
1 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

[MS-LREC]:

Live Remote Event Capture (LREC) Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Revision Summary

Date
Revision
History

Revision
Class Comments

8/8/2013 1.0 New Released new document.

11/14/2013 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

2/13/2014 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

5/15/2014 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/1/2017 1.0 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Table of Contents

1 Introduction .. 5
1.1 Glossary ... 5
1.2 References .. 6

1.2.1 Normative References ... 7
1.2.2 Informative References ... 7

1.3 Overview .. 7
1.4 Relationship to Other Protocols .. 8
1.5 Prerequisites/Preconditions ... 9
1.6 Applicability Statement ... 9
1.7 Versioning and Capability Negotiation ... 10
1.8 Vendor Extensible Fields ... 10
1.9 Standards Assignments ... 10

2 Messages ... 11
2.1 Transport .. 11

2.1.1 RPC Server Settings .. 11
2.1.2 RPC Client Settings ... 11

2.2 Common Data Types .. 11
2.2.1 Data Types .. 11

2.2.1.1 PSESSION_HANDLE .. 12
2.2.2 Structures ... 12

2.2.2.1 EVENT_BUFFER... 12
2.3 Message Syntax ... 12

2.3.1 Managed Object Format (MOF) Structures ... 12
2.3.1.1 MSFT_NetEventSession Class ... 12
2.3.1.2 MSFT_NetEventProvider Class .. 13

2.3.2 RPC Structures ... 14
2.3.2.1 EventRecord Structure ... 14
2.3.2.2 NET_EVENT_DATA_HEADER Structure ... 15
2.3.2.3 NET_EVENT_LOST Structure ... 16

3 Protocol Details ... 17
3.1 NetEventForwarder Server Details .. 17

3.1.1 Abstract Data Model .. 17
3.1.2 Timers .. 18
3.1.3 Initialization ... 18
3.1.4 Message Processing Events and Sequencing Rules .. 18

3.1.4.1 WS-Management Method Calls .. 18
3.1.4.1.1 MSFT_NetEventSession CreateInstance .. 18
3.1.4.1.2 MSFT_NetEventSession Start .. 18
3.1.4.1.3 MSFT_NetEventSession Stop ... 19
3.1.4.1.4 MSFT_NetEventSession DeleteInstance .. 19
3.1.4.1.5 MSFT_NetEventProvider CreateInstance ... 19
3.1.4.1.6 MSFT_NetEventProvider ModifyInstance ... 20
3.1.4.1.7 MSFT_NetEventProvider DeleteInstance ... 20

3.1.4.2 RPC Opnum Method Calls ... 20
3.1.4.2.1 RpcNetEventOpenSession (Opnum 0)... 20
3.1.4.2.2 RpcNetEventReceiveData (Opnum 1) ... 21
3.1.4.2.3 RpcNetEventCloseSession (Opnum 2) .. 22

3.1.5 Timer Events .. 22
3.1.6 Other Local Events .. 23

3.1.6.1 RPC Connection Termination... 23
3.1.6.2 Accumulating Events ... 23

4 Protocol Examples ... 24

4 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5 Security ... 26
5.1 Security Considerations for Implementers ... 26
5.2 Index of Security Parameters .. 26

6 Appendix A: Full IDL .. 27

7 Appendix B: Full MOF ... 28

8 Appendix C: Product Behavior ... 29

9 Change Tracking .. 30

10 Index ... 31

5 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1 Introduction

The Live Remote Event Capture (LREC) Protocol allows a management station to monitor events on a
target system across a network. The protocol consists of two components:

 A WS-Management-based control channel for starting and stopping an event capture.

 A remote procedure call (RPC)-based data channel for retrieving events as they are logged on
the remote system.

Together, these components can be used to support monitoring scenarios and provide a "first line of
defense" for troubleshooting scenarios, especially when the remote system does not support the
ability to locally log events.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

dynamic endpoint: A network-specific server address that is requested and assigned at run time.
For more information, see [C706].

endpoint: A network-specific address of a remote procedure call (RPC) server process for remote

procedure calls. The actual name and type of the endpoint depends on the RPC protocol
sequence that is being used. For example, for RPC over TCP (RPC Protocol Sequence
ncacn_ip_tcp), an endpoint might be TCP port 1025. For RPC over Server Message Block (RPC
Protocol Sequence ncacn_np), an endpoint might be the name of a named pipe. For more
information, see [C706].

event: A discrete unit of historical data that an application exposes that may be relevant to other
applications. An example of an event would be a particular user logging on to the computer.

event provider: A component that is instrumented for reporting events. An event provider defines
a provider manifest and reports events in a format specified in the provider manifest.

event session: A user-configured group of event providers that can be started or stopped by a
client.

event template: A portion of a provider manifest that defines event-specific data, if any, included
by the event provider with each event.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of
these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

Interface Definition Language (IDL): The International Standards Organization (ISO) standard

language for specifying the interface for remote procedure calls. For more information, see
[C706] section 4.

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

Managed Object Format (MOF): A textual encoding for Common Information Model (CIM)
objects, this representation is not used within protocol operations defined in [MS-WMI]. MOF is

https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=90460
%5bMS-WMI%5d.pdf#Section_c476597d4c7647e7a2a4a564fe4bf814

6 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

defined in [DMTF-DSP0004] section 3. The MOF text encoding is only used for illustrative
purposes. The binary encoding can be translated to and from the MOF format.

opnum: An operation number or numeric identifier that is used to identify a specific remote
procedure call (RPC) method or a method in an interface. For more information, see [C706]

section 12.5.2.12 or [MS-RPCE].

provider manifest: A set of metadata for an event provider that defines the events, event
filtering criteria, such as levels and keywords, and a unique ID of the event provider.

remote procedure call (RPC): A context-dependent term commonly overloaded with three
meanings. Note that much of the industry literature concerning RPC technologies uses this term
interchangeably for any of the three meanings. Following are the three definitions: (*) The
runtime environment providing remote procedure call facilities. The preferred usage for this

meaning is "RPC runtime". (*) The pattern of request and response message exchange between
two parties (typically, a client and a server). The preferred usage for this meaning is "RPC
exchange". (*) A single message from an exchange as defined in the previous definition. The
preferred usage for this term is "RPC message". For more information about RPC, see [C706].

RPC transport: The underlying network services used by the remote procedure call (RPC) runtime
for communications between network nodes. For more information, see [C706] section 2.

security provider: A pluggable security module that is specified by the protocol layer above the
remote procedure call (RPC) layer, and will cause the RPC layer to use this module to secure
messages in a communication session with the server. The security provider is sometimes
referred to as an authentication service. For more information, see [C706] and [MS-RPCE].

security support provider (SSP): A dynamic-link library (DLL) that implements the Security
Support Provider Interface (SSPI) by making one or more security packages available to
applications. Each security package provides mappings between an application's SSPI function

calls and an actual security model's functions. Security packages support security protocols such
as Kerberos authentication and NTLM.

