
Chapter 1
Introduction to quantum plasma simulations

Sebastian Bauch, Karsten Balzer, Patrick Ludwig, and Michael Bonitz

Abstract This chapter contains a brief introduction to the field of quantum simula-
tions. Beginning with a numerical treatment of single-particle problems by exact
numerical solution of the time-dependent Schrödinger equation , we demonstrate con-
cepts useful in the computational treatment of quantum systems. These rather basic
techniques are limited by the number of particles, N . Considering an increase of sys-
tem size, approximation methods arising from many-particle theories are necessary.
Here, we introduce two powerful approaches: the (time-dependent) Hartree-Fock
method with improvements for inclusion of correlations based on nonequilibrium
Green’s functions and, for the calculation of time-independent phenomena, a rigorous
quantum Monte Carlo technique. These computational tools complement each other
and thus provide for a comprehensive theoretical modelling of quantum plasmas.

1.1 Introduction

Modern experimental techniques allow for the selective manipulation of small micro-
and nanoscale systems (quantum plasmas) of even less than one hundred particles.
Although the fundamental physical laws which govern these measurements are well-
known, exact analytical solutions are available only for a very limited number of
many-particle systems, such as ideal solids (i.e. highly periodic structures without
any lattice defects or distortions) or non-interacting classical (i.e. Γ � 1) or quantum
gases (rs � 1). Consideration of interaction makes things much more interesting,
but also more complex and theoretically challenging. In most practical cases the
fundamental many-body Hamiltonian, Eq. (1.1), cannot be directly diagonalized and
more efficient numerical methods are needed. In fact, even simple models used to
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describe interacting quantum systems in the regime of strong particle correlations
are computationally very demanding (see the chapter by Bonitz et al.).

In the investigation of ground states and phase transitions, we utilize different
classical and quantum bottom-up approaches . This means that the theoretical de-
scription starts at the microscopic level of individual particles and, thereby, takes
full account of all microscopic many-particle interactions. The only simulation input
data involved are the fundamental pair interaction potentials as well as the bound-
ary (confinement) conditions. Hence, the theoretical framework of computational
bottom-up methods on hand allows for highly flexible modeling with regard to the
specific experimental setup (trap geometry, external fields, number of particles etc.)
and yields direct results that are free from any fitting parameters.

The numerical modelling of quantum systems starts from the fundamental many-
body Hamiltonian introduced in the previous chapter,

Ĥ =
N∑
i=1

P̂ 2
i

2mi
+

N∑
i=1

Vi(ri, t) +
1
2

N∑
i 6=j

w(ri, rj) . (1.1)

Again, N is the particle number involved, mi the mass of the ith particle, Vi(ri, t)
the single-particle potential (e.g. external confinement, time-dependent perturbations,
. . . ) of the ith particle and w(ri, rj) the binary interaction between the ith and
jth particles, e.g. the Coulomb interaction between charged particles w(ri, rj) =
e2/|ri − rj |.

The Hamiltonian, Eq. (1.1), fully describes the system of interest, its ground state
(equilibrium) properties as well as its dynamical behavior following a perturbation,
V (t). The first part of this introduction deals with solution schemes for investigation
of the temporal development of excited systems on the basis of the single-particle
time-dependent Schrödinger equation (TDSE), section 1.2. Then, in section 1.3,
we discuss equilibrium and non-equilibrium properties of many-body systems by
means of (time-dependent) Hartree-Fock (HF, TDHF) simulations and systematic
improvement of the approximation with respect to the binary inter-particle interaction
w. The chapter continues with an overview of the path integral Monte Carlo (PIMC)
method, which allows for a finite temperature description of equilibrium properties
of large quantum systems in section 1.4.

1.2 Time-dependent Schrödinger equation

Time-dependent phenomena, such as ionization, scattering and excitation, are accu-
rately described within the framework of the time-dependent Schrödinger equation,
which reads as

i~
∂

∂t
Ψ(x1, . . . ,xN , t) = ĤΨ(x1, . . . ,xN , t) . (1.2)



1 Introduction to quantum plasma simulations 3

xi = (ri, σi) denotes the combination of the spatial coordinate vector, ri, and the
spin variable σi.

Due to the great complexity of the time-dependent problem, the many-body TDSE,
Eq. (1.2), can only be solved in very few cases. Therefore, the following discussion
of the numerical treatment involves two parts: the exact solution of the one-particle
(N = 1) TDSE and the approximative solution of the many-body (N > 1) TDSE in
the next section, see section 1.3.

In the atomic system of units , with ~ = m = e = 1, Eq. (1.2) for one particle
simplifies to

i
∂

∂t
Ψ(r, t) = −1

2
∆Ψ(r, t) + V (r, t)Ψ(r, t) , (1.3)

where the spin degree of freedom is neglected. The numerical solution of the TDSE is
a widely studied subject. There exist many different approaches. Each computational
technique has its own range of applicability and one has to choose carefully the most
suitable investigative procedure as this can enormously affect the resulting efficiency
and accuracy.

The formal solution of the TDSE for slow time variation of V (r, t) is given by
the time evolution operator

Û(t, t0) = exp
[
−iĤ(t− t0)

]
Ψ0(r) , (1.4)

where the corresponding time evolution of the wavefunction Ψ(r, t) takes the form

Ψ(r, t) = Û(t, t0)Ψ0(r) . (1.5)

Here, Ψ0(r) = Ψ(r, t ≡ t0) denotes the initial condition initial condition, that is, the
state of the system at initial time t0 of the time evolution. Since we are, for numerical
reasons, interested in propagation over a small time step of duration ∆t, we only
consider the case of Hamilton operators which are not explicitly time-dependent. The
external potential, V̂ (r, t), is taken to be slowly time-dependent, e.g., by modelling an
external perturbation (laser field, etc.). Otherwise, Û would take a more complicated
form, which is well-known from text-book quantum mechanics. Here, the main idea
is, that V̂ (r, t) is approximated to be constant during a certain, small time interval
∆t. This can (always) be assured by the choice of a sufficiently small ∆t. In the
following we will discuss two methods to solve Eq. (1.5) numerically, which have
advantages for different types of systems.

1.2.1 1D-Crank-Nicolson method

In this tutorial, we concentrate on the solution of the one-dimensional form of
Eq. (1.3), which reads as

i
∂

∂t
Ψ(x, t) = −1

2
d2

dx2
Ψ(x, t) + V (x, t)Ψ(x, t) . (1.6)
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The generalization of the described method to systems of higher dimensions (e.g.
by operator splitting) can be found in the literature, e.g. [1]. Eq. (1.6) is a complex
diffusion-like initial value problem which has to be supplemented by boundary
conditions.

A stable, implicit time evolution scheme, which leads to the Crank-Nicolson
procedure is based on Cayley’s form of the time evolution operator e−iĤ∆t [1],
which is the lowest order of a Padé expansion of the exponential function,

e−iĤt ≈ 1− 1
2 iĤ∆t

1 + 1
2 iĤ∆t

. (1.7)

This expansion implies a unitary time evolution, hence the normalization of the wave
function,

n(x, t) =
∫ ∞
−∞
|Ψ(x, t)|2dx , (1.8)

is assured to be one for all times t, which one might easily show for our case by
inserting Eq. (1.7) into Eq. (1.8). In contrast to explicit schemes , where the TDSE is
solved for the wave function Ψ and then integrated with respect to t, implicit schemes
are numerically more advanced. Generally, in such an implicit scheme, the wave
function is not directly accessable, but has to be obtained by solving a system of
linear equations.

Further, we discretize our spatial coordinate x by introducing a spacing ∆x,
cf. figure 1.1. Therefore, for x ∈ [xi, . . . , xi+1] with ∆x = |xi+1 − xi| we write
Ψni ≡ Ψ(x, t). The index i = 1 . . . Nx indicates the spatial discretization with the
step size ∆x, whereas the superscript n denotes the corresponding discretization in
time. Hence, n+ 1 ≡ t+∆t and i+ 1 ≡ x+∆x, for example.

