
If you view this talk in PowerPoint,
turn on comments (View | Comments
in PowerPoint) to read remarks made
during the talk but not included on
the slide

Once you do this, you ought to see a
comment attached to this slide
(outside presentation mode)

Current Programming Practice

In your favorite C++ environment:

wage_per_hour * number_of_hours = total_wage

Current Programming Practice

In your favorite C++ environment:

wage_per_hour * number_of_hours = total_wage

pointer manipulation

Current Programming Practice

In your favorite Java environment:
class Main {
public static void main(String args[]) {
if (args.length != 1) {
throw new InvalidInput("This program needs one argument.");

}
System.out.println("You entered " + args[0]);

}
class InvalidInput extends RuntimeException {
public InvalidInput(String mess) { super(mess); }

}}

Current Programming Practice

In your favorite Java environment:
class Main {
public static void main(String args[]) {
if (args.length != 1) {
throw new InvalidInput("This program needs one argument.");

}
System.out.println("You entered " + args[0]);

}
class InvalidInput extends RuntimeException {
public InvalidInput(String mess) { super(mess); }

}}
inner-class declaration

Current Programming Practice

In Pascal/Java/C++:

i = 0;
do {
read (j);
if (j > 0)

i = i + j;
}
while (j > 0)

Current Programming Practice

In Pascal/Java/C++:

i = 0;
do {
read (j);
if (j > 0)

i = i + j;
}
while (j > 0)

The sum of a sequence of
positive numbers is
• positive
• zero
• negative

an error message with no error locus

an error message with no error locus

argument interpreted as application

length1 returns 0, no matter what input

length1 returns 0, no matter what input

implicit sequencing

How to Produce the
Best OO Programmers

Shriram Krishnamurthi
Brown University

and
The TeachScheme! Project

Current Practice in Introductory Courses

• Teach the syntax of a currently
fashionable programming language

• Use Emacs or commercial PE

• Show examplars of code and ask
students to mimic

• Discuss algorithmic ideas (O(-))

Current Practice: Design vs Tinkering

• Syntax: too complex; must tinker

• Design: exposition of syntactic
constructs takes the place of design
guidelines

• Teaching standard algorithms
doesn’t replace a discipline of design

Lessons: The Trinity

• Simple programming language

• Programming environment for students

• A discipline of design
– algorithmic sophistication follows from

design principles

TeachScheme!

Scheme
(language)

DrScheme
(environment)

How to Design Programs
(methodology)

TeachScheme! is not MIT’s Scheme!

TeachScheme! is not MIT’s Scheme!

• Cleans up the MIT’s Scheme language

TeachScheme! is not MIT’s Scheme!

• Cleans up the MIT’s Scheme language

• Not MIT’s programming environment

TeachScheme! is not MIT’s Scheme!

• Cleans up the MIT’s Scheme language

• Not MIT’s programming environment

• Most importantly: not SICP pedagogy

TeachScheme! is not MIT’s Scheme!

• Cleans up the MIT’s Scheme language

• Not MIT’s programming environment

• Most importantly: not SICP pedagogy
– fails the normal student

TeachScheme! is not MIT’s Scheme!

• Cleans up the MIT’s Scheme language

• Not MIT’s programming environment

• Most importantly: not SICP pedagogy
– fails the normal student
– does not discuss program design

TeachScheme! is not MIT’s Scheme!

• Cleans up the MIT’s Scheme language

• Not MIT’s programming environment

• Most importantly: not SICP pedagogy
– fails the normal student
– does not discuss program design
– has an outdated idea of OO programming

TeachScheme! is not MIT’s Scheme!

• Cleans up the MIT’s Scheme language

• Not MIT’s programming environment

• Most importantly: not SICP pedagogy
– fails the normal student
– does not discuss program design
– has an outdated idea of OO programming
– ignores applications and other attractions

Part I:
Programming Language

Programming Language: Scheme

Programming Language: Scheme

• Scheme’s notation is simple:
– either atomic or (<op> <arg> …)

• 3 (+ 1 2) (+ (* 3 4) 5) (* (/ 5 9) (- t 32))

Programming Language: Scheme

• Scheme’s notation is simple:
– either atomic or (<op> <arg> …)

• 3 (+ 1 2) (+ (* 3 4) 5) (* (/ 5 9) (- t 32))

• Scheme’s semantics is easy:
– it’s just the rules of algebra

• no fussing with callling conventions, compilation models, stack
frames, activation records, etc.

