Automating the Tedious Stuff

(Functional programming and other Mathematica magic)

Connor Glosser

Michigan State University
Departments of Physics \&
Electrical/Computer Engineering

$$
\pi, 2014
$$

Table of Contents

(1) Introduction

- "Formalism"
(2) Functional Programming
- Background
- Pure functions \& Modules
- Higher-order functions
(3) Patterns, Rules, \& Attributes

4 Closing

- Further resources

Mathematica is great...

. . . but it's also kind of stupid.

About this talk

"Mi. Osborne, may I be excused? My brain is full:
What this talk is

- An outline of more "idiomatic" ways to use Mathematica
- A sample of ways to use those idioms in research-like contexts
- Bi-directional!

My \#1 Mathematica tip

- "Reset" button for the current Mathematica session; completely removes all variables and definitions
- Sure, you could just run the Remove["Global‘*"] cell, but buttons are more fun convenient.

A little bit of syntactic sugar

A little bit of syntactic sugar

- Generally, we write math with infix notation
- Mathematica also offers prefix and postfix operators for single-argument functions:

- Cuts down on tedious bracket-matching, but beware associativity and operator precedence!

A little bit of syntactic sugar

- @ right-associates and has a high precedence:

- // left-associates and has a low precedence:

Table of Contents

Introduction

- "Formalism"
(2) Functional Programming
- Background
- Pure functions \& Modules
- Higher-order functions
(3) Patterns, Rules, \& Attributes

4 Closing

- Further resources

"History"

1936: Alan Turing

Alan Turing invents every programming language that will ever be but is shanghaied by British Intelligence to be 007 before he can patent them.

"History"

1936: Alan Turing

Alan Turing invents every programming language that will ever be but is shanghaied by British Intelligence to be 007 before he can patent them.

1936: Alonzo Church

Alonzo Church also invents every language that will ever be but does it better. His lambda-calculus is ignored because it is insufficiently C-like. This criticism occurs in spite of the fact that C has not yet been invented.
—James Iry

What is functional programming?

- Programs as functions from inputs to outputs
- Higher-order functions
- Functions become a sort of datatype
- Avoids mutability/state (!!!!)
- Mathematical by construction (category theory, formal computation)
- "What things are vs. what things do."
- Lots of list manipulation

Pure functions

- No side-effects: functions depend only on inputs

$$
f=\text { Function }[x, x+3]
$$

Pure functions

- No side-effects: functions depend only on inputs

```
f = Function[x, x + 3]
```

- Alternatively,

$$
\mathrm{g}=\#+3 \& ;
$$

Pure functions

- No side-effects: functions depend only on inputs

```
f = Function[x, x + 3]
```

- Alternatively,

$$
g=\#+3 \& ;
$$

- Multiple arguments:

$$
\begin{aligned}
\text { In [1] }: & : h=\# 1+2 * \# 2 \& ; \\
& h[3,4] \\
\text { Out [1] }: & =11
\end{aligned}
$$

Pure functions

- No side-effects: functions depend only on inputs

```
f = Function[x, x + 3]
```

- Alternatively,

$$
\mathrm{g}=\#+3 \& ;
$$

- Multiple arguments:

$$
\begin{aligned}
\text { In [1] }:= & h=\# 1+2 * \# 2 \& ; \\
& h[3,4] \\
\text { Out [1] }: & : 11
\end{aligned}
$$

- Use Block, With, or Module to localize variables in more complicated function structures

Transforming Data

Consider applying a simple (pure!) function to a set of data...

- ... naïvely, with a for-loop:

$$
\begin{aligned}
& \text { For }[i=1, i<\text { Length[input], i++, } \\
& \text { output[[i]] = Sin[input[[i]]], } \\
&]
\end{aligned}
$$

Transforming Data

Consider applying a simple (pure!) function to a set of data...

- ... naïvely, with a for-loop:

```
For[i = 1, i < Length[input], i++,
    output[[i]] = Sin[input[[i]]],
]
```

- ... with a Table command:

```
output = Table[Sin[input[[i]]], {i,1,n}]
```

(like a list comprehension in python!)

Transforming Data

Consider applying a simple (pure!) function to a set of data...

- ... naïvely, with a for-loop:

```
For[i = 1, i < Length[input], i++,
    output[[i]] = Sin[input[[i]]],
]
```

- ... with a Table command:

```
output = Table[Sin[input[[i]]], {i,1,n}]
```

(like a list comprehension in python!)

- ... with a Map:
output = Map[Sin, input]

Transforming Data

Consider applying a simple (pure!) function to a set of data...

- ... naïvely, with a for-loop:

```
For[i = 1, i < Length[input], i++,
    output[[i]] = Sin[input[[i]]],
]
```

- ... with a Table command:

```
output = Table[Sin[input[[i]]], {i,1,n}]
```

(like a list comprehension in python!)