Using Eq. (1.7) as an approximation for Û in Eq. (1.5), one represents the propa-
gation of Ψni to the state Ψn+1

i of later time as(
1 +

1
2

iĤ∆t
)
Ψn+1
i =

(
1− 1

2
iĤ∆t

)
Ψni . (1.9)

Now, the remaining task is to find a representation of the Hamilton operator
Ĥ . In our case, it is replaced by a finite difference approximation . We consider a
second-order expression for the derivatives,

d2

dx2
Ψ(x, t) ≈ Ψni+1 − 2Ψni + Ψni−1

(∆x)2
. (1.10)

Ψ1 ΨN

∆xi = 1 i = N

Fig. 1.1 Schematic view of the one-dimensional grid. The TDSE is solved within the marked region
on a number Nx discrete grid points. i = 1 and i = Nx are defined by the boundary conditions.
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Of course, higher-order schemes can be implemented; for a recent adaption of the
methods see e.g. [2].

Combining Eqs. (1.9) and (1.10) with α = i∆t/(2∆x)2 and

ai = −α = ci , bi = 1 + 2α+
1
2
i∆t V n+1

i , i = 2 . . . Nx − 1 , (1.11)

the l.h.s. of Eq. (1.9) is given by(
1 +

1
2
i∆tĤ

)
Ψn+1
i = aiΨ

n+1
i−1 + biΨ

n+1
i + ciΨ

n+1
i+1 . (1.12)

Analogously, the r.h.s. of Eq. (1.9) transforms into(
1− 1

2
iĤ∆t

)
Ψni = Ψni

(
1− 2α− 1

2
i∆tV ni

)
+αΨni−1 +αΨni+1 ≡ rni . (1.13)

Expressing the combination of Eq. (1.12) and Eq. (1.13) in matrix form one finds
a tridiagonal form of the system of linear equations for the Nx unknown variables
Ψn+1
i , i = 1 . . . Nx:

b1 c1 0 0
a2 b2 c2 0
. . . .
0 0 aNx bNx

 ·

Ψn+1

1

Ψn+1
2

.
Ψn+1
Nx

 =


rn1
rn2
.
rnNx

 (1.14)

The elements b1, c1 and rn1 are defined by the boundary conditions at the left edge
of the grid (an example is given below). Similarly, bNx , cNx and rnNx are defined at
the right edge. Since the matrix of coefficients in Eq. (1.14) is very sparse, it can be
solved and stored very efficiently. Many numerical libraries have specialized routines
implemented to handle such matrices.

1.2.1.1 Boundary conditions

The initial value problem of the TDSE is supplemented by boundary conditions,
which close the partial differential equation mathematically. Several possibilities are
available, e.g. Dirichlet , von Neumann and absorbing conditions . They are chosen
by physical observations and define the system of interest. In this introduction only
the first one (Dirichlet) is considered.

In this case, the wave function is taken to vanish at the boundaries of the system,

lim
x→∞

Ψ(x, t)→ 0 and lim
x→−∞

Ψ(x, t)→ 0 , (1.15)

and a simulation box with reflecting grid boundaries is created. This special type of
Dirichlet boundary conditions assures conservation of the normalization of Ψ for
all times if no dissipation is artificially included (e.g. by an absorbing potential, see
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below). Eq. (1.15) can be fulfilled if the wave function is zero at the right-most and
the left-most element on the grid, i.e. Ψn0 = ΨnNx = 0 for all time steps n. This can
be satisfied by modifying the first and the last elements in the tridiagonal system of
equations, Eq. (1.14). As an exercise, the reader is left with the calculation, that gives
a1,Nx = c1,Nx = r1,Nx = 0 and b1,Nx = 1 + i. Obviously, this type of boundary
condition requires large spatial grids in order to allow for long simulation runs
without influence of reflected parts of the wave function stemming from non-physical
reflection of Ψ at the end of the simulation box.

1.2.1.2 Absorbing boundary conditions

Normalization of Ψ
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Fig. 1.2 Influence of a linear imaginary absorbing potential iV (x): Absorption of a 1D wave packet
[k = 2.0 a.u., Eq. (1.20)]. Almost the whole packet is absorbed and only a fraction smaller than
10−7 is reflected, see inset for normalization of Ψ . All quantities are given in atomic units (a.u.).

A technique of avoiding computationally expensive large grids is the introduction
of absorbing boundary conditions. In fact, there are basically two methods to be
found in the literature. The first one is especially important for one-dimensional
calculations. It is based on a mathematical theory which allows complete absorption
of the wave function at a specific grid point [3]. Its computational implementation is
difficult and for higher-dimensional systems it is not applicable [4]. We will describe
a simpler, easy to implement approach, which uses additional potentials in the system
but lacks of mathematical rigor.

If a spatially confined imaginary part is added to the one-particle potential V (x, t),
the wave function Ψ(x, t) is damped during the time of propagation over this region.
This can be rationalized in terms of the equation of continuity since this so-called
optical potential acts like a dissipation term. One finds that this damping effect
increases with higher energies of the propagated particle. Thus, the faster a particle



1 Introduction to quantum plasma simulations 7

moves the more efficiently it can be absorbed by the potential. It should be mentioned
that such absorbing potentials have to be chosen carefully. Every change in the
potential, no matter if real or imaginary, leads to a reflected part of the wave function.
Roughly speaking, the smoother the spatial variation of the imaginary potential, the
better it will work. The simplest conceptual version is, for example, given by a linear
potential. More efficient potentials are available in the literature [5, 6].

Fig. 1.2 shows the absorption of a one-dimensional wave packet for such a
linear, imaginary potential, indicated by the black line. Only a very small fraction
(10−7) survives the damping and is reflected. Such grid boundaries are of course not
boundary conditions in a mathematical sense. The system of equations, Eq. (1.14),
has yet to be closed by Dirichlet conditions discussed above.

1.2.1.3 Initial conditions

Finally, the time propagation of the TDSE needs an initial condition, Ψ0(x) =
Ψ(x, t = t0). The choice of this state reflects the physical motivation of the problem.
In the following, we will discuss two possibilities: (i) the construction of eigenstates
and (ii) the treatment of free particles by Gaussian wave packets .

(i) Imaginary Time Propagation (ITP). The above described time propagation
code can easily be used to calculate stationary states by replacing the time t by
an imaginary time it [4], which transforms the TDSE into a diffusion equation.
An arbitrary state can be written as a superposition of eigenstates with expansion
coefficient cj = 〈ψj |Ψ(t)〉,

|Ψ(t)〉 =
∑
j

cj exp(−iEjt) |ψj〉 , (1.16)

with |ψj〉 describing the stationary states. Now, if the imaginary time is inserted, one
obtains

|Ψ(t)〉 =
∑
j

cj exp(Ejt) |ψj〉 (1.17)

and the corresponding states are exponentially decaying or increasing during the
TDSE propagation depending on the sign of the energy eigenvalue Ej . Only the
ground state survives because it decays less or increases much faster than the other
states. Of course this scheme does not conserve the normalization of the Ψ . Therefore,
the wave function has to be renormalized at each time step.

Excited states, (n+ 1), where n denotes the highest, previously constructed state,
are also accessable by this procedure: The Schmidt orthogonalization of |ψ(t)〉

ψ⊥n+1(r) = ψn+1(r)−
n∑
i=0

(∫ ∞
−∞

d3r ψ∗n+1(r)ψi(r)
)
· ψi(r) (1.18)

at each time step will force the wave function to converge to the next unknown
eigenfunction. The initial wave function for the ITP may be chosen to be completely
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random or, what is better for convergence reasons, as near to the ground (excited)
state wave function as possible.