Security Support Provider Interface (SSPI): A Windows-specific API implementation that

provides the means for connected applications to call one of several security providers to
establish authenticated connections and to exchange data securely over those connections. This
is the Windows equivalent of Generic Security Services (GSS)-API, and the two families of APIs
are on-the-wire compatible.

universally unique identifier (UUID): A 128-bit value. UUIDs can be used for multiple
purposes, from tagging objects with an extremely short lifetime, to reliably identifying very
persistent objects in cross-process communication such as client and server interfaces, manager
entry-point vectors, and RPC objects. UUIDs are highly likely to be unique. UUIDs are also
known as globally unique identifiers (GUIDs) and these terms are used interchangeably in
the Microsoft protocol technical documents (TDs). Interchanging the usage of these terms does

not imply or require a specific algorithm or mechanism to generate the UUID. Specifically, the
use of this term does not imply or require that the algorithms described in [RFC4122] or [C706]
must be used for generating the UUID.

XML: The Extensible Markup Language, as described in [XML1.0].

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents

https://go.microsoft.com/fwlink/?LinkId=89848
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90599
https://go.microsoft.com/fwlink/?LinkId=90317

7 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[C706] The Open Group, "DCE 1.1: Remote Procedure Call", C706, August 1997,

https://www2.opengroup.org/ogsys/catalog/c706

[DMTF-DSP0200] DMTF, "Specification for CIM Operations over HTTP", version 1.2, January 2007,
http://www.dmtf.org/sites/default/files/standards/documents/DSP200.html

[DMTF-DSP0226] Distributed Management Task Force, Inc., "Web Services for Management (WS-
Management) Specification", version 1.0.0, February 2008,
http://dmtf.org/sites/default/files/standards/documents/DSP0226_1.0.0.pdf

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-ERREF] Microsoft Corporation, "Windows Error Codes".

[MS-EVEN6] Microsoft Corporation, "EventLog Remoting Protocol Version 6.0".

[MS-EVEN] Microsoft Corporation, "EventLog Remoting Protocol".

[MS-RPCE] Microsoft Corporation, "Remote Procedure Call Protocol Extensions".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

[RFC4122] Leach, P., Mealling, M., and Salz, R., "A Universally Unique Identifier (UUID) URN

Namespace", RFC 4122, July 2005, http://www.rfc-editor.org/rfc/rfc4122.txt

1.2.2 Informative References

[MSDN-DefiningEventData] Microsoft Corporation, "Defining Event Data Templates",

http://msdn.microsoft.com/en-us/library/dd996913(v=vs.85).aspx

[MSDN-EVENT_HEADER] Microsoft Corporation, "EVENT_HEADER structure",
http://msdn.microsoft.com/en-us/library/aa363759(v=VS.85).aspx

[MSDN-EvntManifest] Microsoft Corporation, "EventManifest Schema", http://msdn.microsoft.com/en-
us/library/aa384043(v=vs.85).aspx

1.3 Overview

The Live Remote Event Capture (LREC) protocol allows a client to connect to a server to monitor
critical information and detect issues as they occur on the server. For example, to detect under-
provisioned servers, an administrator can use this protocol to remotely see the events that indicate
under-provisioning which are logged as high memory utilization. The remote visibility into the event
logging enables the administrator to re-balance the load on the server, immediately observe the fix,
and continue to make improvements as necessary.

In the LREC protocol, information is sent over the network to a client as a sequential stream of records

each of which is referred to as an event. Multiple software components and applications on the server
can report events using the protocol. These are referred to event providers. Each event provider is

http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=89824
https://go.microsoft.com/fwlink/?LinkId=299237
https://go.microsoft.com/fwlink/?LinkId=89849
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
%5bMS-EVEN6%5d.pdf#Section_18000371ae6d45f795f3249cbe2be39b
%5bMS-EVEN%5d.pdf#Section_55b13664f7394e4ebd8d04eeda59d09f
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90460
https://go.microsoft.com/fwlink/?LinkId=299238
https://go.microsoft.com/fwlink/?LinkId=208337
https://go.microsoft.com/fwlink/?LinkId=299240
https://go.microsoft.com/fwlink/?LinkId=299240

8 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

identified by a unique "provider ID" and its event types are described in a provider manifest
organized in any implementation-specific way, such as the XML schema specified in [MSDN-

EvntManifest].

Event providers can define multiple kinds of events. For example, a user logging on could be one kind

of event and a user logging off could be another. When a provider reports an event, it specifies an
event provider-specific Event Type ID (referred to as an event ID) that indicates the specific kind of
event being reported. The event ID is reused whenever another event of the same type is reported.
Therefore, each event type is uniquely identified by a provider ID and an event ID.

Different server configurations and application workloads have varying requirements for monitoring
and troubleshooting. To ensure flexible support for these scenarios, multiple event providers can be
added into an event session to enable simultaneous event recording. When using multiple event

providers, two techniques in particular enable the broad coverage of a session containing many event
providers, yet narrow the number of observed events:

 The server filters events based on the "error level" or criticality of the events.

 The server filters events based on keywords, such as authentication, input/output, or user
interface.

In the LREC protocol, an event session is configured and started using a WS-Management-based

control channel. When the session is started, the server initializes an RPC endpoint and the client
connects to the server using the RPC endpoint to receive reported events. When the client is finished
observing reported events, the client stops the session using the WS-Management-based control
channel. When all event sessions are stopped, the RPC endpoint is removed.

1.4 Relationship to Other Protocols

The LREC protocol uses the WS-Management protocol [DMTF-DSP0226] as a transport for its control
channel for event session configuration. The LREC protocol uses RPC [MS-RPCE] as a transport for
its data channel for event data retrieval. The diagram below illustrates the relationship of the LREC
protocol to other protocols in the networking stack.

https://go.microsoft.com/fwlink/?LinkId=299240
https://go.microsoft.com/fwlink/?LinkId=299240
https://go.microsoft.com/fwlink/?LinkId=89849
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

9 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

Figure 1: Relationship to other protocols

The LREC protocol is related to the EventLog Remoting Protocol [MS-EVEN] and EventLog Remoting
Protocol Version 6.0 [MS-EVEN6], but the LREC protocol is designed for a different purpose. The event

log protocols specified in [MS-EVEN] and [MS-EVEN6] are designed for accessing event log files on a
remote computer. The LREC protocol is designed for configuration and remote monitoring of live event
sessions.

1.5 Prerequisites/Preconditions

This protocol has the prerequisites specified in [MS-RPCE] which are common to protocols that depend
on RPC.

The prerequisites for the WS-Management protocol are specified in [DMTF-DSP0226]. In addition, the
LREC protocol requires the client to have the provider manifests available before attempting to de-
serialize event messages.

1.6 Applicability Statement

The LREC protocol is used for monitoring events on a remote computer. For example, for monitoring
service deployments to ensure administrators can immediately react to configuration errors, or for
troubleshooting time-critical service outages.