- ... with a Map:
output = Map[Sin, input]
- ... by cheating with the Listable attribute:
output = Sin[input]

Higher-order Functions: Map

Map applies a function to each element of a collection without modifying the original.

```
    In[1] := Map[f,{1,2,3,x,y,z}]
Out[1] := {f[1],f[2],f[3],f[x],f[y],f[z]}
```

- Automatically handles length
- Easily parallelized with ParallelMap
- Common enough to warrant special syntax:

$$
\begin{aligned}
\operatorname{In}[2] & :=\mathrm{f} / @\{1,2,3, \mathrm{x}, \mathrm{y}, \mathrm{z}\} \\
\operatorname{Out}[2] & :=\{\mathrm{f}[1], \mathrm{f}[2], \mathrm{f}[3], \mathrm{f}[\mathrm{x}], \mathrm{f}[\mathrm{y}], \mathrm{f}[\mathrm{z}]\}
\end{aligned}
$$

Higher-order functions: Apply

Apply turns a list of things into formal arguments of a function-it essentially "strips off" a set of $\}$.

- Similar to Map, transforms a list:

$$
\begin{aligned}
\operatorname{In}[1] & :=\operatorname{Apply}[f,\{1,2,3, a, b, c\}] \\
\text { Out }[1] & :=f[1,2,3, a, b, c]
\end{aligned}
$$

- Can operate on levels ${ }^{1}$ (default $=0$, use @@@ for level 1)

$$
\begin{aligned}
\text { In [2] } & :=\operatorname{Apply}[f,\{\{1\},\{2\},\{3\}\},\{1\}] \\
\text { Out [2] } & :=\{f[1], f[2], f[3]\}(* \text { level } 1 *)
\end{aligned}
$$

- Plus \& Subtract become really useful wtih Apply
${ }^{1} \#$ of indices required to specify element

Higher-order functions: Nest \& NestList

- Nest repeatedly applies a function to an expression
- NestList does the same, producing a list of the intermediate results
- Captures iteration as a recursive application of functions

$$
\begin{aligned}
\text { In [1] } & :=\text { Nest [f, } x, 3] \\
\text { Out [1] } & :=\mathrm{f}[\mathrm{f}[\mathrm{f}[\mathrm{x}]]]
\end{aligned}
$$

Conclusion

While Map, Apply, \& Nest are all built-in functions, none rely on ideas exclusive to Mathematica; as functional constructs, they very naturally capture specific types of problems \& ideas.

Table of Contents

(1) Introduction

- "Formalism"

2 Functional Programming

- Background
- Pure functions \& Modules
- Higher-order functions
(3) Patterns, Rules, \& Attributes

4 Closing

- Further resources

Patterns

What is a pattern?

Patterns represent classes of expressions which can be used to "automatically" simplify or restructure expressions. For example, $f\left[\right.$ _] and $f\left[x_{-}\right]$both represent the pattern of "a function named f with anything as its argument", but $f\left[x_{-}\right]$gives the name x to the argument (whatever it is).

Common patterns:

- x_{-}: anything (with "the anything" given the name x)
- x_Integer: any integer (given the name x)
- $x_{-}{ }^{n} n_{-}$: anything to any explicit power (guess their names)
- $f\left[r_{-}, r_{-}\right]$: a function with two identical arguments
- and so on

The Replacement Idiom

"/. applies a rule or list of rules in an attempt to transform each subpart of an expression"

$$
\begin{aligned}
\operatorname{In}[1] & :=\left\{x, x^{\wedge} 2, y, z\right\} \\
\text { Out }[1] & :=\left\{a, a^{\wedge} 2, y, z\right\}
\end{aligned}
$$

- The rule can make use of Mathematica's pattern-matching capabilities:

$$
\begin{aligned}
\operatorname{In}[2] & :=1+x^{\wedge} 2+x^{\wedge} 4 / \cdot x^{\wedge} p_{-}->f[p] \\
\text { Out [2] } & :=1+f[2]+f[4]
\end{aligned}
$$

- Useful for structuring solvers:

$$
f=x / . \operatorname{DSolve}[x, \prime[t]==x[t], x, t][[1]]
$$

Attributes

Attributes let you define general properties of functions, without necessarily giving explicit values.

- The Listable attribute automatically threads a function over lists that appear as arguments.

```
    In[1] := SetAttributes[f, Listable]
        f[{1,2,3},x]
Out[1] := {f[1,x], f[2,x], f[3,x]}
```

- Flat, Orderless used to define things like associativity \& commutativity $(a+b==b+a$ for the purposes of pattern matching)

Table of Contents

(1) Introduction

- "Formalism"
(2) Functional Programming
- Background
- Pure functions \& Modules
- Higher-order functions
(3) Patterns, Rules, \& Attributes

4 Closing

- Further resources

Some final thoughts

(1) Functional programming and pattern matching are both hard and obtuse (at first), but they can be a very elegant way of attacking problems

- Also good for parallel programing!
(2) The best method usually requires a bit of trial-and-error. Experiment!
(3) Further resources:
- The Mathematica documentation is excellent
- The Wolfram Blog frequently has cool examples in a variety of subjects
- Essential Mathematica for Students of Science has lots of detailed notebooks for scientific applicaitons
- Power Programming with Mathematica: antequated, but good

Figure: https://www.msu.edu/~glosser1/works.html

Thanks for listening!

