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A rigorous derivation of the chemical master 
equation 

Dan ie l  T. Gil lespie 
Research Department, Naval Weapons Center, China Lake, CA 93555, USA 

It is widely believed that the chemical master equation has no rigorous microphysical basis, 
and hence no a priori claim to validity. This view is challenged here through arguments 
purporting to show that the chemical master equation is exact for any gas-phase chemical 
system that is kept well stirred and thermally equilibrated. 

1. Introduction 

We often find it convenient to define the "state" of a well stirred chemically 

reacting system as "the current number of molecules of each component 

species". But if we do that, then we must accept the fact that this state cannot 

evolve with time as purely determinis t ic  process. The reason is simply that a 
specification of the molecular populations does no t  constitute a specification of 
the positions and momenta of all the molecules in the system, and hence does 

not suffice to uniquely determine the future behavior of the system. 

Early efforts to mathematically accommodate the intrinsically stochastic 

nature of chemically reacting systems were reviewed in the 1967 article by 
McQuarrie [1]. That article introduced many scientists to the principle mathe- 

matical features of what is nowadays called the chemica l  mas ter  equat ion .  

McQuarrie did not claim in that article to give a rigorous microphysical 

derivation of the chemical master equation. He simply posited some "transition 
probabilities" in loose analogy to the conventional chemical reaction rates, and 

then invoked a "detailed balance" heuristic to obtain master equations for 
some specific chemical systems; his main concern was to develop solutions to 

those master equations. But if one cannot demonstrate a rigorous microphysi- 
cal basis for the chemical master equation, then one cannot accord its solutions 

any a priori validity. In fact, the prevailing view today seems to be that the 
chemical master equation does no t  have a priori validity, and that its physical 
fidelity can be assessed only through a posteriori comparisons of its predictions 

with the results of experiments - either real experiments or molecular dynamics 

experiments. 
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The aim of this paper is to show that this view of the chemical master 
equation does not do it justice. Offered here is a purportedly rigorous 
derivation of the chemical master equation for a chemically reacting gas-phase 
system that is kept well stirred and in thermal equilibrium. 

2. Rigor and probability 

In general, a rigorous derivation consists of first laying down a few self- 
evident premises, and then making a series of self-evident inferences that leads 
to the desired conclusion. The problem with this otherwise sanguine procedure 
is that reasonable people can disagree on whether something is "self-evident". 
In order  to confront this problem openly, we shall begin by considering a 
purportedly rigorous derivation of the expected result of a very simple physical 
experiment.  This exercise will allow us to introduce the principal rules of 
inference that will be used in our subsequent derivation of the chemical master 
equation,  and it will also provide an indication of the kind of premises that we 
shall lay down for that derivation. The experiment that we propose to analyze 
concerns the tossing of a pair of dice. Specifically, we want to assess the 
probability that the fair tossing of a fair pair of cubic dice will yield a face-up 
sum of 4. 

By the word "probabil i ty" here,  we mean quite specifically the fraction o f  
trials (in this case tosses) that yield a particular event (in this case a face-up sum 
of 4), in the limit of infinitely many repeated trials. This "frequency interpreta- 
t ion" of probability is shunned by many philosophers and mathematicians; 
philosophers tend to avoid it because the notion of probability can be given 
other  less mundane metaphysical interpretations, and mathematicians tend to 
avoid it because they see no need to give the notion of probability any earthly 
interpretat ion at all. But in this and most other instances in physical science 
where the notion of probability has been found to be useful, the frequency 
interpretation is precisely what is called for. As a bonus, the frequency 
interpretat ion allows one to straightforwardly derive, not merely postulate, the 
following three laws o f  probability: 

Range law. The probability of an event E is a real number Pr (E)  satisfying 
0 < ~ P r ( E ) ~  < 1, with the circumstance P r ( E ) = 0  corresponding to E never 
occurring, and the circumstance P r ( E ) =  1 corresponding to E always oc- 
curring. 

Addit ion law. If Pr (E)  and Pr(F) are the respective probabilities of two events 
E and F, and if these two events are mutually exclusive (i.e., they never occur 
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together),  then the probability of the event "ei ther  E or F" is Pr(E or F ) =  
Pr (E)  + Pr(F). 

Multiplication law. If Pr(E)  is the probability of an event E, and Pr(F] E) is 
the probability of an event F given that event E occurs, then the probability of 
the event "both  E and F" is Pr(E & F) = Pr(E)  x Pr(F I E). 

The "conditional probability of F given E" ,  which is denoted in the 
multiplication law by Pr(F] E),  is formally defined in the frequency interpreta- 
tion to be the ratio of {the number of trials yielding both events E and F} to 
{the number  of trials yielding event E irrespective of event F}, in the limit of 
infinitely many trials. The addition law evidently requires that P r ( F ] E ) =  0. 

