

An Oracle White Paper
January 2013

Oracle XML DB: Best Practices to Get Optimal
Performance out of XML Queries

Oracle White Paper—Title of White Paper Here

Disclaimer

The following is intended to outline our general product direction. It is intended for information purposes
only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing decisions. The development, release, and
timing of any features or functionality described for Oracle’s products remains at the sole discretion of
Oracle.

Oracle White Paper—Title of White Paper Here

 1

Table of Contents
SQL/XML & XQuery .. 7

Migrating from Oracle Proprietary (XPath 1.0 based) syntax to Standard
SQL/XML XQuery based syntax .. 10

Getting the best performance out of XQuery 13

Storage independent Best Practices .. 14

XQuery Guideline 1: Use XMLExists() and XMLQuery() to search and transform

XML stored in XML DB ... 14

XQuery Guideline 2: Use XMLExists() to search the XML document to modify via

XML DML operators ... 14

XQuery Guideline 3: Use XMLTable construct to query XML with relational access

 .. 15

XQuery Guideline 4: Use XMLCast() and XMLTable() constructs for GROUP BY

and ORDER BY .. 16

XQuery Guideline 5: Use XQuery extension expression to indicate functional

evaluation of XQuery .. 17

XQuery Guideline 6: Use XQuery in PL/SQL to manipulate PL/SQL XMLType

Variable .. 17

XQuery Guideline 7: Use proper XQuery and SQL Typing 18

XQuery Guideline 8: XQuery expressions that are not optimizable with XML index

 .. 21

XQuery Guideline 9: Use the right XQuery expression to access data within Top

XQuery ... 21

XQuery Guideline 10: Gather statistics .. 24

Oracle White Paper—Title of White Paper Here

 2

XQuery Guideline 11: Use SET XMLOPT[IMIZATIONCHECK] or events to

determine why a query/DML is not rewritten .. 25

XQuery Guideline 12: Properly release resources for xmltype in client program

 .. 26

XQuery Guideline 13: Avoid calling getObject mutilple times for xmltype in client

program .. 26

XQuery Guideline 14: Set parameter OPTIMIZER_FEATURE_ENABLE to 11.1.0.6

or above for XQuery optimizations ... 27

Storage dependent performance tuning ... 28

Structured (Object Relational) storage ... 29

Structured Storage Guideline 1: Make the SQL types and XML types correspond

 .. 29

Structured Storage Guideline 2: Look for underlying tables and columns versus

XML functions in execution plans ... 29

Structured Storage Guideline 3: Name default tables and nested tables, so you

recognize them in execution plans ... 31

Structured Storage Guideline 4: Create relevant indexes 31

Structured Storage Indexing Guideline 5: Create an index on a column targeted by

a predicate .. 31

Structured Storage Indexing Guideline 6: Create indexes on ordered collection

tables .. 34

Unstructured and Binary XML .. 37

Binary XML Streaming Evaluation .. 37

Oracle White Paper—Title of White Paper Here

 3

Streaming Evaluation Guideline 1: Convert reverse XPath axes to forward axes

when possible ... 38

Streaming Evaluation Guideline 2: For large documents, avoid descendant axis &

wild cards if exact (named) path steps can be used 39

Streaming Evaluation Guideline 3: For DML-heavy workloads, enable caching for

writes on the underlying lob column ... 39

Indexing Unstructured (CLOB) and Binary XML 40

Index choosing Guideline 1: Use the Structured XMLIndex when XPaths are static,

and to answer predicates ... 41

Index choosing Guideline 2: Use Unstructured XMLIndex when XPaths are not

known in advance ... 42

Index choosing Guideline 3: Use text index for full text search requirements 42

Index choosing Guideline 4: Fragment extraction 42

Index choosing Guideline 5: Combine different indexes as needed ... 43

XMLIndex Structured Component .. 44

Structured Index Guideline 1: Use Structured Index instead of multiple functional

indexes and/or virtual columns ... 45

Structured Index Guideline 2: Make Index and Query datatypes correspond 46

Structured Index Guideline 3: Use XMLTable views with corresponding index, e.g BI

style queries ... 46

Structured Index Guideline 4: Create Secondary Indexes, especially for predicates

 .. 48

Structured Index Guideline 5: Check the execution plan to see if structured index is

used .. 48

Oracle White Paper—Title of White Paper Here

 4

Structured Index Guideline 6: Indexing Master-Detail relationships 49

Structured Index Guideline 7: Split fragement extraction and value search between

SELECT and WHERE clause ... 50

Structured Index Guideline 8: For ordering query results, use SQL ORDER BY

along with XMLTable .. 51

XMLIndex Unstructured Component .. 53

Unstructured XMLIndex Guideline 1: Check the Execution Plan to see if the

XMLIndex Unstructured Component is used.. 54

Unstructured XMLIndex Guideline 2: When to drop PIKEY index in favor of

ORDERKEY & PATHID index .. 54

Unstructured XMLIndex Guideline 3: How to use path-subsetting -- smaller index

means faster queries .. 55

Unstructured XMLIndex Guildeline 4: Using path-subsetting to choose streaming vs

index execution ... 55

Unstructured XMLIndex Guildeline 5: Using

NO_XMLINDEX_REWRITE_IN_SELECT hint..................................... 55

Unstructured XMLIndex Guideline 6: Creating datatype aware VALUE indexes by

making index and query datatypes correspond 56

Unstructured XMLIndex Guideline 7: XPath Expressions not indexed by Path

Subsetted XMLIndex ... 57

Unstructured XMLIndex Guideline 8: Be specific in the XPath (avoid //, /*) 57

Unstructured XMLIndex Guideline 9: Reduce the number of expressions in the from

clause (avoid Path Table join with itself) .. 57

Oracle White Paper—Title of White Paper Here

 5

Unstructured XMLIndex Guideline 10: Use of an index on sys_orderkey_depth

 .. 58

Unstructured XMLIndex Guideline 11: Old snapshot queries might be slow 58

Unstructured XMLIndex Guideline 12: Avoid the usage of text() in path expression

 .. 58

Text Index ... 59

Searching XML data using contains() .. 60

Searching XML data using ora:contains() .. 61

Text Index Guildeline 1: Object Relational Storage: Use ora:contains()62

Text Index Guildeline 2: Binary XML Storage: Use contains() 63

Text Index Guildeline 3: Binary XML Storage: Creating Text Index on XMLIndex

unstructured / structured index columns .. 63

Conclusion .. 63

Appendix A: Semantic differences between the deprecated mainly XPath 1.0
based functions and standard SQL/XML XQuery based functions ... 64

Introduction

Oracle XML DB support for the XQuery language is provided through native
implementation of SQL/XML functions XMLQuery, XMLTable, XMLExists, and XMLCast.
A SQL statement that includes XMLQuery, XMLTable, XMLExists, or XMLCast is

compiled and optimized as a whole, leveraging both relational database and XQuery-
specific optimization technologies.

The XQuery optimizations can be divided into 2 broad areas:

Oracle White Paper—Title of White Paper Here

 6

• Logical optimizations are transformation of the XQuery into equivalent SQL query
blocks extended with XML operators modeling XQuery semantics. These optimizations
are generic XQuery optimizations that are independent of the XML storage or indexing
model .

• Physical optimizations are transformation of the XML operators, in particular, XPath
operators, into equivalent operations directly on the underlying internal storage and
index tables that are specific to the XML storage and indexing model. The result of
XQuery optimization can be exmained via explain plan of the SQL/XML query
statement that invokes XQuery.

This paper talks about the XQuery Best Practices to get the best performance. It talks
about both logical and physical query optimizations. It delves deep into various XML
storage and indexing options, and talks about how to choose the right indexes for your
query, and how to get the best performance out of your XQuery.

Note: It is assumed that the reader of this whitepaper has already read the whitepaper
titled: “Choosing the Best XMLType Storage Option for your Usecase”, and has made the
right storage choice for his XMLType data.

Oracle White Paper—Title of White Paper Here

7

SQL/XML & XQuery

Oracle XML DB supports the latest version of the XQuery language specification, i.e., the W3C
XQuery 1.0 Recommendation. XQuery 1.0 is the W3C language designed for querying XML
data. It is similar to SQL in many ways, but just as SQL is designed for querying structured,
relational data, XQuery is designed especially for querying semi-structured, XML data from a
variety of data sources. You can use XQuery to query XML data wherever it is found, whether it
is stored in database tables, available through Web Services, or otherwise created on the fly. For
more information on XQuery 1.0, please see http://www.w3.org/TR/xquery/

In addition to XQuery language from W3C, SQL standard has defined standard SQL/XML
functions XMLQuery(), XMLExists(), XMLCast() and table construct XMLTable() as a general
interface between the SQL and XQuery languages. As is the case for the other SQL/XML
functions, such as XMLElement(), XMLAgg(), XMLForest(), XMLConcat(), that are used to
generate XML from relational data, XMLQuery(), XMLExists(), XMLCast() functions and
XMLTable() table construct let you take advantage of the power and flexibility of both SQL and
XML. Using these functions, you can query and manipulate XML, construct XML data using
relational data, query relational data as if it were XML, and construct relational data from XML
data.

Although SQL/XML functions XMLQuery(), XMLExists(), XMLCast() and XMLTable()
construct all evaluate an XQuery expression over XMLType input, the way the result of XQuery
is consumed varies among them. Therefore, they should be used in the different clauses of SQL
to achieve the best performance. In the XQuery language, an expression always returns a
sequence of items. The way the sequence of items is consumed in different SQL contexts is
classified as below, with the proper usage of these SQL/XML functions and XMLTable table
construct.

• To consume all the items in the result sequence as a single XML document or fragment,
XMLQuery() is used as a functional expression, typically in the select list of SELECT
clause of SQL, to aggregate the result sequence as one XMLType value representing an
XML document or fragment. For example, the query below passes an XMLType

column, oe.warehouse_spec, as context item to XQuery, using function XMLQuery

with the PASSING clause. It constructs a Details element for each of the warehouses

whose area is greater than 80,000: /Warehouse/ Area > 80000.

Example 1: Using XMLQuery with PASSING Clause
SELECT warehouse_name,

 XMLQuery(

 'for $i in /Warehouse

 where $i/Area > 80000

Oracle White Paper—Title of White Paper Here

8

 return <Details>

 <Docks num="{$i/Docks}"/>

 <Rail>{if ($i/RailAccess = "Y")

 then "true" else "false"}

 </Rail>

 </Details>'

 PASSING warehouse_spec RETURNING CONTENT) big_warehouses

 FROM warehouses;

• XMLTable() construct is used in the FROM clause of SQL to return evaluation result

of XQuery as a table of rows, each of the XQuery item in the result sequence as an
XMLType value. Users can generate a relational view over XML data using XMLTable.
This is illustrated below:

Example 2: Using XMLTable to generate a relational view over XML data.
SELECT lines.lineitem, lines.description, lines.partid,

 lines.unitprice, lines.quantity

 FROM purchaseorder,

 XMLTable('for $i in /PurchaseOrder/LineItems/LineItem

 where $i/@ItemNumber >= 8

 and $i/Part/@UnitPrice > 50

 and $i/Part/@Quantity > 2

 return $i'

 PASSING OBJECT_VALUE

 COLUMNS lineitem NUMBER PATH '@ItemNumber',

 description VARCHAR2(30) PATH 'Description',

 partid NUMBER PATH 'Part/@Id',

 unitprice NUMBER PATH 'Part/@UnitPrice',

 quantity NUMBER PATH 'Part/@Quantity')

lines;

• To determine if XQuery results in empty sequence or not, XMLExists(), which has a
Boolean result, is typically used in the WHERE or HAVING clause of SQL or
conditional expression of SQL CASE expression. The example below shows how
XMLExists() can be used in the select list.

Example 3: Using XMLExists() with CASE Expression in select list
SELECT

CASE WHEN XMLEXISTS(‘$po/PurchaseOrder/LineItems/Part’

PASSING OBJECT_VALUE AS “po”) THEN 1 ELSE 0 END

FROM purchaseorder,

Oracle White Paper—Title of White Paper Here

9

• To cast sequence result, typically the leaf value of an XML node, as a SQL scalar type,
such as NUMBER, VARCHAR, DATE, TIMESTAMP etc, XMLCast() is used as a
functional expression resulting in a SQL scalar value item that is used in select list of
SELECT clause, group by list of GROUP BY clause, or order by list of ORDER BY
clause.

When XQuery is used in SQL/XML functions and XMLTable construct to query XMLType
value from tables or views, Oracle XML DB compiles the XQuery expressions into a set of SQL
query blocks and operators, and optimizes them by leveraging the underlying XML storage and
indexes. This native XQuery/SQL/XML optimization model is achieved conceptually by using a
2-step process: logical optimization and physical optimization.

1. Logical optimizations are independent of the XML storage or indexing over the
underlying XMLType value. The XQuery expressions that are passed as arguments to
SQL/XML functions XMLQuery, XMLExists, XMLCast and XMLTable construct are
compiled into internal SQL query blocks and operator trees that model the semantics of
XQuery. One common internal operator is the XPath operator that navigates the input
XMLType value. A SQL statement that includes XMLQuery, XMLTable, XMLExists, or
XMLCast is compiled and optimized as a whole, leveraging both relational database and
XQuery-specific optimization technologies.

2. Physical optimizations are specific to the underlying storage and indexing model.
Depending on the XML storage and indexing methods used, the XPath internal
operators can be further optimized into SQL query blocks operating on the underlying
physical relational storage tables that are used for the underlying XML index or storage.
The relational optimizer optimizes the resulting SQL query blocks and operator trees, in
order to achieve the best execution plan.

The resulting query plan is then executed using the SQL row source iterator model. This native
XQuery/SQL/XML optimization model achieves the performance goal of primarily using
XQuery as a query language to search XML documents stored in the database with the proper
XML storage and indexing model, or to present XML as relational results using XMLTable
construct. Just as tuning a SQL query using ‘explain plan’ is important, understanding and tuning
SQL/XML query using ‘explain plan’ is equally important. This is detailed in the subsequent
sections of this document with different XML storage and index options.

Furthermore, XQuery can also be primarily used as a language to manipulate and transform
XML documents. The input XMLType value is typically a single XML document or fragment
retrieved from persistent XML or transient XMLType value. In such case, XQuery can be
functionally evaluated in XML DB. Understanding and classifying XQuery usage in XML DB is
critical to get the optimal performance. This is detailed later in this document in the section
‘Getting the best performance out of XQuery.’

Oracle White Paper—Title of White Paper Here

10

Migrating from Oracle Proprietary (XPath 1.0 based) syntax to
Standard SQL/XML XQuery based syntax

Starting 11gR2, Oracle has deprecated many older proprietary mainly XPath 1.0 based operators
in favor of standards based XQuery syntax, as listed in Table 1 below. If you don’t have any code
with the functions or operators being deprecated, you may jump to the next section.

TABLE 1. MIGRATING FROM OLD TO XQUERY SYNTAX

OLD ORACLE PROPRIETARY SYNTAX NEW XQUERY SQL/XML BASED

SYNTAX

extract() XMLQuery()

extractValue XMLCast(XMLQuery())

existsNode() XMLExists()

Table (XMLSequence) XMLTable

ora:instanceof instanceof

ora:instanceof-only @xsi:type

getNamespace fn:namespace-uri

getRootElement fn:local-name

getStringVal, getBlobVal, getClobVal XMLSerialize

Xmltype() XMLParse() for varchar, clob,

blob input

DBMS_XMLQUERY XMLQuery()

DBMS_XMLGEN SQL/XML Operators

Oracle XML DML Operators XQUery Update Facility

There are some important semantic differences between the deprecated mainly XPath 1.0 based
sytnax and the XQuery based syntax. These are listed in Appendix A to make the migration
easier for the users. Please also check “XQuery Guideline 6” in this document to see how to
apply XQuery to PL/SQL XMLType variable instead of calling extract() and existsNode()
methods of xmltype.

Oracle White Paper—Title of White Paper Here

11

The table below shows examples of Oracle Proprietary XML DML operators and their
equivalent Xquery Update syntax:

Note: Oracle Proprietary XMLDML does not have “rename” and “insert as first into”
operations.

