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The Problem of the hill climber

Hill Climbing Method: Finding the highest altitude in a 2D landscape
1 Choose a starting location (Choose initial parameters)
2 Determine the steepest uphill direction
3 Move a certain distance in that direction
4 Go on until all surrounding directions are downhill

Numerical optimization methods di�er in how they take on steps 1 to 3.





Taken from Charbonneau (2002)



Complications

Again our method is:
1 Choose a starting location (Choose initial parameters)
2 Determine the steepest uphill direction
3 Move a certain distance in that direction
4 Go on until all surrounding directions are downhill

It is easy to see that many things can go wrong in our recipe of climbing
the mountain



Taken from Charbonneau (2002)



Taken from Charbonneau (2002)



What climbing the hill looks like in math

Our problem is always find q̂ = argmaxQN (q) where QN (·) is a given
objective function.
Usually Q 0

N (q) = 0 has an analytical solution.
In nonlinear applications, this is not the case. Then we need a way to
implement the sequence 2-3 explained above )Iterative Methods
In Iterative Methods you have an step s and there is a rule that yields
where to find q̂s+1

, where ideally QN
⇣

q̂s+1

⌘
> QN

⇣
q̂s
⌘



Gradient Methods

Most iterative methods are gradient methods.
The derivative tells them where to go

q̂s+1

= q̂s +Asgs (1)

where As = A
⇣

q̂s
⌘

and gs =
∂QN(q)

∂q

���
q̂s

Di�erent methods use di�erent As

What is a natural As?
I Answer: The Hessian (Newton-Raphson)



Simple Example
Consider the exponential regression

QN (q) =�(2N)�1

N
Â
i=1

⇣
yi � eq

⌘
2

It is easy to see that the gradient becomes

g = N�1

N
Â
i=1

⇣
yi � eq

⌘
eq =

⇣
ȳ � eq

⌘
eq

Suppose As = e�2q . Then following (1)

q̂s+1

= q̂s + e2q
⇣

ȳ � eq
⌘

eq = q̂s +
⇣

ȳ � eq
⌘

e�q

Suppose ȳ = 2 and q̂
1

= 0. Then,
q̂

2

= 1 and g
1

= 1 ! q̂
3

= 1+(2� e)e�1 and g
2

= (2� e)e�1. And so
on....



Figure: Q (q) and q̂s ; Q (q) and the Iteration s
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Convergence

Iterations will continue forever if we do not define some criteria
1 A small change in QN

⇣
q̂s
⌘

2 A small change in gs relative to the Hessian
3 A small change in parameter estimates q̂s

Convergence is often 10�6



Initial Values (1. Starting Location)

Iterations needed to reach hill top reduce if initial values are chosen to
be close to q ⇤

A poor initial values choice can lead to failure
Stata chooses 20 places in the parameter space at random



Derivatives (2. Determine the steepest uphill direction)

�QN
⇣

q̂s
⌘

�qj
=

QN
⇣

q̂s +hej
⌘
+QN

⇣
q̂s �hej

⌘

2h

where ej = (0,0, . . . ,0,1,0, . . . ,0)
0

and h should be very small
Computer calculates them
Drawback is that they can be computationally burdensome as the
number of parameters increases (parameter space dimensions).
Advantage: no coding
Alternative: Analytical derivatives provided by user

I Analytical derivatives reduce the computational work and make easier
the computation of the second derivatives (Hessian).

I Users can also provide second analytical derivatives



Newton-Raphson Method

q̂s+1

= q̂s +H�1

s gs

where Hs =
∂ 2QN(q)

∂q∂q 0

���
q̂s

is of dimension q⇥q
Motivation: From the Taylor approximation around q̂s

Q⇤
N (q) = QN

⇣
q̂
⌘
+g0

s

⇣
q � q̂s

⌘
+ 1/2

⇣
q � q̂s

⌘0

Hs
⇣

q � q̂s
⌘

To find the optimal q ⇤ of this Taylor expansion we calculate the derivative
with respect to q which yields

gs +Hs
⇣

q � q̂s
⌘
= 0

Solving for q ) q = q̂ �H�1

s gs
Note that Hs has to be non-singular



BHHH and DFP

HBHHH,s =�
N
Â
i=1

∂qi (q)
∂q

∂qi (q)
∂q 0

����
q̂s

Note that we only require to calculate the first derivatives. Less
burdensome.

A = As�1

+
ds�1

d 0
s�1

ds�1

gs�1

+
As�1

gs�1

g 0
s�1

As�1

g 0
s�1

As�1

gs�1

where ds�1

= As�1

gs�1

and gs�1

= gs �gs�1



Prepare for the Example (Poisson Model)
A Poisson model optimizes the following objective function

Q (q) =
N
Â
i=1

h
�ex0i q + yix

0
iq � lnyi !

i

It is easy to see that the gradient and the Hessian are

g (q) =
N
Â
i=1

h
yi � ex0i q

i
xi

H(q) =
N
Â
i=1

�ex0i q xix
0
i

Using the Newton-Raphson method

q̂s+1

= q̂s +

"
N
Â
i=1

ex0i q xix
0
i

#�1 N
Â
i=1

h
yi � ex0i q

i
xi



Now we go to Stata!
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