on an SIS model, starting from an initial outbreak
affecting 10 out of the 10, 000 nodes that are generated by generate_graph():

6.48.1) immunizer = partial(random_immunizer, m=6666)
2) results = simulate(SISModelWithImmunity, "er", time=100, num_infected=10, beta=0.25, gamma=0.25, immunizer=immunizer)
3) plot_results(results)

Indeed, immunizing two third of the population is enough to keep the
infection at bay; see the plots on Fig. 6.14(a) where the vast majority of
simulated infections did not turn into an epidemic. Even if our budget allows
only the immunization of 20% of the population, we still manage to lower the
fraction of infected individuals in the steady state from about 0.55 (Fig. 6.8)
to 0.36. Fig. 6.14(b) shows how the prevalence in the steady state depends on
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ρ, the fraction of immunized individuals, confirming the linear dependence
prescribed by Eq. 6.10.
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Fig. 6.14 Immunization may be used to push the basic reproductive rate under 1 and
prevent the outbreak of an epidemic. Left: the course of an SIS epidemic on an Erdős–Rényi
network near the epidemic threshold after immunization; right: the prevalence of the virus
in the steady state on an Erdős–Rényi network at different levels of immunization.

However, the random immunization strategy breaks down completely when
it is applied to a scale-free network. Immunizing a randomly selected fraction
of the population slows down the spreading of the epidemic, but it is not able
to eradicate it completely. The reason is that most of the vertices in a scale-
free network have a relatively low degree, while the nodes that are mostly
responsible for the rapid spreading of the epidemic are the super-spreaders,
i.e. those with a high degree. Pastor-Satorras and Vespignani (2002b) have
shown that a better strategy for scale-free networks is to start immunizing
the nodes in decreasing order of their degrees. This is the motivation behind
the vaccination of public workers such as staff nurses, teachers and policemen
as they are more likely to get in contact with others and therefore are more
likely to spread the contagion should they get infected.

The degree-based immunization strategy can be implemented very easily:

6.49.1) def degree_immunizer(graph, m):
2) degrees = graph.degree()
3) order = sorted(range(graph.vcount()),
4) key=degrees.__getitem__, reverse=True)
5) return order[:m]

We also have to extend generate_graph() for the last time to handle
scale-free networks as well.

6.50.1) def generate_graph(type, n=10000, only_connected=True):
2) if type == "sf":
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3) graph = Graph.Barabasi(n, 2)
4) elif type == "er":
5) graph = Graph.Erdos_Renyi(n, m=2*n)
6) #rm...

We can now compare the random and the degree-based strategies on
Erdős–Rényi and scale-free networks for a given configuration of β and γ. We
will use β = 0.25 and γ = 0.25 like before, and print the fraction of infected
individuals after 100 steps of a single run of a SIS epidemic while immunizing
20% of the nodes, selected according to the two competing strategies. For the
random strategy, the following result is observed:

6.51.1) def test_immunizer(immunizer):
2) for model in ("er", "sf"):
3) results = simulate(SISModelWithImmunity, model,
4) time=100, num_infected=10, immunizer=immunizer,
5) beta=0.25, gamma=0.25)
6) print("%s: %.4f" % (model, results[0][-1]))

6.52.1) >>> immunizer = partial(random_immunizer, m=2000)
2) >>> test_immunizer(immunizer)

er: 0.3673
sf: 0.3641

There is practically no difference in the effectiveness of the two strategies,
but remember: since there is no epidemic threshold in scale-free networks, we
cannot lower the number of susceptible individuals enough to prevent an out-
break, at least not with a uniform immunization strategy (see Pastor-Satorras
and Vespignani (2002b) for more details). Let us check what happens in the
targeted case where the individuals with the largest number of connections
are immunized!

6.53.1) >>> immunizer = partial(random_immunizer, m=2000)
2) >>> test_immunizer(immunizer)

er: 0.1392
sf: 0.0000

This is a very impressive result; the strategy managed to exterminate the
infection completely in the scale-free network, and it was also shown to be
more effective in an Erdős–Rényi network than the random strategy.

There is one problem with degree-based immunization: in a real-world
scenario, it is often not known who are the most connected people in the
contact network. Cohen et al (2003) have proposed a strategy for such cases.
Let us assume that we would like to immunize m people from the contact
network. First, we selectm people randomly, then we ask each of these people
to nominate one of his acquaintances, and we immunize those who have been
nominated:
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6.54.1) def neighbor_immunizer(graph, m):
2) vs = random.sample(graph.vs, m)
3) result = []
4) for v in vs:
5) result.append(random.choice(v.neighbors()).index)
6) return result

6.55.1) >>> immunizer = partial(random_immunizer, m=2000)
2) >>> test_immunizer(immunizer)

er: 0.3457
sf: 0.1154

This strategy is not as effective as the degree-based one, but it does not
require any a priori information about the vertex degrees. We leave a more
detailed investigation of these strategies as an exercise for the Reader.

6.6 Exercises

I EXERCISE 6.1. Implement discrete simulations for the SIS and SIRS com-
partmental models. Confirm the presence of the epidemic threshold.

I EXERCISE 6.2. Investigate the extension of the SIR model by population
dynamics; i.e. assume that babies are born at a rate of κ and enter the
susceptible pool, while people die from natural causes with the same rate
and leave whichever pool they are already in. How does the dynamics of the
model change? Is there a non-trivial steady state in the SIR model with births
and deaths? Is there an epidemic threshold?

I EXERCISE 6.3. In Section 6.4.2, we have seen that the behaviour of the SIS
model is slightly different for regular lattice and geometric random graphs as
the variance between the curves of the individual simulations are much higher
for geometric random graphs. Quantify the variance of the two models and
compare the variances of the initial stage and the steady state.

I EXERCISE 6.4. In Section 6.5, we have studied three simple vaccination
strategies that aim to prevent the outbreak of an epidemic or at least to
decrease the number of affected individuals. Fig. 6.14(b) shows how the frac-
tion of infected individuals in the steady state depends on the fraction of the
immunized population for Erdős–Rényi networks when the random strategy
is used. Implement a function that plots a figure similar to this, and extend
it to support different graph types and any of the three vaccination strategies
we have learned about.
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I EXERCISE 6.5. All the network-based models that we have studied in this
chapter assume that the underlying contact network is static and any link
may spread the infection in any time step. This is reasonable for diseases that
spread rapidly as the time scale of the epidemic is smaller than the typical
life span of a relationship between individuals. Modify the general framework
introduced in Section 6.4.1 to take into account that edges can be active or
inactive and thus may not be used by the spreading process in all steps.



Chapter 7
Spectral Embeddings

Frequently in graph theory and related fields of mathematics it can be conve-
nient to work with matrices associated with a graph. The adjacency matrix
provides the most direct representation and manipulations of this matrix can
be used for a variety of tasks. Various forms of Laplacian matrices can be used
in the study of random walks on graphs and the determination of minimum
cuts. One of the most intriguing aspects of working with these matrix rep-
resentations is the connection between properties of the graphs and spectral
properties of the matrices (Chung, 1997).

In this chapter we will introduce a technique using the spectral decomposi-
tion of a matrix that can be used for various tasks including vertex clustering,
vertex classification, vertex nomination or ranking, as well as for exploratory
data analysis. The spectral decomposition of a matrix associated with a graph
provides a way to embed the vertices of a graph as points in finite dimensional
Euclidean space. This embedding allows for standard statistical and machine
learning methodology for multivariate Euclidean data to be used for graph
inference.

We will give an overview of the mathematics behind these embeddings
while discussing how to use these embeddings in igraph for a variety of tasks.
While discussing the various optional arguments we will investigate three
different real data examples to illustrate how various options impact the
embeddings and subsequent analysis. For the purpose of visualization and to
keep the ideas general we will focus on using the embedding as an exploratory
data analysis tool to investigate the graphs in two dimensions. We will also
consider tasks such as clustering the vertices and finding interesting vertices.
We will demonstrate the embeddings with simulated examples and show how
these examples relate to theoretical results from the literature.

199
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7.1 Overview

A spectral embedding is defined in terms of either the singular value decompo-
sition or the eigenvalue decomposition of a matrix associated with the graph.
For undirected graphs, these decompositions have a special relationship, de-
scribed shortly, while for directed graphs the eigendecomposition will result
in complex numbers so we will work with the singular value decomposition.
A variety of matrices can be considered and igraph supports the adjacency
matrix, the combinatorial Laplacian, and the normalized Laplacian. We will
focus on the adjacency matrix and introduce the Laplacian later.

We will assume the graph has n vertices so that the adjacency matrix A is
of dimension n×n with vertex set V = {1, 2, . . . , n}. We will also assume that
we seek an embedding into d dimensions where typically d� n. Methods to
select the embedding dimension will be discussed later.

We have seen in Sec. 1.2.6 that igraph graphs can be treated as adjacency
matrices, for queries and manipulation of the graph structure. Sometimes we
explicitly want to create the adjacency matrix, because we want to use it in R
functions or other software that explicitly deal with matrices. This is simply
done via omitting the indices of the ‘[’ operator, which is simply a shortcut
for the as_adjacency_matrix() function:as_adjacency_

matrix()
7.1.1) library(igraph)

2) make_star(5)[]

By default ‘A_mat’ is a sparse matrix, as defined in the Matrix R package.
The singular value decomposition of a matrix can be written as A =

[U|Ũ](S ⊕ S̃)[V |Ṽ ]T (Horn and Johnson, 2013), see Eq. 7.1. Here, the ma-
trices [U|Ũ] and [V |Ṽ] have orthonormal columns and the matrices U and V
have dimensions n × d. The matrix S ⊕ S̃ is diagonal with decreasing non-
negative entries and the matrix S has dimensions d × d. The first step in a
spectral embedding is to compute the matrices U, S and V. Note that these
matrices are dense, even if the graph and its corresponding adjacency matri-
ces are sparse. Luckily, for most applications and data sets, we do not need
to compute the full singular value decomposition and modern linear algebra
packages operate very quickly to compute the first few largest singular val-
ues and corresponding singular vectors, especially for sparse matrices. The
matrix USVT is the best rank d approximation to A.

[
S 0

0 S̃

][
VT

ṼT

]
= USVT + ŨS̃ṼT (7.1)

We can retrieve the adjacency spectral embedding for a graph with the
function embed_adjacency_matrix(). This function requires at least two in-embed_adjacency_

matrix() puts, the graph and the second is the dimension of the embedding corre-
sponding to d in our notation above. The function returns a list with three
elements with names ‘X’, ‘Y’, ‘D’ and ‘options’.
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Depending on the properties of the graph and the subsequent data analysis
task of interest, different embeddings options may be desirable. First, we will
discuss the undirected case before noting a few differences for the directed
case. Finally, we will discuss working with a graph Laplacian instead of the
adjacency matrix.

7.1.1 Undirected case

For an undirected graph, the matrices U and V of the singular value decom-
position are equal except for sign changes in the columns corresponding to
any negative eigenvalues; so we only need to consider U. Hence, we can work
between the singular value and eigen decompositions by making the appro-
priate sign changes. Due to this symmetry, the ‘Y’ output will be ‘NULL’
and only the ‘X’ output will be populated.

The default output for ‘X’ is n × d dimensional matrix US1/2. For the
undirected case the vector ‘D’ is set to the corresponding eigenvalues, which
can be either positive or negative (whereas the singular values are ) We view
this matrix as n points in <d where each point represents a vertex in the
graph. Hence through dimensionality reduction and spectral decomposition,
we have transformed the graph, a combinatorial object requiring special al-
gorithms ot perform various tasks, into a point cloud where the tools of
standard multivariate analysis can be used. Before going into more details
we will examine the embedding on a random graph.

7.1.1.1 2-Block Stochastic Blockmodel

In this example we will sample a graph from a 2-block stochastic blockmodel
Holland et al (1983), (see also Sec. ??) with parameters

B =

[
0.4 0.2

0.2 0.4

]
and ~nvec = [100, 100].

Here, there are 100 vertices in each block and the probability that two
vertices are adjacent is 0.4 for vertices in the same block and 0.2 for vertices
in different blocks.

After generating the graph, we embed the graph into two dimensions with
the adjacency spectral embedding. Fig. 7.1 shows the resulting scatter plot.
This figure illustrates how vertices in the same block cluster together in the
embedding.

7.2.1) set.seed(42)
2) sbm_2 <- sample_(sbm(
3) n = 200,
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Fig. 7.1 The adjacency spectral embedding to two dimensions of a 2-block stochastic
blockmodel graph. The embedding effectively seperates vertices in the two blocks into
distinct clusters of points. The shapes indictate the true block labels and the colors indicate
the the 2-means cluster labels.

4) pref.matrix = diag(0.2, 2) + 0.2,
5) block.sizes = c(100, 100)),
6) vertex_attr(true_block = rep(1:2, each = 100))
7) )
8) X <- embed_adjacency_matrix(sbm_2, 2)$X

Simple clustering methods such as k-means, hierarchical clustering or
Gaussian mixture modelling would all easily cluster the vertices into the cor-
rect clusters based on the model parameters. Indeed, running k-means and
comparing to the true labels, we exactly recover the correct partition.

7.3.1) X_km <- kmeans(X, 2)$cluster
2) V(sbm_2)$true_block %>%
3) as_membership() %>%
4) compare(as_membership(X_km), method = "split.join")
5)

6) plot(X, col = c("green", "red")[X_km], pch = block)

By default the calculated embedding is scaled by the singular values, the
‘scaled’ argument controls whether this is desired. When using subsequent
techniques that are scale invariant such as certain scatter plots and Gaussian
mixture modeling, it will not matter greatly whether we use the scaled or
unscaled version. For other methods, such as k-means clustering, the scaling
can have an impact and we will briefly compare these in the example below.
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Note, that since the singular values can be retrieved from ‘D’, one can easily
convert between scaled and unscaled versions.

If you examine the source code of the embed_adjacency_matrix() func-
tion, then you will notice, that it does not actually calculate the singular
vectors and values of the adjacency matrix, but it modifies the diagonal.

The diagonal of the adjacency matrix can be viewed as missing data,
and this diagonal augmentation is an imputation scheme that may improve
performance of the embedding. By default igraph puts dv/(n − 1) in the
diagonal, where dv is the degree of vertex v. The heuristic behind this default
is that the probability that a vertex is adjacent to itself is assumed to be
the same as the probability it is adjacent to any other vertex. Though this
default has only a heuristic justification, in practice we have observed that
it frequently improves performance for subsequent tasks such as clustering.
To work with the original adjacency matrix, one would set ‘cvec = rep(0,
gorder(g))’.

7.1.2 Interpreting the embedding

Naively, the embedding transforms the graph into a point cloud in <d that
can then be treated as standard data set. Indeed, the general notion that
nearby embedded points correspond to vertices with similar connectivity
properties holds. Unlike some graph layout algorithms, it does not neces-
sarily hold that nearby embedded points are likely to correspond to adjacent
vertices.

To interpret the geometry of the point cloud it is valuable to consider
the inner product of the embedded points. Before continuing, we will intro-
duce the random dot product graph model for which the adjacency spectral random dot product

graphembedding is particularly well suited.

Definition 7.1 (RDPG, Scheinerman and Tucker (2010); Young and
Scheinerman (2007)). Let X1, . . . , Xn ∈ <d be the latent positions and
suppose that 0 ≤ 〈Xi, Xj〉 ≤ 1 for all i, j. Let X = [X1, . . . , Xn]

T ∈ <n×d.
We say A ∼ RDPG(X) if for all i < j, the Aij are independent and Aij ∼
Bern(〈Xi, Xj〉) and Aij = Aji.

One useful interpretation of this model is found by taking a social network
perspective where each vertex is a person and edges represent friendship or
communication In this view, the d coordinates of each latent position may
represent an individual’s interest level in different topics. The magnitude
of the latent position represents how talkative or friendly an individual is
overall. People who are talkative and interested in the same topics are very
likely to be friends while people who are not talkative or who are interested
in a disjoint set of topics are unlikely to be friends.
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In Sec. 7.2 we will show that if a graph has an RDPG distribution then
the adjacency spectral embedding serves to estimate the latent positions.
More generally, the geometry of the embedded points can be interepreted in
a similar way as the interpretation of the latent positions in the embedded
space. Points with high magnitude more likely correspond to vertices with a
high degree and embedded points that are nearly orthogonal correspond to
vertices that are unlikely to form edges with each other. The result of this is
that points near the orgin correspond to low degree vertices that are unlikely
to form edges with each other even though they are nearby.

Finally, it may occur that some of the dimensions of the embedded space
correspond to negative eigenvalues. In this case, points that both have high
magnitude in those dimensions will correspond to vertices that are actually
less likely to be adjacent. In order to avoid errant interpretations, it is impor-
tant to check the sign of the eigenvalues in the output ‘D’. As we go through
some of the real data examples we will delve deeper into interpreting the
spectral embeddings.

7.1.3 Laplacian

The Laplacian spectral embedding proceeds in exactly the same manner as
the adjacency spectral embedding but operating on one of the graph Lapla-
cian matrices. In igraph this is implemented with the function embed_lapla-
cian_matrix(). First, we define the matrix D to be the diagonal matrixembed_laplacian_

matrix() where Dii is the degree of the ith vertex.
Three versions of the graph Laplacian are implemented and can be cho-

sen by specifying the parameter ‘type’. The default is the combinatorial
Laplacian D − A which can be chosen with ‘type="D-A"’. This positive
semi-definite matrix has the property that the number of eigenvalues equal
to zero of D − A is equal to the number of connected components in the
matrix. Hence, there is always one eigenvalue equal to zero and it is easy to
see that the vector of all ones is an eigenvector for the zero eigenvalue.

A well known use of the combinatorial Laplacian is to solve a convex
relaxation of the ratio-cut problem which seeks a partition of the graph into
two parts so that the parts have roughly the same number of vertices and
there are few edges between the parts. One can find the solution to the convex
relaxation of this problem by computing the eigenvector corresponding to
the second smallest eigenvalue of D−A and the parts are determined by the
sign of components of that eigenvector Chung (1997). Using the embedding
functionality, we could find the solution to this problem with

7.4.1) embed_laplacian_matrix(sbm_2, 2, which = "sa") %>%
2) extract(,2) %>%
3) sign()
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The algument ‘which’ specifies the eigenvalues and eigenvectors to com-
pute. The default is ‘‘lm’’, the eigenvalues with the largest magnitude. With
the combinatorial Laplacian you should usually set ‘which’ to ‘‘sa’’, to se-
lect the smallest eigenvalues, and ignore the first dimension since it is always
proportional to the vector of all ones and hence has no discriminatory signal.

The second option for the graph Laplacian is the matrix I−D−1/2AD−1/2

which is known as the normalized Laplacian and can be selected with ‘type
= "I-DAD"’. Here the power in D−1/2 is taken entrywise with 0−1/2 taken
to be 0. Like the combinatorial Laplacian, the normalized Laplacian can be
used to solve a relaxation of another graph cut problem called the normal-
ized min-cut. Again, it is the eigenvector corresponding to the second small-
est eigenvalue that is used to find the solution. This matrix is also positive
semidefinite and always has an eigenvector with entries proportional to the
square root of the degree of the associated vertices. Again, for this matrix
it makes most sense to use the eigenvectors corresponding to the smallest
eigenvalues with ‘which = "sa"’.