During the imaginary iteration procedure several convergence indicators can be
used. The total energy appears to be an improper criterion especially for higher
excited states. Its convergence is very fast but not sensitive to density changes. Thus
a density based quantity such as

∆ξ =
∫ ∞
−∞
|Ψ(x, t)− Ψ(x, t+∆t)|2 dx , (1.19)

is found to be of higher accuracy. The ITP method is, in contrast to other methods
like the shooting algorithm [7] , applicable to arbitrary potentials in an arbitrary
number of spatial dimensions. It may be understood as a powerful method for the
diagonalization of Ĥ in the spatial coordinate basis representation.

Gaussian wave packets . For other interesting physical questions, i.e. scattering
situations, it may be of interest, to model initially free electrons. One possibility is
the usage of Gaussian wave packets, see e.g. [8]:

Ψ(x, t0) =
1√
2πσ

exp
(
− (x− x0)2

2σ2

)
exp(ik0x) . (1.20)

The initial momentum k0 describes how fast the electron travels, whereas x0

determines its initial position at time t = t0 and σ its spatial spreading. Through
Heisenberg’s uncertainty law, σ also defines the momentum distribution, which
corresponds to a smoothed energy distribution via the free particle dispersion law
E = k2

0/2. All these issues have to be kept in mind in order to make accurate
simulations of quantum systems.

1.2.2 TDSE solution in basis representation

In this section, we describe a different solution scheme for the one-particle TDSE, cf.
Eq. (1.3), which only relies on matrix multiplications and (at least one) diagonaliza-
tion of the Hamilton matrix . Depending on the systems considered (e.g. confined
systems), it is very efficient. The applied techniques described here are the basis for
the following introduction to Hartree-Fock methods (section 1.3); hence, study of
this section is strongly suggested before continuing to the next part.

To start, we express the wave function |Ψ(t)〉 in a complete orthonormal basis set
{ϕi}i=1..∞, where 〈ϕi|ϕj〉 = δij holds:

|Ψ(t)〉 =
∞∑
i=0

ci(t) |ϕi〉 . (1.21)

The expansion coefficients are given by ci(t) = 〈ϕi|Ψ(t)〉. For numerical reasons it
is necessary, analogously to the introduction of the finite spatial grid in the previous



1 Introduction to quantum plasma simulations 9

section, to truncate the sum in Eq. (1.21) at a finite number Nb. With this, the basis
is no longer complete in the mathematical sense and one has to assure that the
chosen basis functions reflect the final solutions as closely as possible, minimizing
the required number of basis functions, Nb. This is a challenging task, especially in
the case of highly dynamical behavior of the system considered. During the time
evolution, many intermediate states may be accessed and all these states have to be
described as accurately as possible by the basis.

As described above, in addition to the Hamilton operator and the corresponding
time evolution operator , an initial condition Ψ(t = t0) is needed, which corresponds
to an initial set of expansion coefficients {ci(t0)}i=1..Nb.

1.2.2.1 Deriving a time evolution scheme

The determination of an expression for the time evolution of the vector of Nb
coefficients c(t) can be achieved by applying the time evolution operator Û to
the initial state: |Ψ(t)〉 = Û |ψ0〉. To extract ci(t), we expand |Ψ(t)〉 and insert
1̂ =

∑Nb
i |ϕi〉 〈ϕi|:

|Ψ(t)〉 =
Nb∑
j=0

cj(t) |ϕj〉 =
Nb∑
i

Û |ϕi〉
〈
ϕi

∣∣∣∣∣
Nb∑
l

cl(t = t0)

∣∣∣∣∣ϕl
〉
. (1.22)

Multiplying the whole equation from the left with 〈ϕk| yields

Nb∑
j=0

cj(t) 〈ϕk|ϕj〉 =
Nb∑
i=0

〈ϕk|Û |ϕi〉
〈
ϕi

∣∣∣∣∣
Nb∑
l=0

cl(t = t0)

∣∣∣∣∣ϕl
〉
. (1.23)

Therefore, we finally obtain the time-dependent coefficients as

ck(t) =
Nb∑
i=0

Uki

Nb∑
l=0

cl(t = t0) 〈ϕi|ϕl〉 =
∑
i

Ukici(t = t0) . (1.24)

This is simply a matrix product and can be written in the form

c(t) = U · c(t = t0) , (1.25)

with U = {Uij }i,j∈{ 1,...,Nb } denoting an Nb ×Nb matrix.

1.2.2.2 Computation of matrix elements of Uij

The remaining problem is to find the basis representation of the time evolution
operator Û = exp(iĤ∆t), cf. Eq. (1.5), i.e. the (Nb)2 complex matrix elements Uij
of U.
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Applying basic linear algebra leads to

Uij = 〈ϕi|Û |ϕj〉 =
∞∑
k=0

〈ϕi|ψk〉 〈ψk|ϕj〉 exp(iEk∆t) . (1.26)

Here, |ψk〉 are the eigenfunctions of Ĥ corresponding to the eigenvalue Em. The
first two factors on the right-hand-side of Eq. (1.26) are simply the eigenvectors of Ĥ
in the basis representation |ϕi〉i=1..Nb, which can be obtained by a diagonalization
of the Hamiltonian. This diagonalization of Ĥ has to be performed for each temporal
change in Ĥ which leads to a computationally very efficient propagation scheme for
given excitations. From the obtained (time-dependent) expansion coefficients ci(t),
all expectation values can be computed.

Boundary conditions , as considered above, are not to be specified explicitly. They
are embedded in the behavior of the chosen basis functions. For the initial moment
of time propagation, one only has to specify a certain set of ci(t = t0), hence it is
very easy to prepare a system in a bound state if the basis is chosen to be a set of
associated eigenstates. Thus it is clear, that this method has advantages for localized
systems in traps, atoms, etc., but may reach its limits in the consideration of situations
where combinations of free particles and localized states are involved. For this case,
grid methods perform better.

1.2.3 Computational example: electron scattering in a laser field

In this section, we demonstrate the utility of the above-described algorithms by
their application to a simple physical system, which is, due to its computational
complexity, analytically not accessable. Let us consider a free electron, represented
by a wave packet of Gaussian shape , cf. Eq. (1.20), travelling with a momentum k0

towards an ion. The whole system is radiated with a strong, linearly polarized laser
field , modelled by the potential (in dipole approximation)

Vlaser(x, t) = −E0 x cos(ωt) . (1.27)

The electron may now absorb energy from the laser field during the scattering
process, and due to the quantization character, only in amounts equal to ω (remember:
~ = m = e = 1 in our system of units). The setup of the system is schematically
drawn in fig. 1.3.

After propagating the TDSE with the Crank-Nicolson procedure described above,
the resulting wave function outside the ion-potential is transformed by a fast
Fourier transform into momentum space. Using the free-particle dispersion rela-
tion, E = p2/2m, the energy distribution is calculated. Fig. 1.4 shows the result
of the simulation of such a scattering process with k0 = 4.0 a.u. in a strong laser
field with parameters given in the figure caption. The sign of the energy indicates
forward (+) and backward (−) scattering, respectively. One easily identifies the peak
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−x0

k0

potential
initial wave packet

x0

Fig. 1.3 Schematic view of the Coulomb scattering process. The electronic wave packet is launched
at a distance x0 from the ion with a momentum k0 directed towards the ion. The whole setup is
placed in a strong linearly polarized laser field.

of elastically forward scattered electrons with an energy of E = k2
0/2 = 8.0 a.u. In

backward direction (negative energies) a large plateau in the energy distribution is
formed with two significant cut-off energies, which can easily be obtained using a
simple classical theory [8, 9]. A closer look at the energy spectrum reveals a peak-like
structure, where each individual peak is separated by the photon energy ω.
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Fig. 1.4 Energy distribution (left) and initial+final electron density (right) of a Coulomb scattering
process with k0 = 4.0 a.u. in a strong laser field with ω = 0.2 a.u., E0 = 0.2 a.u.. Negative
(positive) energies indicate backward (forward) scattering.