Update warehouses set warehouse_spec =
appendChildXML(warehouse_spec,
‘Warehouse/Building’,
XMLType('<Owner>Grandco</Owner>'));

Update warehouses set warehouse_spec =
XMLQuery(‘copy $tmp := . modify (for $i in
$tmp/Warehouse/Building return insert
node <Owner>Grandco</Owner> as last
into $i) return $tmp’ passing
warehouse_spec returning content);

Update warehouses set warehouse_spec =
deleteXML(value(po), ‘/Warehouse/Building’);

Update warehouses set warehouse_spec =
XMLQuery(‘copy $tmp := . modify delete
node $tmp/Warehouse/Building return
$tmp’ passing warehouse_spec returning
content);

[Single Node Case]

Update warehouses set warehouse_spec =
insertXML(warehouse_spec,
‘/Warehouse/Building/Owner[2]',
XMLType('<Owner>ThirdOwner</Owner>');

Update warehouses set warehouse_spec =
XMLQuery(‘copy $tmp := . modify insert
node <Owner>ThirdOwner</Owner> into
$tmp/Warehouse/Building/Owner[2] return
$tmp’ passing warehouse_spec returning
content);

[Single Node Case]

Update warehouses set warehouse_spec =
insertXMLBefore(warehouse_spec,
‘/Warehouse/Building/Owner[2]',
XMLType('<Owner>FirstOwner</Owner>');

Update warehouses set warehouse_spec =
XMLQuery(‘copy $tmp := . modify insert
node <Owner>FirstOwner</Owner> before
$tmp/Warehouse/Building/Owner[2] return
$tmp’ passing warehouse_spec returning
content);

[Single Node Case]

Update warehouses set warehouse_spec =
insertXMLAfter(warehouse_spec,
‘/Warehouse/Building/Owner[2]',
XMLType('<Owner>ThirdOwner</Owner>');

Update warehouses set warehouse_spec =
XMLQuery(‘copy $tmp := . modify insert
node <Owner>ThirdOwner</Owner> after
$tmp/Warehouse/Building/Owner[2] return
$tmp’ passing warehouse_spec returning
content);

Update warehouses set warehouse_spec =
updateXML(warehouse_spec,
'/Warehouse/Docks/text()', 4);

Update warehouses set warehouse_spec =
XMLQuery(‘copy $tmp := . modify (for $i in
$tmp/Warehouse/Docks/text() return
replace value of node $i with 4) return $tmp’
passing warehouse_spec returning
content);

Update warehouses set warehouse_spec =
insertChildXML(warehouse_spec,
'/Warehouse/Building', 'Owner',
XMLType('<Owner>LesserCo</Owner>'));

Update warehouses set warehouse_spec =
XMLQuery(‘copy $tmp := . modify (for $i in
$tmp/Warehouse/Building return insert
node <Owner>LesserCo</Owner> into $i)

Oracle White Paper—Title of White Paper Here

12

return $tmp’ passing warehouse_spec
returning content);

Update warehouses set warehouse_spec =
insertChildXMLBefore(warehouse_spec,
'/Warehouse/Building', 'Owner',
XMLType('<Owner>LesserCo</Owner>'));

Update warehouses set warehouse_spec =
XMLQuery(‘copy $tmp := . modify (for $i in
$tmp/Warehouse/Building return insert
node <Owner>LesserCo</Owner> before
$i) return $tmp’ passing warehouse_spec
returning content);

Update warehouses set warehouse_spec =
insertChildXMLAfter(warehouse_spec,
'/Warehouse/Building', 'Owner',
XMLType('<Owner>LesserCo</Owner>'));

Update warehouses set warehouse_spec =
XMLQuery(‘copy $tmp := . modify (for $i in
$tmp/Warehouse/Building return insert
node <Owner>LesserCo</Owner> after $i)
return $tmp’ passing warehouse_spec
returning content);

[Collection Case]

Update warehouses set warehouse_spec =
insertXML(warehouse_spec,
‘/Warehouse/Building/Owner',
XMLType('<Owner>AnotherOwner</Owner>');

Update warehouses set warehouse_spec =
XMLQuery(‘copy $tmp := . modify (for $i in
$tmp/Warehouse/Building/Owner return
insert node
<Owner>AnotherOwner</Owner> into $i)
return $tmp’ passing warehouse_spec
returning content);

[NULL Case]

Update warehouses set warehouse_spec =
updateXML(warehouse_spec,
'/Warehouse/Docks', null);

Update warehouses set warehouse_spec =
XMLQuery(‘copy $tmp := . modify delete
node $tmp/Warehouse/Docks return $tmp’
passing warehouse_spec returning
content);

[Empty Node Case]

Update warehouses set warehouse_spec =
updateXML(warehouse_spec,
'/Warehouse/Docks', '');

Update warehouses set warehouse_spec =
XMLQuery(‘copy $tmp := $p1 modify (for $j
in $tmp/Warehouse/Docks return replace
node $j with $p2) return $i' passing passing
warehouse_spec “p1”, '' as "p2" returning
content) ;

[Multiple Path Case]

Update warehouses set warehouse_spec =
updateXML(warehouse_spec,
'/Warehouse/Docks/text()',
extractValue(warehouse_spec,
'/Warehouse/Docks/text()')+4,
'/Warehouse/Docks/text()',
extractValue(warehouse_spec,
'/Warehouse/Docks/text()')+4);

Update warehouses set warehouse_spec =
XMLQuery(‘copy $tmp := . modify ((for $i in
$tmp/Warehouse/Docks/text() return
replace value of node $i with $i+4), (for $i in
$tmp/Warehouse/Docks/text() return
replace value of node $i with $i+4)) return
$tmp’ passing warehouse_spec returning
content);

Oracle White Paper—Title of White Paper Here

13

Getting the best performance out of XQuery

XQuery Best Practices and Performance Tuning can be divided into 2 parts:

• Best practices independent of the XMLType storage options. These are listed in the
“Storage independent best practices” section.

• Best practices specific to the XMLType storage selected by the user. These include
various indexes the user can create to speed up their XQueries. These are listed in the
“Storage dependent performance tuning” section.

Oracle White Paper—Title of White Paper Here

14

Storage independent Best Practices

In Oracle XML DB, XML documents are stored in either XMLType tables or XMLType
columns of relational tables. XML DB is designed to store large number of XML documents,
and to search using XQuery among these XML documents, in order to find qualified XML
documents or document fragments for manipulation and transformation using XQuery, or to
project relational views over XML using XMLTable construct so that they can be queried
relationally and be integrated with mature relational applications.

XQuery Guideline 1:

The typical way of writing a SQL statement that searches XML documents stored in XMLType
column and manipulates the searched result is stated below:

 Use XMLExists() and XMLQuery() to search and transform XML stored
in XML DB

Example 4: Search and transform
SELECT XMLQUERY(‘…’ PASSING T.X RETURNING CONTENT)

FROM purchaseorder T

WHERE XMLEXISTS('$p/PurchaseOrder/LineItems/LineItem/Part[@Id="702372"]'

 PASSING T.X AS "p");

In this SQL statement, XMLExists() is used in WHERE clause of the statement to accomplish
the typical database task of “finding needle in a haystack.” Since there can be billions of XML
document stored in table purchaseorder, using proper index, instead of a table scan with
functional evaluation of XQuery used in XMLExists() for each XML document, is critical to
achieve query performance. To achieve the best performance, the XQuery used in XMLExists()
should be index friendly so that when the XMLType column is stored using structured storage,
relational index created on the underlying relational tables from the structured storage is used,
and when the XMLType column is stored using binary XML or unstructured storage,
XMLIndex over the XML storage is used.

If XQuery used in XMLExists() is not index friendly as a whole, then try to break the XQuery
into index-friendly expressions and index-unfriendly expressions and use them in two different
XMLExists() functions connected by the SQL AND construct. In this way, at least the index-
friendly XMLExists() can be evaluated using index and the index-friendly XMLExists() can be
evaluated as a post-index filter.

XQuery Guideline 2:

The typical way of writing a SQL statement that searches for and modifies XML documents
stored in XMLType column is shown below.

 Use XMLExists() to search the XML document to modify via XML DML
operators

Example 5: Updating XML document after searching using XMLExists()

Oracle White Paper—Title of White Paper Here

15

UPDATE purchaseorder T SET T.X = DELETEXML(T.X,

‘/purchaseOrder/LineItems/LineItem[itemName =”TV”]’)

WHERE

XMLEXISTS('$p/PurchaseOrder/LineItems/LineItem/Part[@Id="717951002372"]'

 PASSING T.X AS "p");

As in XQuery Guideline 1, XMLExists() is used here to identify which XML documents is to be
modified, i.e., “finding needle in a haystack.” The function used in the RHS of the UPDATE
assignment can be any expression that returns XMLType. For example, it can be a PL/SQL
function call that returns XMLType. Semantically, the RHS expression of the SQL UPDATE
statement returns an XMLType instance document that is assigned to XMLType column on the
LHS to do document replacement of the whole XMLType column value.

However, Oracle XML DB does XML DML operator rewrite optimization whenever possible,
so as to partially update the underlying XML storage structures instead of replacing the whole
document, as listed below:

• For unstructured (CLOB) storage, there is no XML DML operator rewrite.

• For binary XML storage, there is XML DML operator rewrite for all XML DML
operators when the XPath can be evaluated using streaming evaluation.

• For structured storage, there is XML DML operator rewrite for DELETEXML(),
UPDATEXML(), INSERTCHILDXML(), INSERTCHILDXMLBEFORE(), and
INSERTCHILDXMLAFTER() ,when the XPath can be evaluated directly using the
underlying relational tables and columns of the structured storage.

XML DML operator rewrite can be explicitly disabled by using the /*+NO_XML_DML_REWRITE */
SQL hint. This is true regardless of XML storage model.

XQuery Guideline 3:

XML document is hierarchical in nature and has typical master-detail relationships. Therefore, it
is common to project out master-detail constructs within XML document as a set of relational
tables using XMLTable construct and project out leaf values of each construct as columns of
XMLTable for search, as shown in the example below:

 Use XMLTable construct to query XML with relational access

Example 6: Using XMLTable
SELECT li.description, li.lineitemFROM purchaseorder T,
 XMLTable('$p/PurchaseOrder/LineItems/LineItem'
 PASSING T.X AS “p”
 COLUMNS lineitem NUMBER PATH '@ItemNumber',
 description VARCHAR2(30) PATH 'Description',
 partid NUMBER PATH 'Part/@Id',
 unitprice NUMBER PATH 'Part/@UnitPrice',
 quantity NUMBER PATH 'Part/@Quantity') li
 WHERE li.unitprice > 30 and li.quantity < 20);

Oracle White Paper—Title of White Paper Here

16

To process the XMLTable() construct efficiently, XQuery usage in XMLTable clause should be
storage or index friendly so that native XQuery/SQL/XML optimization can find the best query
plan leveraging the underlying XML storage and index models. In this case, if purchaseorder
column is stored using structured storage, the underlying relational table holding the LineItem
together with its relational columns unitprice and quantity are directly accessed in the resulting
query plan. If purchaseorder column is stored using binary XML or unstructured storage, the
underlying relational tables belonging to the XMLIndex are directly accessed in the resulting
query plan.

To traverse multi-level hierarchy, XMLTable can be used in a chaining fashion.

XQuery Guideline 4:

There are GROUP BY and ORDER BY clauses that operate on SQL scalar types. One typical
way of casting XQuery result into SQL scalar types for GROUP BY and ORDER BY purposes
is shown in the example below.

 Use XMLCast() and XMLTable() constructs for GROUP BY and ORDER
BY

Example 7: Using XMLCast() in GROUP BY / ORDER BY
SELECT XMLCAST(XMLQUERY(‘$p/PurchaseOrder/@poDate’ PASSING T.X

 RETURNING CONTENT) AS DATE), COUNT(*)
FROM purchaseorder T
WHERE …
GROUP BY XMLCAST(XMLQUERY(‘$p/PurchaseOrder/@poDate’ PASSING T.X

RETURNING CONTENT) AS DATE)
ORDER BY XMLCAST(XMLQUERY(‘$p/PurchaseOrder/@poDate’ PASSING T.X

RETURNING CONTENT) AS DATE);

When there are multiple scalar values that need to be grouped or ordered, it is better to write it
with XMLTable construct that projects out all columns to be ordered or grouped as shown
below.

Example 8: Using XMLTable() construct for GROUP BY / ORDER BY
SELECT po.DATE, po.poZip, count(*)
FROM purchaseorder T,

XMLTable('$p/PurchaseOrder’
 PASSING T.X AS “p”
 COLUMNS

 poDate DATE PATH '@poDate',
 poZip VARCHAR2(8) PATH 'shipAddress/zipCode',
) po
WHERE ….

GROUP BY po.poDate, po.poZip

ORDER BY po.poDate, po.poZip

Oracle White Paper—Title of White Paper Here

17

In this case, if purchaseOrder.X column uses structured storage or uses binary XML storage with
structured xmlindex, the query plan will directly use group by and order by of the columns from
the underlying relational storage tables of the XML storage or xmlindex.

Note the XMLTable usage pattern in SQL/XML is very commonly adopted by users to create
relational views over XML, so that XML query can be integrated with existing relational
applications (such as BI applications) smoothly.

XQuery Guideline 5:

XQuery is a language that blends both search and transformation of XML. While XQuery used
for search in the WHERE clause is more amenable for XQuery rewrite optimization leveraging
the underlying XML storage and indexing models, XQuery used for transformation in the
SELECT clause might be more procedure-centric and hence suited for functional evaluation.
You can use XQuery extension expression (#ora:xq_proc #) to indicate that the XQuery should
be functionally evaluated, as shown in the example below.

 Use XQuery extension expression to indicate functional evaluation of
XQuery

Example 9: XQuery extension expression for functional evaluation
SELECT XMLQUERY(‘(#ora:xq_proc #){…}’ PASSING T.X RETURNING CONTENT)

FROM purchaseorder T

WHERE XMLEXISTS('$p/PurchaseOrder/LineItems/LineItem/Part[@Id="717951"]'

 PASSING T.X AS "p");

The (#ora:xq_proc#){…} is an XQuery extension expression serving as a “pragma” to indicate
the xquery expression enclosed in the curly braces needs to be evaluated functionally. It is
available since Oracle 11gR2, release 11.2.0.2.

This mechanism is more fine-grained and hence more flexible than using /*+
NO_XML_QUERY_REWRITE */ SQL hint , which requests all XQuery used in a SQL
statement to use functional evaluation. This may not be desirable for XQuery used in
XMLExists() of the SQL statement.

XQuery Guideline 6:

PL/SQL XMLType methods do not support XQuery invocation directly. However, one can
invoke SQL/XML functions with XQuery to query on XMLType PL/SQL variables as shown in
the following example. Since a PL/SQL XMLType variable value is not indexed, /*+
NO_XML_QUERY_REWRITE*/ SQL hint is used to evaluate XQuery functionally.

 Use XQuery in PL/SQL to manipulate PL/SQL XMLType Variable

Example 10: Querying PL/SQL XMLType variable using XMLQuery() and XMLCast()
DECLARE

 v_x XMLType;

Oracle White Paper—Title of White Paper Here

18

 NumAcc NUMBER;

BEGIN

 v_x := XMLType(xmlfile(…)); /* initialize xmltype variable */

 SELECT /*+ NO_XML_QUERY_REWRITE */

 XMLCAST(XMLQUERY('declare default element namespace

"http://custacc";for $cust in $cadoc/Customer return

fn:count($cust/Addresses/Address)'

 PASSING v_x AS "cadoc" RETURNING CONTENT) AS NUMBER)

 INTO NumAcc

 FROM DUAL;

END;

Example 11: Querying PL/SQL XMLType variable using XMLExists()
DECLARE

 v_x XMLType;

 ex NUMBER;

BEGIN

 v_x := XMLType(xmlfile(…)); /* initialize xmltype variable */

 SELECT /*+ NO_XML_QUERY_REWRITE */

 CASE WHEN XMLEXISTS('declare default element namespace

"http://custacc"; $cadoc/Customer/Addresses/Address)'

 PASSING v_x AS "cadoc")

 THEN 1 ELSE 0 END

 INTO ex

 FROM DUAL;

END;

XQuery Guideline 7:

XQuery type system is based on XML Schema type system. Although XQuery type system and
SQL type system are not exactly aligned, there are equivalent mappings between the types in each
system, as shown in the table below. Note that xs:date, xs:time, xs:dateTime have optional
timezone component, therefore, they are mapped to ‘TIMESTAMP WITH TIMEZONE’ SQL
type. When the timezone component is not used, then you may map to DATE or TIMESTAMP
SQL types.