7.5.1) embed_laplacian_matrix(sbm_2, 2, which = "sa", type = "I-DAD") %>%
2) extract(,2) %>%
3) sign()

The final option is ‘type = "DAD"’ which corresponds to the matrix
D−1/2AD−1/2, which is sometimes called the normalized adjacency. This
matrix has the same eigenvectors as the normalized Laplacian and the eigen-
values are equal to one minus the eigenvalues of the normalized Laplacian so
it makes sense to work with ‘which = "la"’ or ‘which = "lm"’, the default.

7.6.1) embed_laplacian_matrix(sbm_2, 2, type = "I-DAD") %>%
2) extract(,2) %>%
3) sign()

We will now investigate a real data example adapted from Sussman et al
(2012a) to study how different results can be achieved with the different
matrices.

7.1.3.1 Wikipedia graph

This graph consists of 1382 vertices and 18857 edges where each vertex corre-
sponds to an article from the english language Wikiedia and edges indicate a
hyperlink exists from one article to another. The original graph was collected
with directed edges but we will work with the collapsed undirected version for
this example. Each vertex is also given one of 5 class labels, either Category,
Person, Location, Date and Math, which indicate the topic or category of the
document. This graph was constructed by collecting all articles within two
clicks of the article “Algebraic Geometry” and the hyperlinks between those
articles.
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7.7.1) library(igraphdata)
2) data(algebraic)
3) algebraic %>% summary()

For this example we will compare the adjacency, normalized adjacency,
and combinatorial Laplacian spectral embeddings. Recall that since the nor-
malized adjacency and normalized Laplacian have the same eigenvectors we
don’t need to compare them. For the adjacency and normalized adjacency we
will embed to two dimensions corresponding to the largest magnitude eigen-
values. For the combinatorial Laplacian we will embed to three dimensions
correspond to the smallest eigenvalues but ignore the first dimension, which
is constant. Finally, for each embedding we perform a dominant sign correc-
tion as a simple way to try to align the embeddings (later we will discuss
procrustes analyis).

7.8.1) algebraic <- algebraic %>%
2) as.undirected(mode = "collapse") %>%
3) simplify()
4)

5) correct_sign <- function(x) {
6) factor <- x %>%
7) sign() %>%
8) colSums() %>%
9) add(.5) %>%
10) sign() %>%
11) diag
12) x %*% factor
13) }
14)

15) palette(c("red", "green", "black", "orange", "blue"))
16) par(mfrow= c(1,3))
17)

18) ## Adjacency
19) Xa <- algebraic %>%
20) embed_adjacency_matrix(2) %>%
21) use_series("X") %>%
22) correct_sign()
23) plot(Xa, col = V(algebraic)$label + 1, pch = 4, cex = .5)
24)

25) ## Normalized Adjacency
26) Xnl <- algebraic %>%
27) embed_laplacian_matrix(2, type = "dad") %>%
28) use_series("X") %>%
29) correct_sign()
30) plot(Xnl, col = V(g)$label + 1,pch = 4,cex = .5)
31)
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Fig. 7.2 A comparision of the adjacency (left), normalized adjacency (center) and combi-
natorial Laplacian (right) spectral embeddings. Each point is colored according to the class
label of the vertex: red circle is Category, green triangle is Person, black cross is Location,
orange x is Date and blue diamond is Math.

32) ## Combinatorial Laplacian
33) Xcl <- algebraic %>%
34) embed_laplacian_matrix(3, type = "D-A", which="sa") %>%
35) use_series("X") %>%
36) extract(,2:3) %>%
37) correct_sign()
38) plot(Xcl, col = V(g)$label + 1,pch = 4, cex =.5)

After each embedding, a dominant sign correction is performed as a very
simple alignment step.

Fig. 7.2 shows the three 2-dimensional embeddings. One can see that the
three embeddings are each quite different. First, the combinatorial Laplacian
embedding is perhaps the hardest to work with because the scatter plot is
dominated by a few large outliers. These outliers are red cirlces indicating
they are in the Category class, which consists of Wikipedia pages linking
to many different articles about the same category. It is thought by some
that the combinatorial Laplacian is the least stable of the three embedding
methodologies (von Luxburg, 2007). The adjacency and normalized adjacency
both have somewhat more clear structure. For the adjacency, we see that one
class, the orange crosses corresponding to Date articles, is well seperated from
the other classes. Comparing this to the normalized adjacency we see that
this is no longer the case. Sussman et al (2012b) suggest, the authors compare
the clustering performance of k-means on the two embeddings.

A more thorough analysis may find that if we embed to higher dimensions
than one of the embeddings would be more clearly preferred. However, this
simple two dimensional example shows how the different embeddings may
capture different components of the graph structure and could be useful for
different purposes.
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Currently, there are no strong theoretical or empirical results that suggest
that one of these embeddings should necessarily be the default option. As with
many statistical techniques, none of the embedding procedures are known
to be always better for certain tasks. Sarkar and Bickel (2013) provides an
asymptotic analysis of the role of normalization for the two-block stochastic
blockmodel. When followed by k-means, both the adjacency and normalized
adjacency embeddings are known to consistently estimate the true partition
of the vertices under the general stochastic blockmodel. Other versions of the
graph Laplacian have been proposed that regularize the embedding for the
purpose of dealing with sparsity of the graph (Amini et al, 2013; Chaudhuri
et al, 2012).

7.1.4 Directed case

For the directed case there are a few key differences to be aware of. Unlike in
the undirected case, the adjacency matrix need not be symetric so there is no
explicit relationship between the left singular vectors U and the right singular
vectors V . Hence, for directed graphs the spectral embedding functions will
populate both X and Y. For directed graphs the Aij entry of the adjacency
matrix is unity if there is an edge from vertex i to vertex j. In this case,
the left singular vectors, U are representative of the edge-sending behavior
of the vertices while the right singular vectors V and representative of the
edge-receiving behavior of the vertices. As in the direced case, the option
‘scale’ determines the values of X and Y, with X = US1/2 and Y = VS1/2 if
‘TRUE’ (default) and with X = U and Y = V if ‘FALSE’.

For the Laplacian spectral embedding with a directed graph, we must
construct an appropriate directed version of the Laplacian. Since each vertex
has both an in-degree and an out-degree we cannot work easily with the
combinatorial Laplacian but we can construct a version of the normalized
Laplacian. This is given by O−1/2AP−1/2 where O is the diagonal matrix of
out degrees and P is the diagonal matrix of in degrees (Rohe and Yu, 2012).

Since both X and Y are populated we have more flexibility with how to
assess and analyze the embedding. For example, to cluster vertices based
only on their “sending” behavior alone we can cluster just X whereas to clus-
ter them based on their “receiving” behavior we can clsuter using just Y.
Rohe and Yu (2012) suggest clustering each separately and then using the
two clusterings to obtain a joint description of vertex behavior as a directed
stochastic blockmodel. Sussman et al (2012b) suggest concatentating X and Y
as Z = [X|Y] and clustering the vertices in <2d. Alternatively, we could con-
catenate the X and Y vertically and cluster all 2n points in <d as suggested
for bipartite graphs in Dhillon (2001).
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These are just a few of the options when working with directed graphs. We
will now investigate spectral embeddings for the directed case for a political
blogs network.

7.1.4.1 Political Blogs

The political blogosphere network data (Adamic and Glance, 2005) was col-
lected during 2004 election United States presidential election. Each vertex in
the graph represents a blog focused on politics and the directed edges repre-
sent links from one blog to another blog. Each vertex has also been assigned
a political leaning, either left, for the US Democrat party, or right, for the
US Republican party.

7.9.1) data(polblogs)
2) polblogs %>% summary()

For this example we will use only the largest strongly connected component.

7.10.1) largest_strong_component <- function(graph) {
2) co <- components(graph, mode = "strong")
3) which.max(co$csize) %>%
4) equals(co$membership) %>%
5) induced_subgraph(graph = graph)
6) }
7) blog_core <- largest_strong_component(polblogs)
8) blog_core %>% summary()

It consists of 793 vertices and 15841 edges. This graph has a particularly nice
structure and before the embedding, we discuss the special aspects of the
directed nature of this graph. First, we will investigate dimension selection,
the degree corrected SBM and projecting onto the sphere.

To investigate what an appropriate dimension might be to perform the
embedding we will first embed to dimension 100 and plot the singular values
in Fig. 7.3.

7.11.1) blog_100 <- embed_adjacency_matrix(blog_core, 100)
2) plot(blog_100$D, xlab = "Index", ylab = "Singular value")
3) dim_select(ase$D)

As with principal component analysis, one way to select the dimension
is to find a large gap between the singular value for that dimension and
the next dimension. From Fig. 7.3 we see that there is certainly a large gap
between the second and third singular values and a smaller gap between fifth
and sixth singular values, with all the other gaps between relatively small.
Furthermore, the automatic dimension selection function dim_select() also dim_select()
returns two as the embedding dimenions.

Since this graph is directed we can plot both X and Y. The left panel of
Fig. 7.4 shows the embedding of the left singular vectors and the right panel
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Fig. 7.3 The largest 100 singular values for the adjacency matrix of the Political Blogs
Network. There is a large gap between the second and third singular values indicating this
would be a good choice for an embedding dimension.
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Fig. 7.4 The embedding to dimension two of the Political Blogs Network. The left panel
corresponds to X, the left singular vectors representing “sending” behavior of the vertices,
and the right panel corresponds to Y, the right singular vectors representing “receiving”
behavior of the vertices. Each point is colored according to the political leaning of the blog,
red triangles for Republican and blue circles for Democrat.

shows the right singular vectors. The structure of the left and right singular
vectors are very similar with the embedded points being concentrated around
two distinct rays.

7.12.1) par(mfrow=c(1, 2))
2) palette(c("blue", "red"))
3) plot(ase$X, col = V(blog_core)$LR)
4) plot(ase$Y, col = V(blog_core)$LR)

This graph was studied in Karrer and Newman (2011) as part of their
exposition of the degree corrected stochastic block model, a model where in
addition to block membership each vertex has a scalar degree correction fac-
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tor which scales the probability that a vertex forms edges with other vertices.
Just as the embedding of a stochastic blockmodel graph will be concentrated
around distinct points for each block, for the degree correctd stochastic block-
model the embedding will be concentrated around distinct rays for each block.
This means that the overall magnitude of the embedded points is not as im-
portant for determining block membership as the direction of the points.

So, to cluster the vertices in a degree-corrected stochastic blockmodel one
should first project the embedded points onto the sphere (Qin and Rohe,
2013; Lyzinski et al, 2013). In the case of a two-dimensional embedding this
is equivalent to calculating the angle of the embedded points. To illustrate
the advantage of first projecting onto the sphere, we first compute the angles
for the embedded points in X and Y.

7.13.1) theta <- cbind(atan((blog_100$X[,2]) / (blog_100$X[,1])),
2) atan((blog_100$Y[,2]) / (blog_100$Y[,1])))
3) plot(theta,col=V(g)$LR,pch=V(g)$LR)

Clustering the angles from X alone yields an error of 4.3% as compared
to clustering directly on X which yields an error of 30.9%. This uses only
the “sending” portion of the embeddings and if we use both sending and
receiving we achieve an error of 2.9% by concatentating the angles into <2

while concatenating the embedded points into <4 yields an error 38.6%.

7.14.1) error <- function(x) {
2) k <- x %>%
3) kmeans(2) %>%
4) use_series("cluster")
5) min(mean(k == V(g)$LR), mean(k != V(g)$LR))
6) }
7) theta[,1] %>% error()
8) theta %>% error()
9) cbind(blog_100$X, blog_100$Y) %>% error()

We can conclude that the angular components of the embedding are lead-
ing to the most accurate clusterings, at least using k-means and the magni-
tude is confounding the true clustering. Additionally, the improved perfor-
mance using both embedding angles suggests that it may be best to work in
the joint space over working only with one embedding (the error rate clus-
tering the angles on Y alone is 3.3%). The idea of projecting onto the sphere
before clustering is similar to ideas from subspace clustering (Vidal, 2010).

Fig. 7.5 shows a scatter plot of the two angles for each pair of embedded
points. We see that the two classes cluster closely around two points and that
the angles are fairly well correlated (correlation= 0.938) suggesting that most
vertices have similar sending a receiving tendencies, at least after correcting
for degree.

Rohe and Yu (2012) suggests that sometimes we will be interested in ver-
tices that behave differently as “senders” than as “receivers”. To do this we
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Fig. 7.5 This shows the angles of the embedded points for the left singular vectors X,
representing “sending” behavior, on the horizontal axis and for the right singular vectors Y,
representing “receiving” behavior, on the vertical axis. Each point is colored according to
the political leaning of the blog, red triangles for Republican and blue circles for Democrat.

looked for vertices with a large positve angle for X, indicative of Democratic
“sending” behavior, and a large negative angle for Y indicative of Republican
“receiving” behaviors, by ordering the vertices according to the difference be-
tween the angles. We list the names of the first six vertices according to this
ordering.

7.15.1) lr_order <- order( -theta[,1] -theta[,2])
2) lr_top <- V(blog_core)[lr_order][1:6]
3) degree(blog_core, v = lr_top)

We find that most of these are low degree vertices, which is logical because
just a small change in the edges of low degree vertices can greatly change their
angle in the embedded space, but one of the vertices was drudgereport.com,
a new aggregator website that is often thought to be quite conservative. This
indicates that even though this vertex receives links mostly from conservative
blogs, many of the links it sends are to democratic blogs.

Finally, much of this analysis could have been done working with the
degrees or the edge counts to Democratic versus Republican blogs. However,
if the class labels were not known, then the spectral embedding provides a
quick visualization to verify that there are two clearly distinct groups and a
way to analyze the sending and receiving behavior seperately or together.
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7.1.5 Weighted case

As usual in igraph, if the graph has the edge attribute ‘weight’ then the above
methods operate on the weight matrix W where Wij = 0 if there is no edge
from vertex i to vertex j and otherwise Wij equals the weight of that edge.
The weighted Laplacian matrices are constructed in the same way except the
vertex degree is replaced by the graph strength, the sum of the weights of
edges incident to the vertex. Whether a graph has the weight edge attribute
or not, you can set the optional argument ‘weight’ to a vector equal to the
size of the graph.

The weighted version of spectral embeddings can be interpretted in ba-
sically the same way, however the weights add a confounding factor. If the
distribution of weights is heavy tailed then the large weights can heavily skew
the embedding. Embedded points may have a large magnitude because of a
few large weights rather than a high degree and visa versa a point may have
a small magnitude if it is very weakly adjacent to many vertices rather than
having a low degree. In the next example we briefly investigate the effects of
weightings on a graph derived from brain imaging data.

7.1.5.1 Diffusion Tensor MRI

Diffusion tensor MRI is a technique in magnetic resonance imaging that cap-
tures the large-scale structural connectivity of the brain (Gray et al, 2012).
The raw image data can be processed so that each voxel is associated with
a direction that can then be traced through the volume. These traces can
then be used to construct a graph. The weighted graph is then formed by
contracting the voxel-level graph to 70 disitinct rergions which are given by
the Desikan brain atlas.

The end result is an undirected graph with 70 vertices and 990 edges with
a total graph strength of over five million.

7.16.1) data(mri)
2) mri %>% summary()
3) mri %>% strength() %>% sum()
4) par(mfrow = c(1, 2))
5) E(g)$weight %>% density() %>% plot()
6) E(g)$weight %>% log() %>% density() %>% plot()

In the left panel of Fig. 7.6, we show a kernel density estimate of the edge
weights for all the vertices. Clearly this distribution is very heavy tailed with
weights ranging from one to 30469. We also plot the distribution of the log
of the weights in the right panel of Fig. 7.6 which does not exhibit the heavy
tailed nature of original weights.

7.17.1) X <- mri %>%
2) embed_adjacency_matrix(2) %>%
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Fig. 7.6 A kernel density estimate of the edge weights for the 990 edges in the DTRMI
graph.

3) use_series("X") %>%
4) correct_sign()
5) Xlog <- mri %>%
6) embed_adjacency_matrix(2, weights = log(E(g)$weight)) %>%
7) use_series("X") %>%
8) correct_sign()
9) Xuw <- mri %>%
10) embed_adjacency_matrix(2, weights = NA) %>%
11) use_series("X") %>%
12) correct_sign()

We investigate the impact of using weights in this context by comparing the
two dimensional adjacency spectral embeddings using the original weights,
the logarithm of the weights as well as an unweighted version by setting the
weights to one. The vertices in the graph are attributed as belonging to either
the left or right hemisphere and within each hemishphere they belong to one
of 35 regions which each are matched across hemispheres. A simple task is to
recover the left-right division based on the graph alone. The left hemisphere
vertices are shown as triangles and the right hemisphere vertices are shown
as circles.

Before plotting the embeddings we try to align them by doing a simple
sign correction. Fig. 7.7 shows the three embeddings and we see that for the
log-weights (center) and unweighted embedding (right) the two hemispheres
are linearly separable and can be relatively easily clustered. For the original
weights (left), the two hemisphers are somewhat more mixed up and exhibit
more of a degree-corrected behavior like the political blogs in Example 7.1.4.1.
Overall, the logarithmic transformation is strong enough to make it largely
similar to the unweighted version.
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Fig. 7.7 The adjacency spectral embedding for the DTMRI graph of Example 7.1.5.1
based on three different weighting. The left panel uses the original weights, the center
panel uses the log of the original weights and the right panel uses weights all equal to one.
The points are colored according to the region names which are matched across hemispheres
and the shapes represent the two hemispheres, circle for right hemisphere and triangle for
right hemisphere.

7.18.1) par(mfrow=c(1,3))
2) plot(X, col = V(g)$region.num, pch = (V(g)$lr == "r") + 1)
3) plot(Xlog, col = V(g)$region.num, pch = (V(g)$lr == "r") + 1)
4) plot(Xuw, col = V(g)$region.num, pch = (V(g)$lr == "r") + 1)

As we have seen, depending on how reliable or noisy the weights are, dif-
ferent weighting schemes will be advantagous. As with other options it will
also depend on the subsequent analysis that will be performed on the embed-
dings. Overall, for heavy tailed weight distributions simple transformations
or unweighting will often improve the spectral embedding properties.

7.2 Theory

Strong thoeretical results have been shown for these embeddings, which can
be viewed as the graph version of principal component analysis. For various
random graph models an assortment of probabilistic guarantees and asymp-
totic distributional results for spectral embeddings have been demonstrated.
To keep things simple we will focus on the adjacency spectral embedding and
the undirected random dot product graph model. This pair of embedding and
model are particularly suited for each other because of the simple analysis
of the singular value decomposition for a matrix of pairwise dot products,
known as a gram matrix. We leave out results for the Laplacian matrices
but we will refer the reader to the relevant literature for these results. In
general, which particular matrix is best for the problem at hand will depend
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on various factors. Currently there is limited research in comparing various
matrices though this is an area of continued interest.

When working with the adjacency spectral embedding from a theoreti-
cal perspective, a highly tractable model is the random dot product graph
(RDPG) model. We introduced the RDPG model in § 7.1.2 in the case of
fixed latent positions. Presently we change things slightly to introduce the
case with iid latent positions.

Definition 7.2 (iid RDPG, Scheinerman and Tucker (2010); Young

and Scheinerman (2007)). We will write A ∼ RDPG(n, F) if X1, . . . , Xn
iid
∼

F for some distribution F and conditioned on the Xis, A ∼ RDPG(X) where
X = [X1, . . . , Xn]

T . Note that we must enforce that F is supported on a set X
satisfying 0 ≤ 〈x, y〉 ≤ 1 for all x, y ∈ X .

