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ABSTRACT
Motivation: Recent advances in sequencing technologies promise
ultra-long reads of ∼100 kilo bases (kb) in average, full-length mRNA
or cDNA reads in high throughput and genomic contigs over 100
mega bases (Mb) in length. Existing alignment programs are unable
or inefficient to process such data at scale, which presses for the
development of new alignment algorithms.
Results: Minimap2 is a general-purpose alignment program to
map DNA or long mRNA sequences against a large reference
database. It works with accurate short reads of ≥100bp in length,
≥1kb genomic reads at error rate ∼15%, full-length noisy Direct
RNA or cDNA reads, and assembly contigs or closely related full
chromosomes of hundreds of megabases in length. Minimap2 does
split-read alignment, employs concave gap cost for long insertions
and deletions (INDELs) and introduces new heuristics to reduce
spurious alignments. It is 3–4 times as fast as mainstream short-read
mappers at comparable accuracy, and is ≥30 times faster than long-
read genomic or cDNA mappers at higher accuracy, surpassing most
aligners specialized in one type of alignment.
Availability and implementation: https://github.com/lh3/minimap2
Contact: hengli@broadinstitute.org

1 INTRODUCTION
Single Molecule Real-Time (SMRT) sequencing technology and
Oxford Nanopore technologies (ONT) produce reads over 10kbp in
length at an error rate ∼15%. Several aligners have been developed
for such data (Chaisson and Tesler, 2012; Li, 2013; Liu et al., 2016;
Sović et al., 2016; Liu et al., 2017; Lin and Hsu, 2017; Sedlazeck
et al., 2017). Most of them were five times as slow as mainstream
short-read aligners (Langmead and Salzberg, 2012; Li, 2013) in
terms of the number of bases mapped per second. We speculated
there could be substantial room for speedup on the thought that
10kb long sequences should be easier to map than 100bp reads
because we can more effectively skip repetitive regions, which
are often the bottleneck of short-read alignment. We confirmed
our speculation by achieving approximate mapping 50 times faster
than BWA-MEM (Li, 2016). Suzuki and Kasahara (2018) extended
our work with a fast and novel algorithm on generating base-level
alignment, which in turn inspired us to develop minimap2 with
added functionality.

Both SMRT and ONT have been applied to the sequencing
of spliced mRNAs (RNA-seq). While traditional mRNA aligners
work (Wu and Watanabe, 2005; Iwata and Gotoh, 2012), they
are not optimized for long noisy sequence reads and are tens of
times slower than dedicated long-read aligners. When developing
minimap2 initially for aligning genomic DNA only, we realized
minor modifications could enable the base algorithm to map
mRNAs as well. Minimap2 becomes a first RNA-seq aligner
specifically designed for long noisy reads. We have also extended
the original algorithm to map short reads at a speed faster than
several mainstream short-read mappers.

In this article, we will describe the minimap2 algorithm and its
applications to different types of input sequences. We will evaluate
the performance and accuracy of minimap2 on several simulated and
real data sets and demonstrate the versatility of minimap2.

2 METHODS
Minimap2 follows a typical seed-chain-align procedure as is used by most
full-genome aligners. It collects minimizers (Roberts et al., 2004) of the
reference sequences and indexes them in a hash table, with the key being the
hash of a minimizer and the value being a list of locations of the minimizer
copies. Then for each query sequence, minimap2 takes query minimizers as
seeds, finds exact matches (i.e. anchors) to the reference, and identifies sets
of colinear anchors as chains. If base-level alignment is requested, minimap2
applies dynamic programming (DP) to extend from the ends of chains and
to close regions between adjacent anchors in chains.

Minimap2 uses indexing and seeding algorithms similar to minimap (Li,
2016), and furthers the predecessor with more accurate chaining, the ability
to produce base-level alignment and the support of spliced alignment.