• exploits what students already know

Programming Language: Scheme

• Scheme’s notation is simple:
– either atomic or (<op> <arg> …)

• 3 (+ 1 2) (+ (* 3 4) 5) (* (/ 5 9) (- t 32))

• Scheme’s semantics is easy:
– it’s just the rules of algebra

• no fussing with callling conventions, compilation models, stack
frames, activation records, etc.

• exploits what students already know

• With Scheme, we can focus on ideas

Learning the Language

Learning the Language

• Students write full programs from
the first minute

Learning the Language

• Students write full programs from
the first minute

• Only five language constructs
introduced in the entire semester

Learning the Language

• Students write full programs from
the first minute

• Only five language constructs
introduced in the entire semester

• Takes < 1 week to adapt to prefix
– no need to memorize precedence tables!

And Yet ...

• Simple notational mistakes produce
– error messages beyond the students’

knowledge
– strange results -- without warning

• … and even in Scheme (let alone
Java/C++/etc.) there are just too
many features

Programming Languages: Not One, Many

Programming Languages: Not One, Many

• Language 1: first-order, functional
– function definition and application
– conditional expression
– structure definition

Programming Languages: Not One, Many

• Language 1: first-order, functional
– function definition and application
– conditional expression
– structure definition

• Language 2: local function definitions

Programming Languages: Not One, Many

• Language 1: first-order, functional
– function definition and application
– conditional expression
– structure definition

• Language 2: local function definitions

• Language 3: functions and effects
– higher-order functions
– mutation and sequencing

Programming Languages

Programming Languages

• Layer language by pedagogic needs

Programming Languages

• Layer language by pedagogic needs

• Put students in a knowledge-
appropriate context

Programming Languages

• Layer language by pedagogic needs

• Put students in a knowledge-
appropriate context

• Focus on design relative to context

Programming Languages

• Layer language by pedagogic needs

• Put students in a knowledge-
appropriate context

• Focus on design relative to context

Result of over five years of design

Part II:
Programming Environment

Programming Environment Desiderata

Programming Environment Desiderata

• Enforce all language levels

Programming Environment Desiderata

• Enforce all language levels
• Safe, so errors are trapped

Programming Environment Desiderata

• Enforce all language levels
• Safe, so errors are trapped
• Highlight location of dynamic errors

Programming Environment Desiderata

• Enforce all language levels
• Safe, so errors are trapped
• Highlight location of dynamic errors
• Enable instructors to provide code

not at student’s level

Programming Environment Desiderata

• Enforce all language levels
• Safe, so errors are trapped
• Highlight location of dynamic errors
• Enable instructors to provide code

not at student’s level
• Facilitate interactive exploration

Programming Environment Desiderata

• Enforce all language levels
• Safe, so errors are trapped
• Highlight location of dynamic errors
• Enable instructors to provide code

not at student’s level
• Facilitate interactive exploration
• Cross-platform compatibility

Programming Environment Desiderata

• Enforce all language levels
• Safe, so errors are trapped
• Highlight location of dynamic errors
• Enable instructors to provide code

not at student’s level
• Facilitate interactive exploration
• Cross-platform compatibility
• How about a “Break” button?

Some of DrScheme’s Features

Some of DrScheme’s Features

• Layer-oriented languages and errors

Some of DrScheme’s Features

• Layer-oriented languages and errors
• Highlighting of dynamic errors

Some of DrScheme’s Features

• Layer-oriented languages and errors
• Highlighting of dynamic errors
• Explanation of scoping rules

Some of DrScheme’s Features

• Layer-oriented languages and errors
• Highlighting of dynamic errors
• Explanation of scoping rules
• Algebraic stepper

Some of DrScheme’s Features

• Layer-oriented languages and errors
• Highlighting of dynamic errors
• Explanation of scoping rules
• Algebraic stepper
• Interesting values (even pictures)

Some of DrScheme’s Features

• Layer-oriented languages and errors
• Highlighting of dynamic errors
• Explanation of scoping rules
• Algebraic stepper
• Interesting values (even pictures)
• Teachpacks

Some of DrScheme’s Features

• Layer-oriented languages and errors
• Highlighting of dynamic errors
• Explanation of scoping rules
• Algebraic stepper
• Interesting values (even pictures)
• Teachpacks
• cross-platform GUIs, networking, etc.