Certain other random graph models can be reparametrized as an RDPG
and it will be convenient to consider this reparameterization. We now define
stochastic blockmodel in terms of the RDPG.

Definition 7.3 (SBM, Holland et al (1983)). We say an RDPG is a K-
block SBM if there are only K distinct latent positions, or if the support of
the distribution F has cardinality K. In either case, suppose ν1, . . . , νK are the
distinct latent positions. The K × K matrix B where Bij = 〈νi, νj〉 provides
the matrix probabilities for edges between each block in the more traditional
parameterization. The block membership vector τ ∈ [K]n is defined so that
τi = k if Xi = νk. The block sizes are given by ~n where ~nk is the number of
vertices in block k.

Note that not all stochastic block models can be parametrized in this way.
If an SBM is a d-dimensional RDPG, then we must have that B is positive
semidefinite and has rank d. If B is not positive semidefinite then there is
still a representation where the blocks are represented by K points in <rankB

but rather than edge probabilities being given by the dot product of these
positions, the probabilities will be given by a bilinear form. The theory herein
focuses on the case the proper RDPG case but can be extended to the bilinear
form setting.

7.2.1 Latent position estimation

One issue that must be confronted when studying the RDPG model is the
non-identifiability of the latent positions or their distribution. This non-
identifiability is due to the fact that the inner product that determines
the edge presence probabilities is invariant to orthogonal transformations
of its arguments. Practically, this non-identifiability is of minimal impact as
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many statistical procedures such as Gaussian mixture modelling, k-nearest-
neighbors, etc., will be invariant to orthogonal transformtions of the embed-
ding. However, when considering the estimation of the latent positions we
must contend with this issue.

Our assumptions on the distribution F in Theorems 7.1 and 7.2 below
ensure that the distribution F is identifiable at least up to sign changes.

Theorem 7.1 (Sussman et al (2013); Lyzinski et al (2013); Tang
et al (2014); Sussman (2014)). Suppose A ∼ RDPG(n, F) with iid latent
positions given by X = [X1, . . . , Xn]

T ∈ <n×d. Suppose the distribution F is
such that E[XiXTi ] is diagonal with distinct entries along the diagonal. Let
X̂ ∈ <n×d be the adjacency spectral embedding of A with the sign of each
column chosen as to best match X in terms of square error.

It holds that

‖X̂− X‖2→∞ = max
i
‖X̂i = Xi‖2 = OP(

√
log(n)/n) (7.2)

and

‖X̂− X‖F = OP(1). (7.3)

where OP denotes that there are constants, depending only on the eigenvalues
of the second moment matrix for F, such that the bounds hold up to the
constants with probability tending to one as n goes to ∞.

The main impact of this theorem are that it is possible to consistently
estimate the latent positions. Eq. 7.2 in particular ensures that all of the
latent positions can be estimated simultaneously at a rate not dramatically
worse than the typical parameter estimation accuracy of 1/

√
n.

Theorem 7.2 (Athreya et al (2013)). For each n ∈ N, let A(n) ∼

RDPG(X , F) with iid latent positions X(n)
1 , . . . , X

(n)
n

iid
∼ F.1 Suppose the dis-

tribution F satisfies the same assumptions as in Theorem 7.1 and denote the
second moment matrix by µ2 ∈ <d×d. Let X̂(n) = [X̂

(n)
1 , . . . , X̂

(n)
n ]T ∈ <n×d

be the adjacency spectral embedding of A(n) with the sign of each column
chosen so that maxi X̂ij > −mini ′ X̂i ′j for each j ∈ [d].

Letting X∗ ∼ F and suppressing the superscript (n) notation we have

√
n
(
X̂i· − Xi·

) L→ ∫
X
N (0, µ−12 E[xTX∗(1− xTX∗)X∗X∗T ]µ−12 )F(dx).

The integral denotes a F-weighted mixture over normal distributions each with
mean zero and with variance depending on the mixture component.

1 We assume the latent positions are i.i.d. for fixed n but we make no assumptions on the
relationship across n.





Chapter 8
Change-point detection in temporal
graphs

8.1 Introduction

In this chapter we deal with temporal graphs, graphs that change their struc-
ture over time by gaining and/or losing new edges and/or vertices. It is clear
that most real graphs belong to this category, and once we are able to collect
data for them from multiple time steps, we can make use of the fact that the
graphs are related and they (partially) share the same vertex set.

A very natural problem in temporal graphs is the detection of change
points, a point of time, when the structure of the graph changes qualitatively.
In this chapter we show a method, called scan statistics, for detecting unusu-
ally dense regions in a temporal graph. These regions often signify anomalous
activity in the modeled system.

Scan statistics (Wang et al (2014)) are commonly used in signal process-
ing to detect a local signal in an instantiation of some random field. The
idea is to scan over a small time or spatial window of the data and calcu-
late some locality statistic for each window. The maximum of these locality
statistics is known as the scan statistic. Large values of the scan statistic sug-
gest existence of nonhomogeneity, a local region in the graph with excessive
communications.

This chapter is structured as follows. First we generate a time series of
random graphs, generated from stochastic block models, and use this to mo-
tivate the scan statistics change point detection method. Then we show two
applications, the Enron email corpus, and the Bitcoin transaction network.

Some notation that we will use extensively in this chapter. For any u, v ∈
V(G), we write u ∼ v if there exists an edge between u and v in G. For v ∈ V ,
we denote by Nk[v;G] the set of vertices u at distance at most k from v,
i.e., Nk[v;G] = {u ∈ V : d(u, v) ≤ k}. For V ′ ⊂ V , Ω(V ′, G) is the subgraph
of G induced by V ′. Thus, Ω(Nk[v;G], G) is the subgraph of G induced by
vertices at distance at most k from v.

219
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8.2 A toy example: changing SBM

We create an artificial data set, a time series of 20 graphs, each sampled from
a stochastic block model (see Sec. ??. The block membership of the vertices
is fixed over time while the connectivity probability matrix P = Pt changes
in the last time step, i.e. Pt = P0 for t = 1, . . . , 19, and P20 = PA, where
P0 6= PA:

P0 =

[p p p
p h p

p p p

]
, PA =

[p p p
p h p

p p q

]
, (8.1)

the blocks contain [n1, n2, n3] = [16, 5, 5] vertics and [p, h, q] = [0.2, 0.5, 0.8].

8.1.1) library(igraph)

Loading required package: methods

Attaching package: ’igraph’

The following objects are masked from ’package:stats’:

decompose, spectrum

The following object is masked from ’package:base’:

union

13) library(magrittr)

Attaching package: ’magrittr’

The following object is masked from ’package:igraph’:

%>%

20) num_t <- 20
21) block_sizes <- c(10, 5, 5)
22) p_ij <- list(p = 0.1, h = 0.9, q = 0.9)
23)

24) P0 <- matrix(p_ij$p, 3, 3)
25) P0[2, 2] <- p_ij$h
26) PA <- P0
27) PA[3, 3] <- p_ij$q
28) num_v <- sum(block_sizes)
29)

30) tsg <- replicate(num_t - 1, P0, simplify = FALSE) %>% append(list(PA)) %>%
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31) lapply(sample_sbm, n = num_v, block.sizes = block_sizes,
32) directed = TRUE) %>%
33) lapply(set_vertex_attr, "name", value = LETTERS[seq_len(num_t)]) %>%
34) lapply(set_vertex_attr, "label", value = LETTERS[seq_len(num_t)]) %>%
35) lapply(set_vertex_attr, "color", value = rep(1:3, block_sizes)) %>%
36) lapply(set_edge_attr, "arrow.size", value = 0.3)
37)

38) tsg <- lapply(tsg, function(x) {
39) E(x)$color <- "grey"
40) E(x)[16:20 %--% 16:20]$color <- "red"
41) x
42) })
43)

44) tsg <- lapply(tsg, set_graph_attr, name = "layout",
45) value = layout_with_fr(tsg[[num_t]]))

Let’s plot in Fig. 8.1 the graphs at most recent four timestamps of tsg and
peek the existence of anomolous subgroup at change-point, that is, t = 20
whose excessive communication is new at the change-point.

8.4.1) par(mfrow = c(2,2))
2) tsg %>%
3) tail(n = 4) %>%
4) lapply(plot)

8.3 Two locality statistics

In this section we define two different but related locality statistics on the
temporal {Gt} graph.

Firstly, for a given t, let Ψt;k(v) be defined for all k ≥ 1 and v ∈ V by

Ψt;k(v) = |E(Ω(Nk(v;Gt);Gt))|. (8.2)

Ψt;k(v) counts the number of edges in the subgraph of Gt induced by
Nk(v;Gt), the set of vertices u at a distance at most k from v in Gt. In
a slight abuse of notation, we let Ψt;0(v) denote the degree of v in Gt. A sim-
ple toy example to illustrate calculations of Ψt;k(a) with varing k = 0, 1, 2, 3,
on an undirected graph is presented in Fig. 8.2. Ψt;k(v) is nicknamed the us
statistics.

To calculate {Ψt;k(v)}
|V |

v=1 over all vertices in our last graph in the time
series, which is a necessary intermediate step of computing scan statistics
introduced below, you can use the local_scan() igraph function: local_scan()

8.5.1) local_scan(tsg[[num_t]], k = 1, mode = ’all’)
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Fig. 8.1 Last four graphs from the time series of 20 SBM graphs, with a change point in
the last one at t = 20. V is partitioned into three blocks with 10, 5 and 5 vertices each,
vertices are colored according to their block membership. One block is a lot more dense in
the last time step than before.

A B C D E F G H I J K L M N O P Q R S T
9 2 4 7 5 2 6 3 14 12 29 24 26 39 30 39 27 26 23 22

Secondly, we introduce the other locality statistics Φt,t ′;k(v) (nicknamed
the them statistics) based on two graphs Gt and G ′t. Let t and t ′ be given,
with t ′ ≤ t. Now define Φt,t ′;k(v) for all k ≥ 1 and v ∈ V by

Φt,t ′;k(v) = |E(Ω(Nk(v;Gt);Gt ′))|. (8.3)

The statistic Φt,t ′;k(v) counts the number of edges in the subgraph of Gt ′
induced by Nk(v;Gt). Once again, with a slight abuse of notation, we let
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Example of Scan Statistics
|V| = 11, |E| = 15,  k(v; G) = |E(⌦(Nk[v; G]))|

a

b c

d e f

g h i jk

a

b cb c

d e f

g h k i j

k E(⌦(Nk[a; G]))  k(a)

0  2
1  + 3
2  + + 7
3  + + + 15

d  1  2  3

a 2 3 7 15
b 4 5 14 15
c 3 4 8 15
d 2 2 8 14
e 5 7 15 15
f 3 3 12 15
g 2 2 7 14
h 3 4 8 15
i 2 3 7 15
j 1 1 3 12
k 3 5 10 15

2 / 2
Fig. 8.2 A toy example to illustrate calculations of Ψt;k(a) with various k = 0, 1, 2, 3, on
an undirected graph. For simplicity, in this example, t is removed from all notations.

Φt,t ′;0(v) denote the degree of v in Gt∩Gt ′ , where G∩G ′ denotes the graph
(V(G), E(G) ∩ E(G ′)). The statistic Φt,t ′;k(v) uses the graph structure at
time t in its computation of the locality statistic at time t ′ ≤ t. Through this
measure, a local density shift of v can be captured even when the connectivity
level of v remains unchanged across time, i.e., when the Ψt stays mostly
constant as t changes in some interval: the density around the vertex does
not change, but the vertices that participate in it, do. With the purpose of
determining whether t is a change-point, two kinds of normalizations based
on past Ψ and Φ locality statistics and their corresponding normalized scan
statistics are introduced in the next section. Fig. 8.3 illustrates the differences
between our two locality statistics.

Given t, t ′, k, if we want to calculate {Φt,t ′;k}
|V |

v=1 over all vertices in a
graph, which is a necessary intermediate step of computing scan statistics
introduced below in § 8.4, local_scan() function in igraph also imple-
ments these calculations and outputs an |V |-dimensional vector representing
{Φt,t ′;k}(v) on each vertex v. In our previous setting t = 20, t ′ = 19, k = 1,
the all 20 locality statistics {Φt,t ′;k(v)}

′T ′

v= ′A ′ are

8.6.1) local_scan(tsg[[20]], tsg[[19]], k = 1, mode = ’all’)

A B C D E F G H I J K L M N O P Q R S T
6 0 0 1 0 1 2 2 9 4 18 18 17 24 20 16 6 6 5 2

Note that this time we specified two graphs, Gt and Gt ′ .
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k = 0 k = 1 k = 0 k = 1 k = 0 k = 1

S(t, ) 5 7 3 3 2 4
S(t,�) 5 7 2 4 3 3

1 / 1

Ψt∗−1;k(e) Ψt∗;k (e) Φt∗,t∗−1;k(e)

k = 0 3 5 2
k = 1 3 7 4
k = 2 5 5 9

Fig. 8.3 An example to differentiate the calculation of statistics (Ψt;k, Ψt ′;k and
Φt,t ′;k) with varing orders (k = 0, k = 1 or k = 2). In the right graph Gt∗ ,
note that the red edges are E(Ω(Nk=0[e;Gt∗ ], Gt∗ )); the red and blue edges are
E(Ω(Nk=1[e;Gt∗ ], Gt∗ )); the red, blue and green edges are E(Ω(Nk=2[e;Gt∗ ], Gt∗ )).
For instance, the magenta-marked number 3 is Ψt∗−1;0 where Ψt∗−1;0(e) =
|E(Ω(N0(e;Gt∗−1);Gt∗−1))| and E(Ω(N0(e;Gt∗−1);Gt∗−1)) = {e ∼ c, e ∼ f, e ∼ i}
in Gt∗−1; the orange-marked number 4 is Φt∗,t∗−1;1(e) where Φt∗,t∗−1;1(e) =
|E(Ω(N1(e;Gt∗ );Gt∗−1))| and E(Ω(N1(e;Gt∗ );Gt∗−1)) = {h ∼ k, b ∼ h, e ∼ i, e ∼ f}
in Gt∗−1.

8.4 Temporally normalized scan statistics

We define now our final test statistics, based on Ψ (or Φ), Sτ,`,k(t;Ψ) (or
Sτ,`,k(t;Φ)). In practice, the final test statistic measures the presence of a
dense community. To detect changes in the time series of graphs, one needs
to calculate this measure in each time step. An unusually large value of the
measure implies the emergence of an anomalous community in the graph.

Let Jt,t ′;k be either the locality statistic Ψt,t ′;k or Φt,t ′;k. For a given
integer τ ≥ 0 and v ∈ V, we define the vertex-dependent normalization
J̃t,τ;k(v) of Jt,t ′;k(v) by

J̃t;τ,k(v) =


Jt,t;k(v) τ = 0

Jt,t;k(v) − µ̂t;τ,k(v) τ = 1

(Jt,t;k(v) − µ̂t;τ,k(v))/σ̂t;τ,k τ > 1

, (8.4)
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where µ̂t;τ,k is the mean activity around vertex v over the previous τ time
steps, and σ̂t;τ,k is the sample standard deviation:

µ̂t;τ,k(v) =
1

τ

τ∑
s=1

Jt,t−s;k(v), (8.5)

σ̂t;τ,k(v) =

√√√√ 1

τ− 1

τ∑
s=1

(Jt,t−s;k(v) − µ̂t;τ,k(v))
2. (8.6)

We then consider the maximum of these vertex-dependent normalizations
for all v ∈ V, i.e., we define a Mτ,k(t) by

Mτ,k(t) = max
v
J̃t,τ;k(v). (8.7)

We shall refer to Mτ,0(t) as the standardized max-degree and to Mτ,1 as
the standardized scan statistics. From Eq. (8.4), we see that the motivation
behind vertex-dependent normalization is to standardize the scales of the
raw locality statistics Jt,t ′;k(v). Otherwise, in Eq. (8.7), a noiseless vertex
in the past who has dramatically increasing communications at the current
time would be inconspicuous because there might exist a talkative vertex who
keeps an even higher but unchanged communication level throughout time.
Finally, for a given integer l ≥ 0, we define the temporal normalization of
Mτ,k(t) by

Sτ,`,k(t) =


Mτ,k(t) ` = 0

Mτ,k(t) − µ̃τ,`,k(t) ` = 1

(Mτ,k(t) − µ̃τ,`,k(t))/σ̃τ,`,k(t) ` > 1

, (8.8)

where µ̃τ,`,k and σ̃τ,`,k are defined as

µ̃τ,`,k(t) =
1

`

∑̀
s=1

Mτ,k(t− s), (8.9)

σ̃τ,`,k(t) =

√√√√ 1

`− 1

∑̀
s=1

(Mτ,k(t− s) − µ̃τ,`,k(t))2. (8.10)

The motivation behind temporal normalization, based on recent ` time
steps, is to perform smoothing for the statistics Mτ,k. This is similar to how
smoothing is performed in time series analysis. We denote by Sτ,`,k(t;Ψ) and
Sτ,`,k(t;Φ) the Sτ,`,k(t) when the underlying statistic Jt,t ′;k is Ψt ′;k and
Φt,t ′;k, respectively.

In the following, we return to our toy time series, and try to find the
artificial anomaly in time step 20. The function scan_stat() uses local_ scan_stat()
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scan() to calculate the chosen locality statistics at each time step of the
time series, and the vertex and temporal normalizations as well.

8.7.1) scan_stat(graphs = tsg, k = 1, tau = 3, ell = 3)

$stat
[1] NA NA NA NA
[5] NA NA -0.60000000 1.52841698
[9] -1.67757505 0.61039045 -1.32542478 -0.06757374
[13] 1.52752523 0.64257593 0.13748270 -4.03561201
[17] -0.68889305 0.23448415 2.00000000 12.74315781

$arg_max_v
[1] NA NA NA NA NA NA 5 20 17 2 8 19 6 1 16 3 9 5 19
[20] 20

The output contains the normalized scan statistics for each time steps.
By default it is ‘NA’ for the first τ + ` time steps, because these are not
properly normalized (because of the lack of enough previous time steps). It
also contains the central vertices for which the largest (normalized) locality
statistics was observed in each time step.

It is clear that the scan statistics is by far the largest in the last time step.
The result also correctly points to vertex number 20, which is part of the
block with increased activity.

We can also use Φ, the them statistics:

8.8.1) scan_stat(graph = tsg, locality = "them", k = 1, tau = 3, ell = 3)

$stat
[1] NA NA NA NA
[5] NA NA 0.72108555 0.08544336
[9] -1.62258927 -1.42362758 1.32299184 1.14064686
[13] 2.02072594 -0.22222222 -0.33333333 -2.38939398
[17] -1.30457724 -0.55109123 0.68606606 17.14886066

$arg_max_v
[1] NA NA NA NA NA NA 10 20 18 3 8 19 19 1 16 15 5 11 5
[20] 20

This gives similar results, with vertex number 20 being the center of the
increased activity in time step 20.

A more comprehensive analysis would consider larger neighborhoods of
the vertices.

8.9.1) library(ggplot2)
2) tsg_scan <- function(k, locality) {
3) tau <- 4
4) ell <- 3
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Fig. 8.4 Sτ,`,k(t;Ψ) and Sτ,`,k(t;Φ), the temporally-normalized standardized scan
statistics using τ = 4, ` = 3, in time series of graphs for k = 0, 1, 2.

