
Introduction Functional Programming Patterns, Rules, & Attributes Closing

Automating the Tedious Stuff
(Functional programming and other Mathematica magic)

Connor Glosser

Michigan State University
Departments of Physics &

Electrical/Computer Engineering

π, 2014

1/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Table of Contents

1 Introduction
“Formalism”

2 Functional Programming
Background
Pure functions & Modules
Higher-order functions

3 Patterns, Rules, & Attributes

4 Closing
Further resources

2/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Mathematica is great. . .

3/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

. . . but it’s also kind of stupid.

4/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

About this talk

What this talk is
An outline of more “idiomatic” ways to use Mathematica
A sample of ways to use those idioms in research-like
contexts
Bi-directional!

5/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

My #1 Mathematica tip

“Reset” button for the current Mathematica session;
completely removes all variables and definitions
Sure, you could just run the Remove["Global‘*"] cell, but
buttons are more fun convenient.

6/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

A little bit of syntactic sugar

7/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

A little bit of syntactic sugar

Generally, we write math with infix notation
Mathematica also offers prefix and postfix operators for
single-argument functions:

Cuts down on tedious bracket-matching, but beware
associativity and operator precedence!

7/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

A little bit of syntactic sugar

@ right-associates and has a high precedence:

// left-associates and has a low precedence:

7/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Table of Contents

1 Introduction
“Formalism”

2 Functional Programming
Background
Pure functions & Modules
Higher-order functions

3 Patterns, Rules, & Attributes

4 Closing
Further resources

8/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

“History”

1936: Alan Turing
Alan Turing invents every programming language that will ever
be but is shanghaied by British Intelligence to be 007 before he
can patent them.

1936: Alonzo Church
Alonzo Church also invents every language that will ever be but
does it better. His lambda-calculus is ignored because it is
insufficiently C-like. This criticism occurs in spite of the fact
that C has not yet been invented.

—James Iry

9/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

“History”

1936: Alan Turing
Alan Turing invents every programming language that will ever
be but is shanghaied by British Intelligence to be 007 before he
can patent them.

1936: Alonzo Church
Alonzo Church also invents every language that will ever be but
does it better. His lambda-calculus is ignored because it is
insufficiently C-like. This criticism occurs in spite of the fact
that C has not yet been invented.

—James Iry

9/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

What is functional programming?

Programs as functions from inputs to
outputs
Higher-order functions

Functions become a sort of datatype
Avoids mutability/state (!!!!)
Mathematical by construction (category
theory, formal computation)
“What things are vs. what things do.”
Lots of list manipulation

10/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Pure functions

No side-effects: functions depend only on inputs

f = Function [x, x + 3]

Alternatively,

g = # + 3&;

Multiple arguments:

In [1] := h = #1 + 2*#2&;
h[3, 4]

Out [1] := 11

Use Block, With, or Module to localize variables in more
complicated function structures

11/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Pure functions

No side-effects: functions depend only on inputs

f = Function [x, x + 3]

Alternatively,

g = # + 3&;

Multiple arguments:

In [1] := h = #1 + 2*#2&;
h[3, 4]

Out [1] := 11

Use Block, With, or Module to localize variables in more
complicated function structures

11/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Pure functions

No side-effects: functions depend only on inputs

f = Function [x, x + 3]

Alternatively,

g = # + 3&;

Multiple arguments:

In [1] := h = #1 + 2*#2&;
h[3, 4]

Out [1] := 11

Use Block, With, or Module to localize variables in more
complicated function structures

11/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Pure functions

No side-effects: functions depend only on inputs

f = Function [x, x + 3]

Alternatively,

g = # + 3&;

Multiple arguments:

In [1] := h = #1 + 2*#2&;
h[3, 4]

Out [1] := 11

Use Block, With, or Module to localize variables in more
complicated function structures

11/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Transforming Data
Consider applying a simple (pure!) function to a set of data. . .

. . . näıvely, with a for-loop:
For[i = 1, i < Length [input], i++,

output [[i]] = Sin[input [[i]]],
]

. . . with a Table command:
output = Table[Sin[input [[i]]], {i,1,n}]

(like a list comprehension in python!)
. . . with a Map:
output = Map[Sin , input]

. . . by cheating with the Listable attribute:
output = Sin[input]

12/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Transforming Data
Consider applying a simple (pure!) function to a set of data. . .

. . . näıvely, with a for-loop:
For[i = 1, i < Length [input], i++,

output [[i]] = Sin[input [[i]]],
]

. . . with a Table command:
output = Table[Sin[input [[i]]], {i,1,n}]

(like a list comprehension in python!)

. . . with a Map:
output = Map[Sin , input]

. . . by cheating with the Listable attribute:
output = Sin[input]

12/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Transforming Data
Consider applying a simple (pure!) function to a set of data. . .