The LREC protocol is designed for monitoring events in real time and is not suitable for retrieving

events that have occurred in the past.

The LREC protocol is only applicable in scenarios where a given event session is controlled by a
single client. The protocol is not applicable in cases where multiple management stations require
simultaneous management of the same event stream.

%5bMS-EVEN%5d.pdf#Section_55b13664f7394e4ebd8d04eeda59d09f
%5bMS-EVEN6%5d.pdf#Section_18000371ae6d45f795f3249cbe2be39b
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=89849

10 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

1.7 Versioning and Capability Negotiation

Protocol Version: The RPC interface for the LREC protocol is version 1.0. The protocol can be
extended by adding RPC messages to the interface with opnums higher than those defined in this

specification. An RPC client determines whether a method is supported by attempting to invoke
the method. If the method is not supported, the RPC runtime returns an "opnum out of range"
error as specified in [C706] and [MS-RPCE]. RPC versioning and capacity negotiation in these
situations is as specified in [C706] and [MS-RPCE].

Security and Authentication Methods: The LREC protocol supports the following authentication
methods: NTLM and Kerberos as specified in [MS-RPCE] section 1.7.

1.8 Vendor Extensible Fields

The LREC protocol uses Win32 error codes as defined in [MS-ERREF] section 2.2 and Vendors SHOULD
reuse these values with their indicated meaning. Specifying any other value runs the risk of a future
collision.

1.9 Standards Assignments

The LREC protocol has no standards assignments. It uses private allocations for the RPC interface
universally unique identifier (UUID).

Parameter Value Reference

UUID for NetEventForwarder 22e5386d-8b12-4bf0-b0ec-6a1ea419e366 [C706]

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-ERREF%5d.pdf#Section_1bc92ddfb79e413cbbaa99a5281a6c90
https://go.microsoft.com/fwlink/?LinkId=89824

11 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2 Messages

2.1 Transport

All implementations MUST use the RPC over TCP protocol sequence (ncacn_ip_tcp), as specified in

[MS-RPCE] section 2.1.1.1, with dynamic endpoints.

The protocol MUST use the NetEventForwarder UUID: 22e5386d-8b12-4bf0-b0ec-6a1ea419e366.

The protocol MUST use an Interface Definition Language (IDL) version of 1.0.

WS-Management [DMTF-DSP0226] MUST be used as the transport provider for the LREC protocol
control channel.

2.1.1 RPC Server Settings

The LREC protocol uses Security Support Provider Interface (SSPI) security provided by RPC, as
specified in [MS-RPCE] section 3.3.1.5.2, for sessions using TCP as the transport protocol. The server
MUST register RPC_C_AUTHN_GSS_NEGOTIATE as the security provider.

The server MUST allow only authenticated access to RPC clients. The server MUST NOT allow

anonymous RPC clients.

The server MUST limit access only to clients that negotiate an authentication level equal or higher than
that of RPC_C_AUTHN_LEVEL_PKT (see [MS-RPCE] section 2.2.1.1.8).

2.1.2 RPC Client Settings

The RPC client MUST use security support provider (SSP) security provided over RPC as specified
in [MS-RPCE], for sessions using TCP as the RPC transport protocol. A client MUST authenticate
using RPC_C_AUTHN_GSS_NEGOTIATE.

A client MUST use TCP as the RPC transport.

A client SHOULD<1> request the RPC_C_AUTHN_LEVEL_PKT_PRIVACY authentication level. A client
MAY request RPC_C_AUTHN_LEVEL_PKT_INTEGRITY authentication level instead, when data

encryption is not required.

2.2 Common Data Types

In addition to the RPC-based data types and definitions specified in [C706], [MS-RPCE], and [MS-
DTYP], additional data types are defined below.

All multi-byte integer values in the messages declared in this section use little-endian byte order
unless otherwise noted.

2.2.1 Data Types

The LREC protocol defines the following data types.

DataType name Section Description

PSESSION_HANDLE 2.2.1.1 An RPC client context handle that identifies the current event session.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=89849
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

12 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

2.2.1.1 PSESSION_HANDLE

The PSESSION_HANDLE data type is an RPC client context handle that identifies the current event
session. A client receives this handle using the RpcNetEventOpenSession (section 3.1.4.2.1)

method.

 typedef [context_handle] void* PSESSION_HANDLE;

2.2.2 Structures

The LREC protocol defines the following structures.

Structure name Section Description

EVENT_BUFFER 2.2.2.1 An event record from a server.

2.2.2.1 EVENT_BUFFER

The EVENT_BUFFER structure defines a data structure for transferring a generic payload. The LREC
protocol uses this structure to pass event records in the RpcNetEventReceiveData (section
3.1.4.2.2) method.

 typedef struct _EVENT_BUFFER {
 unsigned long BufferLength;
 [size_is(BufferLength)] byte* Buffer;
 } EVENT_BUFFER;

BufferLength: This property specifies the length, in bytes, of the data stored in the Buffer field.

Buffer: This property specifies a collection of one or more NET_EVENT_DATA_HEADER (section
2.3.2.2) structures each followed by an event payload.

2.3 Message Syntax

2.3.1 Managed Object Format (MOF) Structures

The following sections specify the Managed Object Format (MOF) classes implemented by the LREC

protocol.

2.3.1.1 MSFT_NetEventSession Class

The MSFT_NetEventSession MOF class is used for configuring and starting an event session on a

remote computer. After an instance is created, all properties are read-only via WS-Management

[DMTF-DSP0226] and cannot be changed by a client.

 class MSFT_NetEventSession {
 string Guid;
 string Name;
 uint8 CaptureMode;
 string LocalFilePath;
 uint32 MaxFileSize;
 uint32 TraceBufferSize;

https://go.microsoft.com/fwlink/?LinkId=89849

13 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 uint8 MaxNumberOfBuffers;
 uint8 SessionStatus;
 uint8 Start();
 uint8 Stop();
 };

Guid: This property specifies a globally unique identifier (GUID) for the session in curly braced
string representation, as defined in [MS-DTYP] section 2.3.4.3.

Name: This property specifies a friendly name for the event session that was assigned by the client
when the session was created.

CaptureMode: This property MUST be set to 0x02 (RealtimeRPC).

LocalFilePath: This property is reserved and MUST be set to an empty string.

MaxFileSize: This property is reserved and MUST be set to 0.

TraceBufferSize: This property specifies the amount of memory allocated for each event tracing
session buffer, in kilobytes. The maximum value is 0x00000400 (decimal 1024). A value of zero
(0x00000000) indicates that it is permissible for the server to specify a different value.

MaxNumberOfBuffers: This property specifies the maximum number of buffers allocated for the
event tracing session. A value of 0x00 indicates that it is permissible for the server to specify a
different value.

SessionStatus: This property indicates the current event session state which MUST be set to one of
the following values.

Value Meaning

Stopped

1

The event session is stopped.

Running

2

The event session is running.