2.1 Chaining
2.1.1 Chaining
An anchor is a 3-tuple (x, y, w), indicating interval [x − w + 1, x] on
the reference matching interval [y − w + 1, y] on the query. Given a list
of anchors sorted by ending reference position x, let f(i) be the maximal
chaining score up to the i-th anchor in the list. f(i) can be calculated with
dynamic programming:

f(i) = max
{

max
i>j≥1

{f(j) + α(j, i)− β(j, i)}, wi
}

(1)

where α(j, i) = min
{

min{yi − yj , xi − xj}, wi
}

is the number of
matching bases between the two anchors. β(j, i) > 0 is the gap cost. It
equals ∞ if yj ≥ yi or max{yi − yj , xi − xj} > G (i.e. the distance
between two anchors is too large); otherwise

β(j, i) = γc
(
(yi − yj)− (xi − xj)

)
(2)

In implementation, a gap of length l costs

γc(l) =

{
0.01 · w̄ · |l|+ 0.5 log2 |l| (l 6= 0)
0 (l = 0)

where w̄ is the average seed length. For N anchors, directly computing all
f(·) with Eq. (1) takes O(N2) time. Although theoretically faster chaining
algorithms exist (Abouelhoda and Ohlebusch, 2005), they are inapplicable to
generic gap cost, complex to implement and usually associated with a large
constant. We introduced a simple heuristic to accelerate chaining.

We note that if anchor i is chained to j, chaining i to a predecessor of
j is likely to yield a lower score. When evaluating Eq. (1), we start from
anchor i−1 and stop the process if we cannot find a better score after up to h
iterations. This approach reduces the average time toO(hN). In practice, we
can almost always find the optimal chain with h = 50; even if the heuristic
fails, the optimal chain is often close.

2.1.2 Backtracking
Let P (i) be the index of the best predecessor of anchor i. It equals 0 if
f(i) = wi or argmaxj{f(j) + α(j, i) − β(j, i)} otherwise. For each
anchor i in the descending order of f(i), we apply P (·) repeatedly to find
its predecessor and mark each visited i as ‘used’, until P (i) = 0 or we reach
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an already ‘used’ i. This way we find all chains with no anchors used in more
than one chains.

2.1.3 Identifying primary chains
In the absence of copy number changes, each query segment should not
be mapped to two places in the reference. However, chains found at the
previous step may have significant or complete overlaps due to repeats in the
reference (Li and Durbin, 2010). Minimap2 used the following procedure to
identify primary chains that do not greatly overlap on the query.

Let Q be an empty set initially. For each chain from the best to the worst
according to their chaining scores: if on the query, the chain overlaps with a
chain in Q by 50% or higher percentage of the shorter chain, mark the chain
as secondary to the chain in Q; otherwise, add the chain to Q. In the end, Q
contains all the primary chains. We did not choose a more sophisticated data
structure (e.g. range tree or k-d tree) because this step is not the performance
bottleneck.

For each primary chain, minimap2 estimates its mapping quality with an
empirical formula:

mapQ = 40 · (1− f2/f1) ·min{1,m/10} · log f1

where log denotes natural logarithm, m is the number of anchors on the
primary chain, f1 is the chaining score, and f2 ≤ f1 is the score of the best
chain that is secondary to the primary chain. Intuitively, a chain is assigned
to a higher mapping quality if it is long and its best secondary chain is weak.

2.1.4 Estimating per-base sequence divergence
Suppose a query sequence harbors n seeds of length k, m of which are
present in a chain. We want to estimate the sequence divergence ε between
the query and the reference sequences in the chain. This is useful when base-
level alignment is too expensive to perform.

If we model substitutions with a homogeneous Poisson process along
the query sequence, the probablity of seeing k consecutive bases without
substitutions is e−kε. On the assumption that all k-mers are independent of
each other, the likelihood function of ε is

L(ε|n,m, k) = e−m·kε(1− e−kε)n−m

The maximum likelihood estimate of ε is

ε̂ =
1

k
log

n

m

In reality, sequencing errors are sometimes clustered and k-mers are not
independent of each other, especially when we take minimizers as seeds.
These violate the assumptions in the derivation above. As a result, ε̂ is
only approximate and can be biased. It also ignores long deletions from
the reference sequence. In practice, fortunately, ε̂ is often close to and
strongly correlated with the sequence divergence estimated from base-level
alignments. On the several datasets used in Section 3.1, the Spearman
correlation coefficient is around 0.9.