1.3 Hartree-Fock Method

The time-dependent Hartree-Fock (TDHF) method aims at approximately solving
the time-dependent N -particle Schrödinger equation
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−i ∂
∂t
Ψ(x1, . . . ,xN , t) = ĤΨ(x1, . . . ,xN , t) , (1.28)

with xi = (ri, σi) and Hamiltonian1

Ĥ =
N∑
i=1

(
−∇

2
ri

2m
+

N∑
i=1

V (ri, t)

)
+

N∑
i<j

w(ri − rj) . (1.29)

Thereby, it offers partial information when the exact solution is not accessible, e.g. by
the numerical techniques described in the last section. The TDHF scheme can be
derived from several different (but equivalent) aspects of many-body theory [10].
Here, we concentrate on two common approaches. The first outlines the standard
derivation which handles the problem on the level of an approximateN -particle wave
function, Ψ(x1, . . . ,xN , t). The main quantity of the second is based on a two-time
generalization of the one-particle density matrix , %(x, x̄; t)—the nonequilibrium
Green’s function (NEGF) .

The idea of TDHF dates back to Dirac[11] and has had first applications in
nuclear collisions and atomic physics [12]. More recent approaches—to name only a
few—include the dynamics of electrons in molecules [13], atoms exposed to strong
laser fields [14] as well as single and double ionization processes, see e.g. [15]
and references therein. Further more, in condensed matter physics and non-ideal
plasmas, the TDHF ansatz has been used successfully in the framework of NEGFs
[16, 17, 18, 19, 20]. Moreover, the method is closely related to the random phase
approximation (RPA) , e.g. as applied in the theory of dielectric functions [21].

Standard approach. Considering fermions, the TDHF method starts with the time-
dependent Schrödinger equation (1.28) approximating the total many-body wave
function to be a totally anti-symmetrized product of one-particle orbitals φi(xi, t)
(i ∈ { 1, . . . , N }) which depend on time [10]. Thus, Ψ(x1, . . . ,xN , t) becomes a
single Slater determinant D according to

Ψ(x1, . . . ,xN , t) = Â

N∏
i=1

φi(xi, t) =
1√
N !
D(φi(xj , t))

=: |Ψ [φ1, . . . , φN ]〉 ,
(1.30)

where Â denotes the anti-symmetrization operator . The equations of motion for the
orbitals φi then follow from the action functional[15]

A[φ1, . . . , φN ] =
∫ t1

t0

dt
〈
Ψ [φ1, . . . , φN ]

∣∣∣∣ i ∂∂t − Ĥ
∣∣∣∣Ψ [φ1, . . . , φN ]

〉
, (1.31)

which must be stationary under variations of the orbitals when the constraint δφi = 0
∀i is applied at t = t0 and t = t1. Using this action principle, the norm of the

1 For simplicity, we suppress the Planck quantum ~ in Eqs. (1.28) and (1.29) as well as in the
remainder of this chapter.
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many-body wave function Ψ is conserved while inserting definition (1.30) directly
into the TDSE and presuming all φi to be orthonormal, i.e. 〈φi|φj〉 = δij ∀t, leads
to a set of equations by which the norm of Ψ varies. The latter approach is more
straight forward and leads to the coupled system of equations

i
∂

∂t
φi(x, t) =

(
Ĥ0(x, t) + Σ̂[φ](x, t)

)
φi(x, t) , (1.32)

with the single-particle energy operator Ĥ0(x, t) = −∇2
x/(2m) + V (x, t), and the

self-energy operator Σ̂(x, t), which accounts for particle-particle interactions. The
notation Σ̂[φ] indicates that the self-energy is a functional of all φi with i = 1, . . . , N .
Further, the sum Ĥ0 +Σ̂ is often called Fock operator in the literature[14]. Explicitly,
the action of the operator Σ̂ on the orbital φi is given by

Σ̂(x, t)φi(x, t) =

∑
j

∫
dx̄ |φj(x̄, t)|2w(x− x̄)

φi(x, t)

−
∑′

i<j

(∫
dx̄]φi(x̄, t)φj(x̄, t)w(x− x̄)

)
φj(x, t) . (1.33)

The first term constitutes the classical mean-field (Hartree) potential as an integral
over the orbital resolved density ni(x, t) = |φi(x, t)|2. The second is the exchange
potential (or Fock term) which is the indispensable quantum mechanical correction ac-
counting for anti-symmetrization and the Pauli exclusion principle . In this sense, the
ansatz (1.30) neglects any correlation effects which arise from terms of higher than
first order in the interaction potential. Systematic improvements of TDHF results are
possible, e.g. by multiconfiguration time-dependent Hartree-Fock (MCTDH) theory
which involves superpositions of several Slater determinants [22], time-dependent
density functional theory (TDDFT) including exchange-correlation functionals [23]
or nonequilibrium Green’s function theory with higher-order self-energies [24, 16].

Of course, in regard to time evolution, Eq. (1.32) needs to be supplied with initial
conditions which are just the stationary (ground state) solutions with i∂/∂tφi(x, t)
replaced by εiφ0

i (x). The energy eigenvalues εi and the corresponding orbitals φ0
i (x)

can be computed either by propagation of Eq. (1.32) in imaginary time —as described
for the TDSE in the previous section—or by iterating the stationary equations until
a self-consistent solution {εi, φ0

i (x)} is obtained (self-consistent field method, see
e.g. [25, 26, 27]). However, the latter procedure is, in contrast to the imaginary time
propagation technique, not conveniently performed on spatial grids, but it is instead
transformed into a generalized eigenvalue problem by using a basis expansion for
the initial set of orbitals:

φ0
i (x) =

nb∑
j=1

cjiϕj(x) , (1.34)

where the nb – in principle – arbitrary (or adapted) functions ϕj(x) have overlap
Oij = 〈ϕi|ϕj〉, and cji are the unknown coefficients. Using (1.34) in the stationary
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form of Eq. (1.32) and integrating over space yields the so-called Roothaan-Hall
equations[27]

nb∑
k=1

(
H0
ik +Σik[c]− εjOik

)
ckj = 0 . (1.35)

Here, the one-particle energy and the self-energy become matrices, Ĥ0(x)→ H0
ij

and Σ̂[φ](x)→ Σij [c], which are defined by

H0
ij =

∫
dxϕ∗i (x)Ĥ0(x)ϕj(x) , (1.36)

Σij [c] =
∑
kl

(wij,kl − wil,kj)%kl[c] , (1.37)

with the single-particle density matrix, %ij [c] =
∑
k≤N cikc

∗
jk, and two-particle

integrals given by

wij,kl =
∫∫

dx dx̄ ϕ∗i (x)ϕ∗k(x̄)w(x− x̄)ϕj(x)ϕl(x̄) . (1.38)

To solve the Roothaan-Hall equations iteratively, one starts from a random or trial
state characterized by the density matrix %ij [provide either %ij or the expansion
coefficients cij]. Then, the self-energy is computed from Eq. (1.37) and the general
eigenvalue problem (1.35) is solved for a new set of coefficients cij . The procedure
is finally repeated until self-consistency is achieved, in which all elements %ij have
reached a fixed point. However, the solution contains, in general, more thanN orbitals.
TheN energetically lowest (occupied) orbitals, φ0

i≤N , form the desired (pure) ground
state wave function, whereas the remaining nb −N (virtual) orbitals are connected
with the excited states of the system. Hence, the self-consistent field method also
allows for the description of mixed states when a finite temperature (grand canonical)
density matrix , %ij →

∑nb
k=1 cikfβ(εk − µ)c∗jk, is used, where fβ(εi − µ) denotes

the Fermi-Dirac distribution with inverse temperature β = (kBT )−1 and µ is the
chemical potential obtained from

∑nb
k=1 fβ(εi − µ) = N . However, note that the

time-dependent Hartree-Fock equations (1.32) do not provide for the propagation of
mixed states.

NEGF approach. The theory of nonequilibrium Green’s functions[24, 16] offers an
alternative formulation of the TDHF method in terms of a generalized on6e-particle
density matrix G(x, t; x̄, t̄), which is called a Green’s function and depends on two
space-time variables—again x = (r, σ). Utilizing NEGFs it is, particularly, possible
to go beyond the ansatz (1.30) by systematically including correlations via higher-
order self-energy contributions[24, 29]. Also, the approach is capable of handling
the time-dependence of mixed states.