5) scan_stat(tsg, tau = tau, ell = ell, k = k, locality = locality,
6) mode = "all") %>%
7) .$stat %>%
8) na.omit() %>%
9) data.frame() %>%
10) cbind(seq(tau + ell + 1, 20)) %>%
11) set_names(c("Scan statistics", "Time"))
12) }
13)

14) pars <- expand.grid(k = 0:2, locality = c("them", "us"))
15) tsg_scan_results <- plyr::mdply(pars, tsg_scan)
16)

17) sd3 <- function(x) sd(x) * 3
18) ggplot(tsg_scan_results, aes(x = Time, y = ‘Scan statistics‘)) +
19) facet_wrap(˜ locality + k, nrow = 2) +
20) geom_line(aes(linetype = locality)) +
21) geom_point(aes(shape = locality)) +
22) scale_x_continuous(breaks = scales::pretty_breaks()) +
23) ylim(range(tsg_scan_results$‘Scan statistics‘))

Figure 8.4 depicts Sτ,`,k(t;Ψ) and Sτ,`,k(t;Φ), the temporally-normalized
standardized scan statistics for various k = {0, 1, 2} using τ = 4, ` = 3. The
horizontal dashed line indicates 3 standard deviation. According to different
scenarios, the criterion of anomaly alert is determined by the observer. The
higer deviation in terms of number of standard deviations is selected, the
lower false postive rate can be achieved; the lower deviation is selected, the
higher true positive rate can be achieved. In this example, both Sτ,`,k(t;Ψ)
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and Sτ,`,k(t;Φ) detect the anomaly (t = 20) with k = 1, 2, only Sτ,`,k(t;Φ)
detects it with k = 0.

8.5 The Enron email corpus

We use the Enron email data used in Priebe et al (2005) for this experiment.
It consists of time series of graphs {Gt} with |V | = 184 vertices for 189 weeks.
An (v,w) edge of a graph means that vertex v sent at least one email to
vertex w during that one week period. We remove multiple and loop edges
from the graphs.

8.10.1) data(enron)
2) enron <- lapply(enron, simplify)

We calculate Sτ,`,k(t;Ψ) and Sτ,`,k(t;Φ). We choose both τ = ` = 20,
suggested in Priebe et al (2005).

8.11.1) scan_enron <- scan_stat(enron, k = 2, tau = 20, ell = 20,
2) locality = ’Phi’, mode = ’out’)

Figure ?? depicts Sτ,`,k(t;Ψ) and Sτ,`,k(t;Φ) in the remaining 149 weeks
from August 1999 to June 2002. As indicated in Priebe et al (2005), detections
are defined as weeks t such that Sτ,`,k > 5. Figure ?? we have following
observations.

• Both the them (Φ) statistics (for k = 0, 1, 2) and the us (Ψ) statistics (for
k = 0, 1) indicate a clear anomaly at t∗ = 58, in December 1999. This
coincides with Enron’s tentative sham energy deal with Merrill Lynch to
meet profit expectations and to boost the stock price Galasyn (2010).
The center of suspicious community, employee v154 is identified by all five
statistics.

• Both them (k = 0) and us (k = 0, 1, 2) capture an anomaly at t∗ = 146,
in mid-August 2001. This is the period that Enron CEO Skilling made a
resignation announcement when the company was surrounded by public
criticisms shown in Galasyn (2010). The center of this activity is v95.

• The us statistics detects an anomaly at t∗ = 132 in late April 2001, un-
detected by them: employee v90’s second-order neighborhood contains 116
emails at t∗ = 132 but no emails in the previous 20 weeks. In Galasyn
(2010), this event appears after the Enron quaterly conference call in
which Wall street analyst Richard Grubman questioned Skilling on the
company’s refusal on releasing a balance sheet, and then got insulted by
Skilling.

• The them statistics shows a detection at employee v135 at t∗ = 136, June
2001. According to Galasyn (2010), this corresponds to the formal notice
of closure and termination of Enron’s single largest foreign investment, the
Dabhol Power Company in India.
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Note that while in some cases both statistics capture the same events, this
is not always the case.





Chapter 9
Clustering Multiple Graphs – an NMF
approach

9.1 The Graph Clustering Problem

A collection of weighted graphs on n vertices often arises as a “histogram” of
interaction events between n actors in terms of their interaction frequencies
observed over periods of time. In particular, for each t = 1, . . . , T , the (i, j)th
entry Gij,t of Gt encodes the number of times that person i and person j
interacted during tth period. This section considers a problem of grouping
multiple graphs into few clusters. To give a more precise description of a
“graph clustering” problem, consider (κ(1), G1), . . . , (κ(T), GT ) be an (inde-
pendent) sequence of pairs of a class label κ(t) and a (potentially weighted)
graph Gt on n vertices. We assume that the class label κ(t) takes values in
{1, . . . , K} and also that given κ(t) = k, each Gt is a random graph on n
vertices whose distribution depends only on the value of k.

9.2 Theory : NMF, ARI, AIC – what is this?

In non-negative matrix factorization, we begin with a matrix, A ∈ Rn×T
and seek to approximate A by the product of two non-negative matrices
W ∈ Rn×r and H ∈ Rr×T , where r is the rank of the approximation. There
are several choices of loss-function that determine the strength of the approx-
imation, and each gives rise to a different factorization. Common choices are
divergence:

D(A ‖WH) =
∑
i,j

Ai,j log
(
Ai,j

WHi,j

)
−Ai,j +WHi,j (9.1)

and squared loss:
‖A−WH‖2F, (9.2)

231
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where
‖B‖2F =

∑
i,j

B2i,j. (9.3)

Note that the divergence equals the Kullback-Liebler divergence when A and
WH are doubly stochastic.

Actual minimization of the loss functions can be difficult for various rea-
sons. In the squared loss, the objective is non-convex and has non-unique
minimizers. Further, since the problems have constraints which are generally
active at the solution, the constraints must be considered while performing
the optimization. Lee and Seung propose multiplicative update rules based on
the steepest descent direction with a step-size chosen to allow for multiplica-
tive updates that are guaranteed to result in a non-increasing loss function
value. This ensures that if a non-negative factorization was chosen initially,
the non-negativity constraints would automatically be met ?. Another popu-
lar update rule is "Alternating Least Squares," where the squared loss prob-
lem is solved in W and H in alternating steps. These solutions are easy to
obtain by standard least-squares procedures ?.

The attractiveness of non-negative factorization can be seen in the ap-
plications, where we are able to give an interpretation of W (basis) and H
(weights). Here, we present a simple example, where we form a matrix by
taking its columns to be the weighted sum of basis vectors.

Here we use the R package "NMF" ? to showcase how to use non-negative
factorization on a toy problem. First, we build a matrix by drawing its
columns from one of two distributions:

9.1.1) basis <- matrix( c(1,2,3,4, 4,3,2,1),4,2)
2) A <- matrix(0,4,3)
3) A[,1] <- .9*basis[,1]+.1*basis[,2]
4) A[,2] <- .5*basis[,1]+.5*basis[,2]
5) A[,3] <- .1*basis[,1]+.9*basis[,2]

Next, we apply NMF to it and note the near-zero error:

9.2.1) library(’NMF’)

Loading required package: methods
Loading required package: pkgmaker
Loading required package: registry

Attaching package: ’pkgmaker’

The following object is masked from ’package:base’:

isNamespaceLoaded

Loading required package: rngtools
Loading required package: cluster
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Warning: replacing previous import by ’ggplot2::unit’ when loading ’NMF’

Warning: replacing previous import by ’ggplot2::arrow’ when loading ’NMF’

NMF - BioConductor layer [OK] | Shared memory capabilities [NO: bigmemory] | Cores 3/4
To enable shared memory capabilities, try: install.extras(’

NMF
’)

20) theNmf <- nmf(A, rank=2,method = ’lee’)
21) sum(abs(basis(theNmf) %*% coef(theNmf) - A))

[1] 1.168296e-08

Here we introduce a measure for similarity between clusterings, the ad-
justed rand index (ARI) ?. Basically, the ARI is calculated by summing up
the number of agreements between two clusterings (when pairs of objects
are co-clustered in both or are not co-clustered in both) and subtracting off
the expected number of agreements if the two clusterings were formed using
a generalized hypergeometric distribution and are drawn with fixed number
of clusters and cluster sizes. Finally, we divide by the total number of pairs
minus the same expected number. The ARI is at most 1, indicating a perfect
matching between clusterings. When a clustering is compared to the truth,
an ARI value of 0 indicates that the clustering is no better than chance.

Using our confusion matrix above, we calculate the ARI between the truth
and the baseline:

ARI =

(
9
2

)
+
(
10
2

)
−
(
2
(
10
2

)
(
(
9
2

)
+
(
11
2

)
)
)
/
(
20
2

)

1
2

(
2
(
10
2

)
+
(
9
2

)
+
(
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2

))
−
(
2
(
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2

)
(
(
9
2

)
+
(
11
2

)
)
)
/
(
20
2

) ≈ 0.80

Our model selection information criteria is defined as follows:

AICc = Negative Log Likelihood+ Penalty Term,

where the likelihood is specified by Poisson densities and the penalty term
is specified by quantities that grows with the number of parameters. More
specifically,

-loglike =

T∑
t=1

∑
ij

(Xij,t/Nt) log(Xij,t/Nt) (9.4)

penalty =

r∑
k=1

1

N̂k


∑

ij

1{Ŵij,k > 0}− 1


 . (9.5)

We make some observation of the penalty term. First, for a graph that is
“under-sampled” (i.e., Nt is small), it is difficult for it to be a “stand-alone
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motif” graph. Next, a set of motifs such that Ŵ·,k1 and Ŵ·,k2 share “many”
common support is not favored.

9.3 Examples

9.3.1 Wikipedia in English and French

A tensor is a mathematical term for a multi-way array. For instance, a 3-way
array, i.e. X = (Xijk), is a tensor, and in particular, a sequence of adjacency
matrices has a natural tensor representation. More explicitly, for a pair of
graphs, say, F = (Fij) and E = (Eij) on n vertices, one can associate it with
the tensor X, where for k = 1, Xij1 = Fij and for k = 2, Xij2 = Eij. Then, the
mode ` matrization of the tensor is a matrix version M of the tensor, where
the `th column of M is a vectorization of the matrix obtained by fixing the
`th index to be a particular value.

For example, let us consider a problem of deciding if two matrices F and
E are similar or not, where n vertices are a page in the Wikipedia and Fij
and Eij indicate whether or not page i and page j are linked. In the listing
below, FrWiki and EnWiki corresponds, respectively, to F and E in our text,
and henceforth, we take F and E to be as such.

9.4.1) data(wiki_en)
2) data(wiki_fr)
3) library(abind)
4) X <- abind(wiki_fr,wiki_en,along=3)
5) M <- cbind(as.vector(wiki_fr),as.vector(wiki_en))

Wikipedia is an open-source Encyclopedia that is written by a large com-
munity of users (everyone who wants to, basically). There are versions in over
200 languages, with various amounts of content. The full data for Wikipedia
are freely available for download. A Wikipedia document has one or more of:
title, unique ID number, text – the content of the document, images, internal
links – links to other Wikipedia documents, external links – links to other
content elsewhere on the web, and language links – links to ‘the same’ docu-
ment in other languages. The multilingual Wikipedia provide a good testbed
for developing methods for analysis of text, translation, and fusion of text
and graph information.

Naturally, there are plenty of similarities between E and F since the con-
nectivity between a pair of pages is driven by the relationship between topics
on the pages. Nevertheless, E and F are different, i.e., ‖E− F‖2F > 0, since the
pages in Wikipedia are grown “organically”, i.e., there is no explicit coordi-
nation between English Wikipedia community and French Wikipedia com-
munity that try to enforce the similarity between E and F. To answer the



9.3 Examples 235

question, we fit the model using the inner dimension to be 1 and then 2 using
gclust.rsvt, and then compute their information criteria using getAICc:

9.5.1) gfit1 <- gclust.rsvt(M,1)
2) gfit2 <- gclust.rsvt(M,2)
3) gic1 <- getAICc(gfit1)
4) gic2 <- getAICc(gfit2)

The numerical results relevant to answering our decision problem are re-
ported in Table 9.1. In particular, because the AIC value gic1 for r = 1 is
lower than the AIC value gic2 for r = 2, our analysis suggests that E and F
have the same connectivity structure.

Now, it is fair to ask the meaning of the claim that E and F have the same
connectivity structure. This is very much connected with the formulation of
getAICc, and without going into the full details, we will say that E and F are
the same provided that for each i and j,

E[Eij|s(E)]
s(E)

=
E[Fij|s(F)]
s(F)

, (9.6)

where s(E) and s(F) denotes the total edge weight of E and F respectively,
i.e., s(E) = 1>E1 and s(F) = 1>F1. Alternatively, the equality in (9.6) can
be restated as a hypothetical question about the probability, conditioning
that a new link is formed, of the link being from page i to page j, and about
whether or not the probability being the same for English Wikipedia and
French Wikipedia.

A notable consequence of our framework for comparing two graphs is that
even for the case where s(E) is much bigger that s(F), our analysis framework
still permit us to conclude that E and F are the same. In words, if we have
concluded that E and F are different, then one could say that not only that
the cross-reference intensity in two language is different but also that the
connectivity structure is different in two languages. In our earlier example,
since r = 1 is more favorable, one can say that (despite the fact that s(E) >
s(F)), E and F have the same connectivity structure.

Table 9.1 Are French and English Wikigraphs similar? The answer using gclust.rsvt
provides an evidence supporting the conclusion Yes.

nclust negloglik penalty AIC

1 43.05 1.525 44.58
2 41.65 4 45.65
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9.3.2 Wearable RFID Sensors

Fig. 9.1 Wearable Sensor Data as a 12×16 matrix, i.e., M12>. Each row of M12> for each
of the twelve periods, and each column of M12> for each entry of 4× 4 matrix.

Fig. 9.2 Wearable Sensor Data as a 4 × 16 matrix, i.e., M4>. The tth row of M4> corre-
sponds to the aggregation of the rows from the (1 + 3 × (t − 1))th row to 3 × tth row of
M4>. For example, the first row of M4> corresponds to the first three rows of M12>

Wearable RFID sensors are used to detect close-range interactions between
individuals in the geriatric unit of a university hospital. The study involves 46
health care workers and 29 patients over the span of 4 days and 4 nights (from
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Monday through Thursday). It is reported there that “the contact patterns
were qualitatively similar from one day to the next”, and in this example, we
reexamine this statement through our procedure.

For simplicity, individuals were grouped in four classes according to their
role in the ward: patients (PAT), medical doctors (physicians and interns,
MED), paramedical staff (nurses and nurses’ aides, NUR) and administrative
staff (ADM). As such, the data naturally lends itself to a block structured
graph.

Using the vertex contraction that groups the actors by their role (i.e., PAT,
ADM, MED, NUR), we construct a collection of 4 × 4 weighted adjacency
matrices. Dividing the entire duration to four intervals (i.e., by day), we
arrive at a collection of four weighted adjacency matrices, each accounting
for a 24-hour period.

From Figure 9.2, we make some observations that help us clustering of four
graphs. First, only during the first day, NUR and MED interaction rate is
high. Only during the third and fourth days, there is zero incident of PAT de-
tecting MED. All four days, NUR->NUR interaction remains intense. Except
on the first day, NUR-PAT interaction remains intense. These observations
suggest that there are three clusters, where each of the first and the second
graph constitute its own cluster, and the third and four graphs form the third
cluster.

9.6.1) data(RFIDsensors)
2) M4 <- sapply(RFIDsensors[[1]], as.vector)
3) gic1 <- getAICc(gclust.rsvt(M4,1))
4) gic2 <- getAICc(gclust.rsvt(M4,2))
5) gic3 <- getAICc(gclust.rsvt(M4,3))
6) gic4 <- getAICc(gclust.rsvt(M4,4))

As shown in Table 9.2, the value of gic3 is the smallest among the four
possible choices, and four and twelve respectively (c.f. and Table 9.3). The
general conclusion that one can draw from this observations is that there
does not seem to exist any recurring pattern.

Table 9.2 Does the contact pattern differ from day to day?

d̂ NegLogLik Penalty AICc

1 18.1841 0.0010 18.1851
2 17.7843 0.0042 17.7885
3 17.6532 0.0095 17.6627
4 17.6720 0.0168 17.6887

9.7.1) M12 <- sapply(RFIDsensors[[2]],as.vector)
2) gfit.M4 <- gclust(M4,3)
3) gfit.M12 <- gclust(M12,3)
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Table 9.3 Does the contact pattern changes every eight hours? (Top four choices)

d̂ NegLogLik Penalty AICc

9 48.46202 0.1018 48.56385
10 48.51386 0.1386 48.65249
11 48.23954 0.1526 48.39221
12 48.10388 0.1876 48.29151

4) matplot(t(gfit.M4$H), type=’b’,cex=c(’A’,’B’,’C’))
5) matplot(t(gfit.M12$H),type=’b’,cex=c(’a’,’b’,’c’,’d’))

One can ask how the 12 period analysis compares with the 4 period version.
For this, one can force on a 12 period the three motif clustering, and search
therein for a pattern consistent with the result from 4 period analysis. As
reported in Table 9.4, the two clustering is consistent with each other. In
summary, the suggested conclusion is that the only pair that has the similar
interaction pattern is the Wednesday-Thursday and Thursday-Friday pair,
and this is indicated by ‘C’ appearing twice in Table 9.4. While the 12 period
analysis yields the best clustering is each graph being its own cluster, the
best 3 clustering of the 12 graphs shows that C is represented by the sequence
(a,b,a).

Table 9.4 How do fitting a three-cluster model on the daily version and on the 8-hour
version correspond to each other? The letters A, B and C code three clusters for the daily
version and the letters a, b and c code three clusters for the 8-hour version.

Num. of Graphs Day 1 Day 2 Day 3 Day 4

4 A B C C
12 (c,c,a) (a,a,a) (a,b,a) (a,b,a)

9.3.3 C. elegans’ chemical and electric pathways

Consider graphs based on n neurons, where each edge weight is associated
with the functional connectivity between neurons. The area of studying such a
graph for further expanding our knowledge of biology is called “connectome”.
In this section, we introduce such graphs, first being the chemical path way
connectivity, and the second being the functional path way connectivity, and
consider how we can answer a simple connectom question using gclust and
getAICc.