Some of DrScheme’s Features

• Layer-oriented languages and errors
• Highlighting of dynamic errors
• Explanation of scoping rules
• Algebraic stepper
• Interesting values (even pictures)
• Teachpacks
• cross-platform GUIs, networking, etc.
• Oh, and that “Break” button

Part III:
Design Methodology

Program Design for Beginners

• Implicitly foster basic good habits

• Rational in its design
– its steps explain the code’s structure

• Accessible to beginner

Design Recipes

to be designedin out

Design Recipes

to be designedin out

How do we wire the “program” to the rest of the world?

Design Recipes

to be designedin out

How do we wire the “program” to the rest of the world?

IMPERATIVE: Teach Model-View Separation

Design Recipes

Given data, the central theme:

Data Drive Designs

From the structure of the data, we can
derive the basic structure of the
program …

So let’s do!

Design Recipes: Class Definitions

• use rigorous but not formal language
• start with the familiar

– basic sets: numbers, symbols, booleans
– intervals on numbers

• extend as needed
– structures
– unions
– self-references
– vectors (much later)

Design Recipes: Class Definitions (2)

Consider the lowly armadillo:
• it has a name
• it may be alive (but in Texas …)

Design Recipes: Class Definitions (2)

Consider the lowly armadillo:
• it has a name
• it may be alive (but in Texas …)

(define-struct armadillo (name alive?))

An armadillo is a structure:

(make-armadillo symbol boolean)

Design Recipes: Class Definitions (3)

A zoo animal is either
• an armadillo, or
• a tiger, or
• a giraffe

Each of these classes of animals has its own definition

Design Recipes: Class Definitions (4)

Design Recipes: Class Definitions (4)

A list-of-zoo-animals is either

Design Recipes: Class Definitions (4)

A list-of-zoo-animals is either
• empty

Design Recipes: Class Definitions (4)

A list-of-zoo-animals is either
• empty
• (cons animal list-of-zoo-animals)

Design Recipes: Class Definitions (4)

A list-of-zoo-animals is either
• empty
• (cons animal list-of-zoo-animals)

Design Recipes: Class Definitions (4)

A list-of-zoo-animals is either
• empty
• (cons animal list-of-zoo-animals)

Let’s make examples:

Design Recipes: Class Definitions (4)

A list-of-zoo-animals is either
• empty
• (cons animal list-of-zoo-animals)

Let’s make examples:
• empty

Design Recipes: Class Definitions (4)

A list-of-zoo-animals is either
• empty
• (cons animal list-of-zoo-animals)

Let’s make examples:
• empty
• (cons (make-armadillo ’Bubba true) empty)

Design Recipes: Class Definitions (4)

A list-of-zoo-animals is either
• empty
• (cons animal list-of-zoo-animals)

Let’s make examples:
• empty
• (cons (make-armadillo ’Bubba true) empty)
• (cons (make-tiger ’Tony ’FrostedFlakes)

Design Recipes: Class Definitions (4)

A list-of-zoo-animals is either
• empty
• (cons animal list-of-zoo-animals)

Let’s make examples:
• empty
• (cons (make-armadillo ’Bubba true) empty)
• (cons (make-tiger ’Tony ’FrostedFlakes)

(cons (make-armadillo … …)

Design Recipes: Class Definitions (4)

A list-of-zoo-animals is either
• empty
• (cons animal list-of-zoo-animals)

Let’s make examples:
• empty
• (cons (make-armadillo ’Bubba true) empty)
• (cons (make-tiger ’Tony ’FrostedFlakes)

(cons (make-armadillo … …)
empty))

Design Recipes: Templates

A list of zoo animals is either
• empty
• (cons animal a-list-of-zoo-animals)

;; fun-for-zoo : list-of-zoo-animals -> ???
(define (fun-for-zoo a-loZA) …)

Design Recipes: Templates

A list of zoo animals is either
• empty
• (cons animal a-list-of-zoo-animals)

;; fun-for-zoo : list-of-zoo-animals -> ???
(define (fun-for-zoo a-loZA) …) is it conditionally

defined?