Using ~ = 1, the nonequilibrium Green’s function is defined by

G(x, t; x̄, t̄) = −i 〈TCψ̂H(x, t)ψ̂†H(x̄, t̄)〉 , 〈. . .〉 = Tr{% . . .} , (1.39)
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with fermionic field operators ψ̂H(x, t) in the Heisenberg picture2, and time-
arguments t and t̄ defined on the complex Schwinger/Keldysh contour C [28].
Further, the operator TC ensures time-ordering on C. FromG, the one-particle density
matrix, and many other observables [18], are recovered in the limit of equal times:

%(x, x̄; t) = −iG<(x, t; x̄, t) , (1.40)

with definitionG(1, 1̄) = θ(t−t̄)G>(1, 1̄)−θ(t̄−t)G<(1, 1̄) and notation 1 = (x, t)
and 1̄ = (x̄, t̄). The two-time Green’s functionG obeys generalized kinetic equations
, the Keldysh/Kadanoff-Baym equations (KBE) [24][

i
∂

∂t
− Ĥ0(1)

]
G(1, 1̄) = δC(1− 1̄)−

∫
C
d2Σ[G](1, 2)G(2, 1̄) , (1.41a)[

−i ∂
∂t̄
− Ĥ0(1̄)

]
G(1, 1̄) = δC(1− 1̄)−

∫
C
d2Σ[G](1, 2)G(2, 1̄) , (1.41b)

with δC(1 − 1̄) = δC(t − t̄)δ(x − x̄),
∫
Cd2 :=

∫
dx2

∫
Cdt2 and self-energy Σ[G].

The TDHF problem is then formulated via the approximation

Σ[G](1, 1̄) = iδ(1− 1̄)
∫
C

d3W (1−3)G(3, 3+)− iG(1, 1̄)W (1+−1̄) , (1.42)

where W (1−1̄) = δC(t− t̄)w(x− x̄), and 1+ indicates the limit t→ t+ ε>0. The
explicit form of Eq. (1.42) is readily obtained from an irreducible diagrammatic
expansion of the self-energy [29] retaining only first-order terms in W , and has the
same structure as Eq. (1.33): The first term is the time-local Hartree potential, the
second incorporates exchange features.

The equilibrium solution of the KBE including (1.42) is given by the Matsubara
Green’s function

GM (x, x̄; τ) =
nb∑
i,j=1

φ0∗
i (x)φ0

j (x)GMij (τ) , (1.43)

GMij (τ) = δijfβ(εi − µ)e−τ(εi−µ) ,

where τ ∈ [−β, 0]. The orbitals φ0
i together with εi and µ are solutions of the self-

consistent field method, and any (pure) ground state is obtained in the limit β →∞.
More formally, Eq. (1.43) solves the Dyson equation [the KBE for t − t̄ = iτ ] on
the Hartree-Fock level, see e.g. [29, 30] and references therein. Further, GM (x, x̄; τ)
serves as initial condition for real time propagation according to

G(x, 0− iτ ; x̄, 0− iτ̄) = i[GM (x, x̄; τ)−GM (x, x̄;−τ̄)] . (1.44)

2 The field operators satisfy the equal-time anti-commutation relations [ψ̂H(x, t), ψ̂†H(x̄, t)]+ =

δ(x− x̄) and [ψ̂
(†)
H (x, t), ψ̂

(†)
H (x̄, t)]+ = 0, where [Â, B̂]+ = ÂB̂ + B̂Â.
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Instead of making the orbitals φ0
i (x) time-dependent, it is advantageous to ap-

proach Eq. (1.41) using a static basis:

G(1, 1̄) =
nb∑
i,j=1

φ0∗
i (x)φ0

j (x)Gij(t, t̄) . (1.45)

Consequently, one is left with equations of motion for the elements Gij(t, t̄) =
−i 〈TC âi(t) â†j(t̄)〉 which are just the Green’s functions with respect to the creation
(annihilation) operators a†i (t) (ai(t)) of the steady state i [31, 32]. In addition, the
products of H0 (Σ[G]) and G in Eq. (1.41) become standard matrix multiplications,
and the time-dependent self-energy is evaluated in the manner of Eq. (1.37) as

Σij [G](t, t̄) = −iδC(t− t̄)
nb∑

k,l=1

(wij,kl − wil,kj)G<kl(t, t̄) . (1.46)

We note that, using the Hartree-Fock approximation (1.46), it is fully sufficient to
propagate the KBE for the center of mass (c.m.) time tc.m. = (t+ t̄)/2 alone, instead
of expanding G into the whole two-time plane [0, t] × [0, t̄]. However, this is no
longer the case when higher-order self-energies Σ[G] are involved—examples are
second Born or GW type formulas [24, 33] which are non-local in time and lead to
correlation and memory effects [34].

Example. Let us consider two fermions of mass m and charge q confined in a
one-dimensional (1D) parabolic trap V (ri) = m

2 ω
2r2
i with frequency ω and ri →

(xi, 0, 0), i = 1, 2. Due to the electrostatic charge both fermions repel each other
via the Coulomb potential w(x1 − x2) = q2/(4πε0|x1 − x2|). However, in 1D it is
convenient to apply a regularized Coulomb potential [35] with |x1 − x2| replaced by√

(x1 − x2)2 + κ2. The parameter κ > 0 keeps the integrals in Eqs. (1.33), (1.38)
and (1.42) finite and, in a physical interpretation, allows for a transversal spread of
the total wave function.

Using dimensionless units {xi → xi/x0, E → E/E0} with x0 =
√

~/(mω)
and E0 = ~ω, the Hamiltonian reads

Ĥ =
1
2
(−∇2

x1
+ x2

1

)
+

1
2
(−∇2

x2
+ x̄2

2

)
+

λ√
(x1 − x2)2 + κ2

. (1.47)

Here, λ = EC/E0 = x0/aB is the coupling parameter—the ratio between the
characteristic Coulomb energy EC = q2/(4πε0x0) [oscillator length x0] and the
confinement energy E0 [Bohr radius aB = (4πε0~ω)/q2]. For fixed κ, the coupling
parameter solely controls the system behavior. For λ � 1 (corresponding to high
density), the two fermions will be found in a Fermi gas- or liquid-like state whereas
in the (low-density) limit λ→∞, with x0 � aB , quantum effects vanish in favor of
classical, interaction dominated behavior. For moderate coupling λ & 1, states with
well localized density can be formed [18, 36]. However, such structure formation
strongly depends on the spin configuration.
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In the following we examine the ground state and nonequilibrium situations of
the two-fermion system (1.47) using the TDHF ansatz (1.30). Thereby, we further
assume the orbitals φ1 and φ2 to be equal for all times t, i.e. we consider

Ψ(x1, x2, t) = φ(x1, t)φ(x2, t) . (1.48)

This symmetric product (or singlet state) is justified as long as the spin wave function
χ(σ1, σ2) is anti-symmetric.

With expression (1.48), the TDHF equations (1.32) simplify to a single equation
for the orbital φ(x, t). In particular, it is easily seen that the exchange term in
Eq. (1.33) becomes half the Hartree-potential, thus

Σ̂(x, t) =
1
2

∫
dx̄ 2 |φ(x̄, t)|2w(x− x̄) . (1.49)

In analogy to Eq. (1.37) for the ground state problem, the self-energy has to be
modified to Σij [c] =

∑
kl(2wij,kl − wil,kj)%kl[c] with the constraint N → N/2. A

similar expression holds for the time-dependent case, Eq. (1.46). The initial state
of the system is now obtained either by direct imaginary time propagation or by
solving the Roothaan-Hall equations (1.35) for φ(x) = φ0

1(x), e.g. expanded in
terms of oscillator eigenfunctions3 ϕn+1(x) = [2nn!