9.8.1) load(’celegan’)
2) AeAc <- sapply(list(Ac,Ae) ,as.vector)
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3) AeAc.gic1 <- getAICc(gclust.rsvt(AeAc,1,method=’lee’))
4) AeAc.gic2 <- getAICc(gclust.rsvt(AeAc,2,method=’lee’))
5)

6) vcmat <- t(apply(diag(9),2,rep,times=c(rep(30,8),39)))
7) Ae.vc <- vcmat %*% Ae %*% t(vcmat)
8) Ac.vc <- vcmat %*% Ac %*% t(vcmat)
9) AeAc.vc <- sapply(list(Ae.vc,Ac.vc),as.vector)
10)

11) AeAc.vc.gic1 <- getAICc(gclust.rsvt(AeAc,1,method=’lee’))
12) AeAc.vc.gic2 <- getAICc(gclust.rsvt(AeAc,2,method=’lee’))

The AIC values for d̂ = 1 and d̂ = 2 are respectively 30.12 and 33.31,
whence this leads us to a suggestion that the connectivity structure of Ae and
Ag could be the same (up to some random noise). A more careful statement
of this can be stated as follows:

E[(Ae)ij] = E[(Ac)ij] for each pair ij. (9.7)

A way to cross-check the claim that d̂ = 1 is to utilize the concept of
vertex contraction that we have seen earlier. The main idea is simple, and
we motivate the main idea by way of a overly simplified example. Consider
two vectors p and q of positive integers. Then, if p and q are identical, then
1>p = 1>q. On the other hand, even if p and q are different, it is possible
that 1>p = 1>q, e.g., consider

p =

(
1

2

)
and q =

(
2

1

)
. (9.8)

In other words, if µe = E[Ae] and µc := E[Ac] are the same, then it follows
that for any matrix Q,

QµcQ
> = QµeQ

> (9.9)

9.9.1) Q <- t(apply(diag(9),2,rep,times=c(rep(30,8),39)))
2) Ae.vc <- Q %*% Ae %*% t(Q)
3) Ac.vc <- Q %*% Ac %*% t(Q)
4) AeAc.vc <- sapply(list(Ae.vc,Ac.vc),as.vector)

In Listing ??, the same vertex contraction is performed on both Ae and
Ac, where the vertex contraction matrix Q is such that each of the first eight
groups of thirty vertices is aggregated (collapsed) to a single vertex, and for
the last thirty-nine vertices is aggregated to a single vertex. Performing our
procedure to the collapsed graphs yields that the AIC values for d̂ = 1 and
d̂ = 2 are 15.84 and 15.61, suggesting that there is two patterns. Performing
a Monte Carlo experiment using 100 random choices for such partitions, we
obtain Table
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Table 9.5 Monte Carlo experiments involving 100 random vertex contraction

d̂ 1 2

Frequency 3 97

Next, let us consider two alternative vertex contraction “policies” coded in
Listing ?? and Listing ??. In Listing ??, 279 neurons are collapsed according
to their types, yielding 3 vertices and our procedure in this case suggests d̂ =
2. This is consistent with the random vertex contraction results’ suggestion
that the chemical pathways and electric pathways are sufficiently different
with respect to their connectivity structures.

On the other hand, in Listing ??, 279 neurons are aggregated/collapsed
according to their types, yielding 52 vertices, and our procedure in this case
suggests d̂ = 1. However, our “more-intense” vertex contraction suggests that
the “hypothesis” that d̂ = 1 can not hold true. Note that this does not says
that the information criteria mistakenly has chosen d̂ = 1. Rather, the choice
made by getAICc says that given the amount of data that we have, the most
frugal way to represent the data is to use a single mean in the spirit of the
principle known in a machine learning community as the bias-variance trade-
off. Roughly speaking, in our particular case, for n = 279, it amounts to a
saying that even if µe and µa are different, with the amount of data given, it
is not frugal to model both with the same mean matrix. On the other hand,
upon vertex contraction to a much smaller matrices, i.e., each entry in the
matrices has a bigger number, such is no longer a hindrance to making a
precise decision.

9.10.1) n.types <- data.Celegans$Types
2) n.types.unique <- unique(n.types)
3) Q <- matrix(0,52,278)
4) for(itr in 1:3) Q[itr,which(n.types==n.types.unique[itr])] <- 1
5) Ae.Q <- Q %*% Ae %*% t(Q)
6) Ac.Q <- Q %*% Ac %*% t(Q)
7) AeAc.Q <- sapply(list(Ae.Q,Ac.Q),as.vector)
8) AeAc.Q.gic <- foreach(itr=1:2,.combine=’rbind’) %do% getAICc(gclust.rsvt(AeAc.Q,itr,method=’lee’))

9.11.1) n.Vcols = data.Celegans$Vcols
2) n.Vcols.unique = unique(n.Vcols)
3) Q = matrix(0,3,278)
4) for(itr in 1:3) Q[itr,which(n.Vcols==n.Vcols.unique[itr])] = 1
5) Ae.Q = Q %*% Ae %*% t(Q)
6) Ac.Q = Q %*% Ac %*% t(Q)
7) AeAc.Q = sapply(list(Ae.Q,Ac.Q),as.vector)
8) AeAc.Q.gic = foreach(itr=1:2,.combine=’rbind’) %do% getAICc(gclust.rsvt(AeAc.Q,itr,method=’lee’))
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9.3.4 Simulation experiment motivated by real data

We now consider a biologically motivated simulation example, with model
parameters extracted from Izhikevich & Edelman (2008). This example is
significantly simplified from the (necessarily incompletely understood) biol-
ogy; nonetheless, it is (loosely) based on biological understanding and serves
as a challenging illustrative test case.

We consider a sequence of (random) graphs from a stochastic block model
with two motifs specified by B

(1)
and B

(2)
, where

B
(1)

:=




0.1 0.045 0.015 0.19 0.001

0.045 0.05 0.035 0.14 0.03

0.015 0.035 0.08 0.105 0.04

0.19 0.14 0.105 0.29 0.13

0.001 0.03 0.04 0.13 0.09



, (9.10)

B
(2)

:=




0.19 0.14 0.29 0.105 0.13

0.001 0.03 0.13 0.04 0.09

0.015 0.035 0.105 0.080 0.04

0.045 0.05 0.14 0.035 0.03

0.1 0.045 0.19 0.015 0.001



. (9.11)

Note in particular that B
(2)

is obtained by B
(1)

by permuting the rows of
B
(1)

and then permuting the columns of B
(1)

.

9.12.1) B1 <- rbind(
2) c(.1, .045, .015, .19, .001),
3) c(.045, .05, .035, .14, .03),
4) c(.015, .035, .08, .105, .04),
5) c(.19, .14, .105, .29, .13),
6) c(.001, .03, .04, .13, .09))
7) P1<- t(matrix(c(
8) 0,0,0,1,0,
9) 0,0,0,0,1,
10) 0,0,1,0,0,
11) 0,1,0,0,0,
12) 1,0,0,0,0),5,5))
13) P2<- t(matrix(c(
14) 1,0,0,0,0,
15) 0,1,0,0,0,
16) 0,0,0,1,0,
17) 0,0,1,0,0,
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18) 0,0,0,0,1),5,5))
19) B2 <- P1 %*% B1 %*% P2

Then, for each t = 1, . . . , 10, we take G(t) ∼ SBM(B(κ(t)), ν) where for
each ij, if κ(t) = r, then Gij(t) is a Poisson random variable with its success
probability B(r)

v(i),v(j), where ν : {1, . . . , 100} → {1, . . . , 5} and the cardinality
of {k : ν(t) = k} is 20 for each k = 1, . . . , 5.

In short, we have T = 10 graphs, each of them has n = 100 vertices and
follows a 5-block model. There are m = 20 vertices in each block. We are
using B

(1)
to generate the first 5 graphs while we are using B

(2)
to gener-

ate the rest 5 graphs. Moreover, note that the sequence {N(t)}Tt=1 form an
i.i.d. sequence of random variables. where N(t) := 1>G(t)1. In other words,
there are no class-differentiating signal in the edge weights. As such, the only
class-differentiating signal present is from the structural difference between
B
(1)

and B
(2)

.

9.13.1) W <- cbind(as.vector(B1),as.vector(B2))
2) H <- rbind(
3) rep((c(0,1)),times=c(5,5)),
4) rep((c(1,0)),times=c(5,5)))
5) X0 <- apply(W %*% H,2,function(x) Matrix(x,5,5))
6) Mvec <- lapply(X0,
7) function(x) retval <- apply(x,2,rep,times=rep(20,5)) retval <- apply(retval,1,rep,times=rep(20,5)))
8) Mvec <- sapply(Mvec,as.vector)
9) Xvec <- apply(Mvec,c(1,2),function(x) rpois(1,x))

In Table 9.6. we report the AICc values for performing clustering on a
sequence of graphs whose expected values are

(B
(1)
, . . . , B

(1)
, B

(2)
, . . . , B

(2)
).

From the result, we can see that with repeated SVT steps (i.e., gclust.rsvt),
we obtain the correct number of clusters, namely, 2. But without any SVT
step (i.e., gclust.app), the algorithm’s choice rank 6 is far away from the true
rank. So we can conclude that the SVT step improves the model selection
performance by getAICc.

Table 9.6 AIC for unperturbed B
(k)

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6

gclust.rsvt 169.34 167.16 171.72 176.77 184.00 191.99
gclust.app 169.36 163.25 161.23 158.60 156.59 155.21

By perturbing the B
(k)

to become sparser or denser. we compare the per-
formance of the algorithm with SVT and without SVT. For each ε, we write
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B(k)(ε) = (εB
(k)

)∧ 11>,

where ∧ denote the operation that takes component-wise minimum. Note
that it remains that B(2)(ε) can be derived from B(1)(ε) by permutations.
We use the parameter ε to control the sparsity of the matrix while keeping
the overall structure of B . When ε approaches 0, B(1)(ε) is close to a zero
matrix; when ε is large enough, B(1)(ε) approaches J. In both cases, the dif-
ference between B(1)(ε) and B(2)(ε) are decreasing, which means the matrix
is transforming from rank-2 to rank-1.

From Figure 9.3, we can see that no matter the matrix becomes sparser
or denser, the algorithm with SVT always gives us the true rank except
for the extreme case. The algorithm with SVT successfully captures this
transformation. As to the algorithm without SVT, we can see that it performs
as good as the one with SVT. But when the matrix becomes sparser, it
performs consistently bad and do not capture the transformation of the rank.

For another perturbation scheme using

B(k)(ε) = (B
(k)

+ ε11>)∧ 11>,

one can also see, from Figure 9.4, that a similar pattern persists.

Fig. 9.3 AIC for (εB)∧
(
11>

)
as ε changes
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Fig. 9.4 AIC for (εB+ ε11>)∧
(
11>

)
as ε changes

We will consider the following clustering procedure as the baseline: Form
the matrix Λ with Λij = ‖G(i) − G(j)‖F. Use function pamk from the fpc
package on Λ and allow it to consider between 2 and min(maxRank,m −
1) clusters. With our SBM parameters Bκ(t) specified in 9.10 and 9.11, we
generate T = 20 graphs, with κ(t) = 1 for t = 1, 2, . . . , 9, and κ(t) = 2 for
t = 10, 11, 12, . . . , 20. That is, the first nine graphs are from cluster 1 and the
rest are from cluster 2. We let m = 10, so that n = 50.

9.14.1) mcout.pamk
2) <- foreach(mcitr=1:100,.combine=’rbind’) %dopar% Xvec.r = Xvec100.r.tmp[[mcitr]] diss = dist(t(Xvec.r)) sim.cl.pamk = pamk(diss,krange=1:9,diss=TRUE) rbind(pamk=sim.cl.pamk$pamobject$clustering)
3) mcout.pamk.meanari <- mean(apply(mcout.pamk,1,
4) function(x) adjustedRandIndex(x,c(rep(1,5),rep(2,5)))))

9.15.1) mcout.gclust <-
2) foreach(mcitr=1:100,
3) .combine=’rbind’,
4) .errorhandling=’remove’,
5) .inorder=FALSE) %dopar% Xvec.r = Matrix(Xvec100.r.tmp[[mcitr]]) aic.rsvt = foreach(x=1:3, .combine=’rbind’, .errorhandling=’remove’, .inorder=FALSE) %dopar% getAICc.dev(gclust.rsvt(Xvec.r, x, method=’lee’)) opt.mod = which.min(aic.rsvt[,4]) gout = gclust.rsvt(Xvec.r,aic.rsvt[opt.mod,1]) rbind(gclust = apply(gout$H,2,which.max))
6) mcout.gclust.meanari <- mean(apply(mcout.gclust,1,
7) function(x) adjustedRandIndex(x,c(rep(1,5),rep(2,5)))))
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For one realization of the data, we see that gclust outperforms the baseline,
as gclust correctly clusters all graphs and the baseline clusters one graph
incorrectly. Both methods correctly identified 2 clusters.

Table 9.7 Confusion matrices for gclust and baseline

True Cluster 1 True Cluster 2

gclust Cluster 1 9 0

gclust Cluster 2 0 11

True Cluster 1 True Cluster 2

pamk Cluster 1 9 1

pamk Cluster 2 0 10
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Fig. 9.5 Performance Comparison Between Two Clustering Approaches

After repeating the above experiment 1000 times, we obtain a range of
ARI values for each method. We’ve summarized them using a boxplot as
shown below. Basically, gclust never has a sub-perfect ARI, while the baseline
method sometimes does. After repeating the above experiment 1000 times,
we obtain a range of ARI values for each method.
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9.3.5 Simulated experiment with an configuration
antagonistic to “lee” and “brunet” options

In this example, we illustrate a typical situation under which (getAICc o
gclust) does not perform well, and provide a heuristic that sometime remedy
the situation.

9.16.1) nvertex <- 10
2) maxT <- 10
3) distr <- c(rep(10,maxT/2),rep(10,maxT/2))
4) A <- foreach(itr=1:maxT,.combine=’cbind’) %do% rpois(nvertexˆ2,lambda=distr[itr])
5) gic <- foreach(itr=1:10,.combine=’rbind’) %do% getAICc(gclust.rsvt(A,itr,method=’lee’))

9.17.1) betagrid <- seq(0,1,by=0.25)
2) gic <- foreach(beta=betagrid) %do% foreach(itr=1:10),.combine=’rbind’) %do% retval = gclust.rsvt(Alist, itr, nmfmethod=’pe-nmf’, alpha=0, beta=theta); retval = getAICc(retval)
3) sapply(gic,function(x) which.min(x[,4]))

The reason that Listing ?? pose a significant challenge to (getAICc o
gclust) is that although G(t)/s(G(t)) yields a consistent estimate of its ex-
pected value E[G(t)|s(G(t))]/s(G(t)), the first half has a significantly larger
variance than the last half.

We now return to our first example using Wikipedia data.

9.18.1) vcpol <- c(rep(33,10),34,
2) rep(25,10),11,rep(18,10), 11,
3) rep(19,10), 12,
4) rep(19,10),19,
5) rep(9,10),6)
6)

7) vcmat <- t(apply(diag(length(mybrks)),2,rep,times=vcpol));
8) rWikiFr <- vcmat %*% WikiFr %*% t(vcmat)
9) rWikiEn <- vcmat %*% WikiEn %*% t(vcmat)
10)

11) tWikiEn<- vector(’list’,6)
12) indx <- 1
13) for(itr in seq(1,66,by=11)) LHS <- itr;RHS = itr + 10; tWikiEn[[indx]] <- rWikiEn[LHS:RHS,LHS:RHS] indx <- indx + 1
14)

15) tWikiFr <- vector(’list’,6)
16) indx <- 1
17) for(itr in seq(1,66,by=11)) LHS <- itr;RHS = itr + 10; tWikiFr[[indx]] <- tWikiFr[LHS:RHS,LHS:RHS] indx <- indx + 1
18) tWiki <- c(tWikiEn,tWikiFr)
19)

20) aic.rsvt <- t(sapply(1:12,
21) function(x) getAICc(gdclust.rsvt(tWikiFr,x))));
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Table 9.8 Cluster assignment based on taking d̂ = 6 for clustering 12 Wikigraphs shows
the perfect agreement – based on 6× 6 graphs.

– People Places Dates Things Math Categories

English Wikipages ∗ + × • � ◦
French Wikipages ∗ + × • � ◦

Table 9.9 Are French and English Wikigraphs similar? The answer using gclust.app is
No.

nclust negloglik penalty AIC

1 43.11 1.525 44.63
2 41.65 4 45.65

9.3.6 Shooting patterns of NBA players

To find out 9 NBA player’s shooting patterns using statistical learning meth-
ods( especially Non-Negative Matrix Factorization) with R.

Paper “Factorized Point Process Intensities: A Spatial Analysis of Pro-
fessional Basketball"(Harvard University) Data Explanation: Our simulation
data is based on raw data about made and missed field goal attempt loca-
tions from roughly half of the games in the 2012-2013 NBA regular seasons.
These data were collected by optical sensors as part of a program to intro-
duce spatio-temporal information to basketball analytics. We discretize the
basketball court into V tiles and compute X such that Xn,v = {xn,i : xn,i ∈ v},
the number of shots by player n in tile v. The following table (See Table 9.10)
is the data used in this paper:

Table 9.10 Multinomial probability for 9 NBA players’ shooting location

Player Tile 1 Tile 2 Tile 3 Tile 4 Tile 5 Tile 6 Tile 7 Tile 8 Tile 9 Tile 10

LeBron James 0.21 0.16 0.12 0.09 0.04 0.07 0.00 0.07 0.08 0.17
Brook Lopez 0.06 0.27 0.43 0.09 0.01 0.03 0.08 0.03 0.00 0.01

Tyson Chandler 0.26 0.65 0.03 0.00 0.01 0.02 0.01 0.01 0.02 0.01
Marc Gasol 0.19 0.02 0.17 0.01 0.33 0.25 0.00 0.01 0.00 0.03
Tony Parker 0.12 0.22 0.17 0.07 0.21 0.07 0.08 0.06 0.00 0.00
Kyrie Irving 0.13 0.10 0.09 0.13 0.16 0.02 0.13 0.00 0.10 0.14

Stephen Curry 0.08 0.03 0.07 0.01 0.10 0.08 0.22 0.05 0.10 0.24
James Harden 0.34 0.00 0.11 0.00 0.03 0.02 0.13 0.00 0.11 0.26
Steve Novak 0.00 0.01 0.00 0.02 0.00 0.00 0.01 0.27 0.35 0.34

There are 9 players and 10 patterns in the data set. Each cell xij in this
table represents the probability of ith player shooting in tile j.For instance,
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see row “Tony Parker" column “Tile 3", the number 0.17 means that there is
a 0.17 possibility that Tony Parker shoots in Tile 3.

Procedures After introducing background knowledge, we discuss how we
can use the techniques above to research NBA players’ shooting patterns.

9.3.6.1 How to get “mydata"

Notation: Let xij represents the number of shoots for ith player in jth tile.
Assumptions: Assuming that the number of shoots follows a multinomial
distribution. We have a probability vector of each player and the total number
of shoots each player tried, we can get the following data set (See Table 9.11)
by parametric bootstrap method.

Table 9.11 Number of Shoots

Pattern LeBron Brook Tyson Marc Tony Kyrie Stephen James Steve

1 147 27 165 138 55 108 52 306 0
2 10 146 373 19 89 79 15 0 8
3 92 221 16 109 69 69 31 110 0
4 51 47 0 4 30 104 14 0 17
5 22 3 4 268 76 134 71 24 0
6 62 9 16 198 27 21 38 25 0
7 0 32 5 0 33 98 130 136 6
8 46 12 0 10 21 0 16 0 200
9 45 0 13 0 0 69 60 100 232
10 125 3 8 24 0 118 121 199 217



Chapter 10
Cliques and Graphlets

10.1 Cliques

A clique is a subset of vertices, such that its induced subgraph is the complete
graph. In other words, a clique is a set of vertices in which each pair of
vertices is connected. Cliques are very important in graph theory and also in
applications, as they constitute the basis of many more complex notions.

Often, Somewhat imprecisely the induced subgraph of the clique vertices
is also called a clique.

10.1.1 Maximal cliques

A clique is called maximal if it is not part of a larger clique. Note, that a
graph may have several maximal cliques of different sizes.

The origanization of cliques in a graph tells us about its structure. Take
the US airport network for example. This network dissortative with respect to
vertex degree: most edges connect high degree vertices to low degree vertices.
In other words, the majority of flights happen between big airline hubs and
small regional airports, and the rest of the flights between the hubs, but there
are not too many flights between small airports. We expect that this structure
is also reflected in the cliques, and the large cliques contain the big airport
hubs. The clique_num() function calculates the size of the largest clique in clique_num()
the graph.