 Use proper XQuery and SQL Typing

TABLE 2. XML AND SQL DATA TYPE CORRESPONDENCE FOR XMLINDEX

XML DATA TYPE SQL DATA TYPE

xs:integer, xs:decimal INTEGER or NUMBER

Oracle White Paper—Title of White Paper Here

19

xs:double

xs:float

xs:date

xs:time, xs:dateTime

xs:dayTimeDuration

xs:yearMonthDuration

BINARY_DOUBLE

BINARY_FLOAT

DATE, TIMESTAMP WITH TIMEZONE

TIMESTAMP, TIMESTAMP WITH TIMEZONE

INTERVAL DAY TO SECOND

INTERVAL YEAR TO MONTH

Users are recommended to cast these types properly in XQuery used within XMLExists() clause
to ensure proper type-aware comparison semantics and proper XML index usage. This is
illustrated in the examples below:

Example 12: Using XQuery type casting and SQL type cast to pass in the properly typed
value into XMLExists()
SELECT … FROM purchaseOrder T

WHERE XMLEXISTS(‘$po/purchaseOrder[@id=$id]'

 PASSING T.X AS "po", CAST(:1 AS NUMBER) as "id");

In this example, we explicitly cast SQL bind variable :1 as SQL NUMBER type and bind that to
XQuery external variable “$id” of XMLExists() operator.

If the purchaseOrder document is non-XML schema based, then @id is of type
xs:untypedAtomic. The general comparison rule in XQuery states that comparing
xs:untypedAtomic value with any numeric type value (xs:integer, xs:decimal, xs:float, xs:double) is
done by promoting both operands to xs:double. This makes the @id comparision in XQuery
use xs:double() comparison even though SQL bind variable is passed as xs:decimal typed value, it
is internally casted into xs:double typed value.

On the other hand, if the purchaseOrder document is XML schema based, then @id is not of
type xs:untypedAtomic, instead it is of type stated by the XML Schema. If the XML schema
states that the @id is of type xs:decimal, for example, then this makes the @id comparison in
XQuery use xs:decimal() comparison and the SQL bind variable passed as xs:decimal typed value
no longer needs to be internally casted into xs:double typed value.

Keeping in mind that xs:decimal is for exact numeric type and xs:double is for approximate
numeric type, application users need to decide what typed comparison the application needs.
Once the decision is made, then write the “Example 12: Using XQuery type casting and SQL
type cast to pass in the properly typed value into XMLExists()” query above as “Example 13:
using xs:decimal() type exact numeric comparison” or “Example 14: Using xs:double() type
approximate numeric comparison” using explicit XQuery type casting to get either xs:decimal()
typed comparison or xs:double() typed comparison.

Oracle White Paper—Title of White Paper Here

20

Example 13: using xs:decimal() type exact numeric comparison
SELECT … FROM purchaseOrder T

WHERE XMLEXISTS(‘$po/purchaseOrder[xs:decimal(@id)=$id]'

 PASSING T.X AS "po", CAST(:1 AS NUMBER) as "id");

Example 14: Using xs:double() type approximate numeric comparison
SELECT … FROM purchaseOrder T

WHERE XMLEXISTS(‘$po/purchaseOrder[xs:double(@id)=$id]'

 PASSING T.X AS "po", CAST(:1 AS BINARY_DOUBLE) as

"id");

Using explicit type casting is required to ensure that XQuery will use proper typed value
comparison independent of whether XMLType document stored in the table is XML schema
based or not. Furthermore, doing so promotes the usage of XMLindex.

To make “Example 13: using xs:decimal() type exact numeric comparison” use structured
XMLIndex, “/purchaseOrder/@id” must be indexed as SQL NUMBER type.

To make “Example 13: using xs:decimal() type exact numeric comparison” use unstructured
XMLIndex, DBMS_XMLINDEX.CreateNumberIndex() must be called with ‘DECIMAL’ as
xmltypename parameter.

To make “Example 14: Using xs:double() type approximate numeric comparison” use structured
XMLIndex, “/purchaseOrder/@id” must be indexed as SQL TO_BINARY_DOUBLE type.

To make “Example 14: Using xs:double() type approximate numeric comparison” use
unstructured XMLIndex, DBMS_XMLINDEX.CreateNumberIndex() must be called with
‘DOUBLE’ as xmltypename parameter.

See structured and unstructured XMLIndex guideline sections for details.

For non-numeric datatypes, XQuery general comparison allows xs:untypedAtomic typed value to
be cast into the type of the other value, so we just need to apply XQuery type casting on the
passing parameter as shown in the 2 examples below for xs:date() and xs:dateTime() comparison.

Example 15: Using xs:date() for date datatype comparison
SELECT … FROM purchaseOrder T

WHERE XMLEXISTS(‘$po/purchaseOrder[@podate =xs:date($d)]'

 PASSING T.X AS "po", :1 as "d");

Here, :1 is expected to bind to SQL varchar of value, say ‘2008-07-08’ .

Example 16: Using xs:dateTime() for timestamp with timezone datatype comparison
SELECT … FROM purchaseOrder T

WHERE XMLEXISTS(‘$po/purchaseOrder[@podate =xs:dateTime($d)]'

Oracle White Paper—Title of White Paper Here

21

 PASSING T.X AS "po", :1 as "d");

Here, :1 is expected to bind to SQL varchar of value, say ‘'2010-01-01T12:00:00Z’ .

XQuery Guideline 8:
Some expressions might add performance overhead when processing

 XQuery expressions that are not optimizable with XML index
large-size XML documen

TABLE 3. EXPRESSIONS TO AVOID FOR LARGE DOCUMENTS

t,
because these expressions typically cannot leverage the underlying XML storage or index
structures. Such expressions should be avoided when querying very large XML documents. They
are listed in Table 3:

EXPRESSIONS TO AVOID

Avoid XQuery expressions that use the following XPath step axes:

• ancestor

• ancestor-or-self

• descendant-or-self

• following

• following-sibling

• parent
• preceding

• preceding-sibling

Avoid <<, >> expressions.

XQuery Guideline 9:

Pure XQuery users prefer to write XQuery without using individual SQL/XML operators.
Oracle XML DB supports this type of usage by enabling users to wrap the entire XQuery into
one SQL SELECT statement using either

 Use the right XQuery expression to access data within Top XQuery

SELECT * FROM XMLTABLE(‘…’) ;

or

SELECT XMLQuery(‘…’) FROM DUAL;

depending on whether the XQuery results are consumed as a sequence or as one XML fragment.
This is referred as “Top XQuery” because SQL is used here purely as a wrapping mechanism.

Prior to 11gR2 11.2.0.2 release, functions fn:collection() and fn:doc() needed to be replaced with
ora:view(). In 11gR2 11.2.0.2 release, fn:collection() or fn:doc() can be used to uniformly refer to
XML documents that are stored in XMLType tables, XMLType columns, XML DB repository,

Oracle White Paper—Title of White Paper Here

22

or generated virtually from pure relational tables. However, you need to use the proper oradb-
prefixed URL or XQuery extension expression. Examples are shown below.

Top XQuery statement goes through the same XQuery rewrite optimizations as that of regular
SQL/XML statements. Just as users do performance tuning using explain plan for SQL
statements, users should use explain plan to do performance tuning for Top XQuery statement
as well.

• Use ora:view() to map relational table content as a collection of virtual XML documents

SELECT *

FROM XMLTABLE(

 'for $i in ora:view("SCOTT", "EMP")

 where $i/ROW[EMPNO = 7369 and HIREDATE=xs:date("1980-12-17")]
 return $i');

Here EMP is a relational table owned by user “SCOTT”.

In 11gR2 11.2.0.2 release or later, you may also use fn:collection() as shown below:

SELECT * FROM XMLTABLE(

 'for $i in fn:collection("oradb:/SCOTT/EMP")

 where $i/ROW[EMPNO = 7369 and HIREDATE=xs:date("1980-12-

17")]
 return $i');

• Use ora:view() to map XMLType table content as a collection of XML documents
SELECT * FROM XMLTABLE(

‘for $i in ora:view(“PO”, "PURCHASEORDER")
where $i/PurchaseOrder/Id = xs:decimal(789645)
return $i/PurchaseOrder/LineItems/LineItem[itemName=”TV”]’)

Here, PURCHASEORDER is an XMLType table owned by user PO.

In 11gR2 11.2.0.2 release, you may also use fn:collection() as shown below:

SELECT * FROM XMLTABLE(

‘for $i in fn:collection(“oradb:/PO/PURCHASEORDER”)
where $i/PurchaseOrder/Id = xs:decimal(789645)
return $i/PurchaseOrder/LineItems/LineItem[itemName=”TV”]’)

• Use fn:collection() to map XMLType column of a table as a collection of XML

documents

Here, PURCHASEORDER is a relational table owned by user PO and has an
XMLType column ‘X’. This is available starting 11gR2 11.2.0.2 release.
SELECT * FROM XMLTABLE(

Oracle White Paper—Title of White Paper Here

23

‘for $i in fn:collection(“oradb:/PO/PURCHASEORDER/ROW/X”)
where $i/PurchaseOrder/Id = xs:decimal(789645)
return $i/PurchaseOrder/LineItems/LineItem[itemName=”TV”]’)

• Use XQuery extension expression with fn:collection() and fn:doc() to map XML
documents stored in XML DB repository.

When XML documents are stored in XML DB repository (RESOURCE_VIEW), they
have file/folder paths and can be efficiently accessed using equals_path() and
under_path() SQL functions over RESOURCE_VIEW. Prior to 11gR2 release 11.2.0.2,
Oracle does not recommend using Top XQuery to access XML documents stored in
XML DB repository. However, starting with 11gR2 release 11.2.0.2 release, you may use
Top XQuery with proper XQuery extension expression to access them.

In Oracle 11gR2, release 11.2.0.2

Example 17: Using fn:doc or fn:collection with ora:defaultTable pragma

, Oracle XQuery extension expression
ora:defaultTable lets you specify the default table used to store repository data that you
query. When this XQuery extension expression is used with XQuery functions fn:doc
and fn:collection, the query is rewritten to automatically join the default table to view
RESOURCE_VIEW and use Oracle SQL functions equals_path and under_path,
respectively. The effect is thus the same as coding the query manually to use an explicit
join. Avoid fn:doc and fn:collection that do not include the ora:defaultTable XQuery
pragma, since such XQuery will not be optimized.

SELECT XMLQuery('(#ora:defaultTable PURCHASEORDER #)

{let $val :=fn:doc("/home/OE/PurchaseOrders/2002/Sep/VJONES-

20021009123337583PDT.xml")/PurchaseOrder/LineItems/LineItem[@ItemN

umber =19] return $val}' RETURNING CONTENT)

FROM DUAL;

Example 18: How not to write your XQuery with fn:doc or fn:collection
SELECT XMLQuery('let $val :=

fn:doc("/home/OE/PurchaseOrders/2002/Sep/VJONES-

20021009123337583PDT.xml")

/PurchaseOrder/LineItems/LineItem[@ItemNumber =19]

return $val' RETURNING CONTENT)

FROM DUAL;

In releases prior to Oracle 11gR2, release 11.2.0.2, avoid fn:doc and fn:collection.
Instead, join the view RESOURCE_VIEW with the XMLType table that holds the data,
and then use the Oracle-specific SQL functions equals_path and under_path instead of
the XQuery functions fn:doc and fn:collection, respectively. These SQL functions
reference repository resources in an efficient way.

Oracle White Paper—Title of White Paper Here

24

Example 19: Accessing documents stored in repository using RESOURCE_VIEW

SELECT XMLQuery('let $val :=

$DOC/PurchaseOrder/LineItems/LineItem[@ItemNumber = 19]

return $val' PASSING OBJECT_VALUE AS "DOC" RETURNING CONTENT)

FROM RESOURCE_VIEW rv, purchaseorder x

WHERE ref(x) = XMLCast(XMLQuery('declare default element namespace

"http://xmlns.oracle.com/xdb/XDBResource.xsd"; (: :) fn:data

(/Resource/XMLRef)' PASSING rv.RES RETURNING CONTENT)

AS REF XMLType)

AND equals_path(rv.RES, '/home/OE/PurchaseOrders/2002/Sep/VJONES-

20021009123337583PDT.xml')

• To avoid passing hard-coded search values as constants to Top-XQuery, users may use
PASSING bind variable parameters as shown the example below:

Example 20: Passing Bind Variables
SELECT * FROM XMLTABLE(

 'for $i in fn:collection("oradb:/SCOTT/EMP")

 where $i/ROW[EMPNO = xs:decimal($empno)]

 return $i'

 PASSING :1 as "empno")

XQuery Guideline 10:
One common problem is that user forgets to gather stats on his tables. Inaccurate stats can result
in a bad execution plan. Hence it is recommended to periodically perform gather statistics on the
XMLType table and relevant indexes, as listed below.

 Gather statistics

In a use case where data is loaded once and queried several times, running
dbms_stats.gather_table_stats() on the affected tables (as outlined below), after data has been
loaded, is sufficient. In a use case where data is loaded or updated quite frequently, running
dbms_stats.gather_schema_stats() or dbms_stats.gather_table_stats (as outlined below) as a
background scheduler job (package dbms_scheduler) is the best. Note that the default behavior
of gather_table_stats is to propagate gathering of stats to all indexes on the table.:

• For structured storage, user needs to gather stats explicitly on top-level table, each of the
nested tables, and each of the out-of-line tables. Gathering stats on top-level table does
not result in automatically gathering stats on nested tables and out-of-line tables.

• For XMLIndex, gathering stats on base table will automatically gather stats on the
Structured XMLIndex tables and Path table of Unstructured XMLIndex. Hence, there is
no need to gather stats on the XMLIndex separately.

• For Text Index, gathering stats on base table will automatically gather stats on the Text
Index tables. Hence, there is no need to gather stats on Text Index separately.

Oracle White Paper—Title of White Paper Here

25

Starting Oracle 11.2.0.3, if there are xml indexes present that use binary-double as secondary
indexes, it is recommended to set optimizer_dynamic_sampling to 3 for picking up proper
secondary indexes. For example, the following 2-command script can be used to gather statistics
on the schema:

alter session set optimizer_dynamic_sampling = 3;

exec dbms_stats.gather_schema_stats('USERNAME');

XQuery Guideline 11:

Just as query tuning can improve SQL performance, so it can improve XQuery performance.
You tune XQuery performance by choosing appropriate indexes for your XML Storage. As with
database queries generally, you can examine the execution plan for a query to determine whether
tuning is required.

 Use SET XMLOPT[IMIZATIONCHECK] or events to determine why a
query/DML is not rewritten

In general, use explain plan on your SQL statement (including Top XQuery wrapped in SQL
statement) to understand and tune query performance. In particular, when there is
‘COLLECTION ITERATOR’ appearing in the explain plan, it usually indicate the query plan is
not fully optimized.

Advanced users can use:

• XMLOPT[IMIZATIONCHECK] [ON|OFF]” mechanism (in Oracle 11gR2 release
11.2.0.2), or event 19021 with level 4096 (0x1000)(in releases prior to 11.2.0.2) to get
the optimized rewritten query in the trace file to see what underlying queries are
executed on the underlying internal tables created for XML storage and index models.

• Event 19027 with level 8192 (0x2000) to get a dump in the trace file indicating why a
particular expression is not rewritten.

In Oracle 11gR2 11.2.0.2 release or later, we recommend that you use the “SET
XMLOPT[IMIZATIONCHECK] [ON|OFF]” mechanism to determine if parts of your query
were not optimized. When it is ON, it will ensure that only XML queries or XML operations that
were fully optimized will be executed. A suboptimal XML query or DML operation will be
aborted with the following error message: "ORA 19022 - Unoptimized XML construct
detected". In addition, the reason for the query or DML being suboptimal will be printed to the
trace file. OFF will not guarantee that only fully optimized XML queries/ DML operations will
be executed. The default option for this command is OFF. Please use
XMLOPT[IMIZATIONCHECK] ON only when developing or debugging a query/ DML
operation for performance tuning.

In Oracle 11gR2, release 11.2.0.2, or later:

Oracle White Paper—Title of White Paper Here

26

If you are on a release prior to 11gR2 11.2.0.2 release, you may set event 19021 with level 1 for a
given database session using SQL statement ALTER SESSION to determine if your XML
operation was rewritten. Turn on event 19021 with level 1 if you want to raise an error whenever
any of the XML functions is not rewritten and is instead evaluated functionally. The error
“ORA-19022 - XML XPath functions are disabled” is raised when such functions execute.

In releases prior to Oracle 11gR2 11.2.0.2 :

XQuery Guideline 12:

When XMLType result is fetched in JDBC program, please make sure to call close() method on
XMLType result once it is consumed to free resources allocated by the server to track the
XMLType results. The following JDBC code fragment demonstrates the call of close() method
on XMLType result.