Start: A method that is used to start an event session that has been previously associated with at
least one MSFT_NetEventProvider object (section 2.3.1.2). The method is defined in section
3.1.4.1.2.

Stop: A method that is used to stop a previously started event session. The method is defined in
section 3.1.4.1.3.

2.3.1.2 MSFT_NetEventProvider Class

The MSFT_NetEventProvider MOF class is used for configuring an event session on a remote

computer. A client can add event providers to a session by creating MSFT_NetEventProvider objects
with the SessionGuid property equal to the GUID of an existing MSFT_NetEventSession object

(section 2.3.1.1).

After an instance is created, all properties are read-only via WS-Management [DMTF-DSP0226],
except the Level, MatchAnyKeyword, and MatchAllKeyword properties which are read-write.

 class MSFT_NetEventProvider {
 string Guid;
 string SessionGuid;
 string Name;

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=89849

14 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 string SessionName;
 uint8 Level;
 uint64 MatchAnyKeyword;
 uint64 MatchAllKeyword;
 };

Guid: This property specifies a GUID for the provider ID from a provider manifest.

SessionGuid: This property specifies the identifier of an existing MSFT_NetEventSession object
(section 2.3.1.1). The value of this member corresponds to the MSFT_NetEventSession.Guid
property.

Name: This property specifies a unique provider name from the provider manifest.

SessionName: This property specifies a unique session name that corresponds to the value of the

MSFT_NetEventSession.Name member (see section 2.3.1.1).

Level: This property specifies the maximum level of events to include in the session, as shown in the

following table. A value of 0x00 indicates that all levels are to be included in the session.

Value Meaning

TRACE_LEVEL_CRITICAL

0x01

Only include abnormal exit or termination events.

TRACE_LEVEL_ERROR

0x02

Include all events corresponding to event level 1 and severe error events.

TRACE_LEVEL_WARNING

0x03

Include all events corresponding to lower event levels 1 and 2 and warning
events, such as allocation failures.

TRACE_LEVEL_INFORMATION

0x04

Include all events corresponding to lower event levels 1 through 3 and non-
error event, such as entry or exit events.

TRACE_LEVEL_VERBOSE

0x05

Include all events corresponding to lower event levels 1 through 4 and
detailed trace events.

MatchAnyKeyword: This property specifies a bitmask of keywords that is used to determine the

category of events to include in the event session. The keyword values are event provider-specific
and defined in the provider manifest. When any keyword assigned to an event matches any bit set
in the MatchAnyKeyword property, then that event is included in the event session. A value of zero
is equivalent to 0xFFFFFFFFFFFFFFFF and indicates to include all categories of events.

MatchAllKeyword: This property specifies a bitmask of keywords from the provider manifest which
is used to further restrict the categories of events to includ in the event session. When a keyword
for an event satisfies the conditions specified in the MatchAnyKeyword property, the event is

included in the event session only if all of the bits in the MatchAllKeyword mask exist in the
keyword. This mask is not used when the MatchAnyKeyword property is set to zero.

2.3.2 RPC Structures

The following sections specify the RPC structures implemented by the LREC protocol.

2.3.2.1 EventRecord Structure

The EventRecord structure provides the payload in an EVENT_BUFFER (section 2.2.2.1) structure.
The structure defines an event recorded by an event provider.

15 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Header (80 bytes)

...

...

ProcessorId Reserved SessionId

ExtendedDataCount UserDataLength

ExtendedDataOffset UserDataOffset

UserData (variable)

...

...

Header (80 bytes): This field specifies an EVENT_HEADER structure as defined in [MS-DTYP]
section 2.3.2. For more information, see [MSDN-EVENT_HEADER].

ProcessorId (1 byte): This field specifies an implementation-specific identifier for the CPU on

which the event provider process was running at the time of the event recording.

Reserved (1 byte): This field is reserved and MUST be set to 0x08.

SessionId (2 bytes): This field specifies an identifier of the session that logged the event.

ExtendedDataCount (2 bytes): This field is reserved for future use. The field MUST be set to
zero when sent and ignored upon receipt.

UserDataLength (2 bytes): This field specifies the size, in bytes, of the UserData field.

ExtendedDataOffset (2 bytes): This field is reserved for future use. The field MUST be set to
zero when sent and ignored upon receipt.

UserDataOffset (2 bytes): This field specifies an offset, in bytes, from the beginning of the
structure to the UserData field. The field MUST be set to 0x0060 (96 bytes).

UserData (variable): This field contains data as specified in the event template that
corresponds to the event identified by the Header.EventDescriptor.Id field. The event
template is defined in the provider manifest corresponding to the provider ID from the

Header.ProviderId field.

2.3.2.2 NET_EVENT_DATA_HEADER Structure

The NET_EVENT_DATA_HEADER structure specifies the size and type of the message payload in an
EVENT_BUFFER (section 2.2.2.1) structure. The buffer contains one or more

NET_EVENT_DATA_HEADER structures.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=208337

16 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

DataSize

DataType Reserved1 A Reserved2

DataSize (4 bytes): This field specifies the size, in bytes, of the NET_EVENT_DATA_HEADER
structure and the payload specified in the DataType field. The value MUST be greater than or
equal to 6 and less or equal to 65,535.

DataType (2 bytes): This field specifies the type of data that follows after the
NET_EVENT_DATA_HEADER structure. The field MUST be set to one of the following values.

Value Meaning

NetEventDataEventRecord

0x0001

The data is an EventRecord (section 2.3.2.1) structure.

NetEventDataLost

0x0002

The data is a NET_EVENT_LOST (section 2.3.2.3) structure.

Reserved1 (7 bits): This field MUST be set to zero when sent and ignored upon receipt.

A (1 bit): If set, this field indicates the last data item in the buffer.

Reserved2 (8 bits): This field MUST be set to zero when sent and ignored upon receipt.

2.3.2.3 NET_EVENT_LOST Structure

The NET_EVENT_LOST structure provides payload in an EVENT_BUFFER (section 2.2.2.1) structure
and contains the number of events lost due to slow event retrieval.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

LostEventCount

LostEventCount (4 bytes): This field specifies the number of lost events between two sequential
calls to the RpcNetEventReceiveData (section 3.1.4.2.2) method. If more than 2^32 (two to
the thirty-second power) events are lost, the field MUST be set to the value 0xFFFFFFFF.

17 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3 Protocol Details

The LREC protocol is used for monitoring an event session on a remote computer over a network.
Therefore, a client configures and starts an event session by first creating an instance of the
MSFT_NetEventSession Class (section 2.3.1.1). After the object is created, the client can connect
to the newly created session using the RpcNetEventOpenSession (section 3.1.4.2.1) method and
start retrieving events from the session using the RpcNetEventReceiveData (section 3.1.4.2.2)

method.

3.1 NetEventForwarder Server Details

3.1.1 Abstract Data Model

This section describes a conceptual model of a possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this

document.