10.1.1) library(igraphdata)
2) data(USairports)
3) u_air <- as.undirected(USairports, mode = "collapse") %>%
4) simplify()
5) clique_num(u_air)

[1] 27

249
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7) lc_air <- largest_cliques(u_air)
8) length(lc_air)

[1] 40

Note that we convert the graph to to undirected. Most research on cliques
deals with undirected graphs, although directed cliques can be defined as
well. The airport network contains 40 cliques of 27 vertices each. Lets see if
these are indeed the airline hubs. First we calculate the airports that are part
of all largest clique. Then we compare the degree of these vertices to the rest
of the network.

10.3.1) lc_air_common <- do.call(intersection, lc_air)
2) lc_air_common

+ 21/755 vertices, named, from 5d3f7f9:
[1] ATL ORD DTW CLT MCO PHL MSP DEN BWI IAH DFW CLE EWR CVG
[15] LAS DCA FLL TPA PHX MEM STL

6) lc_air_common %>%
7) degree(graph = u_air) %>%
8) summary()

Min. 1st Qu. Median Mean 3rd Qu. Max.
64.0 76.0 103.0 107.4 134.0 166.0

11) difference(V(u_air), lc_air_common) %>%
12) degree(graph = u_air) %>%
13) summary()

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 2.000 4.000 9.523 10.000 109.000

Indeed, 21 airports are common in all largest cliques, and their degrees are
much higher in general than for the rest of the network.

Finding cliques in a graph is in general a hard problem, most variations of
its are NP-complete or require exponential running time, in non-constrained
graphs:

• Finding whether there is a clique of a given size in the graph.
• Consequently, finding all cliques of a graph.
• Listing all maximal cliques of a graph has exponential running time, as

there might be exponential number of cliques.

Despite this, there is an abundance of clique finding algorithms, and many
of them in real networks, simply because real networks tend not to have very
large cliques.
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10.2 Clique percolation

The clique percolation method (Palla et al, 2005) was one of the first overlap- clique percolation
methodping community detection methods published in the literature. The method

is able to detect overlapping communities where a set of vertices is shared
between two and more communities. The algorithm may also find outlier
vertices, i.e. vertices that are not likely to belong to any of the detected outlier vertices
communities.

Unlike the methods discussed so far, the clique percolation method op-
erates with a very clear community definition. Each community is built of
k-cliques: subgraphs of size k where each vertex is connected to all the other
vertices within the subgraph. Two k-cliques are said to be adjacent if they
share k − 1 vertices, and a k-clique is reachable from another k-clique if one
of the cliques can be transformed to the other via a path of pairwise adjacent
cliques. A community is then a maximal set of k-cliques that are mutually
reachable from each other. Overlaps may then naturally arise between the
communities since a vertex may be a member of two or more cliques that
are not reachable from each other. One can also think about the process as
follows. Imagine that a k-clique “template” is placed over one of the k-cliques
of the original network. The template is then rolled over the network. In
each step, the only allowed move is to replace exactly one of the vertices in
the template with another one such that the new subgraph still remains a
k-clique. The set of vertices reachable from each other via this rolling pro-
cess is considered a community. The procedure has to be repeated for all the
k-cliques in order to find the whole set of communities. Fig. ?? shows an
example graph and the communities found by the clique percolation method
on this graph with k = 4.

The method has only one parameter: k, the size of the clique template that
is rolled over the network. k acts as a resolution parameter as lower values of
k result in many communities with a smaller number of internal links, while
higher values of k find only a small set of densely knit subgraphs. The special
case of k = 2 finds the connected components of the graph, just like we did
with breadth first search using the clusters() method in Section 2.6.

The implementation of the method works with the k-clique reachability
graph. In this graph, each vertex represents a clique of the original graph, and
two vertices are connected by an edge if the corresponding two k-cliques are
adjacent. This graph can be very large even for small (but relatively dense)
input graphs. However, it is easy to recognize that it is enough to work with
the maximal cliques of the graph instead of finding all the k-cliques. A max-
imal clique is a clique that can not be extended any further by adding more maximal clique
vertices. Each subgraph of k vertices in a maximal clique is a k-clique on its
own. Furthermore, since each k-clique in a maximal clique is reachable from
any other k-clique in the same maximal clique, and two maximal cliques are
reachable via a path of k-cliques if they share at least k − 1 vertices, the
reachability graph over the maximal cliques provides exactly the same in-
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formation for us as the k-clique reachability graph while being significantly
smaller: a maximal clique of n vertices contains

(
n
k

)
k-cliques, thus we man-

aged to replace
(
n
k

)
vertices of the k-clique reachability graph by a single

vertex in the maximal clique reachability graph. The connected components
of the maximal clique reachability graph then give us the communities of the
original graph.

igraph does not implement the clique percolation method natively, but a
simple but efficient implementation can be provided in only a few lines of
code:

10.6.1) cluster_clique_percolation <- function(graph, k = 3) clq <- max_cliques(graph, min = k) if (length(clq) < 2) return(clq) edges <- c() for (i in seq_along(clq)) for (j in seq_along(clq)) common <- intersect(clq[[i]], clq[[j]]) if (length(common) >= k - 1) edges <- c(edges, c(i, j)) clq_graph <- make_undirected_graph(edges) %>% simplify() names(clq) <- V(clq_graph)$name <- V(clq_graph) %>% as.character() comps <- decompose(clq_graph) lapply(comps, function(x) v <- clq[ V(x)$name ] %>% unlist() %>% unique() V(graph)[v] )

The code is mostly self-explanatory. First we find the maximal cliques
of the original graph using the maximal_cliques() function and filter them
to the ones containing at least k vertices (where k is the parameter of the
function). Then we iterate over all pairs of cliques and record the adjacent
pairs in an edge list. This list is then passed on to the make_undirected_
graph() constructor to create the maximal clique reachability graph. Then
this graph is decomposed into connected components. The final communities
are then determined by taking the union of all the vertices in the cliques of the
corresponding cluster in the maximal clique reachability graph. The method
returns a list of the communities, each community is a vertex sequence.

To test our implementation, we will try to reproduce the scientific com-
munities of Giorgio Parisi, a well-known theoretical physicist who is known
to have contributed to different areas of physics. Such a versatile scientist is
well expected to appear in multiple scientific communities. The data we will
use is a scientific co-authorship network derived from the Los Alamos Con-
densed Matter e-print archive by Newman (2004), last updated in 2005. This
is almost the same as the dataset used by Palla et al (2005) in the publication
describing the clique percolation method, with only minor differences. The
dataset is available in the Nexus network dataset repository, therefore we will
simply ask igraph to retrieve the data from Nexus:

10.7.1) cond_mat <- nexus.get("condmatcollab2005")

Following Palla et al (2005), we first remove edges with unknown weight,
and edges with weight not larger than 0.75 and then run the clique percolation
method with k = 4. This will take some time, so be patient:

10.8.1) cond_mat <- delete_edges(cond_mat, E(cond_mat)[is.na(weight)])
2) cond_mat <- delete_edges(cond_mat, E(cond_mat)[weight <= 0.75])
3) cover <- cluster_clique_percolation(cond_mat, k = 4)

Finally, we list the names of the vertices in those communities that contain
Giorgio Parisi:

10.9.1) drop_null <- function(x) x [! vapply(x, is.null, TRUE) ]
2) lapply(cover, function(x)
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3) if (V(cond_mat)[’PARISI, G’] %in% x) x else NULL) %>%
4) drop_null()

[[1]]
+ 5/40421 vertices, named, from 82f1983:
[1] LEUZZI, L PARISI, G CRISANTI, A RITORT, F RIZZO, T

[[2]]
+ 13/40421 vertices, named, from 82f1983:
[1] TARANCON, A MARTIN-MAYOR, V RUIZ-LORENZO, JJ
[4] FERNANDEZ, LA FRANZ, S PARISI, G
[7] RITORT, F MARINARI, E RICCI-TERSENGHI, F
[10] PAGNANI, A PICCO, M SUDUPE, AM
[13] BALLESTEROS, HG

[[3]]
+ 4/40421 vertices, named, from 82f1983:
[1] LANCASTER, D PARISI, G RITORT, F DEAN, DS

[[4]]
+ 4/40421 vertices, named, from 82f1983:
[1] VERROCCHIO, P PARISI, G GRIGERA, TS
[4] MARTIN-MAYOR, V

[[5]]
+ 6/40421 vertices, named, from 82f1983:
[1] ANGELANI, L LEONARDO, RD SCIORTINO, F RUOCCO, G
[5] SCALA, A PARISI, G

[[6]]
+ 4/40421 vertices, named, from 82f1983:
[1] GIARDINA, I CAVAGNA, A GRIGERA, TS PARISI, G

This is almost identical to the ones obtained by Palla et al (2005), with
the exceptions of Jorge Kurchan and Leticia F. Cugliandolo who are missing
from our results. We can easily confirm that this is due to the absence of
edges between them and Giorgio Parisi in our data:

10.10.1) cond_mat["KURCHAN, J", "PARISI, G"]

[1] 0

3) cond_mat["CUGLIANDOLO, LF", "PARISI, G"]

[1] 0
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10.3 Graphlets

In this Section we briefly discuss “graphlet decomposition”, a method that
expresses a graph as the sum of its overlapping subgraphs. Graphlet decom-
position can be considered as a community detection method, we discuss it
here, because its natural implementation relies on finding the maximal cliques
of the graph.

As an introductory example, consider a graph of actors, where connections
are formed based on common memberships in groups. Take all students at a
university. Each class can be considered as a group, the attending students its
members. But several other groups exist: the students who live at a certain
dormitory, or the ones that are members of the same sports team, etc. In
the graphlet model two students (nodes) that are members of at least one
common group are socially connected. The strengths of the connections de-
pend on the groups: some groups are small and tight, with strong conenctions
(the squash team with only 10 members), others are bigger and tipically less
strongly connected (all 400 students that took the Statistics 101 course this
year). It is also true, that group size and connection size is not necessarily
correlated, a larger group might be more tight than a smaller one, and the
graphlet model allows for this.

In this model, each group is a clique in the graph, and it is assigned a
weight, the stregth of the ties between the members of the group. A pair of
actors might be connecteed via several groups; the weight of a single edge is
the sum of the weights of all common groups of the two actors it connects.
E.g. if Alice and Bob are both members of the squash team, and both took
the introductory statistics course, but have no other common groups, the
weight of their edge is µsquash + µstats101.

The graphlet decomposition of a matrix Λ with non-negative entries λij
is defined as Λ = BWB ′, where B is an N × K binary matrix, W is a K × K
diagonal matrix. Explicitly, we have




0 λ12 . . . λ1N

λ21 0 . . . λ2N
...

...
. . .

...
λN1 λN2 . . . 0




= B




µ1 0 . . . 0

0 µ2 . . . 0
...

...
. . . 0

0 0 . . . µK



B ′, (10.1)

where µi > 0 is required for each i.
The matrix B defines the groups of the network: each b·i column is a

binary group membership vector, especially shown if we rewrite the matrix
equation in the form

Λ =

K∑
i=1

µiPi =

K∑
i=1

µi(b·ib
′
·i)
∗. (10.2)
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Pi is a binary matrix, with zero diagonal. The ()∗ operator sets the diagonal
of the matrix to zero.

The graphlet decomposition method takes an observed (integer) weighted
network, and infers the latent groups of the network, together with the group
weights. We model the observed network Y as

Y ∼ Poission+(
K∑
i=1

µiPi). (10.3)

Note that the Pi = (b·ib ′·i)
∗ basis elements correspond to cliques of the

network. In other words, all connections within a group share the same group
weight, as we already mentioned above.

10.3.1 The algorithm

The graphlet decomposition algorithm (as implemented in igraph), works
for graphs with integer edge weights. It first creates a candidate set of basis
elements (i.e. a candidate set of groups), by a simple iterative maximal clique
finder algorithm. Then selects a subset of this basis, via an Expectation-
Maximization (EM) algorithm, and also finds the µi group coefficients. The
weights of several canditate basis elements are set to zero.

In igraph the two steps can be performed indiviadually, via the graphlet_
basis() and graphlet_proj() functions. It is also possible to run both steps
in one go, with the graphlets() function. We show the method on a small
toy graph first.

10.12.1) toyg <- make_graph(˜ A:B:E [2], B:C:D:E [1], C:D:E [3]) %>%
2) add_layout_(in_circle(c(’A’,’B’,’C’,’D’,’E’))) %>%
3) set_edge_(label = E(.)$weight)
4) plot(toyg)
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This artificial graph is the union of three cliques. Each clique has a different
edge weight. The first clique includes vertices A, B and C and has edge weights
2, the second clique has vertices B, V, D, E and has edge weights 1, the third
clique has vertices C, D and E, and has edge weights 3. The union of them has
edge weights between 1 and 4.

10.13.1) toy_basis <- graphlet_basis(toyg)
2) toy_basis

$cliques
$cliques[[1]]
[1] 1 2 3

$cliques[[2]]
[1] 2 3 4 5

$cliques[[3]]
[1] 2 3
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$cliques[[4]]
[1] 3 4 5

$thresholds
[1] 2 1 3 4

In the first stage of the graphlet algorithm, we go over all different edge
weight values, and find maximum cliques where each edge has at least the
target edge weight. We only consider each clique only once. Here are the
cliques that we can find:

• For weight 4, we find C-D-E.
• For weight 3, we find B-E (C-D-E is not considered again).
• For weight 2, we find A-B-E.
• For weight 1, we find B-C-D-D.

In this artificial example, all three real groups of the graph are part of the
candidate basis set and there is also an extra clique.

In the projection step, the EM algorithm aims to find the group weights
that are most probable for the original graph, assuming the Poisson model.

10.14.1) toy_glet <- graphlet_proj(toyg, cliques = toy_basis$cliques)
2) toy_glet

[1] 9.255426e-01 8.614780e-01 2.908813e-253 1.138422e+00

10.3.1.1 Consistency of B̂c as a Generalized Method of Moments
Estimator

In this section we propose an continuous almost everywhere function which
imitates the process in algorithm (??) and illustrate that the estimator B̂c is
a GMM estimator for Bc. Then we will show that considering regimes that
guaranties consistency of overall estimator for Poisson rates Λ̂ = Y we will
have the consistency of B̂c.

Generalized Method of Moments(GMM): Generalized method of
moments has been define as following:

Definition 1 suppose we have data generated from a model as P(Y|Θ) and
there exists a vector valued function g(Y,Θ) such that:

E{g(Y,Θ)} = 0 (10.4)

Then solving equation g(D, θ) = 0 provides a GMM estimator for the param-
eter θ.
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Algorithm (??) as a GMM: We can consider the algorithm (??) as GMM
method using the following definition.

Definition 2 Given a matrix X with positive elements, the thresholding func-
tion f(t, X) : (R,M)→ B is:

f(t, X) = maximalcliques(1(X ≥ t)) (10.5)

Where the cliques are represented as an N×K binary matrix and sorted with
a unique order (e.g. a Lexicographical order ).

Lemma 1 Function f(t, X) is almost continuous on (t, X) for a lebesgue mea-
sure on t.

Definition 3 Given a matrix Y with positive elements, the thresholding func-
tion g(t, Y,Λ) : (R,R,M, Λ)→ B is defined as:

g(t̂, Y, t, Λ) = f(t̂, Ȳ) − f(t, Λ̄) (10.6)

Where Ȳ = Y∑
ij Yij

and Λ̄ = Λ∑
ijΛij

.

Lemma 2 we consider a set of thresholds {t1, t2, .., tT } and {t̂1, t̂2, .., t̂T }

which are all distinct elements in matrix Λ̄ and Ȳ respectively, and T < N2

2
.

For the g(., ., ., .) in the above definition we have:

E{g(t̂i, Y, ti, Λ)} = 0 (10.7)

E{∪i g(t̂i, Y, ti, Λ)} = 0 (10.8)

Considering generation of Bc from algorithm (??), for non expandable set of
basis, we have:

∪if(ti, Λ̄) = Bc

Using the above lemma we can define a GMM estimator for Bc as following:

B̂c = ∪if(t̂i, Ȳ) (10.9)

This estimator is the output of the algorithm (??).
Asymptotic behavior of GMM estimator for B̂c:

Theorem 1 For a sequence of matrices Y1, ..., Yn, ... converges in probability
to Λ, which is parameterized by a nonexpandable set B, and threshold levels
t̂1i , .., t̂

n
i , ... with an existing limit, for the almost continuous function f(., .)

we have:

• limn→∞ f(t̂ni , Ȳn)→P f(limn→∞ t̂ni , limn→∞ Ȳn) = f(ti, Λ̄).
• limn→∞ B̂cn = ∪if(limn→∞ t̂ni , limn→∞ Ȳn) = ∪if(ti, Λ̄) = Bc
If we have an asymptotic regime in which Ȳn →P Λ̄ and tni →P ti, then we
have consistency of the model for Bcs under the same regime.
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For the case of truncated Poisson the following asymptotic regime will
provide the convergence of Ȳn →P Λ̄:
• to put the final regime.

10.3.1.2 Consistency of Maximum Likelihood Estimator for ~µ
given true Bc

The proposed model for data is truncated Poisson, however, by conditioning
the data on Bc we ignore the zero weights and hence we have Poisson likeli-
hood for the weights on edges corresponding to Bcs. This is a direct result of
the following lemma.

Lemma 3 We have B ⊆ Bc and The edges in Bc are equal to the edges in B
meaning Edges(Bc) = Edgest(B).

µls can be found using the ML approach as follows:

−→µml = max
−→µ l(−→µ |Y, Bc) (10.10)

Lemma 4 The two following optimizations are equivalent:

• Maximizing likelihood function:

max
−→µ l(−→µ |Y, Bc)

• Minimizing Kl divergence with a constraint:

min
µ
D(Y/M‖

∑
l

µlPl/M)

with the constraint
∑
l µlal =M.

We are interested in the behavior of the likelihood function for the observed
data in comparison to the likelihood function for the perfect data (expected
value of the data points).

l(−→µ |Y, Bc) = −
∑
l

µlal +
∑
ij

Yij ln
∑
l

µlPl,i,j

l̄(−→µ |Bc) = −
∑
l

µlal +
∑
ij

λij ln
∑
l

µlPl,i,j

And considering the maximum likelihood estimation for µ we have:
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l(µ̂|Y, Bc) = −
∑
l

µ̂lal +
∑
ij

Yij ln
∑
l

µ̂lPl,i,j = −
∑
l

µ̂lal −MD(Y/M‖
∑
l

µ̂lPl) +
∑
ij

Yij ln Yij/M

l̄(µ̄|Bc) = −
∑
l

µ̄lal +
∑
ij

λij ln
∑
l

µ̄lPl,i,j

Hence, the difference of the two likelihoods will be:

l(µ̂|Y, Bc) − l̄(µ̄|Bc) = −
∑
l

(µ̂l − µ̄l)al −MD(Y/M‖
∑
l

µ̂lPl) +
∑
ij

Yij ln Yij/M−
∑
ij

λij ln
∑
l

µ̄lPl,i,j

= −[M− E{M}] −MD(Y/M‖
∑
l

µ̂lPl) +MD(Y/M‖µ̄lPl) + X− E{X}

= −[M− M̄] + X− E{X}−MD(Y/M‖
∑
l

µ̂lPl) +MD(Y/M‖µ̄lPl)

Where X =
∑
ij Yij ln

∑
l µ̄lPl,i,j and M =

∑
l µ̂lal.