 Properly release resources for xmltype in client program

Example 21: Using the close() method to free the resources in JDBC
XMLType xml2;

while (rset.next())

{

 xml2 = XMLType.createXML(rset.getOPAQUE(1));

 System.out.println("Result: " + xml2.getStringVal());

 xml2.close(); // free the XMLType result tracked by the Server

}

rset.close();

XQuery Guideline 13:

In JDBC program, please avoid calling getObject() multiple times. Because XMLType object is
ref counted, every call to getObject() will increase ref count by one. The call to close() method of
XMLType will free the object when the ref count is 1.

 Avoid calling getObject mutilple times for xmltype in client program

Example 22: Avoud calling getObject() twice
Instead of doing this:
 Object res = rset.getObject(j);

 if(res instanceof XMLType)
 {
 xml = (XMLType)rset.getObject(j);
 }

We shall do

 Object res = rset.getObject(j);

 if(res instanceof XMLType)

Oracle White Paper—Title of White Paper Here

27

 {
 xml = (XMLType)res;
 }

XQuery Guideline 14: Set parameter OPTIMIZER_FEATURE_ENABLE to 11.1.0.6 or above for
XQuery optimizations

Oracle White Paper—Title of White Paper Here

28

Storage dependent performance tuning

Recall that Oracle XML DB performs logic rewrite optimization followed by physical rewrite
optimization based on XML storage and index by evaluating the XPath expression against the
XML document without ever constructing the XML document in memory. This optimization is
called XPath rewrite optimization. It is a proper subset of XML query optimization, which also
involves optimization of XQuery expressions, such as FLWOR expressions, that are not XPath
expressions. XPath rewrite includes XMLIndex optimizations, streaming evaluation of binary
XML, and rewrite to underlying object-relational or relational structures in the case of structured
storage or XMLType views over relational data.

XPath rewrite can occur in these contexts (or combinations thereof):

• When XMLType data is stored in an object-relational column or table (structured

storage) or when an XMLType view is built on relational data.

• When you use an XMLIndex index.

• When XMLType data is stored as binary XML – using streaming evaluation.

All of these items are discussed in the following subsections.

Note: In hybrid storage, part of an XML document is broken up and stored object-relationally
(structured storage), but one or more XML fragments are stored as CLOB instances
(unstructured storage). A typical use case here is mapping an XML-schema complexType or a
complex element to CLOB storage, because the entire fragment is generally accessed as a unit.
For standard indexes, it acts as a unit for indexing as well. When using hybrid storage, use the
information from the “Structured Storage” section for best practices and indexing solutions of
the structured part, and the information from the “Unstructured and Binary Storage” section for
best practices and indexing solutions for the embedded CLOB.

Oracle White Paper—Title of White Paper Here

29

Structured (Object Relational) storage

For structured storage, XQuery optimization is done by rewriting the different elements to the
underlying relational columns, and by rewriting the collection access to underlying relational
collection tables. XPath rewrite for object-relational storage means that XQuery with XPath
expression is rewritten to a SQL query block or expression on the underlying relational tables or
columns. These underlying tables can include out-of-line tables. This section presents some
guidelines for using execution plans to do the following, for queries that use XPath expressions:

• Analyze query execution, to determine whether XPath rewrite occurs.

• Optimize query execution, by using secondary indexes.

Each guideline is listed below as “Structured Storage Guideline”. Use these guidelines together,
taking all that apply into consideration.

Note: It is assumed that the reader of this section has already read the whitepaper titled “Ease of
use packages for XMLType Structured Storage” and is familiar with the
DBMS_XMLSCHEMA_ANNOTATE and DBMS_XMLSCHEMA_MANAGE packages.

Structured Storage Guideline 1:

Please refer to Table 2 in XQuery Guideline 7: “Using proper XQuery and SQL Typing” to
make sure SQL type is selected properly for schema type when registering the XML schema for
structured storage. Since structured storage is only available for schema based XML, xdb:sqlType
should be set to NUMBER to make “

 Make the SQL types and XML types correspond

Example 13: using xs:decimal() type exact numeric
comparison” query efficient and xdb:sqlType should be set to BINARY_DOUBLE to make
“Example 14: Using xs:double() type approximate numeric comparison” query efficient.

Structured Storage Guideline 2:

The execution plan of a query that has been rewritten refers to the object-relational tables and
columns that underlie the queried XMLType data.

 Look for underlying tables and columns versus XML
functions in execution plans

The names of the underlying tables can be meaningful to you, if they are derived from XML
element or attribute names or if the governing XML schema explicitly names them by using
annotation xdb:defaultTable. Otherwise, these names are system-generated and have no
obvious meaning; in particular, they do not reflect the corresponding XML element or attribute
names. Also, some system-generated columns are hidden; you do not see them if you use the
SQL describe command. They nevertheless show up in execution plans.

The plan of a query that has not been rewritten shows only the base table names, and it typically
refers to user-level XML functions, such as XMLExists. Look for this difference to determine

Oracle White Paper—Title of White Paper Here

30

whether a query has been optimized. The XML function name shown in an execution plan is
actually the internal name (for example, XMLExists2), which is sometimes slightly different from
the user-level name.

The example below shows the kind of execution plan output that is generated when Oracle
XML DB cannot perform XPath rewrite. The plan here is for a query that uses SQL function
XMLExists. The corresponding internal function XMLExists2 appears in the plan output,
indicating that the query is not rewritten.

Example 23: Execution Plan Generated When XPath Rewrite Does Not Occur
Predicate Information (identified by operation id):

1 - filter(XMLEXISTS2('$p/PurchaseOrder[User="SBELL"]' PASSING BY VALUE
SYS_MAKEXML('6168797E040',4215,"PO"."XMLEXTRA","PO"."XMLDATA") AS "p")=1)

In this situation, Oracle XML DB constructs a pre-filtered result set based on any other
conditions specified in the query WHERE clause. It then filters the rows in this potential result
set to determine which rows belong in the result set. The filtering is performed by constructing a
DOM on each document and performing a functional evaluation (using the methods defined by
the DOM API) to determine whether or not each document is a member of the result set.

The example below shows a query, together with its execution plan, which shows that the query
has been optimized. The predicates for CostCenter and User are rewritten to the underlying
relational column filters.

Example 24: Optimization of XMLQuery with Schema-Based XMLType Data
SELECT XMLQuery('for $i in /PurchaseOrder
 where $i/CostCenter eq "A10"
 and $i/User eq "SMCCAIN"
 return <A10po pono="{$i/Reference}"/>'
 PASSING OBJECT_VALUE
 RETURNING CONTENT)
 FROM purchaseorder;

PLAN_TABLE_OUTPUT
Id	Operation	Name	Rows	Bytes	Cost
0	SELECT STATEMENT		1	530	5
1	SORT AGGREGATE		1		
* 2	FILTER				
3	FAST DUAL		1		2
* 4	TABLE ACCESS FULL	PURCHASEORDER	1	530	5
Predicate Information (identified by operation id):
 2 - filter(:B1='SMCCAIN' AND :B2='A10')
 4 - filter(SYS_CHECKACL("ACLOID","OWNERID",xmltype('<privilege
 xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
 http://xmlns.oracle.com/xdb/acl.xsd

DAV:http://xmlns.oracle.com/xdb/dav.xsd">
 <read-properties/><read-contents/></privilege>'))=1)

http://xmlns.oracle.com/xdb/acl.xsd�

Oracle White Paper—Title of White Paper Here

31

Structured Storage Guideline 3:

When designing an XML schema, use annotation xdb:defaultTable to name the underlying
tables that correspond to elements that you select in queries where performance is important.
This lets you easily recognize them in an execution plan, indicating by their presence or absence
whether the query has been rewritten.

 Name default tables and nested tables, so you recognize
them in execution plans

When creating the XMLType tables using the CREATE TABLE statement, the nested tables can
be renamed by using the “VARRAY … STORE AS TABLE” clause.

If the nested tables need to be renamed after the table has been created by schema registration or
CREATE TABLE statement, use the
DBMS_XMLSCHEMA_MANAGE.RENAMECOLLECTIONTABLE procedure.

Structured Storage Guideline 4:

You can effectively index XML data that is stored object-relationally (structured storage) by
creating B-tree indexes on the underlying database columns that correspond to XML nodes.
Creating B-tree indexes will give near-relational performance for queries on structured storage,
which gives structured storage an upper hand compared to Oracle’s competitors’ storage
solutions, and even other XMLType storage solutions in Oracle XML DB. Sometimes, however,
a query is better served by creating function-based index. This section talks about when and how
to create B-tree and function-based indexes for structured storage. Each guideline is listed below
as “Structured Storage Indexing Guideline”.

 Create relevant indexes

Structured Storage Indexing Guideline 5:

 Rewrite optimizations of XPath predicate, WHERE predicate of XQuery, WHERE clause of
SQL statement may all result in searching values in columns of the XML storage or index tables
When this happens, you can sometimes improve performance by creating an index on the
column that is targeted by the SQL predicate, or by creating an index on a function application to
that column. There are several ways you can create an index on the predicate. Many of these are
listed below:

 Create an index on a column targeted by a
predicate

Scenario 1: Using the XPath to create B-tree index

If the data to be indexed is a singleton, that is, if it can occur only once in any XML instance
document, and you know the XPath to index, then you can use a shortcut of ostensibly creating a
function-based index, where the expression defining the index is a functional application, with an
XPath-expression argument that targets the singleton data. A shortcut is defined for XMLCast
applied to XMLQuery, which is equivalent to the shortcut defined for extractValue. In many
cases, Oracle XML DB then automatically creates appropriate B-Tree index on the underlying

Oracle White Paper—Title of White Paper Here

32

object-relational tables or columns; it does not create a function-based index on the targeted
XMLType data as the CREATE INDEX statement would suggest.

The example below shows a CREATE INDEX statement that ostensibly tries to create a
function-based index using XMLCast applied to XMLQuery, targeting the text content of
singleton element Reference. The content of this element is only text, so targeting the element is
the same as targeting its text node using node test text().

Example 25: CREATE INDEX with XMLCAST and XMLQUERY on a Singleton Element
CREATE INDEX po_reference_ix ON purchaseorder
 (XMLCast(XMLQuery ('$p/PurchaseOrder/Reference'
 PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
 AS VARCHAR2(128)));
In this example, Oracle XML DB rewrites the CREATE INDEX statements to create B-tree
index on the underlying scalar data.
In some cases when you use either of these shortcuts, the CREATE INDEX statement is not
able to create an index on the underlying scalar data as described, and it instead actually does
create a function-based index on the referenced XMLType data. This is so, even if the value of
the index might be a scalar. If this happens, you should drop the index and follow one of the
other scenarios to create the B-tree index.

Scenario 2: Converting XPath to table / column name and creating the index

If you are using the XPath based access, you can use the
DBMS_XMLSCHEMA_MANAGE.XPATH2TABCOLMAPPING procedure to get the table and
column name to index as shown in the example below. This will take into account the nested tables
and out of line tables to give you the final table / column name to index.

Example 26: Creating an Index on a Column Targeted by a Predicate
-- manually creating index or a given XPath expression.

select XDB.DBMS_MANAGE_XMLSTORAGE.XPath2TabColMapping(

'PURCHASEORDER_TAB',NULL, '/ipo:purchaseOrder/ Reference ',

'''http://www.example.com/IPO'' as "ipo"') from dual;

-- Result should look like this (SYS_NC... could have different value)
-- <Result>
-- <Mapping TableName="PURCHASEORDER_TAB" ColumnName="SYS_NC00009$"/>
-- </Result>

-- now we could create an index or constraint by manually extracting the

required information
-- create index shipto_idx on PURCHASEORDER_TAB (SYS_NC00009$);

Note that “Example 25: CREATE INDEX with XMLCAST and XMLQUERY on a Singleton
Element” and “Example 26: Creating an Index on a Column Targeted by a Predicate” both

Oracle White Paper—Title of White Paper Here

33

create index on the same underlying relational column. In other words, they are 2 ways of
performing the same operation.

Scenario 3: When XPath is not known

In some cases, the XPath is not easily determined. For example, you may have an involved
XQuery that internally rewrites into a storage column. In such cases, you can analyze the explain
plan output (as shown in “Example 27: Analyzing an Execution Plan to Determine a Column to
Index”) to determine which columns to create indexes on (“Example 28: Creating an Index on a
Column Targeted by a Predicate using several different ways”).

Example 27: Analyzing an Execution Plan to Determine a Column to Index
Predicate Information (identified by operation id):
 1 - filter(CAST("PURCHASEORDER"."SYS_NC00021$" AS VARCHAR2(128))

='Sarah J. Bell' AND
SYS_CHECKACL("ACLOID","OWNERID",xmltype('<privilege

 xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
 http://xmlns.oracle.com/xdb/acl.xsd

DAV:http://xmlns.oracle.com/xdb/dav.xsd
 "><read-properties/><read-contents/></privilege>'))=1)

The predicate information indicates that the expression XMLCast(XMLQuery...)) is rewritten to

an application of SQL function cast to the underlying relational column that stores the requestor

information for the purchase order, SYS_NC0021$. This column name is system-generated.
The execution plan refers to this system-generated name, in spite of the fact that the governing
XML schema uses annotation SQLName to name this column REQUESTOR.
Because these two names (user-defined and system-generated) refer to the same column, you can
create a B-tree index on this column using either name. The example below shows these two
equivalent ways to create the B-tree index on the predicate-targeted column.

Example 28: Creating an Index on a Column Targeted by a Predicate using several different
ways
CREATE INDEX requestor_index ON purchaseorder ("SYS_NC00021$");

CREATE INDEX requestor_index ON purchaseorder ("XMLDATA"."REQUESTOR");

Scenario 4: Creating function based index

For the plan shown in “Example 27: Analyzing an Execution Plan to Determine a Column to
Index”, it makes sense to create a function-based index, using a functional expression that
matches the one in the rewritten query. The example below illustrates this.

Example 29: Creating a Function-Based Index for a Column Targeted by a Predicate, and
execution plan that indicates that the index is picked up
CREATE INDEX requestor_index ON purchaseorder

 (cast("XMLDATA"."REQUESTOR" AS VARCHAR2(128)));

| Id | Operation | Name | Rows | Bytes |

Oracle White Paper—Title of White Paper Here

34

| 0 | SELECT STATEMENT | | 1 | 524 |

|* 1 | TABLE ACCESS BY INDEX ROWID| PURCHASEORDER | 1 | 524 |

|* 2 | INDEX RANGE SCAN | REQUESTOR_INDEX | 1 | |

Predicate Information (identified by operation id):

 1 - filter(SYS_CHECKACL("ACLOID","OWNERID",xmltype('<privilege

 xmlns="http://xmlns.oracle.com/xdb/acl.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd

 http://xmlns.oracle.com/xdb/acl.xsd

 DAV:http://xmlns.oracle.com/xdb/dav.xsd">

 <read-properties/><read-contents/></privilege>'))=1)

 2 - access(CAST("SYS_NC00021$" AS VARCHAR2(128))='Sarah J. Bell')

In the particular case of this query, the original functional expression applies XMLCast to
XMLQuery to target a singleton element, Requestor. This is a special case, where you can, as a
shortcut, use such a functional expression directly in the CREATE INDEX statement, and that
statement is rewritten to create an index on the underlying scalar data. In other words, the
example below which targets an XPath expression, has the same effect as the example above,
which targets the corresponding object-relational column.

Example 30: Creating a Function-Based Index for a Column Targeted by a Predicate
CREATE INDEX requestor_index

 ON purchaseorder po

 (XMLCast(XMLQuery('$p/PurchaseOrder/Requestor'

 PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)

 AS VARCHAR2(128)));

Structured Storage Indexing Guideline 6:
If a collection is stored as an ordered collection table or an XMLType instance, then you can
directly access members of the collection. Each member of the collection becomes a row in a
table, so you can access it directly with SQL.

 Create indexes on ordered collection tables

You can often improve performance by indexing such collection members. You do this by
creating a composite index on (a) the object attribute that corresponds to the collection XML
element or its attribute and (b) pseudocolumn NESTED_TABLE_ID.

The example below shows the execution plan for a query to find the Reference elements in
documents that contain an order for given part ID. The collection of LineItem elements is stored
as rows in the ordered collection table lineitem_table. Instead of using table purchaseorder from
sample database schema HR, for illustration we manually create a new purchaseorder table (in a
different database schema) with the same properties and same data, but having OCTs with user-
friendly names. This can be done by using the “VARRAY … STORE AS TABLE” clause in the
CREATE TABLE statement.