Design Recipes: Templates

A list of zoo animals is either
• empty
• (cons animal a-list-of-zoo-animals)

;; fun-for-zoo : list-of-zoo-animals -> ???
(define (fun-for-zoo a-loZA)

(cond
[<<condition>> <<answer>>]
[<<condition>> <<answer>>]))

Design Recipes: Templates

A list of zoo animals is either
• empty
• (cons animal a-list-of-zoo-animals)

;; fun-for-zoo : list-of-zoo-animals -> ???
(define (fun-for-zoo a-loZA)

(cond
[<<condition>> <<answer>>]
[<<condition>> <<answer>>]))

what are the sub-classes?

Design Recipes: Templates

A list of zoo animals is either
• empty
• (cons animal a-list-of-zoo-animals)

;; fun-for-zoo : list-of-zoo-animals -> ???
(define (fun-for-zoo a-loZA)

(cond
[(empty? a-loZA) <<answer>>]
[(cons? a-loZA) <<answer>>]))

Design Recipes: Templates

A list of zoo animals is either
• empty
• (cons animal a-list-of-zoo-animals)

;; fun-for-zoo : list-of-zoo-animals -> ???
(define (fun-for-zoo a-loZA)

(cond
[(empty? a-loZA) <<answer>>]
[(cons? a-loZA) <<answer>>]))

are any of the
inputs structures?

Design Recipes: Templates

A list of zoo animals is either
• empty
• (cons animal a-list-of-zoo-animals)

;; fun-for-zoo : list-of-zoo-animals -> ???
(define (fun-for-zoo a-loZA)

(cond
[(empty? a-loZA) …]
[(cons? a-loZA) … (first a-loZA) …

… (rest a-loZA) …]))

Design Recipes: Templates

A list of zoo animals is either
• empty
• (cons animal a-list-of-zoo-animals)

;; fun-for-zoo : list-of-zoo-animals -> ???
(define (fun-for-zoo a-loZA)

(cond
[(empty? a-loZA) …]
[(cons? a-loZA) … (first a-loZA) …

… (rest a-loZA) …]))

is the class definition
self-referential?

Design Recipes: Templates

A list of zoo animals is either
• empty
• (cons animal a-list-of-zoo-animals)

;; fun-for-zoo : list-of-zoo-animals -> ???
(define (fun-for-zoo a-loZA)

(cond
[(empty? a-loZA) …]
[(cons? a-loZA) … (first a-loZA) …

… (rest a-loZA) …]))

Design Recipes: Templates

Design Recipes: Templates

• A template reflects the structure of
the class definitions (mostly for
input, often for input)

Design Recipes: Templates

• A template reflects the structure of
the class definitions (mostly for
input, often for input)

• This match helps designers, readers,
modifiers, maintainers alike

Design Recipes: Templates

• A template reflects the structure of
the class definitions (mostly for
input, often for input)

• This match helps designers, readers,
modifiers, maintainers alike

• Greatly simplifies function definition

Defining Functions

;; fun-for-zoo : list-of-zoo-animals -> ???
(define (fun-for-zoo a-loZA)

(cond
[(empty? a-loZA) …]
[(cons? a-loZA) … (first a-loZA) …

… (fun-for-zoo (rest a-loZA)) …]))

Defining Functions

;; fun-for-zoo : list-of-zoo-animals -> ???
(define (fun-for-zoo a-loZA)

(cond
[(empty? a-loZA) …]
[(cons? a-loZA) … (first a-loZA) …

… (fun-for-zoo (rest a-loZA)) …]))
;; zoo-size : list-of-zoo-animals -> number
(define (zoo-size a-loZA)

(cond
[(empty? a-loZA) 0]
[(cons? a-loZA) (+ 1 (zoo-size (rest a-loZA)))]))

Defining Functions

;; fun-for-zoo : list-of-zoo-animals -> ???
(define (fun-for-zoo a-loZA)

(cond
[(empty? a-loZA) …]
[(cons? a-loZA) … (first a-loZA) …

… (fun-for-zoo (rest a-loZA)) …]))

Defining Functions

;; fun-for-zoo : list-of-zoo-animals -> ???
(define (fun-for-zoo a-loZA)

(cond
[(empty? a-loZA) …]
[(cons? a-loZA) … (first a-loZA) …

… (fun-for-zoo (rest a-loZA)) …]))