 Provider Manifest Table: A set of provider manifests for available event providers that can
be added to a session. This metadata can be expressed in any implementation-dependent<2>
format.

 Session Table: A set of event sessions, where each event session contains the following
properties:

 Session ID: A GUID that uniquely identifies the event session.

 Session Name: A human-readable event session name assigned by the client when the event
session was created.

 Session State: The session's state, either Stopped or Running, where the initial value is

Stopped.

 Associated Provider List: A list of event providers associated with the event session, where
each entry contains the following properties:

 Event Provider: An event provider that has an entry in the provider manifest table.

 Level: The maximum level (as defined in the associated provider manifest) of events to
include in the event session.

 Match Any Keyword: A set of keywords defined in the associated provider manifest,
where at least one keyword is required to match a keyword of an event in order for the
event to be included in the event session.

 Match All Keywords: A set of keywords defined in the associated provider manifest,

where all keywords are required to be present in an event in order for the event to be

included in the event session.

 Session Handle: An RPC Session Handle allocated by the RpcNetEventOpenSession
(section 3.1.4.2.1) method.

 Queued Event List: A list of events waiting to be returned by a call to the
RpcNetEventReceiveData (section 3.1.4.2.2) method.

 Lost Event Count: The number of events between two sequential calls to the

RpcNetEventReceiveData method that were lost due to overflow of the Queued Event List.

18 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 Outstanding RpcNetEventReceiveData Call: Either empty, or holds a pending call to the
RpcNetEventReceiveData method to be completed later.

3.1.2 Timers

Each event session contains the following:

Data Completion Timer: A timer that is used to control completion of the
RpcNetEventReceiveData (section 3.1.4.2.2) method. The exact value of the timeout is
implementation-specific, but it MUST be between 100 and 1000 milliseconds.

3.1.3 Initialization

None.

3.1.4 Message Processing Events and Sequencing Rules

3.1.4.1 WS-Management Method Calls

3.1.4.1.1 MSFT_NetEventSession CreateInstance

CreateInstance is an intrinsic method of the MSFT_NetEventSession Class (section 2.3.1.1) that
is used to create a new instance of an MSFT_NetEventSession object on the server. The method
returns the newly created instance. For more information, see [DMTF-DSP0200] section 2.3.2.6.

The client MUST specify the Name property for the newly created instance.

When the CreateInstance method is called, the server MUST check the Name value for uniqueness

in the Session Table and return a NULL object if a session with the same Name already exists.

Otherwise, the server MUST attempt to create an event session entry in its Session Table and
assign a unique value to the Guid property, created as specified in [RFC4122]. If the entry cannot be

created, the server MUST return a NULL object. A server MAY<3> limit the number of available entries
in the Session Table.

When the server is able to create the entry, the Associated Provider List and Queued Event List
MUST be initialized as empty and the CreateInstance method MUST be completed successfully.

3.1.4.1.2 MSFT_NetEventSession Start

The client calls the Start method of an MSFT_NetEventSession object (section 2.3.1.1) to start an
event session that has been previously associated with at least one MSFT_NetEventProvider
object (section 2.3.1.2).

 uint32 Start();

Return Values: The Start method MUST return ERROR_SUCCESS (0x00000000) on success or a
nonzero Win32 error code value if an error occurred. All error values MUST be treated the same.

When the Start method is called on an event session, the server MUST check the Associated
Provider List in the event session entry in the Session Table. The server MUST return a nonzero
error code when no event providers are associated with the event session.

Otherwise, the server MUST attempt to initialize the RPC endpoint if it is not already running. If the
server is unable to initialize the RPC endpoint, it MUST return a nonzero error code.

https://go.microsoft.com/fwlink/?LinkId=299237
https://go.microsoft.com/fwlink/?LinkId=90460

19 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

When the server is able to initialize the RPC endpoint, the Session State MUST be set to Running,
and the server MUST return success.

3.1.4.1.3 MSFT_NetEventSession Stop

The client calls the Stop method of an MSFT_NetEventSession object (section 2.3.1.1) to stop a
previously started event session.

 uint32 Stop();

Return Values: The Stop method MUST return ERROR_SUCCESS (0x00000000) on success or a

nonzero Win32 error code value if an error occurred. All error values MUST be treated the same.

When the Stop method is called on an MSFT_NetEventSession object, the server MUST check that
the specified session is already in the Running state, and if it is not, return a nonzero error code.

The server MUST set the Session State to Stopped.

When there are no event sessions present in the Session Table in the Running state, the server
MUST stop the RPC endpoint.

3.1.4.1.4 MSFT_NetEventSession DeleteInstance

DeleteInstance is an intrinsic method of the MSFT_NetEventSessionClass (section 2.3.1.1) and is
used to delete an instance of an MSFT_NetEventSession object on the server. For more information,
see [DMTF-DSP0200] section 2.3.2.4.

When the DeleteInstance method is called, the server MUST first check if the event session state is
Running, and if it is, stop accumulating events.

The server MUST then remove the event session entry from its Session Table and free all associated

resources.

3.1.4.1.5 MSFT_NetEventProvider CreateInstance

CreateInstance is an intrinsic method of the MSFT_NetEventProviderClass (section 2.3.1.2) and
is used to create a new instance of a MSFT_NetEventProvider class on the server. This method
returns the newly created instance. For more information, see [DMTF-DSP0200] section 2.3.2.6.

The client MUST assign a valid value to the Guid property identifying one of the event providers on
the server.

The client MUST assign a valid value to the SessionGuid property. The value MUST identify an
existing MSFT_NetEventSession object.

When the CreateInstance method is called, the server MUST check that the event provider identified
in the Guid property and the MSFT_NetEventSession object identified in the SessionGuid property
are present on the system. If they are not present, the server MUST return a NULL object.

Otherwise, the server MUST verify that the value of the Name property matches the name of the
event provider in the provider manifest, and that the value of the SessionName property matches
the Session Name field of the event session. If both values do not match, the server MUST return a
NULL object.

When both values do match, the server MUST attempt to create an entry in the Associated Provider
List of the event session, and if it cannot do so, return a NULL object.

On success, the server MUST return the resulting MSFT_NetEventProvider object.

https://go.microsoft.com/fwlink/?LinkId=299237
https://go.microsoft.com/fwlink/?LinkId=299237

20 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.4.1.6 MSFT_NetEventProvider ModifyInstance

ModifyInstance is an intrinsic method of the MSFT_NetEventProvider Class (section 2.3.1.2) and
is used to modify the Level, Match Any Keyword, and Match All Keywords properties of an

existing MSFT_NetEventProvider instance on the server. For more information, see [DMTF-
DSP0200] section 2.3.2.8.

When the ModifyInstance method is called, the server MUST check the Session State of the
associated event session and fail the call if the state is Running.

Otherwise, the server MUST update the properties of the entry in the Associated Provider List and
complete the call successfully.