Oracle White Paper—Title of White Paper Here

35

Example 31: Execution Plan for a Selection of Collection Elements
SELECT XMLCast(XMLQuery('$p/PurchaseOrder/Reference'

 PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)

 AS VARCHAR2(4000)) "Reference"

 FROM purchaseorder

 WHERE

XMLExists('$p/PurchaseOrder/LineItems/LineItem/Part[@Id="717951002372"]'

 PASSING OBJECT_VALUE AS "p");

| Id | Operation | Name | Rows |

| 0 | SELECT STATEMENT | | 1 |

| 1 | NESTED LOOPS | | |

| 2 | NESTED LOOPS | | 1 |

| 3 | SORT UNIQUE | | 1 |

|* 4 | TABLE ACCESS FULL | LINEITEM_TABLE | 1 |

|* 5 | INDEX UNIQUE SCAN | LINEITEM_TABLE_MEMBERS | 1 |

| 6 | TABLE ACCESS BY INDEX ROWID| PURCHASEORDER | 1 |

Predicate Information (identified by operation id):

 4 - filter("SYS_NC00009$" IS NOT NULL AND

"SYS_NC00011$"='717951002372')

 5 - access("NESTED_TABLE_ID"="PURCHASEORDER"."SYS_NC0003400035$")

The execution plan shows a full scan of ordered collection table lineitem_table. This could be
acceptable if there were only a few hundred documents in the purchaseorder table, but it would
be unacceptable if there were thousands or millions of documents in the table.

To improve the performance of such a query, you can create an index that provides direct access
to pseudocolumn NESTED_TABLE_ID, given the value of attribute Id. Unfortunately, Oracle
XML DB does not allow indexes on collections to be created using XPath expressions directly.

The best way to create an index on the nested table is by using the
DBMS_XMLSCHEMA_MANAGE.XPATH2TABCOLMAPPING procedure to get the table
and column name to index, and then create a composite index of this column with
pseudocolumn NESTED_TABLE_ID. This will take into account the nested tables and out of
line tables to give you the final table and column names to index. The example below shows how
to automat e this process.

Example 32: Creating an Index on a nested Table Column Targeted by a Predicate
-- pl/sql program to automatically create one index for each mapping
-- of a given XPath expression.
DECLARE
 index_name VARCHAR2(32) := 'po_idx';

Oracle White Paper—Title of White Paper Here

36

 tab_name VARCHAR2(32);
 col_name VARCHAR2(32);
 CURSOR idx_cursor IS
 SELECT "tab_name", "col_name"
 FROM XMLTable('/Result/Mapping'
 passing (
 SELECT XDB.DBMS_MANAGE_XMLSTORAGE.XPath2TabColMapping(
 'PURCHASEORDER_TAB',
 NULL,
 '/ipo:purchaseOrder/items/item/Part/Id',
 '''http://www.example.com/IPO'' as "ipo"')
 FROM dual)
 COLUMNS "tab_name" VARCHAR2(32) PATH '/Mapping/@TableName',
 "col_name" VARCHAR2(32) PATH '/Mapping/@ColumnName');
BEGIN
 FOR entry IN idx_cursor LOOP
 EXECUTE IMMEDIATE 'CREATE INDEX ' || index_name || '_'
 || entry."col_name" || ' ON "' || entry."tab_name"
 ||'" ("'|| entry."col_name"|| ‘", NESTED_TABLE_ID)';
 END LOOP;
END;

/

The example above is written in a generic fashion with a PLSQL cursor created to handle
multiple XPaths. If you are certain that your XPath2TabColName function will only return one
XPath, then you can use SQL similar to “Example 26: Creating an Index on a Column Targeted
by a Predicate” by just plugging in your particular XPath.

Oracle White Paper—Title of White Paper Here

37

Unstructured and Binary XML

Binary XML storage and unstructured storage are used primarily for unstructured data. For
these storages, the standard database indexes (B-tree, bitmap) are generally not helpful for
accessing particular parts of an XML document. XMLIndex provides a general, XML-specific
index that indexes the internal structure of XML data. One of its main purposes is to overcome
the indexing limitation presented by unstructured, hybrid, and binary XML storage. Sometimes
when a query cannot use any index, it can still be optimized using the streaming XPath
evaluation. This section provides guidance on which indexes to create, and how to write
your query to use the streaming XPath evaluation.

Binary XML Streaming Evaluation

The streaming mode of XPath evaluation is used to efficiently evaluate the most common types
of XPaths over documents that are stored in Binary XML. This is done by first rewriting the
query to collect related XPaths together so that they can be evaluated in a single pass over the
document. This type of rewrite is reflected in the output of ‘explain plan’ as ‘XPATH
EVALUATION’. For example, in the plan for the following query, the XPaths from the
SELECT list and the WHERE clause are gathered and evaluated together as columns of the
‘XPATH EVALUATION’ step; this is reflected in the predicate information section, which
refers to the column corresponding to /PurchaseOrder/Reference.

Example 33: XPath Evalution in Query Plan
SELECT XMLCAST(XMLQuery('$p/PurchaseOrder/@poDate'
 PASSING OBJECT_VALUE AS "p" RETURNING CONTENT) as DATE)
FROM purchaseorder
WHERE XMLExists('$p/PurchaseOrder[Reference="123456"]'
 PASSING OBJECT_VALUE AS "p");

--
| Id | Operation | Name | Rows |
--
| 0 | SELECT STATEMENT | | 1 |
| 1 | NESTED LOOPS | | 1 |

| 2 | TABLE ACCESS FULL| PURCHASEORDER | 1 |
|* 3 | XPATH EVALUATION | | |
--

Predicate Information (identified by operation id):

 3 - filter("P"."C_01$"='123456')

Oracle White Paper—Title of White Paper Here

38

In the following query, all the columns of the XMLTable are evaluated together as part of the
‘XPATH EVALUATION’ step:

Example 34: Streaming XPath Evalution of XMLTable query

SELECT li.description, li.lineitem
FROM
 purchaseorder T,
 XMLTable('$p/PurchaseOrder/LineItems/LineItem'
 PASSING OBJECT_VALUE AS "p"
 COLUMNS lineitem NUMBER PATH '@ItemNumber',
 description VARCHAR2(30) PATH 'Description',
 partid NUMBER PATH 'Part/@Id',
 unitprice NUMBER PATH 'Part/@UnitPrice',
 quantity NUMBER PATH 'Part/@Quantity') li
WHERE li.unitprice > 30 and li.quantity < 20;

--
| Id | Operation | Name | Rows |
--
0	SELECT STATEMENT		1
1	NESTED LOOPS		1
2	TABLE ACCESS FULL	PURCHASEORDER	1
* 3	XPATH EVALUATION		
--
Predicate Information (identified by operation id):

 3 - filter(CAST("P"."C_01$" AS NUMBER)>30 AND
 CAST("P"."C_02$" AS NUMBER)<20)

In general, XPaths involving the child and descendant axes can be evaluated in this mode, but
not ones involving reverse axes (like the ancestor axis). Most position-based predicates in XPaths
are evaluated in streaming mode in 11gR2. In releases prior to 11gR2, XPaths involving position
predicates cannot be evaluated in this mode. In all releases, XPaths with predicates involving
last(), as well as those with position-based and non-position-based predicates in the same step
should be avoided, as these XPaths are not evaluated in streaming mode.

Here are some guidelines on how to write queries to get the best results from streaming XPath
evaluation:

Streaming Evaluation Guideline 1

In many cases, it is easy to convert an XPath that uses reverse axes to an equivalent one that does
not (i.e., uses forward axes only). For example, the following query uses the parent axis (the ‘..’
step) to select nodes that have a child that is named ‘a’ and has an attribute id whose value is
‘abc1’. It can be rewritten to an equivalent query that does not use the parent axis, by including
‘a’ in the predicate (rather than as a separate path step), as shown below.

: Convert reverse XPath axes to forward axes when
possible

Oracle White Paper—Title of White Paper Here

39

Example 35: Conversion of reverse axes to forward axes
-- Query with reverse axis (cannot be evaluated in streaming mode)
SELECT XMLQuery('$p/PurchaseOrder/*/a[@id=”abc1”]/..'
 PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
FROM purchaseorder
WHERE XMLExists('$p/PurchaseOrder[Reference=”123456”]'

 PASSING OBJECT_VALUE AS "p");

-- Equivalent query with no reverse axes (can be evaluated in
streaming mode)
SELECT XMLQuery('$p/PurchaseOrder/*[a/@id=”abc1”]'
 PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
FROM purchaseorder
WHERE XMLExists('$p/PurchaseOrder[Reference=”123456”]'
 PASSING OBJECT_VALUE AS "p");

Streaming Evaluation Guideline 2

Although XPaths with descendant axis & wild cards can be evaluated in streaming mode,
they are not as efficient as using just the child axis and named path steps. For example, to get
all the line items in a particular purchase order that have a quantity greater than 5, use
/PurchaseOrder/LineItem instead of //LineItem, as shown below.

: For large documents, avoid descendant axis & wild cards
if exact (named) path steps can be used

Example 36: Avoiding descendant axis
-- Query with descendant axis
SELECT XMLQuery('$p//LineItem[@quantity > 5]'
 PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
FROM purchaseorder
WHERE XMLExists('$p/PurchaseOrder[Reference=”123456”]'
 PASSING OBJECT_VALUE AS "p")

-- Query with named path steps (avoiding descendant axis)
SELECT XMLQuery('$p/PurchaseOrder/LineItem[@quantity > 5]'
 PASSING OBJECT_VALUE AS "p" RETURNING CONTENT)
FROM purchaseorder
WHERE XMLExists('$p/PurchaseOrder[Reference=”123456”]'
 PASSING OBJECT_VALUE AS "p")

Streaming Evaluation Guideline 3

Note that binary xml tables use a hidden blob column named ‘xmldata’ to store the encoded
xml documents. For workloads that involve a significant amount of DML, enabling caching
for writes on this lob column will speed up subsequent queries that use streaming evaluation
on the affected documents. The following sql statement enables caching for writes on the
purchaseorder table’s blob column:

: For DML-heavy workloads, enable caching for writes on
the underlying lob column

Example 37: Enabling caching for DMLs on binary xml tables
ALTER TABLE purchaseorder modify lob (xmldata) (cache);

Oracle White Paper—Title of White Paper Here

40

Indexing Unstructured (CLOB) and Binary XML

As mentioned above, the indexing solutions in the relational world are not suitable for
indexing XML, hence we have a different set of indexes for XML usecases. The different
indexes supported in 11gR2 are given below:

• XMLIndex structured component, or Table-based index. This is called the “Structured
XMLIndex” for short.

• XMLIndex unstructured component, or Path-based index. . This is called the “Unstructured
XMLIndex” for short.

• CONTEXT Index

If you are dealing with large volumes of XML data, you may want to consider taking advantage
of the parallelism and partitioning features offered by Oracle. When the base XML is partitioned
by range or list partitioning methods, then a corresponding XMLIndex can be created on the
XML using the keyword LOCAL. When this is done, the XMLIndex is equi-partitioned with the
base table – each partition of the XMLIndex has a 1-1 correspondence with a partition of the
base XML. Note that XMLIndex partitioning is only supported on tables that are range or list
partitioned.

You can use a PARALLEL clause (with optional degree) when creating or altering an XMLIndex
index to ensure that index creation and maintenance are carried out in parallel. If the base table is
partitioned or enabled for parallelism, then this can improve the performance for both DML
operations (INSERT, UPDATE, DELETE) and index DDL operations (CREATE, ALTER,
REBUILD). The degree-of-parallelism (DOP) value specified at the XMLIndex level is also set
on each internal table of the XMLIndex – for both structured and unstructured components.

The predicates of path expression, WHERE clause of FLWOR expression, WHERE clause of
SQL/XML statement having XMLExists() or XMLTable construct are subject shown in
examples below. Such predicate evaluation can be greatly speeded up by using the right
XMLIndex. XMLIndex can be used to do both inter-document search (filtering XML document
rows stored in the table) and intra-document search (filtering XML document fragment for XML
document stored in each row of the table).

Example 38: Examples of where XMLIndex could be used

/* XMLExists() with predicate in path expression in SQL WHERE clause:
 * Index can be used to filter rows from table purchaseorder */
SELECT XMLQuery(‘$po/PurchaseOrder/Requestor’

PASSING OBJECT_VALUE AS “po” RETURNING CONTENT)
FROM purchaseorder
WHERE
XMLExists('$poPurchaseOrder/LineItems/LineItem/Part[@Quantity = 1]'
 PASSING OBJECT_VALUE AS “po”);

/* WHERE clause of XQuery expression.

Oracle White Paper—Title of White Paper Here

41

 * Index can be used to filter rows from table purchaseorder */
SELECT *
FROM XMLTABLE(
 'for $po in ora:view("purchaseorder")/PurchaseOrder
 where $po/LineItems/LineItem/@ItemNumber="1"
 return $po/Requestor);

/* XMLTable column in SQL WHERE clause. */
SELECT li.description, li.lineitem
FROM purchaseorder,
 XMLTable('/PurchaseOrder/LineItems/LineItem'
 PASSING OBJECT_VALUE
 COLUMNS lineitem NUMBER PATH '@ItemNumber',
 description VARCHAR2(30) PATH 'Description',
 partid NUMBER PATH 'Part/@Id',
 unitprice NUMBER PATH 'Part/@UnitPrice',
 quantity NUMBER PATH 'Part/@Quantity') li
WHERE Lineitem = 4567;

/* Predicate in path expression.
 * Index can be used to identify document fragment.
 * Although index cannot be used to identify rows from the purchaseorder
 * because all rows are returned due to no SQL WHERE clause,
 * index can be used to identify Description fragment
 * that satisfies the path predicate from each row of purchasorder.
 * This query is analogous to scalar subquery usage in a select list
 * of a SQL statement where the scalar subquery has its own
 * where clause that can leverage index */

SELECT XMLCAST(XMLQUERY(
 '/PurchaseOrder/LineItems/LineItem[@ItemNumber=1]/Description'
 PASSING object_value RETURNING CONTENT) AS VARCHAR2(4000))
FROM purchaseorder p;

Here are some guidelines on which indexes to choose for your usecase.

Index choosing Guideline 1:

If you know your XPaths in advance, the Structured Component of XMLIndex is ideal for
your usecase. This will help you get relational performance on your Xqueries for XPaths that
have the Structured XMLIndex on them.

 Use the Structured XMLIndex when XPaths are static, and to
answer predicates

You can get optimal performance by using the structured XMLIndex to index the XPaths
that appear in the predicates. These predicates can be in the SQL statement, or the predicate
of the where clause, or in the Xquery itself, as shown in “Example 38: Examples of where
XMLIndex could be used”.

Creating the structured index as depicted in “Example 41: Creating the XMLIndex with
Structured Component” can optimize all the queries above.

Oracle White Paper—Title of White Paper Here

42

Index choosing Guideline 2:

Unstructured XMLIndex is useful to index popular subtrees of documents or whole
documents, if needed. When a table or column stores a mixed bag of semi-structured
documents, or users are allowed to search under whole documents or whole subtrees,
unstructured XMLIndex should be used. Note that even when using unstructured
XMLIndex, one should try to limit the paths for which the index can be picked using path-
subsetting. A smaller index indexing only popular paths will require less storage space and
improve query performance as the index will have less disk blocks to scan. XPaths that are
not indexed can still be used in queries and will be processed using Binary XML Streaming
Evaluation.

 Use Unstructured XMLIndex when XPaths are not known in
advance

Example 39: Using Unstructured XMLIndex when XPaths are not known in advance

CREATE INDEX po_xmlindex_ix ON purchaseorder (OBJECT_VALUE) INDEXTYPE IS
XDB.XMLINDEX

PARAMETERS ('PATHS (INCLUDE
(/PurchaseOrder/LineItems/ /PurchaseOrder/Reference))');

CREATE INDEX msoffice_xix ON MSOfficeDocuments (OBJECT_VALUE) INDEXTYPE
IS XDB.XMLINDEX

PARAMETERS ('PATHS (INCLUDE (//w:sdt) NAMESPACE MAPPING

(xmlns:w="http://schemas.openxmlformats.org/wordprocessingml/2006/

main"))');

Index choosing Guideline 3:
If your application has requirements for full text searching, consider using the SQL contains()
operator and create a text index on the base XMLType column.