;; has-armadillo? : list-of-zoo-animals -> boolean
(define (has-armadillo? a-loZA)

(cond
[(empty? a-loZA) false]
[(cons? a-loZA) (or (armadillo? (first a-loZA))

(has-armadillo? (rest a-loZA)))]))

Design Recipes: Defining Functions

Design Recipes: Defining Functions

• Templates remind students of all the
information that is available
– which cases
– which field values, argument values
– what natural recursions can compute

Design Recipes: Defining Functions

• Templates remind students of all the
information that is available
– which cases
– which field values, argument values
– what natural recursions can compute

• The act of a function definition is
– to choose which computations to use
– to combine the resulting values

The Design Recipe

The Design Recipe

• data analysis and class definition

The Design Recipe

• data analysis and class definition

• contract, purpose statement, header

The Design Recipe

• data analysis and class definition

• contract, purpose statement, header

• in-out (effect) examples

The Design Recipe

• data analysis and class definition

• contract, purpose statement, header

• in-out (effect) examples

• function template

The Design Recipe

• data analysis and class definition

• contract, purpose statement, header

• in-out (effect) examples

• function template

• function definition

The Design Recipe

• data analysis and class definition

• contract, purpose statement, header

• in-out (effect) examples

• function template

• function definition

• testing, test suite development

The Design Recipe

• data analysis and class definition

• contract, purpose statement, header

• in-out (effect) examples

• function template

• function definition

• testing, test suite development

The Design Recipe

• data analysis and class definition

• contract, purpose statement, header

• in-out (effect) examples

• function template

• function definition

• testing, test suite development

Template Construction

• basic data, intervals of numbers

• structures

• unions

• self-reference, mutual references

• circularity

Intermezzo

Which sorting method to teach first?
• Selection sort
• Insertion sort
• Quicksort
• Heap sort
• Mergesort
• Bubble sort
• …

Special Topic: Generative Recursion

Generative recursion: the recursive
sub-problem is determined
dynamically rather than statically

Special Topic: Generative Recursion

Generative recursion: the recursive
sub-problem is determined
dynamically rather than statically

• What is the base case?

Special Topic: Generative Recursion

Generative recursion: the recursive
sub-problem is determined
dynamically rather than statically

• What is the base case?
• What ensures termination?

Special Topic: Generative Recursion

Generative recursion: the recursive
sub-problem is determined
dynamically rather than statically

• What is the base case?
• What ensures termination?
• Who provides the insight?

Special Topic: Generative Recursion

Generative recursion: the recursive
sub-problem is determined
dynamically rather than statically

• What is the base case?
• What ensures termination?
• Who provides the insight?

Special case: not reusable!

Special Topic: Abstraction

Factor out commonalities in
• contracts

– corresponds to parametric
polymorphism

• function bodies
– leads to inheritance and overriding

Design Recipes: Conclusion

• Get students used to discipline from
the very first day

• Use scripted question-and-answer
game until they realize they can do it
on their own

• Works especially well for structural
solutions

Part IV:
From Scheme to Java

or,
“But What Does All This
Have to do With OOP?”

Scheme to Java: OO Computing

• focus: objects and
method invocation

• basic operations:
– creation
– select field
– mutate field

• select method via
“polymorphism”

Scheme to Java: OO Computing

• focus: objects and
method invocation

• basic operations:
– creation
– select field
– mutate field

• select method via
“polymorphism”

• structures and
functions

Scheme to Java: OO Computing

• focus: objects and
method invocation

• basic operations:
– creation
– select field
– mutate field

• select method via
“polymorphism”

• structures and
functions

• basic operations:
– creation
– select field
– mutate field
– recognize kind

Scheme to Java: OO Computing

• focus: objects and
method invocation

• basic operations:
– creation
– select field
– mutate field

• select method via
“polymorphism”

• structures and
functions

• basic operations:
– creation
– select field
– mutate field
– recognize kind

• f(o) becomes o.f()

Scheme to Java: OO Programming

• develop class and
interface hierarchy

• allocate code of
function to proper
subclass

Scheme to Java: OO Programming

• develop class and
interface hierarchy

• allocate code of
function to proper
subclass

• develop class
definitions

Scheme to Java: OO Programming

• develop class and
interface hierarchy

• allocate code of
function to proper
subclass

• develop class
definitions

• allocate code of
function to proper
conditional clause

Scheme to Java: Class Hierarchy

A list of zoo animals is either
• empty
• (cons animal a-list-of-zoo-animals)