3.1.4.1.7 MSFT_NetEventProvider DeleteInstance

DeleteInstance is an intrinsic method of the MSFT_NetEventProvider Class (section 2.3.1.2) and
is used to delete an instance of an MSFT_NetEventProvider object on the server. For more
information, see [DMTF-DSP0200] section 2.3.2.4.

When the DeleteInstance method is called, the server MUST first check the state of the associated
event session and fail the call if the state is Running.

Otherwise, the server MUST find the corresponding event session in the Session Table and remove
the provider from its Associated Provider List.

3.1.4.2 RPC Opnum Method Calls

The NetEventForwarder interface provides methods for remote monitoring of an event session.

The version for this interface is 1.0.

To receive incoming remote calls for this interface, the server MUST implement an RPC endpoint
using the UUID 22e5386d-8b12-4bf0-b0ec-6a1ea419e366.

Methods in RPC Opnum Order

Method Description

RpcNetEventOpenSession
(section 3.1.4.2.1)

This method opens a context handle to a running event session.

Opnum: 0

RpcNetEventReceiveData
(section 3.1.4.2.2)

This method retrieves a buffer with one or more
NET_EVENT_DATA_HEADER structures (section 2.3.2.2) followed by
the event payload.

Opnum: 1

RpcNetEventCloseSession
(section 3.1.4.2.3)

This method closes the RPC binding handle returned by the
RpcNetEventOpenSession method.

Opnum: 2

3.1.4.2.1 RpcNetEventOpenSession (Opnum 0)

The RpcNetEventOpenSession method opens a context handle to a running event session.

 DWORD RpcNetEventOpenSession (
 [in] handle_t BindingHandle,
 [in] [string] wchar_t* LoggerName,
 [out] PSESSION_HANDLE* SessionHandle

https://go.microsoft.com/fwlink/?LinkId=299237
https://go.microsoft.com/fwlink/?LinkId=299237
https://go.microsoft.com/fwlink/?LinkId=299237

21 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

);

BindingHandle: An RPC binding handle to the server. Details concerning binding handles are
specified in [C706] section 2.3

LoggerName: The name of the current event session. The value of this field MUST correspond to the
Name property of a previously started MSFT_NetEventSession object (section 2.3.1.1).

SessionHandle: An out parameter that receives an RPC context handle (as specified in section
2.2.1.1) that represents a reference to an active event session on the server.

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success or a nonzero

Win32 error code value if an error occurred. All error values MUST be treated the same.

The opnum field value for this method is 0.

When processing this call, the server MUST do the following:

 When the RpcNetEventOpenSession method is called, the server MUST check its Session
Table for an event session with a Session Name that matches the value specified in the
LoggerName member. When a match is not found, the server MUST return an error.

 When a match is found, the server MUST attempt to allocate a Session Handle for the client

and store it in its event session, and if it cannot perform the allocation, return an error.

 When the server can allocate the Session Handle for the client, the server MUST start
collecting events from the event providers and accumulate in the Queued Event List, all
events matching the event session object’s Level, Match Any Keyword, and Match All
Keywords filters.

 The server MUST return the Session Handle to the caller and complete the call with success.

Exceptions Thrown: Exceptions SHOULD NOT be thrown beyond those thrown by the underlying RPC
protocol specified in [MS-RPCE].

3.1.4.2.2 RpcNetEventReceiveData (Opnum 1)

The RpcNetEventReceiveData method retrieves a buffer with one or more
NET_EVENT_DATA_HEADER structures, followed by the event payload. The size of the buffer is
determined by the server.

 DWORD RpcNetEventReceiveData (
 [in] PSESSION_HANDLE SessionHandle,
 [out] EVENT_BUFFER* EventBuffer
);

SessionHandle: Contains an RPC context handle (as specified in section 2.2.1.1) returned by the
RpcNetEventOpenSession (section 3.1.4.2.1) method.

EventBuffer: An out parameter that receives an EVENT_BUFFER (section 2.2.2.1).

Return Values: The method MUST return ERROR_SUCCESS (0x00000000) on success or a nonzero
Win32 error code value if an error occurred. All error values MUST be treated the same.

The opnum field value for this method is 1.

When processing this call, the server MUST do the following:

https://go.microsoft.com/fwlink/?LinkId=89824
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

22 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 When the RpcNetEventReceiveData method is called, the server MUST first check its
Session Table for an event session object where the Session Handle matches the value

supplied in the SessionHandle member, and if a match cannot be found, fail the call.

 When a match can be found, if the Outstanding RpcNetEventReceiveData Call of the

event session is not empty, the server MUST fail this call to RpcNetEventReceiveData.

 When the Outstanding RpcNetEventReceiveData Call of the event session is empty, the
server MUST determine, in any implementation-specific manner, an appropriate number of
events to return. If enough events are already in the Queued Event List, the events MUST
be removed from the list and returned in the EventBuffer member. If the Lost Event
Count is nonzero, the server MUST also include a NET_EVENT_LOST structure (section
2.3.2.3) at the end of the EventBuffer.

 When the Outstanding RpcNetEventReceiveData Call of the event session is not empty,
the server MUST store the pending call in the Outstanding RpcNetEventReceiveData Call
of the event session to be completed later when enough events are collected in the Queued
Event List or the Data Completion Timer expires.

Exceptions Thrown: Exceptions SHOULD NOT be thrown beyond those thrown by the underlying RPC
protocol specified in [MS-RPCE].

3.1.4.2.3 RpcNetEventCloseSession (Opnum 2)

The RpcNetEventCloseSession method closes the RPC binding handle returned by the
RpcNetEventOpenSession (section 3.1.4.2.1) method.

 void RpcNetEventCloseSession (
 [in, out] PSESSION_HANDLE* SessionHandle
);

SessionHandle: On input, this member contains an RPC context handle (as specified in section
2.2.1.1) returned by the RpcNetEventOpenSession method. On output, the member MUST

contain NULL.

The opnum field value for this method is 2.

When processing this call, the server MUST do the following:

 When the RpcNetEventCloseSession method is called, the server MUST first check its

Session Table for an event session object where the Session Handle matches the value
supplied in the SessionHandle member, and if a match cannot be found, fail the call.

 When a match can be found, the server MUST remove the Session Handle from the event
session and stop accumulating events from event providers.

Exceptions Thrown: Exceptions SHOULD NOT be thrown beyond those thrown by the underlying RPC
protocol specified in [MS-RPCE].

3.1.5 Timer Events

When a Data Completion Timer for the event session expires, the server MUST complete the
outstanding call to the RpcNetEventReceiveData (section 3.1.4.2.2) method stored in the
Outstanding RpcNetEventReceiveData Call for the event session. That is, the events MUST be

removed from the list and returned in the RpcNetEventReceiveData.EventBuffer member, and the
Outstanding RpcNetEventReceiveData Call MUST be cleared.

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

23 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

3.1.6 Other Local Events

3.1.6.1 RPC Connection Termination

The server MUST treat an RPC connection termination the same as a call to the
MSFT_NetEventSession Stop (section 3.1.4.1.3) method.