 Use text index for full text search requirements

Example 40: Using SQL contains() to perform full-text search
create table po of xmltype;
create index po_otext_ix on po (object_value) indextype is

ctxsys.context;

call dbms_stats.gather_table_stats(USER, 'PO');

select distinct

XMLCast(XMLQuery('$p/PurchaseOrder/ShippingInstructions/address'

 passing po.object_value as "p" returning content)

 as varchar2(256)) "Address"

from po po

where contains(po.object_value, '$(Fortieth) INPATH

 (PurchaseOrder/ShippingInstructions/address)') > 0;

Index choosing Guideline 4: Fragment extraction

http://schemas.openxmlformats.org/wordprocessingml/2006/main�
http://schemas.openxmlformats.org/wordprocessingml/2006/main�

Oracle White Paper—Title of White Paper Here

43

In the presence of queries that project out XML fragments, the indexing approach depends on
the average size of documents:

• If the dataset consists of small to medium size documents, you should use one of the
following:

o Either, use the XQuery extension expression (#ora:xq_proc #) to indicate
XQuery shall be functionally evaluated. Note:

o Or, use Binary XML streaming evaluation – you would need to exclude the
path of the fragment to be extracted from your path subsetted Unstructured
XMLIndex, if present, to ensure this.

 ora:xq_proc gives you fine-grained
control -- you can make fragment extraction use xq_proc and predicates use XMLIndex, as
long as the predicate XPaths are not excluded from the XMLIndex.

Note:

• If the dataset contains mostly large documents, use Unstructured XMLIndex to perform
fragment extraction by ensuring that the path of the fragment to be extracted is included
in the list of paths that are indexed.

 XMLIndex, if present, can still be used to
evaluate the predicates, as long as the predicate XPaths are not excluded from the
XMLIndex.

Index choosing Guideline 5:

You can use a combination of the different indexes. For example, if you have a table of
technical documents, you can create an XMLIndex with structured component for the title,
author and date fields, and with unstructured component for the variable part of the
document, and create an Oracle Text index to answer text-search queries.

 Combine different indexes as needed

Once you have chosen the right indexes for your usecase, please refer to the coresponding
section for guidelines on how to get the best performance out of these indexes.

Oracle White Paper—Title of White Paper Here

44

XMLIndex Structured Component

Even though the data in the Binary XML or unstructured XMLType columns may be
unstructured, it sometimes contains islands of predictable, structured data. An example is a
technical document, with the title, author and date fields. You create and use the structured
component of an XMLIndex index for queries that project fixed, structured islands of XML
content, even if the surrounding data is relatively unstructured. A structured XMLIndex
component organizes such islands in a relational format. It is similar to SQL/XML function
XMLTable, and the syntax you use to define the structured component reflects this
similarity. The relational tables used to store the indexing data are data-type aware, and each
column can be of a different scalar data type. You can thus think of the act of creating the
structured component of an XMLIndex index as decomposing a structured portion of your
XML data into relational format.

The structured component is a targeted index, and therefore requires careful specification of the
XPaths that are to be indexed, along with their data types. But, the benefits of using such an
index are significant for queries with statically known XPaths.

Some of the advantages of using the structured component are listed below:

1. Type-Aware, Relational-Style Searches - The path table of the unstructured XMLIndex
component stores values of all indexed nodes in the same column, irrespective of the
actual schema-type of that value. Number values, date values, and string values are
stored in the same column. Therefore, secondary indexes on this single value column do
not provide proper statistics information, and therefore are not easily picked up by the
relational Cost Based Optimizer (CBO) within Oracle. The structured component of an
XMLIndex has the ability to separate values by type and by path into different columns,
and therefore can provide very specific relational-style statistics to the relational Cost
Based Optimizer, on which the XMLIndex is built.

2. Support for Composite B-Tree and Bitmap Indexes – Since values from various XPaths are
stored in the same column of the path table of the unstructured component, it is not
possible to create bitmap indexes or composite indexes, even though the query or the
data suggest that such indexes are appropriate. On the other hand, an internal table of a
structured XMLIndex can store values from different XPaths in separate columns,
thereby making it possible to create composite B-Tree and bitmap indexes.

3. No Sub-Query in SQL Predicate - When the value-search criterion appears in the WHERE
clause of a SQL statement, then rewrite using the unstructured XMLIndex component
results in a sub-query in the WHERE clause. Such a sub-query cannot be folded into the
top-level query, leading to poor execution plans. This problem is particularly an issue
when the XML does not come with an XML schema. On the other hand, when

Oracle White Paper—Title of White Paper Here

45

structured XMLIndex is used, a predicate in the WHERE clause becomes column-level
checks on the structured XMLIndex tables.

4. Indexing for BI-Style Queries – SQL constructs such as order-by, group-by, window, etc.,
enable powerful business intelligence queries over relational data. Applications using
order-by, group-by, window, etc., on values within XML data can get relational
performance by using structured XMLIndex, since the queries can be rewritten to order-
by, group-by, window, etc., over relational table columns. This is accomplished as
follows: XMLTable allows values in XML to be projected out as a virtual table. A query
that uses the XMLTable function can be rewritten to simple access of the relational
tables of a structured XMLIndex. This means that order-by, group-by, window, etc.,
operating on columns of the virtual table are translated to order-by, group-by, window,
etc., operating on the corresponding physical columns of the structured XMLIndex
tables. When unstructured XMLIndex is used, the order-by, group-by, window, etc.,
functions are evaluated as sub-queries over the path table, and therefore performs
orders of magnitude slower than when structured XMLIndex is used.

The example below shows how to create structured XMLIndex. It uses the Purchase Order
schema, which has a collection called “LineItem”. For each XML node matching the row
pattern /PurchaseOrder/LineItems/LineItem, this XMLIndex projects out in its relational index
table 5 columns – the values of these nodes are the values of nodes matching relative XPaths
@ItemNumber, Description, Part/@Id, Part/@UnitPrice, and Part/@Quantity. The internal
index table will have as many rows for each XML document as the number of LineItem nodes
within the document. The index DDL specifies the name of the table (lineitem_tab in this case),
the names of the 5 columns, and the SQL data types of these 5 columns.

Example 41: Creating the XMLIndex with Structured Component
CREATE INDEX po_struct ON purchaseorder (OBJECT_VALUE)
INDEXTYPE IS XDB.XMLIndex
PARAMETERS (
'XMLTable lineitem_tab ''/PurchaseOrder/LineItems/LineItem''
 COLUMNS lineitem NUMBER PATH ''@ItemNumber'',
 description VARCHAR2(30) PATH ''Description'',
 partid NUMBER PATH ''Part/@Id'',
 unitprice NUMBER PATH ''Part/@UnitPrice'',
 quantity NUMBER PATH ''Part/@Quantity''');

Below are the guidelines on how to get the best performance out of your structured XMLIndex.

Structured Index Guideline 1:

In XML usecases where user wants to project out several relational key columns of XML so that
they can build B-tree indexes over these columns for quick search, structured XMLIndex is ideal.

 Use Structured Index instead of multiple functional indexes
and/or virtual columns

Oracle White Paper—Title of White Paper Here

46

Structured XMLIndex projects out one relational table capturing all the key relational columns
for efficient search, instead of relying on multiple virtual columns (VC) that are inefficient. These
structured XMLIndex columns are efficiently populated in a single scan of the input base
document - something that cannot be done with virtual columns. Also, the structured XMLIndex
based approach works in cases where the XML has collections, whereas the VC based approach
cannot be used when the projected value is within an XML collection.

Structured Index Guideline 2:

The relational tables that are used for an XMLIndex structured component use SQL data types.
XQuery expressions that are used in queries use XML data types (XML Schema data types and
XQuery data types). XQuery typing rules can automatically change the data type of a
subexpression, to ensure coherence and type-checking. For example, if a document that is
queried using XPath expression /PurchaseOrder/LineItem[@ItemNumber = 25] is not XML
schema-based, then the subexpression @ItemNumber is xs:untypedAtomic, and it is then
automatically cast to xs:double by the XQuery = comparison operator. To index this data using
an XMLIndex structured component you must use BINARY_DOUBLE as the SQL data type.

 Make Index and Query datatypes correspond

This is a general rule. For an XMLIndex index with structured component to apply to a query,
the data types must correspond. Table 2 in Guideline 7: “Using proper XQuery and SQL
Typing”

If the XML and SQL data types involved do not have a built-in one-to-one correspondence, then
you must make them correspond (according to Table 2), in order for the index to be picked up
for your query. There are two ways you can do this:

• Make the index correspond to the query – Define (or redefine) the column in the
structured index component, so that it corresponds to the XML data type. For example,
if a query that you want to index uses the XML data type xs:double, then define the
index to use the corresponding SQL data type, BINARY_DOUBLE.

• Make the query correspond to the index – In your query, explicitly cast the relevant
parts of an XQuery expression to data types that correspond to the SQL data types used
in the index content table.

Structured Index Guideline 3:

Since the structured component of XMLIndex is built on the idea of an XMLTable, such an
index fits nicely for usecases where this relational paradigm is applicable. For application
developers who want a relational access paradigm, one or more relational views built on
XMLTable should be created. The XMLTable function provides a way to expose key values
from within XML as relational columns. Querying of XML in many usecases can be hidden
within the definitions of relational views that use the XMLTable function, making it easier for

 Use XMLTable views with corresponding index, e.g BI style
queries

Oracle White Paper—Title of White Paper Here

47

XML to penetrate into the world of application developers who are familiar with SQL and want
to be spared the complexity of XPath/XQuery. In such cases, the structured XMLIndex
definition will match the definitions of the relational views.

The example below shows how XMLTable() provides a relational table abstraction over XML,
and the next example shows how to create a corresponding view, and example 50 shows the
corresponding index for it.

Example 42: XMLTable Provides a Virtual Table Abstraction over XML
SELECT lines.lineitem ,
 lines.description,
 lines.partid ,
 lines.unitprice ,
 lines.quantity
FROM purchaseorder,
 XMLTable('/PurchaseOrder/LineItems/LineItem’
PASSING OBJECT_VALUE
COLUMNS lineitem NUMBER PATH '@ItemNumber',
description VARCHAR2(30) PATH 'Description',
partid NUMBER PATH 'Part/@Id',
unitprice NUMBER PATH 'Part/@UnitPrice',
quantity NUMBER PATH 'Part/@Quantity') lines;

LINEITEM DESCRIPTION PARTID UNITPRICE QUANTITY
-------- ----------- ------ --------- --------
11 Orphic Trilogy 37429148327 80 3
22 Dreyer Box Set 37429158425 80 4
11 Dreyer Box Set 37429158425 80 3

Example 43: Relational View Using XMLTable, and corresponding structured XMLIndex
CREATE VIEW lineitems_v
(lineitem, description, partid, unitprice, quantity)
AS SELECT

lines.lineitem, lines.description, lines.partid,
lines.unitprice, lines.quantity

FROM purchaseorder,
XMLTable('/PurchaseOrder/LineItems/LineItem’
PASSING OBJECT_VALUE
COLUMNS lineitem NUMBER PATH '@ItemNumber',

description VARCHAR2(30) PATH 'Description',
partid NUMBER PATH 'Part/@Id',
unitprice NUMBER PATH 'Part/@UnitPrice',
quantity NUMBER PATH 'Part/@Quantity'

) lines;

One common usecase for this is that of BI-style queries. SQL constructs such as order-by,
group-by, window, etc., enable powerful business intelligence queries over relational data.
XMLTable allows values in XML to be projected out as a virtual table. Order-by, group-by,
window, etc., can operate on columns of the virtual table. Structured XMLIndex internally
organizes its storage tables in a manner that reflects the virtual table(s) exposed by XMLTable.
Therefore, structured XMLIndex is well suited for indexing XML data in a way that makes such

Oracle White Paper—Title of White Paper Here

48

XMLTable based queries very efficient. A query that uses the XMLTable function can be
rewritten to simple access of the relational tables of a structured XMLIndex. This means that
order-by, group-by, window, etc., operating on columns of the virtual table are translated to
order-by, group-by, window, etc., operating on the corresponding physical columns of the
structured XMLIndex tables.
We recommend that the user create relational views over XML using XMLTable, where the
views project all columns of interest to the BI application. Application queries should be written
against these relational views. If structured XMLIndex is created in 1-1 correspondence to these
views, Oracle RDBMS will make sure that queries over the views are seamlessly translated into
queries over the relational tables of the structured XMLIndex, thereby giving relational
performance.

Structured Index Guideline 4:

“

 Create Secondary Indexes, especially for predicates

Example 41: Creating the XMLIndex with Structured Component” creates relational table
lineitem_tab under the covers. To get good performance for value-based searches, it is important
that the user create secondary indexes on the index table. This is illustrated in the example below.

Example 44: Creating Secondary Indexes on Structured XMLIndex Tables
CREATE INDEX li_itemnum_idx ON lineitem_tab(lineitem);
CREATE INDEX li_desc_idx ON lineitem_tab(description);
CREATE INDEX li_partid_idx ON lineitem_tab(partid);
CREATE INDEX li_uprice_idx ON lineitem_tab(unitprice);
CREATE INDEX li_quantity_idx ON lineitem_tab(quantity);

Composite B-Tree indexes, bitmap indexes and domain indexes (e.g., Oracle Text) can also be
created on the index table.

Example 45: Creating Oracle Text Index on Structured XMLIndex Table
CREATE INDEX li_desc_ctx_idx ON lineitem_tab(description)

indextype is ctxsys.context;

It is the responsibility of the user to create these secondary indexes. No secondary index is
created automatically by the system for the structured XMLIndex component, as the user is the
best judge of what secondary index best suites his needs. Once the secondary indexes are created,
the user should gather statistics on the base table so that the optimizer can pick up the indexes.

If a query uses a particular XPath in a predicate, including the SQL WHERE clause, then
creating a secondary index on the corresponding column of the structured XMLIndex table is
highly recommended.

Structured Index Guideline 5: Check the execution plan to see if structured index is used

Oracle White Paper—Title of White Paper Here

49

After creating the necessary indexes to speed up your queries, you need to verify that the
execution plan is indeed picking up the index. For example, let’s say you have created the
structured XMLIndex as depicted in “Example 41: Creating the XMLIndex with Structured
Component”, and secondary indexes as depicted in Example 102. Then you should run an
explain plan on your query, as illustrated in the example below:

Example 46: Using Explain Plan to determine that the index is picked up

EXPLAIN PLAN FOR
SELECT XMLCAST(XMLQUERY('/PurchaseOrder/Requestor' PASSING object_value
RETURNING CONTENT) AS VARCHAR2(4000))
FROM purchaseorder p
WHERE
XMLExists('/PurchaseOrder/LineItems/LineItem[xs:decimal(@ItemNumber)=1]'
PASSING object_value);

Explained.

SQL> select Id, Operation, Name from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2801523227

| Id | Operation | Name |

0	SELECT STATEMENT	
1	NESTED LOOPS SEMI	
2	TABLE ACCESS FULL	PURCHASEORDER
* 3	TABLE ACCESS BY INDEX ROWID	LINEITEM_TAB
* 4	INDEX RANGE SCAN	LI_ITEMNUM_IDX

The execution plan shows that the query gets rewritten to use the structured index storage table
LINEITEM_TAB and the secondary index LI_ITEMNUM_IDX.

Structured Index Guideline 6:

In cases where the structured islands have a master-detail kind of relationship, structured
XMLIndex provides a way to capture each structured island as a relational table, with a primary-
foreign key relationship between the tables. Here are definitions of such a master-detail view, and
its corresponding structured XMLIndex:

 Indexing Master-Detail relationships

Example 47: Relational View with Master-Detail Relationship
CREATE OR REPLACE VIEW purchaseorder_detail_view AS

SELECT po.reference, li.*
FROM purchaseorder p,
XMLTable('/PurchaseOrder' PASSING p.OBJECT_VALUE

COLUMNS
reference VARCHAR2(30) PATH 'Reference',
lineitem XMLType PATH 'LineItems/LineItem') po,
XMLTable('/LineItem' PASSING po.lineitem

Oracle White Paper—Title of White Paper Here

50

COLUMNS
itemno NUMBER(38) PATH '@ItemNumber',
description VARCHAR2(256) PATH 'Description',
partno VARCHAR2(14) PATH 'Part/@Id',
quantity NUMBER(12, 2) PATH 'Part/@Quantity',

unitprice NUMBER(8, 4) PATH 'Part/@UnitPrice') li;

Example 48: Structured XMLIndex to Index Master-Detail Relationship
CREATE INDEX po_struct ON po_tab (OBJECT_VALUE)
INDEXTYPE IS XDB.XMLIndex
PARAMETERS ('XMLTable po_ptab

 XMLNAMESPACES(DEFAULT ''http://www.example.com/po''),
 ''/purchaseOrder''
 COLUMNS orderdate DATE PATH ''@orderDate'',
 Id BINARY_DOUBLE PATH ''@id'',
 items XMLType PATH ''items/item''
VIRTUAL
 XMLTable li_tab
 XMLNAMESPACES(DEFAULT ''http://www.example.com/po''),
 ''/item'' PASSING items
 COLUMNS partnum VARCHAR2(15) PATH ''@partNum'',
 description CLOB PATH ''productName'',
 usprice BINARY_DOUBLE PATH ''USPrice'',
 shipdat DATE PATH ''shipDate''');

Structured Index Guideline 7:

Instead of using a single XQuery for fragment extraction as well as for value search, use
XMLQuery() in the SELECT clause for fragment extraction and use XMLExists() in the
WHERE clause for value search. By doing this separation, we are able to make structured
xmlindex be picked up for value search, while binary XML streaming is used for fragment
extraction.