The above three laws of probability will be our self-evident rules of  inference, 
not only for our present analysis of the dice tossing problem, but also for our 
subsequent derivation of the chemical master equation. As for our self-evident 
premises for the dice tossing problem, we shall assume that the phrase "the fair 
tossing of a fair pair of dice" implies the following: 

(i) Each face of each die has the same probability, namely ~, of turning up 

in any toss. 
(ii) Knowing the up-face tossed on one die tells us nothing about the up-face 

tossed on the other die. 

Some might object that these two premises are not at all "self-evident",  and 
that they need to be proved by solving appropriate equations of motion for the 
tossed dice. We might try to counter this objection by noting that experimental 
confirmation of (i) and (ii) should be easy to obtain. But anyone is free to deny 
that premises (i) and (ii) are self-evident, and for them the following argu- 
ments will not constitute a "rigorous" analysis. 

With our premises and rules of inference now formulated, let us proceed to 
deduce the probability of a toss in which the up-face number on die A plus the 
up-face number on die B equals 4, an event that we shall denote by (A + B = 
4). Since the occurrence of this event is really the occurrence of either the 
event ( A = I  & B = 3 )  or the event ( A = 2  & B = 2 )  or the event ( A = 3  & 
B = 1), all of which are mutually exclusive, then the addition law implies that 

P r ( A + B = 4 ) = P r ( A = I  & B = 3 ) + P r ( A = 2  & B = 2 )  

+ P r ( A = 3  & B = I ) .  

The first term on the right here can be written, using the multiplication law, as 

P r ( A = I  & B = 3 ) = P r ( A = I ) x P r ( B = 3 I A = I ) ,  
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where the last factor on the right is the probability that die B turns up 3 given 
that die A has turned up 1. But since 

1 Pr(A = 1) = 

and 

(by premise ( i ) ) ,  

Pr(B : 3 I A  = 1) = Pr(B = 3) 

l 
6 

(by premise (ii)) 

(by premise ( i ) ) ,  

then we have 

P r ( A : I  & B : 3 ) :  6 ~ x 6 ~ = 3~6. 

Analogous reasoning reveals that the other two terms on the right side of our 
leading equation are also equal to ~ ,  and so we conclude that 

I P r ( A + B = 4 ) =  ~ + ~ + ~6 -  ,2 • 

Have we presented here a "r igorous" analysis of the problem posed? On the 
negative side, our analysis has none of the usual trappings of a rigor in 
mathematical physics: we have not written down any Lagrangian or Hamilto- 
nian, and we have not solved any Liouville equation or Schr6dinger equation. 
On the positive side, our analysis would undoubtedly persuade most scientists 
to lay a very heavy wager on the proposition that the prediction ix2 would be 
confirmed in a carefully performed laboratory experiment. In any case, readers 
who find that they cannot regard the foregoing analysis as being "r igorous" can 
spare themselves the trouble of reading the remaining sections, because the 
analysis there will likewise be found wanting. 

3. The chemical system 

We consider a system consisting of molecules of N gas-phase chemical 
species S ~ , . . . ,  S N, which interreact through M elementary chemical reaction 
channels R ~ , . . .  ,R M. We stipulate that the system be kept well stirred in a 
container of constant volume I2, and in thermal equilibrium at a constant 
absolute temperature  T (but not, of course, in chemical equilibrium). Precisely 
what we understand to be implied by these two stipulations will be spelled out 
shortly. Our ultimate goal will be to describe the behavior of the species 
population variables 
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X~(t) ~ the number  of molecules of species S i in the system 
at time t (i = 1 . . . . .  N ) .  (1) 

The more  commonly considered species concentration variables are defined by 

z , ( t )  -= x,(t) In. 
We shall focus mainly on e lementary reaction channels R ,  of the bimolecular 

form 

S a + S b ~ S c + • • • (bimolecular R ~ ) .  (2) 

This form denotes the collision-initiated conversion of one molecule of species 
S a and one molecule of species S b into one molecule of species S c, etc. The two 
species S a and S b are called the R ,  reactant species, and they might be the 
same. There  will usually be two Ru product species S c and Sd, which also might 
be the same,  but it will not be necessary for us to impose any restrictions here 
on their number.  So-called "reversible"  reactions of the form S a + S b ~-- S c + So 
should be regarded as two separate e lementary reactions. Later  we shall 
comment  briefly on when and how monomolecu lar  and trimolecular reaction 

channels can be accommodated.  
We take the stipulations that the system be "well mixed in a container of 

volume S2" and "in thermal equilibrium at absolute tempera ture  T"  as 

warrants for the following two premises: 

(I)  The probabili ty that the center of any randomly selected molecule of the 
system will be found to lie inside any container subregion of volume A J2 is 

equal to AI2/g2. 
( I I )  The probabili ty that the velocity of a randomly selected molecule of 

mass m will be found to lie inside the infinitesimal region d3v about  v is equal 

t o  P M B ( V ) d 3 v ,  where 

( m ]3,2 
PMB(V) --= \ 2~kB T / e x p ( - m v 2 / 2 k B T ) .  (3) 

Here ,  v denotes the Cartesian triplet (v x, Vy, vz), d3v =do x dry dvz, v 2= 
2 2 2 v x + Vy + v z, and k B is Bol tzmann's  constant. 