3.1.6.2 Accumulating Events

When an event provider provides an event, the server MUST, for each event session with that
event provider associated, check whether the event meets the filter criteria in the Level, Match Any
Keyword, and Match All Keywords properties of the Associated Provider List entry. If the event
matches the filter criteria, the server MUST do the following:

1. If the Queued Event List is considered full (according to some implementation-specific criteria),

then increment the Lost Event Count.

2. If the Queued Event List is not full, add the event to the Queued Event List. If the Queued
Event List is now considered full, and the Outstanding RpcNetEventReceiveData Call is not
empty, then complete the outstanding call as follows.

 The events MUST be removed from the Queued Event List and returned in the EventBuffer
argument

 The Outstanding RpcNetEventReceiveData Call property is cleared.

 The Data Completion Timer (section 3.1.2) is stopped.

3. If the Queued Event List is still not full or if the Outstanding RpcNetEventReceiveData Call
is empty, then if the new event is the only event in the Queued Event List, start the Data
Completion Timer.

24 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

4 Protocol Examples

In the following example, a client requests to receive critical events from two providers on a given
remote machine that queues a maximum of 10 events per session.

According to the provider manifests, the provider GUIDs are 080197d0-d2c7-4b03-a559-
aa63191c21a0 and f4fc081a-13f7-4979-b79f-9e9ce7873b18.

1. The client specifies a Session Name of "Example Session" and calls the MSFT_NetEventSession

CreateInstance (section 3.1.4.1.1) intrinsic method on the server.

2. The server verifies that the name "Example Session" is not already in use, and if it is not, allocates
a new GUID (120d3b52-1607-49cb-9d3f-5080002d0eaf) for the Session ID, creates an event
session entry with the Session ID and the client’s Session Name, and returns the object
reference to the client.

3. The client calls the MSFT_NetEventProvider CreateInstance (section 3.1.4.1.5) intrinsic

method on the server, passing the GUID of the first provider (080197d0-d2c7-4b03-a559-

aa63191c21a0) and the Session ID allocated in step 2.

4. The server locates the event session object in its Session Table, verifies that the provider GUID
matches a provider ID in a provider manifest, and adds an Event Provider entry to its
Associated Provider List for the first event provider.

5. The client calls the MSFT_NetEventProvider CreateInstance intrinsic method on the server,
passing the GUID of the second provider (f4fc081a-13f7-4979-b79f-9e9ce7873b18) and the

Session ID allocated in step 2.

6. The server locates the event session object in its Session Table, verifies that the provider GUID
matches a provider ID in a provider manifest, and adds an Event Provider entry to its
Associated Provider List for the second event provider.

7. The client calls the MSFT_NetEventSession Start (section 3.1.4.1.2) method.

8. The server verifies that the Associated Provider List is not empty, starts an RPC endpoint, and
changes the Session State to Running.

9. The client calls the RpcNetEventOpenSession (section 3.1.4.2.1) method, passing the name
from Session Name from step 1, "Example Session".

10. The server searches its Session Table for a session with a matching name, and when one is
located, allocates a Session Handle and stores it in the session entry. The server then begins
collecting events from the associated event providers into the event session entry’s Queued
Event List and returns the Session Handle to the client.

11. In this example, the server collects more events than the maximum amount specified for storage
in the Queued Event List. Therefore, after the Queued Event List is full, the server starts
incrementing the event session entry’s Lost Event Count.

12. The client calls the RpcNetEventReceiveData (section 3.1.4.2.2) method to retrieve the events,

passing in the Session Handle acquired in step 10.

13. The server locates the event session entry corresponding to the specified Session Handle and
determines that the Queued Event List is full. The server immediately completes the call to

RpcNetEventReceiveData with an EVENT_BUFFER (section 2.2.2.1) containing 11 structures.
The first ten structures are EventRecord structures (section 2.3.2.1) holding the 10 queued
events, and the last is a NET_EVENT_LOST structure (section 2.3.2.3) containing the number of
lost events. The events are removed from the Queued Event List, allowing more events to start
being queued for delivery in the next call from the client.

25 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

14. The client determines that the call to RpcNetEventReceiveData has completed and then calls
the MSFT_NetEventSession Stop (section 3.1.4.1.3) method.

15. The server stops the RPC endpoint, removes all state for the event session, including any queued
events, and completes the call to RpcNetEventReceiveData as successful.

In the example above, the client could have called the RpcNetEventCloseSession (section
3.1.4.2.3) method. However, calling this method was not necessary because the call to
MSFT_NetEventSession Stop removed all of the resources that this method would have removed.

26 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

5 Security

5.1 Security Considerations for Implementers

The LREC protocol allows a user to establish a connection to an RPC server. The LREC protocol uses

the underlying RPC protocol to retrieve the identity of the caller that made the method call as specified
in [MS-RPCE] section 3.3.3.4.3. Clients are required to create an authenticated RPC connection and
servers are required to use this identity to perform method-specific access checks.

The client can request data channel encryption by specifying the RPC_C_AUTHN_LEVEL_PKT_PRIVACY
RPC authentication level. When it is possible for events to contain confidential information, it is
important for clients to either access the server over a secure network or use data channel encryption.

5.2 Index of Security Parameters

Security Parameter Section

RPC_C_AUTHN_GSS_NEGOTIATE section 2.1.1

%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

27 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

6 Appendix A: Full IDL

For ease of implementation the full IDL is provided below, where "ms-dtyp.idl" refers to the IDL found
in [MS-DTYP] Appendix A. The syntax uses the IDL syntax extensions defined in [MS-RPCE] sections
2.2.4 and 3.1.1.5.1. For example, as noted in [MS-RPCE] section 2.2.4.9, a pointer_default
declaration is not required and pointer_default(unique) is assumed.

 import "ms-dtyp.idl";

 [uuid(22e5386d-8b12-4bf0-b0ec-6a1ea419e366)]
 [version(1.0)]

 interface NetEventForwarder {

 typedef [context_handle] void* PSESSION_HANDLE;

 typedef struct _EVENT_BUFFER {
 unsigned long BufferLength;
 [size_is(BufferLength)] byte* Buffer;
 } EVENT_BUFFER;

 DWORD RpcNetEventOpenSession(
 [in] handle_t BindingHandle,
 [in] [string] wchar_t* LoggerName,
 [out] PSESSION_HANDLE* SessionHandle
);

 DWORD RpcNetEventReceiveData(
 [in] PSESSION_HANDLE SessionHandle,
 [out] EVENT_BUFFER* EventBuffer
);

 void RpcNetEventCloseSession(
 [in, out] PSESSION_HANDLE* SessionHandle
);
 };

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-RPCE%5d.pdf#Section_290c38b192fe422991e64fc376610c15

28 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

7 Appendix B: Full MOF

For ease of implementation, the following is the full MOF syntax for this protocol.