 Split fragement extraction and value search between
SELECT and WHERE clause

Example 49: Splitting fragment extraction and value search
In this example, Query 1 is a better formulation than Query 2 when following XMLIndex is
present:
Index definition:
CREATE TABLE XML_TEST (XML_DOC XMLType)
 XMLType XML_DOC STORE AS BINARY XML;

CREATE INDEX XML_TEST_IX ON XML_TEST (XML_DOC)
 INDEXTYPE IS XDB.XMLIndex
PARAMETERS ('GROUP XML_TEST_G XMLTable XML_TEST_X
 XMLNAMESPACES(''http://example.com/metadata'' as "m"),
 ''/m:object'' COLUMNS
 TENANT VARCHAR(100) PATH ''m:meta/m:tenant'',
 ID VARCHAR(250) PATH ''m:meta/m:id''');

CREATE INDEX XML_TEST_IX_1 ON XML_TEST_X(TENANT, ID);

http://c3welcome.com/c3/metadata�

Oracle White Paper—Title of White Paper Here

51

Query 1: Better
SELECT
XMLQUERY('declare namespace m="http://example.com/metadata";
 for $obj in $doc/m:object
 return <m:object>
 {$obj/m:meta/m:id}{$obj/m:meta/m:tenant}
 </m:object>'
 passing T.XML_DOC as "doc" returning content)
FROM XML_TEST T
WHERE
XMLEXISTS('declare namespace m="http://example.com/metadata";
 $doc/m:object[m:meta/m:tenant=$tenant

and m:meta/m:id=$id]'
 passing T.XML_DOC as "doc",

 'tenant5' as "tenant",
 'id_555' as "id");

Query 2: Avoid

SELECT X.XML_DOC
FROM XML_TEST T,
 XMLTABLE(
 XMLNAMESPACES('http://example.com/metadata' as "m"),
 'for $obj in /m:object
 where $obj/m:meta/m:tenant="tenant5" and
 $obj/m:meta/m:id="id_5555"
 return <m:object>
 {$obj/m:meta/m:id}{$obj/m:meta/m:tenant}
 </m:object>'
 PASSING T.XML_DOC COLUMNS XML_DOC XMLTYPE PATH '.') X;

Structured Index Guideline 8:

Instead of using XQuery ORDER BY clause, use XMLTable to project out the key by which
to order and then use SQL ORDER BY. In the example below, the query shows fragment
extraction together with value search. Fragments are ordered by tenant, id which are
projected out in the XMLTABLE() clause:

 For ordering query results, use SQL ORDER BY along
with XMLTable

Example 50: Using SQL order by

SELECT XMLQUERY('declare namespace

m="http://example.com/metadata";
 for $obj in $doc/m:object
 return <m:object>
 {$obj/m:meta/m:id} {$obj/m:meta/m:tenant}
 </m:object>'
 passing T.XML_DOC as "doc" returning content)
FROM XML_TEST T,
 XMLTABLE(XMLNAMESPACES('http://example.com/metadata'

 as "m"),

http://example.com/metadata�
http://example.com/metadata�

Oracle White Paper—Title of White Paper Here

52

 '$doc/m:object' PASSING T.XML_DOC as "doc"
 COLUMNS
 tenant VARCHAR(100) PATH 'm:meta/m:tenant',
 id VARCHAR(250) PATH 'm:meta/m:id'
) tt
WHERE

XMLEXISTS('declare namespace
m="http://example.com/metadata";

 $doc/m:object[m:meta/m:tenant=$tenant]'
 passing T.XML_DOC as "doc", 'tenant5' as "tenant")
ORDER BY tt.tenant, tt.id;

http://tt.id/�

Oracle White Paper—Title of White Paper Here

53

XMLIndex Unstructured Component

The XMLIndex Structured component is not suited for documents that involve little structure or
queries that extract XML fragments. The XMLIndex unstructured component is general and
relatively untargeted.

Unlike a B-tree index, which you define for a specific database column that represents an
individual XML element or attribute, or the XMLIndex structured component, which applies to
specific, structured document parts, the unstructured component of an XMLIndex index is, by
default, very general. Unless you specify a more narrow focus by detailing specific XPath
expressions to use or not to use in indexing, the XMLIndex unstructured component applies to
all possible XPath expressions for your XML data.

The XMLIndex unstructured component uses a path table and a set of (local) secondary indexes
on the path table, which implement the logical parts described above. Two secondary indexes are
created automatically:

• A pikey index, which implements the logical indexes for both path and order.

• A real value index, which implements the logical value index.

You can modify these two indexes or create additional secondary indexes. The path table and its
secondary indexes are all owned by the owner of the base table upon which the XMLIndex index
is created. Though you can restrict an unstructured component to apply only to certain XPath
subsets, its path table indexes node content can be of different scalar types. This can require you
to create multiple secondary indexes on the VALUE column to deal with the different data types.

The PIKEY index handles paths and order relationships together, which gives the best
performance in most cases. If you find in some particular case that the value index is not picked
up when think it should be, you can replace the pikey index with separate indexes for the paths
and order relationships. Such (optional) indexes are called path id and order key indexes,
respectively.

The path table contains one row for each indexed node in the XML document. For each indexed
node, the path table stores:

• The corresponding rowid of the table that stores the document.

• A locator, which provides fast access to the corresponding document fragment. For
binary XML storage of XML schema-based data, it also stores data-type information.

• An order key, to record the hierarchical position of the node in the document. You can
think of this as a Dewey decimal key like that used in library cataloging and Internet
protocol SNMP. In such a system, the key 3.21.5 represents the node position of the
fifth child of the twenty-first child of the third child of the document root node.

Oracle White Paper—Title of White Paper Here

54

• An identifier that represents an XPath path to the node.

• The effective text value of the node.

Below are some guidelines on how to get the best performance out of the XMLIndex
Unstructured component.

Unstructured XMLIndex Guideline 1:

At the time of creating an XMLIndex, one can specify the name of the Path Table to be used in
the PARAMETERS clause. If the name of the Path Table is not specified, a system generated
name will be given to the path table. Users can figure out the name of the path table by querying
on view user_xml_indexes.

 Check the Execution Plan to see if the XMLIndex
Unstructured Component is used

A plan that picks up unstructured index should use a scan on the Path Table for the index. It
should be an INDEX RANGE SCAN with one of the secondary indexes. Names of the
secondary indexes are also visible in view user_xml_indexes. The part of the plan in the example
below shows the use of path table and its secondary index:

Example 51: Plan showing the use of path table and secondary index
|*2| TABLE ACCESS BY INDEX ROWID| MY_PATH_TABLE|
|*3| INDEX RANGE SCAN | SYS67616_PO_XMLINDE_PIKEY_IX |
 2 - filter(SYS_XMLI_LOC_ISNODE("SYS_P0"."LOCATOR")=1)

 3 - access("SYS_P0"."RID"=:B1 AND "SYS_P0"."PATHID"=HEXTORAW('6F7F'))

Unstructured XMLIndex Guideline 2:

PIKEY index is the most useful for complex XQueries and least useful for very simple
SQL/XML based formulations.

 When to drop PIKEY index in favor of ORDERKEY &
PATHID index

If you find in some particular case that the value index is not picked up when think it should be,
you can replace the PIKEY index with separate indexes for the paths and order relationships.
Such (optional) indexes are called PATH ID and ORDER KEY indexes, respectively. They can
be specified in the parameter clauses “PATH ID INDEX” and “ORDER KEY INDEX”
respectively in DDLs.

The example below illustrates that if an application uses most queries of the following form, it
should consider switching to PATH ID and ORDER KEY indexes:

Example 52: When to use which secondary index
xmlexists(/a/b[c=5]) => only VALUE index is needed
xmlexists(/a/b/c) => simple PATH ID index would offer better performance.

select v.c1, v.c2,... from t,

Oracle White Paper—Title of White Paper Here

55

xmltable(/a/b columns c1 path 'c', c2, ...) v => PATH ID, ORDER
KEY will probably offer better performance than PIKEY since each of the select list items will
benefit from an ORDER KEY based join rather than a PATH ID based one.

Unstructured XMLIndex Guideline 3:

If the queries access only parts of the document, these parts can be specified using the PATHS
parameter in the PARAMETER clause. This will ensure that the Path Table and the secondary
indexes are smaller, and will lead to faster Query and DML performance. To ensure that
XMLIndex is indeed picked up for the queries, check the execution plan for the parts specified in
Guideline 1.

 How to use path-subsetting -- smaller index means
faster queries

Unstructured XMLIndex Guildeline 4:

For Binary XML storage, streaming evaluation is very well optimized for fragment extraction.
Path Subsetting can be used to take advantage of the best of XMLIndex and Streaming
Evaluation. Users may use Path Subsetting to INCLUDE only the XPaths that are in the
predicates or EXCLUDE any XPaths that are in the results. For example, queries on
Purchaseorder table have predicates on various children of LineItem elements and return the
BillTo and ShipTo Address elements. In such scenarios, we can define an XMLIndex that
includes LineItem elements.

 Using path-subsetting to choose streaming vs index
execution

Unstructured XMLIndex Guildeline 5:

In 11.2.0.3, for a large collection of small documents, users can use the hint
NO_XMLINDEX_REWRITE_IN_SELECT for selective queries to let the index be used for
filtering in the where clause while letting the select list be evaluated via streaming. For example,
the following query from the Maturity benchmark will use UXI, if present, for the XMLEXISTS
clause but will not use UXI to extract the fragment $cust/Accounts in the XMLQuery return
clause:

 Using NO_XMLINDEX_REWRITE_IN_SELECT hint

select /*+ NO_XMLINDEX_REWRITE_IN_SELECT*/ XMLQUERY('declare default

element namespace "http://tpox-benchmark.com/custacc"; for $cust in

$cadoc/Customer

 return $cust/Accounts'

 PASSING v.object_value AS "cadoc" returning content)

 FROM CUSTACC v

 WHERE XMLEXISTS

Oracle White Paper—Title of White Paper Here

56

 ('declare default element namespace "http://tpox-

benchmark.com/custacc"; $cadoc/Customer[@id < 1060]' PASSING

v.object_value AS "cadoc")

Unstructured XMLIndex Guideline 6

The DBMS_XMLINDEX package provides functions to create typed indexes on the value
column of the path table:

: Creating datatype aware VALUE indexes by making
index and query datatypes correspond

1. CreateNumberIndex

2. CreateDateIndex

Based on the query requirements, if the predicates are on number or date values, the respective
secondary index should be created. Please refer to XQuery Guideline 7.

For typical non-schema based XML document search using numeric value comparison, such as
‘/company[id = 3456]’, XQuery semantics entails this as xs:double() type comparison. Therefore,
createNumberIndex() is invoked passing ‘double’ as xmltypename parameter as follows:

DBMS_XMLINDEX.CREATENUMBERINDEX('SCOTT', 'PO_XMLINDEX_IX',

 'PO_DOUBLE_NUM_IX', '', 'double');

The following table shows the value of xmltypename parameter to be used during secondary index
creation.

TABLE 4. XML AND SQL DATA TYPE CORRESPONDENCE FOR XMLINDEX

XML DATA TYPE SQL DATA TYPE XMLTYPENAME FOR

CREATENUMBERINDEX

XMLTYPENAME FOR

CREATEDATEINDEX

xs:integer, xs:decimal

xs:double

xs:float

xs:date

xs:time, xs:dateTime

xs:dayTimeDuration

INTEGER or NUMBER

BINARY_DOUBLE

BINARY_FLOAT

DATE, TIMESTAMP
WITH TIMEZONE

TIMESTAMP,
TIMESTAMP WITH
TIMEZONE

INTERVAL DAY TO

integer, decimal

double

float

date

time, datetime

Not available

Oracle White Paper—Title of White Paper Here

57

xs:yearMonthDuration

SECOND

INTERVAL YEAR TO
MONTH

Not available

Unstructured XMLIndex Guideline 7

Unstructured XMLIndex indexes everything in the XML document but a Path Subsetted index
indexes only specific subtrees of a document. Thus, a Path Subsetted index cannot be used for
queries with parent axis,

: XPath Expressions not indexed by Path Subsetted
XMLIndex

Unstructured XMLIndex Guideline 8:

Even though Unstructured XMLIndex indexes all nodes and hence can be used to query all
possible XPaths, query plans with XPaths that have // and /* in the middle need a join of the
Path Table with itself or with the Binary XML token tables causing sub-optimal plans. If the
structure of the document is known, XPaths should be more specific and if the structure of the
documents is not known, avoid prefixing // with ancestor elements. E.g. use //c and not
/a/b//c, provided these return the same result set.

 Be specific in the XPath (avoid //, /*)

Note that each descendant axis access involves a lookup of the suffix path in the token table.
This involves the use of SYS_PATH_REVERSE operator on the PATH column in the token
table. A typical plan will have the following constructs:
4	TABLE ACCESS BY INDEX ROWID	X$PT48E463W8DU8V6E0G741BMDT9
5	INDEX RANGE SCAN	X$PR48E463W8DU8V6E0G741BMDT9
6	INDEX RANGE SCAN	SYS67616_POIX_PIKEY_IX
7	TABLE ACCESS BY INDEX ROWID	SYS67616_POIX_PATH_TABLE
8	TABLE ACCESS FULL	PO

Predicate Information (identified by operation id):

 5 - access(SYS_PATH_REVERSE("PATH")>=HEXTORAW('021D34') AND
 SYS_PATH_REVERSE("PATH")<HEXTORAW('021D34FF'))
 6 - access("SYS_P0"."RID"=:B1 AND "SYS_P0"."PATHID"="ID")
 7 - filter(SYS_XMLI_LOC_ISNODE("SYS_P0"."LOCATOR")=1)

Unstructured XMLIndex Guideline 9

The virtual tables created using the XMLTable clause in the FROM list should be reduced in
number, if possible. Each such XMLTable leads to a Path Table in the XMLIndex rewritten
query. The example below shows which kinds of queries perform better:

: Reduce the number of expressions in the from clause
(avoid Path Table join with itself)

Example 53: Queries to use and avoid

Use this form of query:

Oracle White Paper—Title of White Paper Here

58

SELECT li.description
FROM po_clob p,
 XMLTable('PurchaseOrder/LineItems/LineItem' PASSING p.OBJECT_VALUE
 COLUMNS description VARCHAR2(256) PATH 'Description') li;

Avoid this form of query, if possible:
SELECT li.description
FROM po_clob p,
 XMLTable('PurchaseOrder/LineItems' PASSING p.OBJECT_VALUE) ls,
 XMLTable('LineItems/LineItem' PASSING ls.OBJECT_VALUE
 COLUMNS description VARCHAR2(256) PATH 'Description') li;

Unstructured XMLIndex Guideline 10

If you use an XPath expression in a query to drill down inside a virtual table (created, for
example, using SQL/XML function XMLTable), then create a secondary index on the order key
of the path table using Oracle SQL function sys_orderkey_depth. The example below shows such a
query; the selection navigates to element Description inside virtual line-item table li.

: Use of an index on sys_orderkey_depth

Such queries are evaluated using function sys_orderkey_depth, which returns the depth of the order-
key value. Because the order index uses two columns, the index needed is a composite index over
columns ORDER_KEY and RID, as well as over function sys_orderkey_depth applied to the
ORDER_KEY value.