2.1.5 Indexing with homopolymer compressed k-mers
SmartDenovo (https://github.com/ruanjue/smartdenovo; J. Ruan, personal
communication) indexes reads with homopolymer-compressed (HPC) k-
mers and finds the strategy improves overlap sensitivity for SMRT reads.
Minimap2 adopts the same heuristic.

The HPC string of a string s, denoted by HPC(s), is constructed by
contracting homopolymers in s to a single base. An HPC k-mer of s is
a k-long substring of HPC(s). For example, suppose s = GGATTTTCCA,
HPC(s) = GATCA and the first HPC 4-mer is GATC.

To demonstrate the effectiveness of HPC k-mers, we performed read
overlapping for the example E. coli SMRT reads from PBcR (Berlin et al.,
2015), using different types of k-mers. With normal 15bp minimizers per
5bp window, minimap2 finds 90.9% of ≥2kb overlaps inferred from the
read-to-reference alignment. With HPC 19-mers per 5bp window, minimap2
finds 97.4% of overlaps. It achieves this higher sensitivity by indexing 1/3
fewer minimizers, which further helps performance. HPC-based indexing
reduces the sensitivity for current ONT reads, though.

2.2 Aligning genomic DNA
2.2.1 Alignment with 2-piece affine gap cost
Minimap2 performs DP-based global alignment between adjacent anchors
in a chain. It uses a 2-piece affine gap cost (Gotoh, 1990):

γa(l) = min{q + |l| · e, q̃ + |l| · ẽ} (3)

Without losing generality, we always assume q+e < q̃+ẽ. On the condition
that e > ẽ, it applies cost q + |l| · e to gaps shorter than d(q̃ − q)/(e− ẽ)e
and applies q̃ + |l| · ẽ to longer gaps. This scheme helps to recover longer
insertions and deletions (INDELs).

The equation to compute the optimal alignment under γa(·) is
Hij = max{Hi−1,j−1 + s(i, j), Eij , Fij , Ẽij , F̃ij}
Ei+1,j = max{Hij − q, Eij} − e
Fi,j+1 = max{Hij − q, Fij} − e
Ẽi+1,j = max{Hij − q̃, Ẽij} − ẽ
F̃i,j+1 = max{Hij − q̃, F̃ij} − ẽ

(4)

where s(i, j) is the score between the i-th reference base and j-th query
base. Eq. (4) is a natural extension to the equation under affine gap
cost (Gotoh, 1982; Altschul and Erickson, 1986).

2.2.2 The Suzuki-Kasahara formulation
When we allow gaps longer than several hundred base pairs, nucleotide-level
alignment is much slower than chaining. SSE acceleration is critical to the
performance of minimap2. Traditional SSE implementations (Farrar, 2007)
based on Eq. (4) can achieve 16-way parallelization for short sequences, but
only 4-way parallelization when the peak alignment score reaches 32767.
Long sequence alignment may exceed this threshold. Inspired by Wu et al.
(1996) and the following work, Suzuki and Kasahara (2018) proposed a
difference-based formulation that lifted this limitation. In case of 2-piece
gap cost, define

uij , Hij −Hi−1,j vij , Hij −Hi,j−1

xij , Ei+1,j −Hij x̃ij , Ẽi+1,j −Hij
yij , Fi,j+1 −Hij ỹij , F̃i,j+1 −Hij

We can transform Eq. (4) to

zij = max{s(i, j), xi−1,j + vi−1,j , yi,j−1 + ui,j−1,
x̃i−1,j + vi−1,j , ỹi,j−1 + ui,j−1}

uij = zij − vi−1,j

vij = zij − ui,j−1

xij = max{0, xi−1,j + vi−1,j − zij + q} − q − e
yij = max{0, yi,j−1 + ui,j−1 − zij + q} − q − e
x̃ij = max{0, x̃i−1,j + vi−1,j − zij + q̃} − q̃ − ẽ
ỹij = max{0, ỹi,j−1 + ui,j−1 − zij + q̃} − q̃ − ẽ