Lemma 5 For the estimator µ̂ defined in lemma 4. we have:

|l(µ̂|Y, Bc) − l̄(µ̄|Bc)| ≤ |M− M̄|+ |X− E{X}|+M D(Y/M‖µ̄lPl)

Proof. Because µ̂ is the I-projection of Y/M on the space of µ, then we have
the following inequality.

D(Y/M‖
∑
l

µ̂lPl) ≤ D(Y/M‖µ̄lPl)

Which gives us:

0 ≤ D(Y/M‖µ̄lPl) −D(Y/M‖
∑
l

µ̂lPl) ≤ D(Y/M‖µ̄lPl)

Then:

|l(µ̂|Y, Bc) − l̄(µ̄|Bc)| ≤ |M− M̄|+ |X− E{X}|+M D(Y/M‖µ̄lPl)

Here we will bound each of the components in the right hand side of above
inequality.

Lemma 6 Using the generalized Chernoff bound we have:

Pr(max
B

[M− M̄] > M̄δ) ≤ eNK ln 2(
eδ

(1+ δ)(1+δ)
)M̄

Pr(max
B

[M− M̄] < M̄δ) ≤ eNK ln 2e−M̄δ
2/2
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And if NK = o(M) thenM−M̄ = o(M̄), meaning M̄ = O(M) andM−M̄ =
o(M).

Lemma 7 We have c1M̄ < E{X} < c2M̄ and using the generalized Chernoff
bound we have:

Pr(max
B

[X− E{X}] > c1M̄δ) ≤ eNK ln 2(
eδ

(1+ δ)(1+δ)
)c1M̄

Pr(max
B

[X− E{X}] < c2M̄δ) ≤ eNK ln 2e−c1M̄δ
2/2

And if NK = o(M) then X− E{X} = o(M̄) = o(M).

Lemma 8 Size of the space of possible ~̂µs is
(
M+k ′−1
k ′−1

)
. However this can

be bounded by considering the structure of the sets by simply counting the
number of solutions to the equation z1 + .. + zK ≥M where zi is the size of
set i and zi ≤M. Hence,

|Z| ≤MK −

(
M+ K− 1

K

)

Lemma 9 Using method of types and Lemma 8 we have:

Pr(max
B

[M D(Y/M‖µ̄lPl)] > Mδ) ≤ eNK ln 2
(
M+ k ′ − 1
k ′ − 1

)
e−Mδ

≤ eNK ln 2[MK −

(
M+ K− 1

K

)
]e−Mδ ≤ eNK ln 2eK ln(M)−Mδ

And if K lnM+NK = o(M) then D(Y/M‖µ̄lPl) = o(1).

Theorem 2 Combining the three lemmas 7, 6 and 9 above for the regime
M = NK1+ε and ε > 0 is fixed we have NK = o(M) and M = o(2N) we
have:

max
B

|l(µ̂|Y, Bc) − l̄(µ̄|Bc)| = o(M)

Which provides consistency of maximum likelihood estimator for ~µ given Bc.

Theorem 3 For the regimes in which Theorem 2 holds(e.g. M = (NK)1+ε),
we have:

• B̂c → Bc is consistent using the theorem 1.
• (µM|Bc)→ (µ|Bc) is consistent for every choice of true B.

Which can result in consistency of (B̂, µ̂).
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10.3.2 Accuracy with less than K basis elements

The main estimation Algorithm ?? recovers the correct number of basis ele-
ments K and the corresponding coefficients µ and basis matrix B, whenever
the true weighted network Y is generated from a non expandable basis matrix.
Here we quantify the expected loss in reconstruction accuracy if we were to
use K̃ < K basis elements to reconstruct Y. To this end we introduce a norm
for a network Y, and related metrics.

Definition 4 (τ-norm) Let Y ∼ Poisson(BWB ′), whereW = diag(µ1 . . . µK).
Define the statistics ak ≡

∑N
i=1 Bik for k = 1 . . . K. The τ-norm of Y is de-

fined as τ(Y) ≡ |
∑K
k=1 µkak|.

Consider an approximation Ỹ = BW̃B ′ characterized by an index set E ⊂
{1 . . . K}, which specifies the basis elements to be excluded by setting the
corresponding set of coefficients µE to zero. Its reconstruction error is τ(Y −
Ỹ) = |

∑
k/∈E µkak|, and its reconstruction accuracy is τ(Ỹ)/τ(Y). Thus, given

a network matrix Y representable exactly with K basis elements, the best
approximation with K̃ basis elements is obtained by zeroing out the lowest
K− K̃ coefficients µ.

We posit the following theoretical model,

µk ∼ Gamma(α+ β, 1) (10.11)
ak/N ∼ Beta(α,β) (10.12)

µk · ak/N ∼ Gamma(α, 1), (10.13)

for k = 1 . . . K̃. This model may be used to compute the expected accuracy
of an approximate reconstruction based on K̃ < K basis elements, since the
magnitude of the ordered µk coefficients that are zeroed out are order statis-
tics of a sample of Gamma variates (?). Given K and α, we can compute the
expected coefficient magnitudes and the overall expected accuracy τ0.

Theorem 4 The theoretical accuracy of the best approximate Graphlet de-
composition with K̃ out of K basis elements is:

τ0(K̃, K, α) =

K̃∑
j=1

f(j, K, α)

αK
, (10.14)

where

f(j, K, α) =

(
K

j

) j−1∑
q=0

(−1)q
(
j− 1

q

)
f(1, K− j+ q+ 1, α)

K− j+ q+ 1
(10.15)

f(1, K, α) =
K

Γ(α)

(α−1)(K−1)∑
m=0

cm(α,K− 1)
Γ(α+m)

Kα+m
, (10.16)
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Fig. 10.1 Theoretical and empirical accuracy for different fractions of basis elements K̃/K
with α = 0.1. The ratio K̃/K also provides a measure of sparsity.

in which the coefficients cm are defined by the recursion

cm(α, q) =

i=α−1∑
i=0

1

i!
cm−i(α, q− 1) (10.17)

with boundary conditions cm(α, 1) = 1
i! for i = 1 . . . α.

Figure 10.1 illustrates this result on simulated networks. The solid (red)
line is the theoretical accuracy computed for K = 30 and α = 1, the relevant
parameters used to to simulate the sample of 100 weighted networks. The
(blue) boxplots summarize the empirical accuracy at a number of distinct
values of K̃/K.

10.3.3 A new notion of social information

Graphlet quantifies social information in terms of community structure (i.e.,
maximal cliques) at multiple scales and possibly overlapping. To illustrate
this notion of social information, we simulated 200 networks: 100 Erdös-
Rényi-Gilbert random graphs with Poisson weights and 100 networks from
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the model described in Section ??. While, arguably, the Poisson random
graphs do not contain any such information, the data generating process
underlying graphlets was devised to translate such information into edge
weights.

As a baseline for comparison, we consider the singular value decomposi-
tion (?), applied to the symmetric adjacency matrices with integer entries
encoding the weighted networks. The SVD summarizes edge weights using
orthogonal eigenvectors vi as basis elements and the associated eigenvalues
λi as weights, YN×N =

∑N
i=1 λi vi v

′
i. However, SVD basis elements are not

interpretable in terms of community structure, thus SVD should not be able
to capture the notion of social information we are interested in quantifying.

We applied graphlets and SVD to the two sets of networks we simulated.
Figure 10.2 provides an overview of the results. Panels in the top row report
results for on the networks simulated from the model underlying graphlets.
Panels in the bottom row report results on the Poisson random graphs. In
each row, the left panel shows the box plots of the coefficients associated
with each of the basis elements, for graphlets in blue and for SVD in red.

Fig. 10.2 Comparison between graphlet and SVD decompositions. Top panels report
results for on the networks simulated from the model underlying graphlets. Bottom panels
report results on the Poisson random graphs.
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The right panel shows the box plots of the cumulative representation error
as a function of the number of basis elements utilized. Graphlets coefficients
decay more slowly than SVD coefficients on Poisson graphs (bottom left).
Because of this, the error in reconstructing Poisson graphs achievable with
graphlets is consistently worse then the error achievable with SVD (bottom
right). In contrast, graphlets coefficients decay rapidly to zero on networks
with social structure, much sharply then the SVD coefficients (top left). Thus,
the reconstruction error achievable with graphlets is consistently better then
the error achievable with SVD (top right).

These results support our claim that graphlets is able to distill and quantify
a notion of social information in terms of social structure.

10.3.4 Analysis of messaging on Facebook

Here we illustrate graphlet with an application to messaging patterns on
Facebook. We analyzed the number of public wall-post on Facebook, over a
three month period, among students of a number of US colleges. While our
data is new, the US colleges we selected have been previously analyzed (?).

Table 10.1 provides a summary of the weighted network data and of the re-
sults of the graphlet decomposition. Salient statistics for each college include
the number of nodes and edges. The table reports the number of estimated
basis elements K̂ for each network and the runtime, in seconds. The τ(Ỹ) error
incurred by using a graphlet decomposition is reported for different fractions
of the estimated optimal number of basis elements K̂, ranging from 10% to
100%—no error.

Overall, these results suggest that the compression of wall-posts achievable
on collegiate network is substantial. A graphlet decomposition with about
10% of the optimal number of basis elements already leads to a reconstruction
error of 10% or less, with a few exceptions. Using 25% of the basis elements
further reduces the reconstruction error to below 5%.
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Table 10.1 τ(Ỹ) error for different fractions of the estimated optimal number of basis
elements K̂.

college nodes edges K̂ sec 10% 25% 50% 75% 90% 100%

American 6386 435323 11426 151 13.5 6.5 1.80 .70 .30 0
Amherst 2235 181907 10151 124 6.5 2.3 .84 .33 .14 0
Bowdoin 2252 168773 9299 113 9.0 3.2 1.17 .41 .17 0
Brandeis 3898 275133 10340 116 6.8 2.9 1.21 .53 .25 0
Bucknell 3826 317727 13397 193 7.8 2.9 1.15 .45 .20 0
Caltech 769 33311 3735 51 5.7 1.8 .65 .27 .11 0
CMU 6637 499933 11828 169 14.9 5.2 1.89 .73 .34 0
Colgate 3482 310085 12564 151 8.0 3.3 1.26 .45 .19 0
Hamilton 2314 192787 11666 200 6.9 2.5 .84 .33 .15 0
Haverford76 1446 119177 9021 128 4.8 2.2 .74 .25 .10 0
Howard 4047 409699 12773 170 8.6 3.7 1.55 .60 .28 0
Johns Hopkins 5180 373171 11674 150 10.8 3.7 1.40 .58 .29 0
Lehigh 5075 396693 14076 206 9.5 3.2 1.14 .49 .23 0
Michigan 3748 163805 5561 54 11.4 4.6 1.92 .76 .35 0
Middlebury 3075 249219 9971 109 9.7 3.5 1.35 .49 .22 0
MIT 6440 502503 13145 191 11.5 4.7 1.68 .65 .30 0
Oberlin 2920 179823 7862 84 9.8 3.8 1.48 .57 .26 0
Reed 962 37623 3911 46 6.0 2.3 .99 .40 .17 0
Rice 4087 369655 12848 155 8.7 3.2 1.25 .51 .22 0
Rochester 4563 322807 10824 124 11.0 3.7 1.43 .56 .26 0
Santa 3578 303493 11203 127 10.3 3.5 1.30 .51 .24 0
Simmons 1518 65975 5517 60 6.4 2.5 1.04 .44 .19 0
Smith 2970 194265 8591 102 5.5 2.5 1.15 .49 .23 0
Swarthmore 1659 122099 7856 96 6.3 2.6 1.06 .44 .20 0
Trinty 2613 223991 10832 131 8.6 3.0 1.07 .40 .18 0
Tufts 6682 499455 14641 212 13.9 4.8 1.68 .65 .30 0
UC Berkeley 6833 310663 7715 105 16.3 6.2 2.28 .90 .42 0
U Chicago 6591 416205 12326 176 14.2 4.7 1.74 .66 .31 0
Vassar 3068 238321 11344 134 9.3 3.2 1.18 .47 .21 0
Vermont 7324 382441 10030 145 17.5 5.4 2.05 .82 .36 0
USFCA 2682 130503 6735 67 10.5 3.8 1.50 .60 .26 0
Wake Forest 5372 558381 15580 211 11.5 4.2 1.46 .58 .25 0
Wellesley 2970 189797 9768 107 8.9 3.3 1.24 .48 .22 0
Wesleyan 3593 276069 10506 118 9.9 3.6 1.40 .54 .25 0
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Chapter 12
Graph matching

12.1 Introduction

In practice, it often happens that we need a version of (sub)graph isomor-
phism that allows for errors. Think about two graphs sampled at different
time points, from the same social networks, over the same actors, without
knowing the labels of the vertices. We do not expect the two graphs to be
isomorphic. Most likely the more recent graph will have extra edges, and
maybe also some edges removed. But we certainly expect the graphs to be
correlated: the existence of an edge in the old graph is probably a good pre-
dictor for the existence of the edge in the second graph.

To analyze both graphs together, however, we need to know the map-
ping between their vertices, and for this we can rely on the correlated graph
structure, which means solving an inexact version of the graph isomorphism
problem, most often called graph matching. Given two graphs, the graph
matching problem seeks to find a correspondence (i.e. “matching”) between
the vertex sets that best preserves structure across the graphs. The graph
matching problem has a rich and active place in the literature with appli-
cations in such diverse fields as neuroscience (connectomics), document and
image processing, and manifold learning to name a few (see Conte et al
(2004)).

Given two graphs G1 and G2, with respective adjacency matrices A and
B, the simplest version of the graph matching problem is

min
P∈Π(n)

‖AP − PB‖F, (12.1)

where Π(n) is the set of n×n permutation matrices and ‖ · ‖F is the matrix
Frobenius norm. Note that

argminP∈Π(n)‖AP − PB‖F = argminP∈Π(n) − trace(ATPBPT ), (12.2)

and the graph matching problem is equivalent to

269
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Graph 1 A

Graph 2 B, pre−matching B, post−matching

Fig. 12.1 Example of a matching of two non-isomorphic simple 30 vertex graphs G1
and G2, with respective adjacency matrices A and B. Each adjacency matrix (A and B
pre/post-matched) is visualized as a 30 × 30 pixel image with a black pixel denoting an
edge and a white pixel denoting no edge.

min
P∈Π(n)

−trace(ATPBPT ). (12.3)

Even though ‖AP − PB‖2F is a convex quadratic function of P (when the
integrality of P is relaxed), we shall see shortly the advantages of considering
the nonconvex quadratic alternate formulation −trace(ATPBPT ).

The combinatorial nature of this optimization (indeed, we are optimizing
over the set of permutation matrices) makes the graph matching problem
(NP) hard in its most general form. Many state-of-the-art graph matching
algorithms (see, for example, Fiori et al (2013), Vogelstein et al (2012), Za-
slavskiy et al (2009)) circumvent the difficulty inherent to optimizing over
Π(n) by first relaxing the constrained set of permutation matrices to its con-
vex hull D(n), the set of doubly stochastic matrices, and optimizing instead
over D ∈ D(n). Once a solution D∗ is thus obtained, the algorithms then
project it back onto Π(n) yielding an approximate solution to the graph
matching problem.

The relaxation of (12.1), namely minD∈D(n) ‖AD − DB‖F, is a convex
quadratic program with affine constraints and can therefore be efficiently
exactly solved. Combined with a fast projection step, this gives an efficient
approximate solution to (12.1). On the other hand, the relaxation of (12.3)
is a nonconvex quadratic program with affine constraints, and nonconvex
quadratic optimization is NP-hard in general. Indeed, it is often the case that
the objective function −trace(ATDBDT ) has numerous local minima in D(n).
We will see shortly that the nonconvex relaxation is, theoretically, the right
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relaxation, and moreover, there is an efficient algorithm for approximating
its solution, the FAQ algorithm of Vogelstein et al (2012).

12.2 A model for matching

A convenient theoretical model for exploring the graph matching problem in
the correlated Bernoulli graph model of Lyzinski et al (2014a). This model
allows us to generate two graphs with a natural vertex alignment against
which we can measure the performance of our graph matching algorithms.

Definition 12.1. Given parameters n ∈ Z+, a real number ρ ∈ [0, 1], and
a symmetric hollow matrix L ∈ [0, 1]n×n, we say that two random graphs,
with respective adjacency matrices A and B, are ρ-correlated Bernoulli(L)
distributed if for all i = 1, 2, . . . , n− 1, and j = i+ 1, i+ 2, . . . , n, the random
variables (matrix entries) Ai,j, Bi,j are Bernoulli(Li,j) distributed, and all of
these random variables are collectively independent except that, for each pair
{i, j}, the Pearson product-moment correlation coefficient for Ai,j, Bi,j is ρ.

It is straightforward to show that two ρ-correlated Bernoulli(L) graphs
may be realized by first, for all ordered pairs {i, j}, having Bij ∼ Bernoulli(Li,j)
independently drawn and then, conditioning on B, have

Ai,j ∼ Bernoulli ((1− ρ)Li,j + ρBi,j) (12.4)

independently drawn.
The sample_bernoulli() igraph function creates a single Bernoulli(L) sample_bernoulli()

graph. sample_correlated_bernoulli() then takes this graph and creates sample_correlated_
bernoulli()its correlated pair, with the desired correlation level. Assuming n = 100 ver-

tices and a connection probability of Li,j = ij/10000 (except that Li,i = 0),
we write

12.1.1) L <- outer(1:100, 1:100, function(i, j) ifelse(i == j, 0, i * j / 10000))
2) g1 <- sample_bernoulli(L, directed = FALSE)
3) g2 <- sample_correlated_bernoulli(g1, corr = 0.9, L = L)

12.2.1 It doesn’t always pay to relax

Two graphs drawn from the ρ-correlated Bernoulli(L) model have a natural
alignment of their vertices given by the identity function. How well can the
graph matching problem (and its associated relaxations) estimate this align-
ment? Let A and B be the respective adjacency matrices of two ρ-correlated
Bernoulli(L) graphs. Under mild conditions on ρ and L, with high probability
it holds that
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arg min
D∈D

−trace(ATDBDT ) = arg min
P∈Π(n)

‖AP − PB‖F = {In}, (12.5)

and yet In 6∈ argminD∈D ‖AD −DB‖F (see (Lyzinski et al, 2014a, Theorem
1)). On the one hand, the computationally difficult nonconvex relaxation
yields the true alignment (with high probability), and on the other hand the
true alignment is not the solution of the easily solved convex relaxation (with
high probability). Complicating things further, often the doubly stochastic
solution of the convex relaxation is far from the true alignment, and the true
alignment is then not recovered via the projection step.

As the nonconvex objective function is quadratic subject to affine con-
straints, Frank-Wolfe methodology (Frank and Wolfe (1956)) provides a fast
algorithm for approximately solving the relaxation. This is implemented in
the FAQ algorithm of Vogelstein et al (2012), a fast and efficient approximate
graph matching procedure.