√
π]−1/2e−x

2/2Hn(x) with
n = 0, 1, 2, . . .. For the specific case of λ = 2 and κ = 0.1, Fig. 1.3 shows the result
of both methods.

The imaginary time propagation starts from the energetically lowest oscillator
eigenfunction ϕ1(x), which is the ideal reference state for λ ≡ 0; see the thin black
curve for t = 0 in Fig. 1.3 (a). Then, as time increases, |φ(x,−it)|2 evolves getting
more and more broadened due to the Coulomb-like interaction (see the gray curves
in Fig. 1.3 (a)) and, finally, it converges to a stationary solution φt→∞(x), denoted
by the thick black curve. At the same time, the effective one-particle potential V eff,
defined as

V eff(x,−it) = V (x) +Σ[φ](x,−it) , (1.50)

changes from a sharply peaked function in space into a smoother stationary equilib-
rium potential V eff

t→∞(x); see the sequence of dashed curves. Fig. 1.3 (b) shows the
(rapid) convergence of the different energies obtained from the total wave function
Ψ(x1, x2, t). Particularly, note that Epot is computed from the single-particle poten-
tial V (x), whereas ETDHF denotes the expectation value of Σ[φ](x,−it). According
to the initial state ϕ1(x), the kinetic and potential energy at t = 0 take the value of
two independent particles in the 1D harmonic confinement, Ekin = Epot = 1

2 , while
the interaction energy ETDHF is initially much larger than the converged value. For
comparison, Fig. 1.3 also shows how the self-consistent field method. It reaches the
same ground state in the limit nb & 10, cf. the orbitals φ0

1,nb
(x) with nb = 4, 6, 10.

As an application to nonequilibrium, we consider the response of the two-fermion
system to a short turn-off of the trap potential V (x), where the switch-off time has
been chosen to be δt ≈ 0.1 and, hence, V (x, t) = θ(t− δt)V (x). After releasing the

3 Hn(x) denotes the Hermite polynomial of order n.
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Fig. 1.5 Computation of the ground state function φ(x) (λ = 2, κ = 0.1) via imaginary time
propagation starting from the lowest oscillator eigenstate ϕ1(x). (a) Orbital φ(x,−it) for different
times t and the corresponding effective one-particle potential V eff(x,−it); discretization ∆t =
0.01 and ∆x = 0.04. The thick black (dashed) line shows the converged result for t → ∞.
(b) Convergence of the different energy contributions. The thin dotted lines denote the (not yet
converged) energies obtained from the self-consistent field method with nb = 6, compare with
φ0
1,nb(x) .

confinement, the initial product state of the two fermions is no longer an eigenstate
of the actual system. Consequently, φ(x, t) undergoes damping and starts to oscillate
harmonically when the confinement is reactivated for t ≥ δt. In conjunction with this,
the potential energy Epot(t) as computed from the total wave function, also begins
to oscillate with a frequency ωbr which we call the breathing frequency. It is found
that this frequency depends strongly on λ as well as on the regularization parameter
κ, cf. Fig. 1.3 (a) and (b). For λ→ 0, the breathing frequency approaches the value
ωbr = 2ω which is the well-known result for the noninteracting (ideal) system [37].
With increasing λ, the frequency ωbr generally decreases in the considered λ-regime,
and further exhibits a non-trivial behavior at moderate coupling, λ & 1. A more
detailed analysis of the breathing motion of quantum particles in traps can be found
in [38].

1.4 Quantum Monte Carlo methods

The phenomenon of physical structure formation is closely related to the exact
treatment of many-body correlations. To rigorously take into account the mutual
interplay between a large number of individual particles, random-number-based
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Fig. 1.6 Nonequilibrium response of the two-fermion system, Hamiltonian (1.47), after a short
turn-off of the confinement. (a) Initial ground state |φλ,κ(x)|2 as a function on the coupling
parameter λ and κ. For the assignment of the four different curves with κ = 0.01, 0.1, 1.0 and
10.0 see Fig. (b). For λ� 1, the ground state is practically independent of κ. (b) λ-dependence
of the potential energy oscillation (breathing) frequency ωbr for different κ values in units of the
confinement frequency ω. The breathing frequency is obtained from a fit, a cos(ωbrt + b) + c,
applied to the time-dependent potential energy.

Metropolis Monte Carlo methods (MC) can be applied to efficiently sample the
high-dimensional configuration space . Unlike molecular dynamics (see chapter by
Ott et al. ), the Monte Carlo method is stochastic rather than dynamical and thus,
following the general concept, only statistical averages of equilibrium properties can
be computed. In this section we start the introduction with the basic Monte Carlo
algorithm, which can also be used in advanced quantum simulations, as shown in
the second part of this section. Here, the imaginary time path integral representation
is derived, which allows for a (quasi-classical) high-temperature approximation of
the N particle density matrix and its numerical solution with efficient Monte Carlo
methods.
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1.4.1 Metropolis Monte Carlo Method

The original idea of this stochastic simulation method was coined by E. Fermi, J. von
Neumann, S. Ulam, and N. Metropolis, who proposed in 1953 a stochastic algorithm
to generate microstates according to the Boltzmann distribution, so that thermal
averages could be computed easily [39]. This famous Metropolis sampling scheme
has been rated as being among the top ten algorithms having the “greatest influence
on the development and practice of science and engineering in the 20th century” [40].

To describe the considered model system, Eq. (1.1), by means of MC methods,
the dynamical physical process has to be transformed into a stochastic one. A key
element in the Metropolis Monte Carlo procedure is thus the concept of the Markov
chain . This means that the immediate sequencing of a state depends only on the
present state, regardless of the preceding development of the system. The Markov
process generates a path in the configuration space and all quantities of interest are
averaged along this trajectory, which is the probabilistic analogue to that generated
by the equations of motion in molecular dynamics [42, 43] (see figure in chapter of
Ott et al.).

In mathematical terms the Markov chain is defined as a sequence of sample points
i in the configuration space Ω

rN0
W−→ . . .

W−→ rNi
W−→ rNi+1

W−→ rNi+2
W−→ . . . , (1.51)

where the vector rNi = (r1, r2, . . . , rN )i ∈ Ω of dimension 3N comprises the
coordinates of all N particles. The transition operator W (rNi → rNj ) has to obey
the detailed balance condition [44]

P (rNi )W (rNi → rNj ) = P (rNj )W (rNj → rNi ) , (1.52)

for each MC step from one to any other state. In thermal equilibrium at a fixed
external heat bath temperature T , the probability P (rNi ) of obtaining configuration
rNi is weighted according to the Boltzmann probability distribution

P (rNi ) =
1
Z

e−βE(rNi ) , (1.53)

where β = E0/kBT is the dimensionless inverse temperature4, kB is Boltzmann’s
constant, E the (dimensionless) total system energy according to Hamiltonian (1.1)
and Z =

∑
Ω e−βE(rNi ) the partition function of the canonical ensemble. Hence, the

relative transition probability for the step rNi → rNj is a function of the total energy
change ∆E = E(rNj )− E(rNi ) only

4 E0 and l0 are base units of energy and length, e.g., in trapped systems the harmonic oscillator
ground state energy E0 = ~ω0 and oscillator length l0 =

p
~/(mω0). A dimensionless system

of units is obtained by applying the transformation rules {r → r/r0, E → E/E0}.
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W (rNi → rNj )
W (rNj → rNi )

= e−β∆E . (1.54)

This equation is satisfied by the Metropolis function [39]

W (rNi → rNj ) =

{
exp(−β∆E) ∆E > 0
1 ∆E ≤ 0

. (1.55)

This means that if a trial move rNi → rNj lowers the energy, then the step is always
accepted. However, if the energy is increased, the trial step is accomplished with a
probability W < 1 only, and is otherwise rejected.