(5)

where zij is a temporary variable that does not need to be stored.
An important property of Eq. (5) is that all values are bounded by scoring

parameters. To see that,

xij = Ei+1,j −Hij = max{−q, Eij −Hij} − e

With Eij ≤ Hij , we have

−q − e ≤ xij ≤ max{−q, 0} − e = −e

and similar inequations for yij , x̃ij and ỹij . In addition,

uij = zij − vi−1,j ≥ max{xi−1,j , x̃i−1,j} ≥ −q − e

As the maximum value of zij = Hij − Hi−1,j−1 is M , the maximal
matching score, we can derive

uij ≤M − vi−1,j ≤M + q + e

In conclusion, in Eq. (5), x and y are bounded by [−q − e,−e], x̃ and ỹ
by [−q̃ − ẽ,−ẽ], and u and v by [−q − e,M + q + e]. When −128 ≤
−q− e < M + q+ e ≤ 127, each of them can be stored as a 8-bit integer.

2
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Aligning nucleotide sequences with minimap2

This enables 16-way SSE vectorization regardless of the peak score of the
alignment.

For a more efficient SSE implementation, we transform the row-column
coordinate to the diagonal-antidiagonal coordinate by letting r ← i+ j and
t← i. Eq. (5) becomes:

zrt = max{s(t, r − t), xr−1,t−1 + vr−1,t−1, yr−1,t

+ur−1,t, x̃r−1,t−1 + vr−1,t−1, ỹr−1,t + ur−1,t}
urt = zrt − vr−1,t−1

vrt = zrt − ur−1,t

xrt = max{0, xr−1,t−1 + vr−1,t−1 − zrt + q} − q − e
yrt = max{0, yr−1,t + ur−1,t − zrt + q} − q − e
x̃rt = max{0, x̃r−1,t−1 + vr−1,t−1 − zrt + q̃} − q̃ − ẽ
ỹrt = max{0, ỹr−1,t + ur−1,t − zrt + q̃} − q̃ − ẽ

In this formulation, cells with the same diagonal index r are independent
of each other. This allows us to fully vectorize the computation of all
cells on the same anti-diagonal in one inner loop. It also simplifies banded
alignment (500bp band width by default), which would be difficult with
striped vectorization (Farrar, 2007).

On the condition that q + e < q̃ + ẽ and e > ẽ, the initial values in the
diagonal-antidiagonal formuation are

xr−1,−1 = yr−1,r = −q − e
x̃r−1,−1 = ỹr−1,r = −q̃ − ẽ
ur−1,r = vr−1,−1 = η(r)

where

η(r) =


−q − e (r = 0)

−e (r < d q̃−q
e−ẽ − 1e)

r · (e− ẽ)− (q̃ − q)− ẽ (r = d q̃−q
e−ẽ − 1e)

−ẽ (r > d q̃−q
e−ẽ − 1e)

These can be derived from the initial values for Eq. (4).
When performing global alignment, we do not need to compute Hrt in

each cell. We use 16-way vectorization throughout the alignment process.
When extending alignments from ends of chains, we need to find the cell
(r, t) where Hrt reaches the maximum. We resort to 4-way vectorization to
computeHrt = Hr−1,t+urt. Because this computation is simple, Eq. (5)
is still the dominant performance bottleneck.

In practice, our 16-way vectorized implementation of global alignment is
three times as fast as Parasail’s 4-way vectorization (Daily, 2016). Without
banding, our implementation is slower than Edlib (Šošić and Šikic, 2017),
but with a 1000bp band, it is considerably faster. When performing global
alignment between anchors, we expect the alignment to stay close to the
diagonal of the DP matrix. Banding is applicable most of the time.

2.2.3 The Z-drop heuristic
With global alignment, minimap2 may force to align unrelated sequences
between two adjacent anchors. To avoid such an artifact, we compute
accumulative alignment score along the alignment path and break the
alignment where the score drops too fast in the diagonal direction. More
precisely, let S(i, j) be the alignment score along the alignment path ending
at cell (i, j) in the DP matrix. We break the alignment if there exist (i′, j′)
and (i, j), i′ < i and j′ < j, such that

S(i′, j′)− S(i, j) > Z + e · |(i− i′)− (j − j′)|

where e is the gap extension cost and Z is an arbitrary threshold. This
strategy is first used in BWA-MEM. It is similar to X-drop employed in
BLAST (Altschul et al., 1997), but unlike X-drop, it would not break the
alignment in the presence of a single long gap.