 [
 ClassVersion("1.0"),
 Description("This class encapsulates event capture session on a host")
]
 class MSFT_NetEventSession
 {
 [Key, Description("GUID, the unique of the session, a read-only property")]
 string Guid;
 [Description("The friendly Name of the session")]
 string Name;
 [Description("Specifies event session mode (RealtimeRPC, SaveToFile)")]
 uint8 CaptureMode;
 [Description("Local filename. Only valid when CaptureMode is set toSaveToFile")]
 string LocalFilePath;
 [Description("Maximum file size in MB. Only valid when CaptureMode is set
 toSaveToFile")]
 uint32 MaxFileSize;
 [Description("Specifies the trace buffer size in KB")]
 uint32 TraceBufferSize;
 [Description("Specifies the maximum number of trace buffers")]
 uint8 MaxNumberOfBuffers;
 [Description("Current Status of the Session")]
 uint8 SessionStatus;
 [Description("Starts the event capture on the host")]
 uint32 Start();
 [Description("Stops the event capture")]
 uint32 Stop();
 };

 [
 ClassVersion("1.0"),
 Description("This class encapsulates event provider on a host for the event capture")
]
 class MSFT_NetEventProvider
 {
 [Key, Description("Guid, the unique id of the provider installed on the system")]
 string Guid;
 [Key, Description("Guid, the unique id of the session, when part of a session.
 NULL Guid otherwise.")]
 string SessionGuid;
 [Description("Name of the provider")]
 string Name;
 [Description("Name of the associated trace session")]
 string SessionName;
 [Description("Maximum event level for the event capture, when part of a session")]
 uint8 Level;
 [Description("MatchAnyKeyword mask specified for the event capture")]
 uint64 MatchAnyKeyword;
 [Description("MatchAllKeyword mask specified for the event capture")]
 uint64 MatchAllKeyword;
 };

29 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

8 Appendix C: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Windows Server 2012 R2 operating system

 Windows Server 2016 operating system

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears

with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the

product does not follow the prescription.

<1> Section 2.1.2: Windows requests RPC_C_AUTHN_LEVEL_PKT_PRIVACY by default.

<2> Section 3.1.1: Windows expresses a provider manifest in an XML file as described in [MSDN-
EvntManifest]. For more information on defining event templates in a provider manifest, see [MSDN-
DefiningEventData].

<3> Section 3.1.4.1.1: Windows supports only one event session.

https://go.microsoft.com/fwlink/?LinkId=299240
https://go.microsoft.com/fwlink/?LinkId=299240
https://go.microsoft.com/fwlink/?LinkId=299238
https://go.microsoft.com/fwlink/?LinkId=299238

30 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

9 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

31 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

10 Index

A

Abstract data model
 server 17
 NetEventForwarder 17
Applicability 9

C

Capability negotiation 10
Change tracking 30
Common data types 11
 structures 12

D

Data model - abstract
 server 17
 NetEventForwarder 17
Data types
 common - overview 11

E

EVENT_BUFFERstructure 12
EventRecord Structurestructure 14
Events
 timer
 server
 NetEventForwarder 22
Examples
 overview 24

F

Fields - vendor extensible 10
Full IDL 27

G

Glossary 5

I

IDL 27
Implementer - security considerations 26
Index of security parameters 26
Informative references 7
Initialization
 server 18
 NetEventForwarder 18
Introduction 5

M

Managed Object Format (MOF) Structures message

12
Messages
 common data types 11
 Managed Object Format (MOF) Structures 12
 RPC Structures 14
 transport 11

Methods
 RPC Opnum Method Calls 20
MSFT_NetEventProvider Classstructure 13
MSFT_NetEventSession Classstructure 12

N

NET_EVENT_DATA_HEADER Structurestructure 15
NET_EVENT_LOST Structurestructure 16
Normative references 7

O

Overview (synopsis) 7

P

Parameters - security index 26
Preconditions 9
Prerequisites 9
Product behavior 29
Protocol Details
 overview 17

R

References 6
 informative 7
 normative 7
Relationship to other protocols 8
RPC Opnum Method Calls method 20
RPC Structures message 14

S

Security
 implementer considerations 26
 parameter index 26
Server
 abstract data model 17
 initialization 18
 NetEventForwarder
 abstract data model 17
 initialization 18
 RPC Opnum Method Calls method 20

 timer events 22
 timers 18
 timer events 22
 timers 18
Standards assignments 10
Structures
 EVENT_BUFFER 12
 EventRecord Structure 14
 MSFT_NetEventProvider Class 13
 MSFT_NetEventSession Class 12
 NET_EVENT_DATA_HEADER Structure 15
 NET_EVENT_LOST Structure 16
 overview 12

T

Timer events

32 / 32

[MS-LREC] - v20170601
Live Remote Event Capture (LREC) Protocol
Copyright © 2017 Microsoft Corporation
Release: June 1, 2017

 server 22
 NetEventForwarder 22
Timers
 server 18
 NetEventForwarder 18
Tracking changes 30
Transport 11

V

Vendor extensible fields 10
Versioning 10

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.1.1 RPC Server Settings
	2.1.2 RPC Client Settings

	2.2 Common Data Types
	2.2.1 Data Types
	2.2.1.1 PSESSION_HANDLE

	2.2.2 Structures
	2.2.2.1 EVENT_BUFFER

	2.3 Message Syntax
	2.3.1 Managed Object Format (MOF) Structures
	2.3.1.1 MSFT_NetEventSession Class
	2.3.1.2 MSFT_NetEventProvider Class

	2.3.2 RPC Structures
	2.3.2.1 EventRecord Structure
	2.3.2.2 NET_EVENT_DATA_HEADER Structure
	2.3.2.3 NET_EVENT_LOST Structure

	3 Protocol Details
	3.1 NetEventForwarder Server Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Message Processing Events and Sequencing Rules
	3.1.4.1 WS-Management Method Calls
	3.1.4.1.1 MSFT_NetEventSession CreateInstance
	3.1.4.1.2 MSFT_NetEventSession Start
	3.1.4.1.3 MSFT_NetEventSession Stop
	3.1.4.1.4 MSFT_NetEventSession DeleteInstance
	3.1.4.1.5 MSFT_NetEventProvider CreateInstance
	3.1.4.1.6 MSFT_NetEventProvider ModifyInstance
	3.1.4.1.7 MSFT_NetEventProvider DeleteInstance

	3.1.4.2 RPC Opnum Method Calls
	3.1.4.2.1 RpcNetEventOpenSession (Opnum 0)
	3.1.4.2.2 RpcNetEventReceiveData (Opnum 1)
	3.1.4.2.3 RpcNetEventCloseSession (Opnum 2)

	3.1.5 Timer Events
	3.1.6 Other Local Events
	3.1.6.1 RPC Connection Termination
	3.1.6.2 Accumulating Events

	4 Protocol Examples
	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Full IDL
	7 Appendix B: Full MOF
	8 Appendix C: Product Behavior
	9 Change Tracking
	10 Index

