Graphical solution of inequalities

Introduction

Graphs can be used to solve inequalities. This leaflet illustrates how.

1. Solving inequalities

We start with a very simple example which could be solved very easily using an algebraic method.

Example

Solve the inequality \(x + 3 > 0 \).

Solution

We seek values of \(x \) which make \(x + 3 \) positive. There are many such values, e.g. try \(x = 7 \) or \(x = -2 \). To find all values first let \(y = x + 3 \). Then the graph of \(y = x + 3 \) is sketched as shown below. From the graph we see that the \(y \) coordinate of any point on the line is positive whenever \(x \) has a value greater than \(-3\). That is, \(y > 0 \) when \(x > -3 \). But \(y = x + 3 \), so we can conclude that \(x + 3 \) will be positive when \(x > -3 \). We have used the graph to solve the inequality.

Example

Solve the inequality \(x^2 - 2x - 3 > 0 \).

Solution

We seek values of \(x \) which make \(x^2 - 2x - 3 \) positive. We can find these by sketching a graph of \(y = x^2 - 2x - 3 \). To help with the sketch, note that by factorising we can write \(y \) as \((x+1)(x-3)\). The graph will cross the horizontal axis when \(x = -1 \) and when \(x = 3 \). The graph is shown above on the right. From the graph note that the \(y \) coordinate of a point on the graph is positive.
when either \(x \) is greater than 3 or when \(x \) is less than \(-1 \). That is, \(y > 0 \) when \(x > 3 \) or \(x < -1 \) and so:

\[
x^2 - 2x - 3 > 0 \quad \text{when} \quad x > 3 \quad \text{or} \quad x < -1
\]

Example

Solve the inequality \((x - 1)(x - 2)(x - 3) > 0\).

Solution

We consider the graph of \(y = (x - 1)(x - 2)(x - 3) \) which is shown below. It is evident from the graph that \(y \) is positive when \(x \) lies between 1 and 2 and also when \(x \) is greater than 3. The solution of the inequality is therefore \(1 < x < 2 \) and \(x > 3 \).

Example

For what values of \(x \) is \(\frac{x+3}{x-7} \) positive?

Solution

The graph of \(y = \frac{x+3}{x-7} \) is shown below. We can see that the \(y \) coordinate of a point on the graph is positive when \(x < -3 \) or when \(x > 7 \).

\[
\frac{x+3}{x-7} > 0 \quad \text{when} \quad x < -3 \quad \text{or when} \quad x > 7
\]

For drawing graphs like this one a graphical calculator is useful.