When minimap2 breaks a global alignment between two anchors, it
performs local alignment between the two subsequences involved in
the global alignment, but this time with the one subsequence reverse
complemented. This additional alignment step may identify short inversions
that are missed during chaining.

2.2.4 Filtering out misplaced anchors
Due to sequencing errors and local homology, some anchors in a chain may
be wrong. If we blindly align regions between two misplaced anchors, we
will produce a suboptimal alignment. To reduce this artifact, we filter out
anchors that lead to a >10bp insertion and a >10bp deletion at the same
time, and filter out terminal anchors that lead to a long gap towards the
ends of a chain. These heuristics greatly alleviate the issues with misplaced
anchors, but they are unable to fix all such errors. Local misalignment is a
limitation of minimap2 which we hope to address in future.

2.3 Aligning spliced sequences
The algorithm described above can be adapted to spliced alignment. In this
mode, the chaining gap cost distinguishes insertions to and deletions from
the reference: γc(l) in Eq. (2) takes the form of

γc(l) =

{
0.01 · w̄ · l + 0.5 log2 l (l > 0)

min{0.01 · w̄ · |l|, log2 |l|} (l < 0)

Similarly, the gap cost function used for DP-based alignment is changed to

γa(l) =

{
q + l · e (l > 0)
min{q + |l| · e, q̃} (l < 0)

In alignment, a deletion no shorter than d(q̃−q)/ee is regarded as an intron,
which pays no cost to gap extensions.

To pinpoint precise splicing junctions, minimap2 introduces reference-
dependent cost to penalize non-canonical splicing:

Hij = max{Hi−1,j−1 + s(i, j), Eij , Fij , Ẽij − a(i)}
Ei+1,j = max{Hij − q, Eij} − e
Fi,j+1 = max{Hij − q, Fij} − e
Ẽi+1,j = max{Hij − d(i)− q̃, Ẽij}

(6)

Let T be the reference sequence. d(i) is computed as

d(i) =


0 if T [i+ 1, i+ 3] is GTA or GTG
p/2 if T [i+ 1, i+ 3] is GTC or GTT
p otherwise

where T [i, j] extracts a substring of T between i and j inclusively. d(i)
penalizes non-canonical donor sites with p and less frequent Eukaryotic
splicing signal GT[C/T] with p/2 (Irimia and Roy, 2008). Similarly,

a(i) =


0 if T [i− 2, i] is CAG or TAG
p/2 if T [i− 2, i] is AAG or GAG
p otherwise

models the acceptor signal. Eq. (6) is close to an equation in Zhang
and Gish (2006) except that we allow insertions immediately followed by
deletions and vice versa; in addition, we use the Suzuki-Kasahara diagonal
formulation in actual implementation.

If RNA-seq reads are not sequenced from stranded libraries, the read
strand relative to the underlying transcript is unknown. By default, minimap2
aligns each chain twice, first assuming GT–AG as the splicing signal and
then assuming CT–AC, the reverse complement of GT–AG, as the splicing
signal. The alignment with a higher score is taken as the final alignment.
This procedure also infers the relative strand of reads that span canonical
splicing sites.

In the spliced alignment mode, minimap2 further increases the density
of minimizers and disables banded alignment. Together with the two-round
DP-based alignment, spliced alignment is several times slower than genomic
DNA alignment.