. . . näıvely, with a for-loop:
For[i = 1, i < Length [input], i++,

output [[i]] = Sin[input [[i]]],
]

. . . with a Table command:
output = Table[Sin[input [[i]]], {i,1,n}]

(like a list comprehension in python!)
. . . with a Map:
output = Map[Sin , input]

. . . by cheating with the Listable attribute:
output = Sin[input]

12/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Transforming Data
Consider applying a simple (pure!) function to a set of data. . .

. . . näıvely, with a for-loop:
For[i = 1, i < Length [input], i++,

output [[i]] = Sin[input [[i]]],
]

. . . with a Table command:
output = Table[Sin[input [[i]]], {i,1,n}]

(like a list comprehension in python!)
. . . with a Map:
output = Map[Sin , input]

. . . by cheating with the Listable attribute:
output = Sin[input]

12/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Higher-order Functions: Map

Map applies a function to each element of a collection without
modifying the original.

In [1] := Map[f ,{1 ,2,3 ,x,y,z}]
Out [1] := {f[1],f[2],f[3],f[x],f[y],f[z]}

Automatically handles length
Easily parallelized with ParallelMap

Common enough to warrant special syntax:

In [2] := f/@{1,2,3,x,y,z}
Out [2] := {f[1],f[2],f[3],f[x],f[y],f[z]}

13/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Higher-order functions: Apply

Apply turns a list of things into formal arguments of a
function—it essentially “strips off” a set of {}.

Similar to Map, transforms a list:

In [1] := Apply [f, {1, 2, 3, a, b, c}]
Out [1] := f[1, 2, 3, a, b, c]

Can operate on levels1 (default = 0, use @@@ for level 1)

In [2] := Apply [f, {{1} ,{2} ,{3}} , {1}]
Out [2] := {f[1], f[2], f[3]} (* level 1*)

Plus & Subtract become really useful wtih Apply

1# of indices required to specify element
14/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Higher-order functions: Nest & NestList

Nest repeatedly applies a function to an expression
NestList does the same, producing a list of the
intermediate results

Captures iteration as a recursive application of functions

In [1] := Nest[f, x, 3]
Out [1] := f[f[f[x]]]

Conclusion
While Map, Apply, & Nest are all built-in functions, none rely on
ideas exclusive to Mathematica; as functional constructs, they
very naturally capture specific types of problems & ideas.

15/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Table of Contents

1 Introduction
“Formalism”

2 Functional Programming
Background
Pure functions & Modules
Higher-order functions

3 Patterns, Rules, & Attributes

4 Closing
Further resources

16/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Patterns

What is a pattern?
Patterns represent classes of expressions which can be used to
“automatically” simplify or restructure expressions. For example,
f[_] and f[x_] both represent the pattern of “a function named
f with anything as its argument”, but f[x_] gives the name x to
the argument (whatever it is).

Common patterns:
x_: anything (with “the anything” given the name x)
x_Integer: any integer (given the name x)
x_ˆn_: anything to any explicit power (guess their names)
f[r_,r_]: a function with two identical arguments
and so on

17/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

The Replacement Idiom

“/. applies a rule or list of rules in an attempt to transform each
subpart of an expression”

In [1] := {x, xˆ2, y, z} /. x -> a
Out [1] := {a, aˆ2, y, z}

The rule can make use of Mathematica’s pattern-matching
capabilities:

In [2] := 1 + xˆ2 + xˆ4 /. xˆp_ -> f[p]
Out [2] := 1 + f[2] + f[4]

Useful for structuring solvers:

f = x /. DSolve [x’’[t] == x[t], x, t][[1]]

18/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Attributes

Attributes let you define general properties of functions,
without necessarily giving explicit values.

The Listable attribute automatically threads a function
over lists that appear as arguments.

In [1] := SetAttributes [f, Listable]
f[{1 ,2 ,3} ,x]

Out [1] := {f[1,x], f[2,x], f[3,x]}

Flat, Orderless used to define things like associativity &
commutativity (a+b == b+a for the purposes of pattern
matching)

19/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Table of Contents

1 Introduction
“Formalism”

2 Functional Programming
Background
Pure functions & Modules
Higher-order functions

3 Patterns, Rules, & Attributes

4 Closing
Further resources

20/22

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Some final thoughts
1 Functional programming and pattern matching are both

hard and obtuse (at first), but they can be a very elegant
way of attacking problems

Also good for parallel programing!
2 The best method usually requires a bit of trial-and-error.

Experiment!
3 Further resources:

The Mathematica documentation is excellent
The Wolfram Blog frequently has cool examples in a variety
of subjects
Essential Mathematica for Students of Science has lots of
detailed notebooks for scientific applicaitons
Power Programming with Mathematica: antequated, but
good

21/22

http://blog.wolfram.com/
http://www.physics.umd.edu/courses/CourseWare/EssentialMathematica/

Introduction Functional Programming Patterns, Rules, & Attributes Closing

Figure: https://www.msu.edu/˜glosser1/works.html

Thanks for listening!

22/22

https://www.msu.edu/~glosser1/works.html

	Introduction
	``Formalism"

	Functional Programming
	Background
	Pure functions & Modules
	Higher-order functions

	Patterns, Rules, & Attributes
	Closing
	Further resources