Scheme to Java: Class Hierarchy

A list of zoo animals is either
• empty
• (cons animal a-list-of-zoo-animals)

List of zoo animals

Empty Cons:
animal
list of zoo animals

Scheme to Java: Code Allocation

;; fun-for-zoo : list-of-zoo-animals -> ???
(define (fun-for-zoo a-loZA)

(cond
[(empty? a-loZA)]
[(cons? a-loZA) … (first a-loZA) …

… (rest a-loZA) …]))

Scheme to Java: Code Allocation

;; fun-for-zoo : list-of-zoo-animals -> ???
(define (fun-for-zoo a-loZA)

(cond
[(empty? a-loZA)]
[(cons? a-loZA) … (first a-loZA) …

… (rest a-loZA) …]))

List of zoo animals

Empty: Cons:
animal
list of zoo animals

Scheme to Java

• Design recipes work identically to
produce well-designed OO programs

• The differences are notational

• The differences are instructive

The resulting programs use
standard design patterns

Why not just Java first?

Why not just Java first?

• Complex notation, complex mistakes

Why not just Java first?

• Complex notation, complex mistakes

• No PE supports stratified Java

Why not just Java first?

• Complex notation, complex mistakes

• No PE supports stratified Java

• Design recipes drown in syntax

Why not just Java first?

• Complex notation, complex mistakes

• No PE supports stratified Java

• Design recipes drown in syntax

Scheme to Java: Ketchup & Caviar

abstract class List_Zoo_Animal {
int fun_for_list();

}

class Cons extends List_Zoo_Animal {
Zoo_Animal first;
List_Zoo_Animal rest;

int fun_for_list() {
return 1 + rest.fun_for_list();

}
}

class Empty
extends List_Zoo_Animal {
int fun_for_list() {

return 0;
}

}

Scheme to Java: Ketchup & Caviar

abstract class List_Zoo_Animal {
int fun_for_list();

}

class Cons extends List_Zoo_Animal {
Zoo_Animal first;
List_Zoo_Animal rest;

int fun_for_list() {
return 1 + rest.fun_for_list();

}
}

class Empty
extends List_Zoo_Animal {
int fun_for_list() {

return 0;
}

}

Scheme to Java: Ketchup & Caviar

abstract class List_Zoo_Animal {
int fun_for_list();

}

class Cons extends List_Zoo_Animal {
Zoo_Animal first;
List_Zoo_Animal rest;

int fun_for_list() {
return 1 + rest.fun_for_list();

}
}

class Empty
extends List_Zoo_Animal {
int fun_for_list() {

return 0;
}

}

This doesn’t include
the code needed to
actually run the
program!

Part V:
Experiences

Sample Exercise

File systems by iterative refinement
#1:

Sample Exercise

File systems by iterative refinement
#1:

A file is a symbol
A file-or-directory is either
• a file, or
• a directory

A directory is either
• empty
• (cons file-or-directory directory)

Sample Exercise

File systems by iterative refinement
#2:

A file is a symbol
A file-or-directory is either
• a file, or
• a directory

A list-of-file/dir is either
• empty
• (cons file-or-directory list-of-file/dir)

A directory is a structure
(make-dir symbol list-of-file/dir)

Sample Exercise

File systems by iterative refinement
#3:

A file is a structure
(make-file symbol number

list-of-values)

A file-or-directory is either
• a file, or
• a directory

A list-of-file/dir is either
• empty
• (cons file-or-directory list-of-file/dir)

A directory is a structure
(make-dir symbol list-of-file/dir)

Sample Exercise

The functions:
• number-of-files
• disk-usage
• tree-of-disk-usage
• find-file
• all-file-and-directory-names
• empty-directories
• ...