2.4 Aligning short paired-end reads
During chaining, minimap2 takes a pair of reads as one fragment with a
gap of unknown length in the middle. It applies a normal gap cost between
seeds on the same read but is a more permissive gap cost between seeds on
different reads. More precisely, the gap cost during chaining is (l 6= 0):

γc(l) =

{
0.01 · w̄ · |l|+ 0.5 log2 |l| if two seeds on the same read
min{0.01 · w̄ · |l|, log2 |l|} otherwise

3
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Fig. 1. Evaluation on aligning simulated reads. Simulated reads were
mapped to the primary assembly of human genome GRCh38. A read is
considered correctly mapped if its longest alignment overlaps with the
true interval, and the overlap length is ≥10% of the true interval length.
Read alignments are sorted by mapping quality in the descending order.
For each mapping quality threshold, the fraction of alignments (out of
the number of input reads) with mapping quality above the threshold
and their error rate are plotted along the curve. (a) long-read alignment
evaluation. 33,088 ≥1000bp reads were simulated using pbsim (Ono et al.,
2013) with error profile sampled from file ‘m131017 060208 42213 *.1.*’
downloaded at http://bit.ly/chm1p5c3. The N50 read length is 11,628.
Aligners were run under the default setting for SMRT reads. Kart outputted
all alignments at mapping quality 60, so is not shown in the figure.
It mapped nearly all reads with 4.1% of alignments being wrong, less
accurate than others. (b) short-read alignment evaluation. 10 million pairs
of 150bp reads were simulated using mason2 (Holtgrewe, 2010) with option
‘–illumina-prob-mismatch-scale 2.5’. Short-read aligners were run under the
default setting except for changing the maximum fragment length to 800bp.

After identifying primary chains (Section 2.1.3), we split each fragment
chain into two read chains and perform alignment for each read as in
Section 2.2. Finally, we pair hits of each read end to find consistent
paired-end alignments.

3 RESULTS
Minimap2 is implemented in the C programming language and
comes with APIs in both C and Python. It is distributed under
the MIT license, free to both commercial and academic uses.
Minimap2 uses the same base algorithm for all applications, but
it has to apply different sets of parameters depending on input
data types. Similar to BWA-MEM, minimap2 introduces ‘presets’
that modify multiple parameters with a simple invocation. Detailed
settings and command-line options can be found in the minimap2
manpage. In addition to the applications evaluated in the following
sections, minimap2 also retains minimap’s functionality to find
overlaps between long reads and to search against large multi-
species databases such as nt from NCBI.

3.1 Aligning long genomic reads
As a sanity check, we evaluated minimap2 on simulated human
reads along with BLASR (v1.MC.rc64; Chaisson and Tesler, 2012),
BWA-MEM (v0.7.15; Li, 2013), GraphMap (v0.5.2; Sović et al.,
2016), Kart (v2.2.5; Lin and Hsu, 2017), minialign (v0.5.3;
https://github.com/ocxtal/minialign) and NGMLR (v0.2.5; Sedlazeck
et al., 2017). We excluded rHAT (Liu et al., 2016) and LAMSA (Liu
et al., 2017) because they either crashed or produced malformatted
output. In this evaluation, minimap2 has higher power to distinguish

Table 1. Evaluation of junction accuracy on 2D ONT reads

GMAP minimap2 SpAln STAR

Run time (CPU min) 631 15.9 2 076 33.9
Peak RAM (GByte) 8.9 14.5 3.2 29.2

# aligned reads 103 669 104 199 103 711 26 479
# chimeric alignments 1 904 1 488 0 0
# non-spliced alignments 15 854 14 798 17 033 10 545

# aligned introns 692 275 693 553 692 945 78 603
# novel introns 11 239 3 113 8 550 1 214
% exact introns 83.8% 94.0% 87.9% 55.2%
% approx. introns 91.8% 96.9% 92.5% 82.4%

Mouse cDNA reads (AC:SRR5286960; R9.4 chemistry) were mapped to the primary
assembly of mouse genome GRCm38 with the following tools and command options:
minimap2 (‘-ax splice’); GMAP (‘-n 0 –min-intronlength 30 –cross-species’); SpAln
(‘-Q7 -LS -S3’); STARlong (according to http://bit.ly/star-pb). The alignments were
compared to the EnsEMBL gene annotation, release 89. A predicted intron is novel if
it has no overlaps with any annotated introns. An intron is exact if it is identical to an
annotated intron. An intron is approximate if both its 5’- and 3’-end are within 10bp
around the ends of an annotated intron. Chimeric alignments are defined in the SAM
spec (Li et al., 2009).

unique and repetitive hits, and achieves overall higher mapping
accuracy (Fig. 1a). Minimap2 and NGMLR provide better mapping
quality estimate: they rarely give repetitive hits high mapping
quality. Apparently, other aligners may occasionally miss close
suboptimal hits and be overconfident in wrong mappings. On run
time, minimap2 took 200 CPU seconds, comparable to minialign
and Kart, and is over 30 times faster than the rest. Minimap2
consumed 6.8GB memory at the peak, more than BWA-MEM
(5.4GB), similar to NGMLR and less than others.