Starting from an arbitrary configuration rN0 ∈ Ω, after an initial thermalization
time of the simulation, the expectation value of the ensemble average of a generic
physical quantity A(rN ) can be estimated as an arithmetic mean over the Markov
chain of K consecutive MC steps

〈A〉 =
∑
i∈Ω

P (rNi )A(rNi ) ≈ 1
K

K∑
k=1

A(rNk ) . (1.56)

A central point in this context is the ergodicity of the Markov process , which refers
to the condition that any state in the configuration space has to be accessible from any
other state in a finite number of MC steps. An inherent problem with respect to the
ergodicity in strongly correlated systems is, naturally, the (exponentially) growing
autocorrelation time with the system size, which may easily exceed the simulation
time. Especially at low temperatures one has to take care that the statistics are not
biased, since the expectation values of the observed quantities may seem to have
converged although the system is trapped in local minima and has barely moved
in the configuration space Ω. However, one should be aware that long simulation
times do not automatically guarantee more accurate results generally, as discussed in
reference [41].

Recommendable reviews on the subject of classical Monte Carlo simulations are
to be found, for example, in Refs. [42, 43, 45, 46].

1.4.2 Path Integral Monte Carlo

The path integral Monte Carlo simulation (PIMC) technique is founded on R.P. Feyn-
man’s path integral formulation of quantum mechanics which, unlike E. Schrödinger’s
and W. Heisenberg’s differential equation formalism, generalizes the formulation of
classical mechanics, in particular Hamilton’s principle of least action. In spite of its
intuitive and theoretical sophistication, the evaluation of the path integrals is not at
all trivial since one has to integrate over all possible states of the system for each
moment in time [47].
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In analogy to classical statistical mechanics, in which thermal equilibrium ex-
pectation values are defined as a canonical average of all microstates weighted by
the Boltzmann factor (see Eq. (1.56)), the equilibrium state of a quantum system
at a given inverse temperature, β, is fully characterized by the many-body density
operator,

ρ̂(β) =
1
Z

e−βĤ =
1
Z

∑
n

|ψn〉 e−βEn 〈ψn| . (1.57)

This statistical operator, ρ̂, is defined as the superposition of pure N -particle eigen-
functions, |ψn〉, which are exponentially weighted with the allowed energy eigenval-
ues, En, determined from the stationary Schrödinger equation Ĥ |ψn〉 = En |ψn〉.
This means that the density operator ρ̂ mixes the pure states, |ψn|2, according to the
thermal distribution and thus generalizes the concept of the wave function to finite
temperatures, i.e., mixed ensembles.

As seen in the chapter by Bonitz et al., the thermal average of an observable Â in
thermodynamic equilibrium is defined as

|Â| = Tr[ρ̂Â] =
∑
i

〈i|ρ̂Â|i〉 =
∑
i,j

〈i|ρ̂|j〉 〈j|Â|i〉 . (1.58)

If Â is diagonal in the chosen basis, the thermal average can be determined from the
diagonal elements of the density matrix only, i.e.,

〈Â〉 =
∑
i

〈i|ρ̂|i〉Ai . (1.59)

However, a direct computation of ρ̂ requires knowledge of the complete energy
spectrum by solving the N -particle Schrödinger equation , which, in most cases, is
impossible for interacting systems. As we will see, we can avoid this problem by
using a (path) integral representation of the N -particle density matrix, which can be
evaluated efficiently with the help of numerical Monte Carlo methods.

To do so, we change into the basis of position vectors rN = (r1, r2, . . . , rN ), in
which the off-diagonal density matrix becomes a function of 6N particle coordinates,
i.e.,

ρ̂→ ρ(rN , rN
′
;β) ≡ 〈rN |e−βĤ |rN ′〉 . (1.60)

Note that in this position basis all particles are labeled. Moreover, the function values
of the density matrix are positive5 for all of its arguments and have the significance
of a probability for the transition from an initial state rN to the final state rN

′
. The

non-negativity of the density matrix elements is an essential prerequisite for the
subsequent application of Monte Carlo methods. In coordinate representation the
(normalized) thermal average of operator Â becomes

5 Here, we do not yet consider the problematic issue of Fermi statistics.
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〈Â〉 =
1
Z

∫
drN 〈rN |ρÂ|rN 〉 =

1
Z

∫∫
drNdr′Nρ(rN , r′N ;β) 〈rN |Â|r′N 〉 ,

(1.61)
and the partition function is written as

Z(β) =
∫

drNρ(rN , rN ;β) . (1.62)

In general, these functional integrals cannot be carried out since an explicit analytical
form of ρ(rN , rN

′
;β) is commonly unknown for non-ideal quantum systems. To

overcome this problem, we reduce the density matrix to the one known for free
particles in the high-temperature limit. To this end we employ the product property
of the density matrix

ρ̂(β) = e−βĤ = e−τĤ · . . . · e−τĤ︸ ︷︷ ︸
M times

=
M∏
s=1

ρ̂(τ) , Mτ = β , (1.63)

which allows us to expand a low-temperature density matrix into a series of density
matrices at M times higher temperature, τ . Insertion of M − 1 high-temperature
factors gives us the density matrix in position basis as

ρ(rN , rN
′
;β) = 〈rN |e−βĤ |rN ′〉

= 〈rN |
M∏
s=1

e−τĤ |rN ′〉

=
∫
· · ·
∫

drN1 drN2 . . . drNM−1

M−1∏
s=0

〈rNs |e−τĤ |rNs+1〉

=
∫
· · ·
∫

drN1 drN2 . . . drNM−1

M−1∏
s=0

ρ
(
rNs , r

N
s+1; τ

)
, (1.64)

where the ordered set (rN0 , r
N
1 , . . . , r

N
M ) represents a path in configuration space.

Expression (1.64) is exact and comprises in the limit M →∞ an integration over all
possible paths through configuration space linking the fixed initial and final points,
rN0 = rN and rNM = rN

′
.

Interestingly, in the position basis many observables Â are diagonal, which implies
that only diagonal elements of the full (low-temperature) density matrix , ρ(β), are
relevant, see Eq. (1.59). As a result, the partition function, Eq. (1.62), now becomes
an integral that runs over closed paths

Z(β) =
∫
· · ·
∫

drN1 drN2 . . . drNM−1

M−1∏
s=0

ρ
(
rNs , r

N
s+1; τ

)
, rN0 = rNM ,

(1.65)
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and is determined by the off-diagonal elements of the high-temperature density
matrices ρ(τ).

Considering the system in question, cf. Eq. (1.1), the Hamiltonian consists in its
general form,

Ĥ = K̂ + V̂ , (1.66)

of two non-commuting N -particle operators, the kinetic K̂ and the potential V̂
operators with [K̂, V̂ ] 6= 0. Expansion yields a cumbersome expression for the
exponential operator

e−τ(K̂+V̂ ) = e−τK̂e−τV̂ e−
τ2
2 [K̂,V̂ ]e−

τ3
6 [[V̂ ,K̂],K̂+2V̂ ] +O(τ4) (1.67a)

= e−τK̂e−τV̂ e−
τ2
2 [K̂,V̂ ] +O(τ3) (1.67b)

= e−τK̂e−τV̂ +O(τ2) . (1.67c)

However, Trotter’s product formula states that for self-adjoint operators K̂ and V̂
(which are bounded from below in a Hilbert space) in the limit of a large number of
high-temperature factors, M →∞, the total density matrix (1.63) can be approxi-
mated as a simple product of potential and kinetic density matrices by neglecting the
commutators from the exact operator identity (1.67), i.e.,

ρ̂(β) = e−β(K̂+V̂ ) =
[
e−τ(K̂+V̂ )

]M != lim
M→∞

[
e−τK̂e−τV̂

]M
=
[
e−τK̂e−τV̂

]M
+O(M−1) .

(1.68)

Note that the validity of the approximation made for finite M in the last step of
Eq. (1.68) is not at all obvious due to the propagation of the error terms with respect
to τ = β/M [48, 49]. The error of the high-temperature representation is therefore
strongly affected by the number of high-temperature factors , M . Hence, the issue
of convergence involving finite M has to be checked carefully for each particular
system under study.