12.3 The FAQ algorithm

We begin with two n-vertex graphs G1 and G2, and let their respective
adjacency matrices be A and B. The FAQ algorithm proceeds as follows:
1. Relax minP∈Π(n) −trace(ATPBPT ) to minD∈D(n) −trace(ATDBDT );
2. Run the Frank-Wolfe algorithm on f(D) := −trace(ATDBDT ):

i. Initialize D0 = ~1n ·~1Tn/n;
ii. If at Di, calculate ∇f(Di) = −ADiB

T −ATDiB;
iii. Set Qi := minD∈D(n) trace(∇f(Di)TD);
iv. Set αi := minα∈[0,1] f(αDi + (1− α)Qi);
v. Update Di+1 = αiDi + (1− αi)Qi;
vi. Repeat ii.-v. until some stopping criterion is met;

3. Set P∗ := minP∈Π(n) − trace(DTfinalP); Output P∗.
Each of steps iii. and 3. in the FAQ algorithm amounts to solving a linear

assignment problem, which can be done in O(n3) steps using the Hungarian
algorithm of Kuhn (1955). With a bounded number of Frank-Wolfe iterates
(in practice, excellent performance is usually achieved with ≤ 30 iterates),
the FAQ algorithm then has running time O(n3).

Given two n vertex graphs we can run the FAQ algorithm in igraph with
the match_vertices() function:match_vertices()

12.2.1) g1_g2 <- match_vertices(g1, g2, num_iter = 30)
2) g1_g2$match

For each vertex in g1, the result gives the corresponding vertex in g2.
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12.4 Seeding

The nonconvex objective function trace(ATDBDT ) can have many local min-
ima in D(n), making the optimization problem (12.3) exceedingly challeng-
ing. One way to ameliorate this difficulty is to introduce seeded vertices, i.e.
vertices whose latent alignment function is known across graphs a priori. The
seeded graph matching problem leverages the information contained in these
seeded vertices to efficiently recover the latent alignment among the unseeded
vertices. One of the advantages of the FAQ algorithm is its amenability to
seeding, and in Fishkind et al (2012) and Lyzinski et al (2014b), the authors
demonstrate the potential for significantly improved performance in FAQ by
incorporating even a modest number of seeded vertices.

Given two graphs with respective adjacency matrices A and B, we define
a seeding function φ : S1 7→ S2 to be a bijective function between two seed
sets, S1 ⊂ V(G1) and S2 ⊂ V(G2) (without loss of generality, we will assume
S1 = S2 = {1, 2, . . . , s). Partition A and B via

A =

[
A11 A

T
21

A21 A22

]
B =

[
B11 B

T
21

B21 B22

]

where A11, B11 ∈ {0, 1}s×s, A22, B22 ∈ {0, 1}m×m, and A21, B21 ∈ {0, 1}m×s.
The seeded graph matching problem is then

min
P∈Π(m)

‖A(Is ⊕ P) − (Is ⊕ P)B‖2F. (12.6)

This is equivalent to minimizing the nonconvex quadratic function

− trace
(
AT21PB21 +A

T
12B12P

T +AT22PB22P
T
)

(12.7)

over all m×m permutation matrices P.
The seeded FAQ algorithm, the SGM algorithm of Fishkind et al (2012)

and Lyzinski et al (2014b), proceeds in much the same way as the unseeded
version:

1. Relax the permutation constraint to

min
D∈D(m)

−trace
(
AT21DB21 +A

T
12B12D

T +AT22DB22D
T
)
, (12.8)

calling this objective function g(D)
2. Run the Frank-Wolfe algorithm on g(D):

i. Initialize D0 = ~1m ·~1Tm/m;
ii. If at Di, calculate

∇f(Di) = −A21B
T
21 −A

T
12B12 −A22PB

T
22 −A

T
22PB22; (12.9)
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iii. Set Qi := minD∈D(m) trace(∇f(Di)TD);
iv. Set αi := minα∈[0,1] g(αDi + (1− α)Qi);
v. Update Di+1 = αiDi + (1− αi)Qi;
vi. Repeat ii.-v. until some stopping criterion is met;

3. Set P∗ := minP∈Π(m) − trace(DTfinalP); Output Is ⊕ P∗, an approximate
solution to (12.6).

As with the FAQ algorithm, steps iii. and 3. are equivalent to linear assign-
ment problems and can be solved in O(n3) time. Given a bounded number
of Frank-Wolfe steps, the SGM algorithm then has O(n3) running time. In
igraph, the seeds can be given using the optional ‘seeds1’ and ‘seeds2’
arguments to match_vertices(). If the seeds are the first ns vertices in both
graphs, then the simpler ‘num_seeds’ argument can also be used.

12.3.1) g1_g2_5s <- match_vertices(g1, g2, num_seeds = 5, num_iter = 30)
2) g1_g2_5s$match

12.5 The effect of seeding

The incorporation of only a few seeds into the FAQ algorithm has a profound
effect on the algorithm’s performance. Decomposing the SGM objective func-
tion, we have

− trace
(
AT21PB21 +A

T
12B12P

T +AT22PB22P
T
)
, (12.10)

where the first two terms are linear in P, and contain all the adjacency infor-
mation between the seeded and nonseeded vertices. The last term is nothing
more than the standard graph matching problem for the unseeded vertices.
Minimizing

− trace(AT21PB21 +A
T
12B12P

T ) (12.11)

over P ∈ Π(m) is a simple linear assignment problem, hence can be solved in
O(n3) time, and a logarithmic number of seeded vertices are sufficient (and
necessary) for this linear subproblem to yield the true alignment between the
unseeded vertices with high probability (Lyzinski et al (2014b)). This seeded
term has the effect of “steering” the graph matching problem in the right
direction!

We demonstrate this in the next example. We match two 0.9-correlated
Gnp(100, 0.7) graphs, with nr = 100 replicates. We match the two adjacency
matrices, using s = 0, 1, 2, 3 seeds.

12.4.1) num_seeds <- 0:3
2) num_reps <- 100
3) num_runs <- length(num_seeds) * num_reps
4) correct <- data.frame(Seeds = rep(NA_integer_, num_runs),
5) Correct = rep(NA_integer_, num_runs))
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Fig. 12.2 Matching 0.9-correlated Gnp(100, 0.7) graphs. For each of 100 replicates, we
calculate the number of unseeded vertices correctly matched when utilizing s = 0, 1, 2, 3
seeds. We plot mean accuracy ± 2 standard error versus the seed values.

6) idx <- 1
7) for (i in seq_len(num_reps)) {
8) gnp_pair <- sample_correlated_gnp_pair(100, p = 0.7, corr = 0.9)
9) for (j in num_seeds) {
10) correct$Seeds[idx] <- j
11) correct$Correct[idx] <-
12) match_vertices(gnp_pair[[1]], gnp_pair[[2]], num_seeds = j)$match %>%
13) equals(V(gnp_pair)[[2]]) %>%
14) sum() %>%
15) subtract(j) %>%
16) divide_by(gorder(gnp_pair[[1]]) - j)
17) idx <- idx + 1
18) }
19) }
20) correct %>%
21) dplyr::group_by(Seeds) %>%
22) dplyr::summarize(mean(Correct), sd(Correct))

Note that the true alignment of G1 and G2 is given by the identity map. We
see a dramatic performance increase by incorporating even a few seeds. The
experiment is summarized in Figure 12.2, where we dramatically increased
performance when utilizing even a single seed!

As the correlation between the graphs decreases, the impact of each seed
is lessened. This is illustrated beautifully in the next example. For each of
nr = 100 replicates, we match two ρ-correlated Bernoulli(L) graphs using
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ns = 0, 1, 2, 5, 10, 15, 20 seeds for ρ = 0, 0.3, 0.6, 0.9. For each replicate and
each value of ρ, we sample L uniformly from the space of symmetric hollow
matrices in [0, 1]100×100.

12.5.1) num_seeds <- c(0, 1, 2, 5, 10, 15, 20)
2) num_reps <- 100
3) corr <- c(0, 0.3, 0.6, 0.9)
4) num_runs <- length(num_seeds) * length(corr) * num_reps
5) correct2 <- data.frame(Corr = rep(NA_real_, num_runs),
6) Seeds = rep(NA_integer_, num_runs),
7) Correct = rep(NA_integer_, num_runs))
8) idx <- 1
9) for (i in seq_len(num_reps)) {
10) for (c in corr) {
11) gnp_pair <- sample_correlated_gnp_pair(100, p = 0.7, corr = c)
12) for (j in num_seeds) {
13) correct2$Corr[idx] <- c
14) correct2$Seeds[idx] <- j
15) correct2$Correct[idx] <-
16) match_vertices(gnp_pair[[1]], gnp_pair[[2]], num_seeds = j) %>%
17) equals(V(gnp_pair)[[2]]) %>%
18) sum() %>%
19) subtract(j) %>%
20) divide_by(gorder(gnp_pair[[1]]) - j)
21) idx <- idx + 1
22) }
23) }
24) }

The example is summarized in Figure 12.3. From the figure, we see that
SGM performs little better than chance if there are no seeds. In general, it
takes more seeds to achieve commensurate performance when the correlation
is decreased. This is quite sensible, as the information contained in each seed
is lessened as ρ decreases. We generate the figure via

12.6.1) ggplot(correct2, aes(x = Seeds, y = Correct, colour = Corr)) +
2) geom_errorbar(aes(ymin = ymin, ymax = ymax)) +
3) geom_line() +
4) geom_point() +
5) labs(x = "Seeds", y = "Fraction correctly matched",
6) title = "Effect of seeding vs correlation strength")
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Fig. 12.3 Matching ρ-correlated Bernoulli(L) graphs using s = 0, 1, 2, 5, 10, 15, 20 seeds
for ρ = 0, 0.3, 0.6, 0.9. For each of nmc = 100 replicates, and for each value of ρ, we
sample L uniformly from the space of symmetric hollow matrices in [0, 1]100×100. We
calculate the number of unseeded vertices correctly matched, and plot mean accuracy ± 2
s.e. versus the seed values.

12.6 Worms with brains: better than brains with worms

To demonstrate the effectiveness of the SGM procedure, we will walk through
a real data application. Biologists currently believe that the nervous system
of the Caenorhabditis elegans (abbreviated C. elegans) roundworm contains
302 labeled neurons, the same 302 for each organism. Twenty-three of the
neurons are isolates, not making synapses with any other neurons, leaving
279 neurons with synaptic connections to other neurons (see Varshney et al
(2011) for detail on how these nervous systems were mapped). Within the
C. elegans connectome, there are two types of synaptic connections: chem-
ical (chemical synapses) and electrical (junction potentials). How much of
the synaptic structure of the nervous system is preserved across graphs? To
understand this, we run our SGM algorithm to match the two connectomes
(the chemical Gc and the electrical Ge). We will drop the isolates from the
graphs, as these cannot be matched based on the graph structure.

12.7.1) data(celegans)
2) celegans %>% summary()
3) g_c <- subgraph(celegans, E(celegans)[type == "chemical"], FALSE)
4) g_e <- subgraph(celegans, E(celegans)[type == "electric"], FALSE)

We match the two graphs with s = 0, 30, 60, 90, 120, 150, 180, 210 seeds.
For each of nr = 50 replicates, we choose the seeds uniformly at random
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Fig. 12.4 Matching the electrical and chemical C. elegans connectomes unsing s =
0, 30, 60, 90, 120, 150, 180, 210 seeds. For each of 50 replicates, we choose the seeds uni-
formly at random from the 253 vertices.

from the 253 vertices (using nested seed sets for each trial). We summarize
the results below in Figure 12.4.

12.8.1) num_seeds <- seq(0, 210, by = 30)
2) num_reps <- 50
3) num_runx <- length(num_seeds) * num_reps
4) ce_match <- data.frame(Replicate = rep(NA_integer_, num_runs),
5) Seeds = rep(NA_integer_, num_runs),
6) Correct = rep(NA_integer_, num_runs))
7) idx <- 1
8) for (i in seq_len(num_reps)) {
9) all_seeds <- sample(gorder(g_c), max(num_seeds))
10) for (j in num_seeds) {
11) seeds <- all_seeds[seq_len(j)]
12) ce_match$Replicate <- i
13) ce_match$Seeds[idx] <- j
14) ce_match$Correct[idx] <-
15) match_vertices(g_c, g_e, seeds = seeds) %>%
16) equals(V(g_e)) %>%
17) sum() %>%
18) subtract(j) %>%
19) divide_by(gorder(g_e) - j)
20) idx <- idx + 1
21) }
22) }
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Fig. 12.5 The performance increase due to the inclusion of additional seeds when match-
ing the C. elegans connectomes. For each of the 50 replicates, we plot a bar graph showing
how many extra vertices are correclt matched by including 30 more seeds for each of
s = 0, 30, 60, 90, 120, 150, 180.

23) ggplot(ce_match, aes(x = Seeds, y = Correct)) +
24) geom_errorbar(aes(ymin = ymin, ymax = ymax)) +
25) geom_line() +
26) geom_point() +
27) labs(x = "Seeds", y = "Fraction correctly matched",
28) title = "Effect of seeding vs correlation strength")

The results have a profound impact of subsequent graph inference. Had the
matching been perfect across graphs, even with moderate seed levels, then one
need only to consider one (it doesn’t matter which) of the graphs to pursue
inference on. Had the matching been chance across seed levels, then joint
inference should proceed by investigating each of the two graphs separately.
As the matching is significantly better than chance, and significantly less
than perfect, it follows that joint inference on the connectomes need proceed
in the joint space considering both graphs simultaneously.

How much does the inclusion of additional seeds impact matching per-
formance? In the simulated data examples, incorporating seeds induced a
dramatic jump, with a single seed causing a poorly performing matching to
be perfect. Here, the result is much less dramatic, as we see a very gradual
performance increase when incorporating more seeds. Curiously, we also see
that the performance can actually decrease when incorporating more seeds!
This points to the primacy of intelligently selecting seeded vertices in real
data applications. Poorly chosen seeds can actually hurt subsequent matching
performance, while well-chosen seeds can significantly improve performance.
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12.7 SGM extensions and modifications

In the remainder of this chapter, we will provide some examples of extensions
and modifications of the SGM algorithm.

12.7.1 Matching graphs of different orders

In presenting the SGM algorithm so far, we have focused on graphs of the
same order. What if we have two graphs of similar but not quite equal order,
can we also match them? The answer is yes, with some ingenuity. Consider
matching two stochastic block model random graphs from the same model
with differing orders (i.e. on different sized vertex sets):

12.9.1) B <- matrix(c(0.7, 0.3, 0.4,
2) 0.3, 0.7, 0.3,
3) 0.4, 0.3, 0.7), 3, byrow = TRUE)
4) g1 <- sample_sbm(300, B, c(100, 100, 100))
5) g2 <- sample_sbm(225, B, c( 75, 75, 75))

One, perhaps naive, solution is to augment G2 with dummy isolate vertices
to make G1 and G2 commensurate orders, i.e. pad the adjacency matrix of
G2 with zeros until it is the same size as the adjacency matrix of G1. We call
this augmented graph Ga2 .

12.10.1) g2_a <- g2 + (gorder(g1) - gorder(g2))
2) aug_match <- match_vertices(g1, g2_a)$match

We see from Figure 12.6 that the matching bewteen G1 and Ga2 is very
poor! By padding G2 with isolate vertices, and then using FAQ to match G1
and Ga2 , we are matching G2 to the best fitting subgraph (not the best fitting
induced subgraph) of G1. There is no penalty for non-edges that are matched
to edges or edges that are matched to non-edges. There is only a reward for
edges matched to edges.

To rectify this, we can use weighted graphs. We first make G1 and G2
a complete graph by adding the edges of their complementers with weight
−1. Then we pad G2 with isolate vertices as before and proceed with the
matching. This will have the effect of rewarding true non-edges of G2 being
matched to non-edges in G1, rewarding edges of G2 being matched to edges
in G1, and penalizing true non-edges of G2 being matched to edges in G1 and
edges of G2 being matched to non-edges in G1. In essence, we are matching
G2 to the best fitting induced subgraph of G1. Note, from Figure 12.7, the
dramatically improved matching performance!

12.11.1) E(g1)$weight <- 1
2) g1_comp <- g1 %>%
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adjacency matrix A
adjacency matrix C1 

 post−matching

Fig. 12.6 Matching two SBM random graphs of different order from the same model. We
pad the smaller adjacency graph (G2) with isolate vertices to make it commensurate in
size with G1, yielding Ga2 . We plot the adjacency matrix of G1 and post-matching Ga2 as
300× 300 heatmaps. A black/white pixel in position i, j denotes an edge/no edge between
vertices i and j.

3) complementer() %>%
4) set_edge_attr("weight", value = -1)
5) E(g2)$weight <- 1
6) g2_comp <- g2 %>%
7) complementer() %>%
8) set_edge_attr("weight", value = -1)
9) g1_new <- g1 + g1_comp
10) g2_new <- g2 + g2_comp
11) g2_new_a <- g2_new + (gorder(g1_new) - gorder(gw_new))
12) smart_aug_match <- match_vertices(g1_new, g2_new_a)$match

12.7.2 Matching more than two graphs

In this section, we show how SGM can be modified to match multiple graphs
simultaneously. The modified algorithm, takes as its input a list of graphs
to be matched and seed vertices, which are assumed to be the same in all
graphs. Suppose we have 3 Gnp(200, 0.6) graphs. Suppose G1 and G2 have
pairwise correlation ρ = 0.8 and G2 and G3 have pairwise correlation ρ = 0.8
(think time series!). We run the matching with seeds s = 0, 1, 2, 3, and show
the results below.
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adjacency matrix A
adjacency matrix C2 

 post−matching

Fig. 12.7 Matching two SBM random graphs of different order from the same model. We
change all none-edges in the two graph to edges with weight −1 and then pad the smaller
graph (G∗2) with isolate vertices to make it commensurate in size with G∗1. We plot the
adjacency matrices of G∗2 and post-matching G∗2 as 300×300 heatmaps. A black/white
pixel in position i, j denotes an edge/no edge between vertices i and j.

12.12.1) g1 <- sample_gnp(100, 0.7)
2) g2 <- sample_correlated_gnp(g1, 0.8)
3) g3 <- sample_correlated_gnp(g2, 0.8)

We next match these three graphs simultaneously using s = 0, 1, 2, 3 seeds.

12.13.1) multi <- lapply(0:3, function(num_seeds) {
2) match_vertices(g1, g2, g3, num_seeds = num_seeds)
3) })

The output of match_vertices() is a list of vertex sequences, with the
mappings from the vertices of the first graph, to the vertices of the second,
third, etc. graph.

Note that with s = 3 seeds, the graphs are perfectly matched and for s = 2
(and hence s = 0) seeds they are not.

12.14.1) multi[[3]][[1]] %>% equals(V(g2)) %>% sum()
2) multi[[3]][[2]] %>% equals(V(g3)) %>% sum()
3) multi[[4]][[1]] %>% equals(V(g2)) %>% sum()
4) multi[[4]][[2]] %>% equals(V(g3)) %>% sum()

SGM, even with only 3 seeds across graphs, was able to correctly align the
graphs!
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multimatch with 0 seeds multimatch with 2 seeds multimatch with 3 seeds

Fig. 12.8 Multimatching the three graphs G1, G2 and G3. Each figure represents a
100× 100 heatmap with i, j entry counting the number of times edge i, j appeared as an
edge in each graph (after matching): red=3, green=2, light blue=1, blue=0.

12.8 Exercises

I EXERCISE 12.1. A graph is a common induced subgraph of two graphs, if
it is an induced subgraph of both of them. It is the maximal common induced
subgraph, if it has the most vertices among all common induced subgraphs.
At the time of writing, igraph does not have a function to calculate the
maximum common subraph(s) of a pair of graphs. Write a function in R
that finds the maximum common subgraphs. (Hint: you can use the modular
product of the two input graphs, and the fact that the largest cliques in the
modular product correspond to the maximum common induced subgraphs of
the original input graphs.)
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