On real human SMRT reads, the relative performance and fraction
of mapped reads reported by these aligners are broadly similar to the
metrics on simulated data. We are unable to provide a good estimate
of mapping error rate due to the lack of the truth. On ONT ∼100kb
human reads (Jain et al., 2017), BWA-MEM failed. Kart, minialign
and minimap2 are over 70 times faster than others. We have also
examined tens of ≥100bp INDELs in IGV (Robinson et al., 2011)
and can confirm the observation by Sedlazeck et al. (2017) that
BWA-MEM often breaks them into shorter gaps. The issue is much
alleviated with minimap2, thanks to the 2-piece affine gap cost.

3.2 Aligning long spliced reads
We evaluated minimap2 on SIRV control data (AC:SRR5286959;
Byrne et al., 2017) where the truth is known. Minimap2 predicted
59 918 introns from 11 018 reads. 93.8% of splice juctions are
precise. We examined wrongly predicted junctions and found the
majority were caused by clustered splicing signals (e.g. two adjacent
GT sites). When INDEL sequencing errors are frequent, it is difficult
to find precise splicing sites in this case. If we allow up to 10bp
distance from true splicing sites, 98.4% of aligned introns are
approximately correct. It is worth noting that for SIRV, we asked
minimap2 to model the GT..AG splicing signal only without extra
bases. This is because SIRV does not honor the evolutionarily
prevalent signal GT[A/G]..[C/T]AG (Irimia and Roy, 2008).
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Aligning nucleotide sequences with minimap2

We next aligned real mouse reads (Byrne et al., 2017) with
GMAP (v2017-06-20; Wu and Watanabe, 2005), minimap2,
SpAln (v2.3.1; Iwata and Gotoh, 2012) and STAR (v2.5.3a; Dobin
et al., 2013). In general, minimap2 is more consistent with
existing annotations (Table 1): it finds more junctions with a higher
percentage being exactly or approximately correct. Minimap2 is
over 40 times faster than GMAP and SpAln. While STAR is close
to minimap2 in speed, it does not work well with noisy reads.

We have also evaluated spliced aligners on a human Nanopore
Direct RNA-seq dataset (http://bit.ly/na12878ont). Minimap2
aligned 10 million reads in <1 wall-clock hour using 16 CPU cores.
94.2% of aligned splice junctions consistent with gene annotations.
In comparison, GMAP under option ‘-k 14 -n 0 –min-intronlength
30 –cross-species’ is 160 times slower; 68.7% of GMAP junctions
are found in known gene annotations. The percentage increases
to 84.1% if an aligned junction within 10bp from an annotated
junction is considered to be correct. On a public Iso-Seq dataset
(human Alzheimer brain from http://bit.ly/isoseqpub), minimap2
is also faster at higher junction accuracy in comparison to other
aligners in Table 1.

We noted that GMAP and SpAln have not been optimized for
noisy reads. We are showing the best setting we have experimented,
but their developers should be able to improve their accuracy further.

3.3 Aligning short genomic reads
We evaluated minimap2 along with Bowtie2 (v2.3.3; Langmead and
Salzberg 2012), BWA-MEM and SNAP (v1.0beta23; Zaharia et al.
2011). Minimap2 is 3–4 times as fast as Bowtie2 and BWA-MEM,
but is 1.3 times slower than SNAP. Minimap2 is more accurate on
this simulated data set than Bowtie2 and SNAP but less accurate
than BWA-MEM (Fig. 1b). Closer investigation reveals that BWA-
MEM achieves a higher accuracy partly because it tries to locally
align a read in a small region close to its mate. If we disable this
feature, BWA-MEM becomes slightly less accurate than minimap2.
We might implement a similar heuristic in minimap2 in future.

