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This monograph develops the recent  algebraic approach to Graph Isomorphism 

and some of its implications for Computational Complexity. Graph Isomorphism can 

be rephrased as a purely algebraic problem that  exposes a surprising structural  simi- 

larity with a number of problems in Group Theory. These problems are easily shown 

to be in NP but are not likely NP-complete. Moreover, there is a good possibility that  

they are harder than Graph Isomorphism, with respect  to polynomial time reduction. 

Because of this possibility, the algebraic approach detailed in this book could prove to 

be very important  for Computational Complexity. 

The roots of this approach predate Babai's Colored Graph Automorphism Problem 

and my investigation of cone graphs. Nevertheless, these two papers appear to have 

been the stimulus leading to the break-through subexponentia! isomorphism test  for 

trivalent graphs by Furst, Hopcroft and Luks. That paper already contained many of 

the techniques applied later by Luks in his polynomial time isomorphism test  for 

graphs of fixed valence, most notably the inductive approach to determining 

automorphisms. Luks' contributions have been primarily a novel way for exploiting 

the imprimitivity s t ructure  of certain permutat ion groups and his analysis of the 

structure of the automorphism groups of graphs of fixed valence. 

I give my thanks to Juris Hartmanis for suggesting that  this material be brought 

together  into a systematic survey of the area as it is at present. John Hopcroft 's ded- 

ication to Computer Science has been exemplary. I wish to thank him for his willing- 

ness to introduce me to Graph Isomorphism. Charles Sims has been my tutor  in the 

mathematical  aspects of this work and has been one of those rare individuals willing 

to carefully read the manuscript  and make suggestions for improvement. Paul Young 

has been exceptionally willing to listen to my ideas and patient enough to criticize 

them. Francine Berman contributed by partially relieving my teaching load. Merrick 

Furst and Michael O'Donnell have thoroughly read the manuscript  and improved it. I 

wish to thank t h e m  all. 

It is a pleasure to acknowledge the support of the National Science Foundation 

(Grant Nr. MCS 78-01B12) which furthered this work. Moreover, the text processing 

facilities of the Department of Computer Sciences at  Purdue University have been 

crucial for a timely completion. 
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