Example 54: Query drilling down inside virtual table, and index to create for it
SELECT li.description
FROM po_clob p,
 XMLTable('PurchaseOrder/LineItems/LineItem' PASSING p.OBJECT_VALUE
 COLUMNS description VARCHAR2(256) PATH 'Description') li;
CREATE INDEX depth_ix ON my_path_table
 (RID, sys_orderkey_depth(ORDER_KEY), ORDER_KEY);

Unstructured XMLIndex Guideline 11:

In case the XMLIndex is created with an ASYNC option with STALE=TRUE and the index has
not been synced for a long time, the query performance degrades as the query has to access the
data from the last-synced snapshot. If your system suddenly shows slow performance with the
same query plans, this might be the reason.

 Old snapshot queries might be slow

Unstructured XMLIndex Guideline 12:

Unstructured XMLIndex rewrite generates sub-optimal query plans for path expression
containing text(), especially inside a predicate. It is recommended to specify element name test or
context item expression instead. E.g. use /a/b[c="foo"] not /a/b[c/text()="foo"], use
/a/b[.="bar"] not /a/b[text()="bar"].

 Avoid the usage of text() in path expression

Oracle White Paper—Title of White Paper Here

59

Text Index

Besides accessing XML nodes such as elements and attributes, it is sometimes important to
provide fast access to particular passages of text within XML text nodes. This is the purpose of
Oracle Text indexes: they index full-text strings. Full-text indexing is particularly useful for
document-centric applications, which often contain a mix of XML elements and text-node
content. Full-text searching can often be made more powerful and more focused, by combining
it with structural XML searching, that is, by restricting it to certain parts of an XML document,
which are identified by using XPath expressions.

An Oracle Text CONTEXT index created on an XMLType column enables SQL function
contains() and facilitates the XQuery function ora:contains() for full-text search over XML. The
example below shows how to create an Oracle Text index on an XMLType column.

Example 55: Creating an Oracle Text Index
CREATE INDEX po_otext_ix ON po_clob (OBJECT_VALUE)

INDEXTYPE IS CTXSYS.CONTEXT;
Index created.

Oracle Text indexing is completely orthogonal to the other types of indexing. Whenever SQL
function contains() or XPath function ora:contains() is used, an Oracle Text index can be used
for full-text search. The example below demonstrates this in the case where both an XMLIndex
index and an Oracle Text index are defined on the same XML data. The Oracle Text index is
created on the VALUE column of the XMLIndex path table.

Example 56: Using an Oracle Text Index with other indexes
CREATE INDEX po_otext_ix ON my_path_table (VALUE)

INDEXTYPE IS CTXSYS.CONTEXT;

Index created.

EXPLAIN PLAN FOR

 SELECT DISTINCT XMLCAST(XMLQUERY(

 '/PurchaseOrder/ShippingInstructions/address' PASSING

object_value RETURNING CONTENT) AS VARCHAR2(4000)) "Address"

 FROM po_clob

 WHERE contains(OBJECT_VALUE, '$(Fortieth) INPATH

 (PurchaseOrder/ShippingInstructions/address)') > 0;

PLAN_TABLE_OUTPUT

| Id | Operation | Name |

Oracle White Paper—Title of White Paper Here

60

| 0 | SELECT STATEMENT | |

|* 1 | TABLE ACCESS BY INDEX ROWID| MY_PATH_TABLE |

|* 2 | INDEX RANGE SCAN | SYS78942_PO_XMLINDE_ORDKEY_IX |

| 3 | HASH UNIQUE | |

|* 4 | TABLE ACCESS FULL | PO_CLOB |

Predicate Information (identified by operation id):

 1 - filter("SYS_P0"."PATHID"=HEXTORAW('35EF580A') AND

SYS_XMLI_LOC_ISNODE("SYS_P0"."LOCATOR")=1)

 2 - access("SYS_P0"."RID"=:B1)

 filter("SYS_P0"."RID"=:B1)

 4 - filter("CTXSYS"."CONTAINS"(SYS_MAKEXML("SYS_ALIAS_1"."XMLDATA"),

 '$(Fortieth) INPATH (PurchaseOrder/ShippingInstructions/address)')>0)

The execution plan in the example above references both the XMLIndex index and the Oracle
Text index, indicating that both are used. The XMLIndex index is indicated by its path table,
MY_PATH_TABLE, and its order-key index, SYS78942_PO_XMLINDE_ORDKEY_IX.
The Oracle Text index is indicated by the reference to SQL function contains in the predicate
information.

Full text search on xmltype can be done using contains() function in SQL or by using
ora:contains() within XPath or xquery expressions. The details of each function are outlined
below.

Searching XML data using contains()

You can perform Oracle Text operations such as contains and score on XMLType columns. You
will need to create Oracle Text index (ctxsys.context) on the xmltype column in order for contains
to execute. Note that the contains operator is not XML-namespace aware. The example below
shows an Oracle Text search using SQL function contains.

Example 57: Searching XML Data Using SQL Function CONTAINS
SELECT DISTINCT
XMLCast(XMLQuery('$p/PurchaseOrder/ShippingInstructions/address'
 PASSING po.OBJECT_VALUE AS "p" RETURNING CONTENT)
 AS VARCHAR2(256)) "Address"
 FROM po_clob po
 WHERE contains(po.OBJECT_VALUE,
 '$(Fortieth) INPATH
 (PurchaseOrder/ShippingInstructions/address)') > 0;

Address

Oracle White Paper—Title of White Paper Here

61

1200 East Forty Seventh Avenue
New York
NY
10024
USA
1 row selected.

The execution plan for this query shows two ways that the Oracle Text CONTEXT index is used:

1. It references the index explicitly, as a domain index.

2. It refers to SQL function contains in the predicate information.

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows | Bytes |

| 0 | SELECT STATEMENT | | 7 | 14098 |

| 1 | HASH UNIQUE | | 7 | 14098 |

| 2 | TABLE ACCESS BY INDEX ROWID| PO_CLOB | 7 | 14098 |

|* 3 | DOMAIN INDEX | PO_OTEXT_IX | | |

--

Predicate Information (identified by operation id):

 3 - access("CTXSYS"."CONTAINS"(SYS_MAKEXML('…………',523

 3,"XMLDATA"),'$(Fortieth) INPATH

 (PurchaseOrder/ShippingInstructions/address)')>0)

Searching XML data using ora:contains()

The XQuery function ora:contains() lets users search for keywords within specific XPath or
xquery contexts. The evaluation of ora:contains() does not need Oracle Text index
(ctxsys.context) to execute functionally, but may need it for performance.

When possible, Oracle internally rewrites the ora:contains() operator to a contains() operator.
This happens if both of the following conditions are satisfied:

1. The XPath or xquery context of ora:contains() can be rewritten to:

• a column of object-relational table

• or, VALUE column of unstructured xmlindex

• or, user-defined column of structured xmlindex,

2. There is a TRANSACTIONAL Oracle Text index on the column.

Oracle White Paper—Title of White Paper Here

62

If both the conditions above are true, then ora:contains() is rewritten to a contains() on the
column. If Oracle Text index on column is not TRANSACTIONAL, then ora:contains() is
evaluated functionally (no index). The example below shows how to create such an index:

Example 58: Searching XML data using ora:contains()
create table myemp of xmltype tablespace sysaux;

create index emp_xtidx on myemp (object_value)

indextype is xdb.xmlindex parameters('

GROUP gp1

 XMLTABLE ETAB

 XMLNamespaces(DEFAULT ''http://www.oracle.com/tkxmsch1.xsd''),

 ''/Employee''

 columns "eid" integer PATH ''EmployeeId'',

 "fname" varchar2(70) PATH ''FirstName'',

 "lname" varchar2(70) PATH ''LastName'',

 "jdesc" varchar2(70) PATH ''JobDesc''');

create index jdctxidx on ETAB (jdesc)

 indextype is ctxsys.context parameters ('transactional');

select xmlcast(xmlquery('

declare default element namespace

"http://www.oracle.com/tkxmsch1.xsd";(::)

/Employee/FirstName' passing value(e) returning content) as

varchar2(50))

from myemp e

where xmlexists('

declare default element namespace

"http://www.oracle.com/tkxmsch1.xsd";(::)

/Employee[ora:contains(JobDesc, "program")>0]'

passing value(e))

/

To get the best performance for your full text queries, follow the guidelines given below:

Text Index Guildeline 1:

If your storage is object-relational and you need XPath/xquery aware text search, map the nodes
you want text search over to CLOB or VARCHAR2 column and create TRANSACTIONAL
Oracle Text index on column, and use ora:contains() in your XPath/xquery.

 Object Relational Storage: Use ora:contains()

http://www.oracle.com/tkxmsch1.xsd�
http://www.oracle.com/tkxmsch1.xsd�
http://www.oracle.com/tkxmsch1.xsd�

Oracle White Paper—Title of White Paper Here

63

Text Index Guildeline 2:

If your storage is binary XML, then create Oracle Text index on xmltype and use contains(). This
is the recommended approach for full-text search over binary XML. But, be aware that Oracle
Text index does not understand XML namespaces.

 Binary XML Storage: Use contains()

Text Index Guildeline 3:

If your storage is binary XML, look at creating Oracle Text index on VALUE column of
unstructured XMLIndex or on user-defined column of structured XMLIndex only if guideline
#2 cannot be used.

 Binary XML Storage: Creating Text Index on XMLIndex
unstructured / structured index columns

Note that the VALUE column of unstructured XMLIndex is of type VARCHAR2(4000). It
stores only up to 80 bytes for non-leaf nodes and up to 4000 bytes for leaf nodes. So, if your
node values are longer than these, then ora:contains() that is rewritten to VALUE column of
unstructured XMLIndex may return incorrect results.

User-defined column of structured XMLIndex can be defined as CLOB to avoid any truncation
of node values. But, having a CLOB column dramatically affects the load performance of
structured XMLIndex.

Conclusion

Oracle XML DB support for the XQuery language is provided through a native implementation
of SQL/XML functions XMLQuery, XMLTable, XMLExists, and XMLCast. This paper started
out by discussing storage independent XQuery best practices, then moved on to the guidelines for
getting the best performance out of various storage/indexing options.

Oracle White Paper—Title of White Paper Here

64

Appendix A: Semantic differences between the deprecated
mainly XPath 1.0 based functions and standard SQL/XML
XQuery based functions

There are some important differences between the deprecated and the XQuery based syntax,
which are listed below to make the migration easier for the users.

In the de-supported extract(), existsNode(), table(xmlsequence()), extractValue(), only XPath 1.0
can be used in the path expression. The SQL/XML standard operators XMLQuery(),
XMLExists(), XMLTable, XMLCast() use XQuery 1.0 in the query expression. Other than this
important difference, there are several other non-standard behavior in the de-supported
operators that users must pay special attention when migrating to use the standard based
operators.

• Schema based datatype comparison: When de-supported operators are applied to schema
based XMLType column (object relational based structured storage and binary XML storage),
the schema based datatype comparison semantics is applied, for example, comparing non-
string type with string results in casting and datatype specific comparison. However, in the
standard operators, XQuery date type casting functions must be used. Otherwise an error
will be raised. See XQuery Guideline 7.

Assume @podate is xs:date type and @poid is xs:integer type and purchaseOrder is an
XMLType table storing schema based purchaseOrder XML document instances.

Example:

De-supported syntax:

Select 1 from purchaseOrder p
where existsNode(value(p), ‘/PurchaseOrder[@podate > “1998-09-02”]’) = 1

Standard based syntax:

Select 1 from purchaseOrder p where xmlexists(‘declare namespace po =
http://www.po.com;/PurchaseOrder[@podate >xs:date(“1998-09-02”)]’ passing
value(p))

The following query raises type errors

Select 1 from purchaseOrder p where xmlexists(‘declare namespace po =
http://www.po.com;/PurchaseOrder[@podate > “1998-09-02”]’ passing value(p))

De-supported syntax:

Select 1 from purchaseOrder p
where existsNode(value(p), ‘/PurchaseOrder[@poid = “3456”]’) = 1

Standard based syntax:

http://www.po.com/�
http://www.po.com/�

Oracle White Paper—Title of White Paper Here

65

Select 1 from purchaseOrder p where xmlexists(‘declare namespace po =
http://www.po.com;/PurchaseOrder[@poid = 3456]’ passing value(p))

• Namespace patching: As the example shown above, the namespace declaration must be
specified unless the XML document has no namespace whereas in the de-supported
syntax, the namespace might be patched even if it is NOT specified as the third parameter of
the operator.

• existsNode returns 0 or 1 while XMLExists returns Boolean, so you can use new syntax in the
SQL WHERE clause directly. To use it in the SELECT list, please refer to “Example 3:
Using XMLExists() with CASE Expression in select list”.

• Bind variable: There is no need to use string concatenation operator || to construct XPath
string to embed bind variable as in the de-supported syntax. Instead, use PASSING clauses to
pass bind varaibles to XQuery based functions.

De-supported syntax:

Example:

Select value(p) from purchaseOrder p
where existsNode(value(p), ‘/PurchaseOrder[@podate >’ || :1: ‘]’) = 1

Standard syntax:

Select value(p) from purchaseOrder p
where xmlexists(‘declare namespace po = http://www.po.com;/PurchaseOrder[@podate
> xs:date($bindvar)]’ passing value(p), :1 as “bindvar”)

• ora:instanceof() and ora:instanceof-only() are only usable in the XPath of the de-supported
syntax. Use XQuery ‘instance of’ expression and ‘@xsi:type =’ respectively in the standard
syntax.

Example:

De-supported syntax:

 ora:instanceof()

select extract(value(r),'/N2:R1[ora:instanceof(.,"N1:superType1")]',
'xmlns:N1="http://www.oracle.com/xdb/N1"
xmlns:N2="http://www.oracle.com/xdb/N2"
xmlns:ora="http://xmlns.oracle.com/xdb"') from R1 r;

Standard syntax:

select XMLQuery('declare namespace N1="http://www.oracle.com/xdb/N1";
declare namespace N2="http://www.oracle.com/xdb/N2";
/N2:R1[. instance of element(N2:R1, N1:superType1)]'
passing object_value returning content) from R1 r ;

Example:

De-supported syntax:

 ora:instanceof-only()

select extract(value(r),'/N2:R1[ora:instanceof-only(.,"N1:superType1")]',
'xmlns:N1="http://www.oracle.com/xdb/N1"

http://www.po.com/�
http://www.po.com/�

Oracle White Paper—Title of White Paper Here

66

xmlns:N2="http://www.oracle.com/xdb/N2"
xmlns:ora="http://xmlns.oracle.com/xdb"') from R1 r;

Standard syntax:

select XMLQuery('declare namespace N1="http://www.oracle.com/xdb/N1";
declare namespace N2="http://www.oracle.com/xdb/N2";
/N2:R1[@xsi:type="N1:superType1"]' passing object_value returning content)
from R1 r ;

Notice that xsi:type predicate is also supported in XPath, i.e., the following query works the
same as the two above:

select extract(value(r),'/N2:R1[@xsi:type="N1:superType1"]',
'xmlns:N1="http://www.oracle.com/xdb/N1"
xmlns:N2="http://www.oracle.com/xdb/N2"
xmlns:ora="http://xmlns.oracle.com/xdb"') from R1 r;

ora:upper(), ora:lower(), ora:to_number(), ora:to_date() are only usable in the XPath of the de-
supported syntax. Use corresponding XQuery F&O functions fn:upper-case(), fn:lower-case(),
xs:decimal(), xs:date() respectively in the standard syntax.

Example:

De-support syntax:

 DBMS_XMLGEN:

SELECT sys_XMLGen(km_t(kid,

 kname,

 knum,

 CAST(MULTISET (SELECT kid, kdid, kdname

 FROM ktest_d d

 WHERE d.kid = m.kid) AS kdlist_t))).getclobval() AS detail

 FROM ktest_m m;

Standard syntax:

select XMLSERIALIZE

 (

 document

 XMLELEMENT

 (

 "KD_LIST",

 XMLAGG

 (

 (

Oracle White Paper—Title of White Paper Here

67

 SELECT XMLAGG

 (

 XMLELEMENT

 (

 "KD_T",

 XMLELEMENT("KID",KID),

 XMLELEMENT("KDID",KDID),

 XMLELEMENT("KDNAME",KDNAME)

)

)

 from KTEST_D d

 where d.kid = m.kid

)

)

)

 as clob indent size=2

)

 from KTEST_M m;

White Paper Title
October 2010
Author: Oracle XML DB Team
Contributing Authors: [OPTIONAL]

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2009, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and
the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

0109