The high-temperature matrix element ρ(rNs , r
N
s+1; τ) in Eqs. (1.64) and (1.65)

can be approximated as

ρ(rNs , r
N
s+1; τ) ≡ 〈rNs |e−τ(K̂+V̂ )|rNs+1〉 ≈ 〈rNs |e−τK̂e−τV̂ |rNs+1〉

= e−τV (rNs ) 〈rNs |e−τK̂ |rNs+1〉 ,
(1.69)

where V̂ is diagonal in the spatial coordinate representation. The kinetic energy
density matrix elements of free particles are obtained by a momentum eigenstate
expansion
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〈rNs |e−τK̂ |rNs+1〉 =
∫

dpN 〈rNs |pN 〉 exp

[
−τ

N∑
i=1

p̂2
i

2mi

]
〈pN |rNs+1〉

= λ−3N
M exp

[
− π

λ2
M

(rNs − rNs+1)2
]
.

(1.70)

Here we take advantage of the diagonality of the kinetic operator K̂ =
∑N
i=1

p̂ 2
i

2mi
in momentum space, and note that the Gaussian type integral can be evaluated
analytically after explicit expressions for the plane waves 〈rNs |pN 〉 and 〈pN |rNs+1〉
have been substituted. The term λM =

√
2π~2β/mM denotes the thermal De-

Broglie wave length. Insertion of the high-temperature matrices (1.69) and (1.70)
into Eq. (1.64) provides us the discrete time path integral representation of the
N -particle density matrix

ρ(rN , rN
′
;β) ≈

∫
· · ·
∫

drN1 drN2 . . . drNM−1

× λ−3N
M exp

(
− π

λ2
M

M−1∑
s=0

(rNs − rNs+1)2
)

exp

(
−τ

M−1∑
s=0

V (rNs )

)
, (1.71)

which is valid for quantum systems with the Hamiltonian (1.66) and a quadratic
dispersion law for k = p/~.

Following the analogy between Feynman’s original idea of a time-evolution
operator Û(t, t′) = e−iĤt/~ and the definition in Eq. (1.57), the inverse temperature
β may be considered as imaginary time , where t→ β~/i and the imaginary time
step is τ = β/M . Thus, the set of coordinates rNs at a specific integer number
s = 1 . . .M − 1 are commonly named “imaginary time slice” , since only particle
images within the same slice, rNs , interact with each other via the weakened (iso-time)
potential v(rNs ) = V (rNs )/M , see figure 1.7. The classical-like particle images in
successive slices {rNs , rNs+1} are linked by a spring-like energy term, which is due
to the quadratic quantum mechanical kinetic energy of the free particle and ensures
a finite particle extension. Hence, in the imaginary-time path integral formulation
a quantum system becomes mapped onto a classical one such that each physical
(quantum) particle is represented by a path through M positions (here called particle
images) in configuration space at different values in imaginary time. This path forms
a classical ring polymer of M links. Depending on the inverse temperature β and
particle mass m, the spring coupling becomes more or less rigid and, consequently,
the quantum particles become more or less delocalized.

Most of the thermodynamic quantities are determined by the trace of the density
matrix (1.71), i.e., closed imaginary time trajectories from rN to rN

′
= rN . For

instance the probability p(r∗) to observe an arbitrary particle at position r∗ is given
as arithmetic average over the imaginary time paths of all N particles as

p(r∗) =
1

NM

N∑
i=1

M−1∑
s=0

〈δ(r∗ − ris)〉ρN , (1.72)
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Fig. 1.7 Sketch on Feynman’s path integral representation of a trapped 2D quantum system with
three electrons. The probability density p(x, y) is obtained by mapping of the beads along the
imaginary time paths onto the 2D plane.

where 〈. . .〉ρN defines the thermodynamic average according to Eq. (1.61).
So far, only quantum systems composed of distinguishable spinless particles

(boltzmannons) have been considered. However, even in the case in which the Hamil-
tonian does not explicitly depend on particle spin, inclusion of quantum statistics
requires sampling of the particle permutations in addition to the integrations in coor-
dinate space. Specifically, the many-body density matrix (1.71) has to be properly
symmetrized with respect to an arbitrary exchange of two indistinguishable bosons
(e.g. bosonic atoms, molecules or excitons), i.e.,

ρS(rN , rN
′
;β) =

1
N !

∑
P

(+1)P ρ(rN , P̂rN
′
;β) , (1.73)

or antisymmetrized under arbitrary exchange of two indistinguishable fermions (such
as electrons or holes with the same spin projection), i.e.,

ρA(rN , rN
′
;β) =

1
N !

∑
P

(−1)P ρ(rN , P̂rN
′
;β) , (1.74)

where P̂ is the permutation operator for particle indices and P is the parity of
the permutation. In the framework of path integral theory, the permutations can be
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decomposed into a sequence of two-particle exchanges along the imaginary timepath.
The pair exchanges are carried out by the transposition of particle positions in
particular time slices, from which the paths of several particles can be merged into a
single one. Such multi-particle trajectories correspond to off-diagonal elements of
the density matrix, but still form closed loops.

The superposition of all N ! permutations of N identical particles leads to the
inherent (numerical) fermion sign problem since the alternating sign of the prefactor
in the case of fermions, Eq. (1.74), causes an essential cancellation of positive and
negative contributions corresponding to even and odd permutations, respectively.
Thus, an accurate calculation of such vanishing differences is strongly complicated
by the increase of quantum degeneracy arising at low temperatures and high densities,
where all permutations appear with equal probability.

The high-dimensional convolution integrals of the density matrix, Eqs. (1.71),
(1.73), and (1.74), over 3N(M−1) degrees of freedom6 can be numerically evaluated
by a slightly modified version of the Metropolis sampling algorithm outlined for the
classical systems. However, to reduce computational effort and increase the efficiency
of Monte Carlo sampling, various sophisticated move strategies (e.g. the multi-level
bisection sampling method or the worm algorithm [50]), approximations for the
pair density matrix (e.g. using matrix-squaring technique [51, 52]), fast converging
estimators with less statistical variance and many further improvements have been
developed over the last decades. For further (technical) details on this subject, we
refer the interested reader to the following recommended in-depth references [44, 45,
53, 54, 55].

1.5 Summary

In this tutorial we have provided an introduction to time-dependent and time-
independent quantum simulations. The former part split up into an exact treatment
of the one-particle time-dependent Schrödinger equation, and also an approximate
investigation of many-body systems on the basis of Hartree-Fock theory (and be-
yond). With these two techniques, all quantum effects, e.g. tunneling, quantization,
interference phenomena, can be well described and simulated to any desired accuracy.
Furthermore, no approximations to external fields, such e.g. laser fields, trapping
potentials, have to be introduced. The TDSE is exact for both, particles of fermionic
and bosonic character, whereas the Hartree-Fock method and its improvements as
described here, is well suited for fermionic calculations and is often used in quantum
chemistry. The (exact) many-body wave function is here reduced to an (approximate)
one-particle function which contains all pertinent information about the system under
investigation. The extraction of physical properties is often a challenging task and
much attention has to be paid to this point. On the other hand, the wave function
based time-dependent Schrödinger equation methods are limited to one particle in

6 We typically use numbers of high-temperature factors M in the range 100 ≤M ≤ 300.
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a single-active electron approach, where the possible effects of additional particles
are only included by utilizing effective external fields. Of course, such methods offer
high accuracy in regard to one particle, but lack other many-body effects.

In the last part of this tutorial, we presented an introduction to the field of quantum
Monte Carlo techniques. This method allows for the accurate calculation of equi-
librium state properties of many-body systems with no further approximations, i.e.
inclusion of all correlation effects. The main advantage lies in the (efficient) sampling
of the density matrix, which especially allows for a large number of bosonic particles.
However, no phase information or corresponding wave function can be constructed
in this way. Hence, this method is not suitable for investigating excitations and
dynamics. fermionic calculations are, up to now, limited to small systems due to the
fermionic sign problem.
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