Sample Exercise

File systems by iterative refinement
#1:

A file is a symbol
A file-or-directory is either
• a file, or
• a directory

A directory is either
• empty
• (cons file-or-directory directory)

Sample Exercise

File systems by iterative refinement
#1:

A file is a symbol
A file-or-directory is either
• a file, or
• a directory

A directory is either
• empty
• (cons file-or-directory directory)

Sample Exercise

File systems by iterative refinement
#1:

A file is a symbol
A file-or-directory is either
• a file, or
• a directory

A directory is either
• empty
• (cons file-or-directory directory)

Sample Exercise

File systems by iterative refinement
#1:

A file is a symbol
A file-or-directory is either
• a file, or
• a directory

A directory is either
• empty
• (cons file-or-directory directory)

Sample Exercise

File systems by iterative refinement
#3:

A file is a structure
(make-file symbol number

list-of-values)

A file-or-directory is either
• a file, or
• a directory

A list-of-file/dir is either
• empty
• (cons file-or-directory list-of-file/dir)

A directory is a structure
(make-dir symbol list-of-file/dir)

Sample Exercise

File systems by iterative refinement
#3:

A file is a structure
(make-file symbol number

list-of-values)

A file-or-directory is either
• a file, or
• a directory

A list-of-file/dir is either
• empty
• (cons file-or-directory list-of-file/dir)

A directory is a structure
(make-dir symbol list-of-file/dir)

Sample Exercise

Sample Exercise

• Most students are helpless without
the design recipe

Sample Exercise

• Most students are helpless without
the design recipe

• The templates provide the basic
structure of solutions

Sample Exercise

• Most students are helpless without
the design recipe

• The templates provide the basic
structure of solutions

• The final programs are < 20 lines of
actual code

Sample Exercise

• Most students are helpless without
the design recipe

• The templates provide the basic
structure of solutions

• The final programs are < 20 lines of
actual code

• With Teachpack, runs on file system

Sample Exercise

• Most students are helpless without
the design recipe

• The templates provide the basic
structure of solutions

• The final programs are < 20 lines of
actual code

• With Teachpack, runs on file system
• Second midterm (7th/8th week)

Sample Exercise

• Most students are helpless without
the design recipe

• The templates provide the basic
structure of solutions

• The final programs are < 20 lines of
actual code

• With Teachpack, runs on file system
• Second midterm (7th/8th week)
• Exercise extends further (links, …)

Experiences: Rice University Constraints

• All incoming
students

• Life-long learners

• Accommodate
industry long-term

• Work after two
semesters

Experiences: Rice University Constraints

• All incoming
students

• Life-long learners

• Accommodate
industry long-term

• Work after two
semesters

• Level playing field,
make 1st sem. useful

Experiences: Rice University Constraints

• All incoming
students

• Life-long learners

• Accommodate
industry long-term

• Work after two
semesters

• Level playing field,
make 1st sem. useful

• Minimize fashions

Experiences: Rice University Constraints

• All incoming
students

• Life-long learners

• Accommodate
industry long-term

• Work after two
semesters

• Level playing field,
make 1st sem. useful

• Minimize fashions

• OO, components, etc.

Experiences: Rice University Constraints

• All incoming
students

• Life-long learners

• Accommodate
industry long-term

• Work after two
semesters

• Level playing field,
make 1st sem. useful

• Minimize fashions

• OO, components, etc.

• C++ to Java, true OOP

Experiences: The Rice Experiment

Experiences: The Rice Experiment

beginners: none to three years of experience

Experiences: The Rice Experiment

beginners: none to three years of experience

Experiences: The Rice Experiment

beginners: none to three years of experience

comp sci introduction:
• TeachScheme curriculum
• good evaluations
• huge growth
• many different teachers

Experiences: The Rice Experiment

beginners: none to three years of experience

comp sci introduction:
• TeachScheme curriculum
• good evaluations
• huge growth
• many different teachers

applied comp introduction:
• C/C++ curriculum
• weak evaluations
• little growth
• several teachers

Experiences: The Rice Experiment

beginners: none to three years of experience

comp sci introduction:
• TeachScheme curriculum
• good evaluations
• huge growth
• many different teachers

applied comp introduction:
• C/C++ curriculum
• weak evaluations
• little growth
• several teachers

Experiences: The Rice Experiment

beginners: none to three years of experience

comp sci introduction:
• TeachScheme curriculum
• good evaluations
• huge growth
• many different teachers

applied comp introduction:
• C/C++ curriculum
• weak evaluations
• little growth
• several teachers

Experiences: The Rice Experiment

beginners: none to three years of experience

comp sci introduction:
• TeachScheme curriculum
• good evaluations
• huge growth
• many different teachers

applied comp introduction:
• C/C++ curriculum
• weak evaluations
• little growth
• several teachers