To evaluate the accuracy of minimap2 on real data, we aligned
human reads (AC:ERR1341796) with BWA-MEM and minimap2,
and called SNPs and small INDELs with GATK HaplotypeCaller
v3.5 (Depristo et al., 2011). This run was sequenced from
experimentally mixed CHM1 and CHM13 cell lines. Both of them
are homozygous across the whole genome and have been de novo
assembled with SMRT reads to high quality. This allowed us to
construct an independent truth variant dataset (Li et al., 2017) for
ERR1341796. In this evaluation, minimap2 has higher SNP false
negative rate (FNR; 2.6% of minimap2 vs 2.3% of BWA-MEM),
but fewer false positive SNPs per million bases (FPPM; 7.0 vs 8.8),
similar INDEL FNR (11.2% vs 11.3%) and similar INDEL FPPM
(6.4 vs 6.5). Minimap2 is broadly comparable to BWA-MEM in the
context of small variant calling.

3.4 Aligning long-read assemblies
Minimap2 can align a SMRT assembly (AC:GCA 001297185.1)
against GRCh38 in 7 minutes using 8 CPU cores, over 20 times
faster than nucmer from MUMmer4 (Marçais et al., 2018). With
the paftools.js script from the minimap2 package, we called
2.67 million single-base substitutions out of 2.78Gbp genomic
regions. The transition-to-transversion ratio (ts/tv) is 2.01. In
comparison, using MUMmer4’s dnadiff pipeline, we called 2.86

million substitutions in 2.83Gbp at ts/tv=1.87. Given that ts/tv
averaged across the human genome is about 2 but ts/tv averaged
over random errors is 0.5, the minimap2 callset arguably has higher
precision at lower sensitivity.

The sample being assembled is a female. Minimap2 still called
201 substitutions on the Y chromosome. These substitutions all
come from one contig aligned at 96.8% sequence identity. The
contig could be a segmental duplication absent from GRCh38. In
constrast, dnadiff called 9070 substitutions on the Y chromosome
across 73 SMRT contigs. This again implies our minimap2-based
pipeline has higher precision.

4 DISCUSSIONS
Minimap2 is a versatile mapper and pairwise aligner for nucleotide
sequences. It works with short reads, assembly contigs and long
noisy genomic and RNA-seq reads, and can be used as a read
mapper, long-read overlapper or a full-genome aligner. Minimap2
is also accurate and efficient, often outperforming other domain-
specific alignment tools in terms of both speed and accuracy.

The capability of minimap2 comes from a fast base-level
alignment algorithm and an accurate chaining algorithm. When
aligning long query sequences, base-level alignment is often the
performance bottleneck. The Suzuki-Kasahara algorithm greatly
alleviates the bottleneck and enables DP-based splice alignment
involving >100kb introns, which was impractically slow ten years
ago. The minimap2 chaining algorithm is fast and highly accurate
by itself. In fact, chaining alone is more accurate than all the other
long-read mappers in Fig. 1a (data not shown). This accuracy helps
to reduce downstream base-level alignment of candidate chains,
which is still several times slower than chaining even with the
Suzuki-Kasahara improvement. In addition, taking a general form,
minimap2 chaining can be adapted to non-typical data types such
as spliced reads and multiple reads per fragment. This gives us the
opportunity to extend the same base algorithm to a variety of use
cases.

Modern mainstream aligners often use a full-text index, such
as suffix array or FM-index, to index reference sequences. An
advantage of this approach is that we can use exact seeds of
arbitrary lengths, which helps to increase seed uniqueness and
reduce unsuccessful extensions. Minimap2 indexes reference k-
mers with a hash table instead. Such fixed-length seeds are inferior
to variable-length seeds in theory, but can be computed much more
efficiently in practice. When a query sequence has multiple seed
hits, we can afford to skip highly repetitive seeds without affecting
the final accuracy. This further alleviates the concern with the
seeding uniqueness. At the same time, at low sequence identity, it is
rare to see long seeds anyway. Hash table is the ideal data structure
for mapping long noisy sequences.
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