Experiences: The Rice Experiment

beginners: none to three years of experience

comp sci introduction:
• TeachScheme curriculum
• good evaluations
• huge growth
• many different teachers

applied comp introduction:
• C/C++ curriculum
• weak evaluations
• little growth
• several teachers

second semester: OOP, classical data structures, patterns

Experiences: The Rice Experiment

Experiences: The Rice Experiment

• Even faculty who prefer C/C++/Java
– find students from Scheme introduction

perform better in 2nd course
– now teach the Scheme introduction

Experiences: The Rice Experiment

• Even faculty who prefer C/C++/Java
– find students from Scheme introduction

perform better in 2nd course
– now teach the Scheme introduction

• Students with prior experience
eventually understand how much the
course adds to their basis

Experiences: The Rice Experiment

• Even faculty who prefer C/C++/Java
– find students from Scheme introduction

perform better in 2nd course
– now teach the Scheme introduction

• Students with prior experience
eventually understand how much the
course adds to their basis

• Nearly half the Rice campus takes it!

Experiences: Other Institutions

Experiences: Other Institutions

• Trained nearly 200 teachers/professors

Experiences: Other Institutions

• Trained nearly 200 teachers/professors
• Over 100 deployed and reuse it

Experiences: Other Institutions

• Trained nearly 200 teachers/professors
• Over 100 deployed and reuse it
• Better basis for second courses

Experiences: Other Institutions

• Trained nearly 200 teachers/professors
• Over 100 deployed and reuse it
• Better basis for second courses
• Provides grading rubric

Experiences: Other Institutions

• Trained nearly 200 teachers/professors
• Over 100 deployed and reuse it
• Better basis for second courses
• Provides grading rubric
• Immense help to algebra teachers

Experiences: Other Institutions

• Trained nearly 200 teachers/professors
• Over 100 deployed and reuse it
• Better basis for second courses
• Provides grading rubric
• Immense help to algebra teachers
• Much higher retention rate

– especially among females

Conclusion

Conclusion

• Training good programmers does not
mean starting them on currently
fashionable languages and tools

Conclusion

• Training good programmers does not
mean starting them on currently
fashionable languages and tools

• Provide a strong, rigorous foundation
– data-oriented thinking
– value-oriented programming

Conclusion

• Training good programmers does not
mean starting them on currently
fashionable languages and tools

• Provide a strong, rigorous foundation
– data-oriented thinking
– value-oriented programming

• Then, and only then, expose to i/o
details, current fashions, etc.

Conclusion

Conclusion

• Training takes more than teaching
some syntax and good examples

Conclusion

• Training takes more than teaching
some syntax and good examples

• We must present students with
– a simple, stratified language
– an enforcing programming environment
– a rational design recipe

Conclusion

• Training takes more than teaching
some syntax and good examples

• We must present students with
– a simple, stratified language
– an enforcing programming environment
– a rational design recipe

• Teach Scheme!

What We Offer

What We Offer

• Textbook: published by MIT Press,
available on-line

What We Offer

• Textbook: published by MIT Press,
available on-line

• Problem sets and solutions

What We Offer

• Textbook: published by MIT Press,
available on-line

• Problem sets and solutions
• Teacher’s guide, environment guide

What We Offer

• Textbook: published by MIT Press,
available on-line

• Problem sets and solutions
• Teacher’s guide, environment guide
• Programming environment

What We Offer

• Textbook: published by MIT Press,
available on-line

• Problem sets and solutions
• Teacher’s guide, environment guide
• Programming environment
• Teaching libraries

What We Offer

• Textbook: published by MIT Press,
available on-line

• Problem sets and solutions
• Teacher’s guide, environment guide
• Programming environment
• Teaching libraries
• Summer workshops

What We Offer

• Textbook: published by MIT Press,
available on-line

• Problem sets and solutions
• Teacher’s guide, environment guide
• Programming environment
• Teaching libraries
• Summer workshops

All other than paper book are free

Primary Project Personnel

• Matthias Felleisen Northeastern University

• Matthew Flatt University of Utah

• Robert Bruce Findler University of Chicago

• Shriram Krishnamurthi Brown University

with
• Steve Bloch Adelphi University

• Kathi Fisler WPI

http://www.teach-scheme.org/