Premise (I)  asserts that the system is spatially homogeneous,  but in a sense 
that evidently allows for fluctuations from absolute homogeneity.  In formal 
terms, premise (I)  asserts that the posit ion of a randomly selected molecule can 
be regarded as a random variable that is uniformly distributed over  the interior 
of the container.  Premise (II)  is of course the assertion that the molecules have 
a Maxwel i -Bol tzmann velocity distribution. In formal terms, premise (II)  
asserts that each Cartesian velocity componen t  of a randomly selected molecule 
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of mass m can be regarded as a random variable that is normally distributed 
with mean 0 and variance kBT/m.  Implicit in premises (I) and (II) is the 
assertion that the molecular positions and velocity components are all statisti- 
cally independent  of each other. 

We shall not try to decide here whether premises (I) and (II) should be 
regarded as theoretically derivable results or merely experimentally justifiable 
postulates. But in either case, it is clear that these premises derive whatever 
validity they do have from the extremely sensitive dependence of a classical 
many-particle system on its initial cond i t ions -  a circumstance that ultimately 
frustrates any practical attempt to treat such a system as being "deterministic".  
And it is a telling point in favor of premises (I) and (II) that, if they were not 
t rue,  then we probably would not be willing to regard the system as being "well 
mixed and in thermal equilibrium" - just as if premises (i) and (ii) in section 2 
were not true then we would not be willing to regard the dice tossing process as 
being "fair" .  In practice, we expect premises (I) and (II) to be valid for any 
constant- temperature dilute-gas system in which nonreactive molecular colli- 
sions occur much more frequently than reactive molecular collisions. 

4. The specific probability rate constant 

The first step in our derivation of a "master  equat ion" for the species 
population variables {Xi(t)} will be to establish some pertinent facts about the 
probability 

7r~,(t, d t ) ~  probability that a randomly selected combination of R ,  
reactant molecules at time t will react accordingly in the 
next infinitesimal time interval [t, t + dt) (/z = 1 . . . . .  M ) .  

(4) 

Specifically, we shall show that for virtually all chemical reaction channels that 
are consistent with the specifications and assumptions set forth in section 3, 
~-~,(t, dt) should exist in the form 

7r (t, d t ) =  c~,dt, (5) 

where c is independent  of dt. We call cu the specific probability rate constant 
for reaction channel R~. In subsection 4.1 we shall calculate ~'~(t, dt) for 
bimolecular reactions in general, and in subsection 4.2 we shall look at some 
specific bimolecular mechanisms. In subsection 4.3 we shall consider briefly the 
mat ter  of monomolecular  and trimolecular reactions. 
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4.1. Bimolecular reactions in general 

In order  for the bimolecular reaction (2) to occur, it is first necessary that an 

S a molecule and an S b molecule collide with each other. Let us assume for 
simplicity that the molecules of species Sg (i = a, b) can be regarded as spheres 
of mass mi and radius rs, so that a collision between an S a molecule and an S b 
molecule occurs whenever  the center-to-center distance between those two 
molecules decreases to r~, + r b. We begin by establishing the existence and 
mathemat ical  form of the quantity 

~'*(t, d t ) ~  probabili ty that a randomly selected pair of R 
reactant molecules at t ime t will collide in the 
next infinitesimal time interval [t, t + d t ) .  (6) 

To derive an expression for ~-*(t, dt),  we shall make use of a certain theorem 
of probabili ty theory. We develop that theorem as follows: Let E~, E 2 . . . . .  
{E~} be any set of mutually exclusive and collectively exhaustive events; i.e., on 
every trial, one and only one of the events in the set {E~} occurs. Then the 
occurrence of any event G can be thought of as the occurrence of either the 
event El & G or the event E 2 & G or . . . .  Since the events in the set {E, & G} 
are mutually exclusive, then the addition law implies that 

P r (G)  = ~'~ Pr(E, & G ) .  
i 

But by the multiplication law we have 

Pr(E,  & G) = Pr(Ei)  x Pr(G ] E , ) .  

Substituting this into the preceding equation, we get 

P r (G)  = ~2 e r (E , )  × Pr(G [ E , ) .  
i 

(7) 

If the individual events in the set {Ei} happened to be labeled by a real-valued 
index instead of by an integer-valued index, then we must replace the sum in 
eq. (7) by an integral (a sum over nonoverlapping infinitesimal subintervals). 
We shall in fact be interested in a situation where the integer index i is replaced 
by a real 3-dimensional vector index v. Eq. (7) then becomes 

Pr(G)=f f f Pr(Ev) x Pr(GlE~), (8) 
u 

valid for {Ev} any set of mutually exclusive and collectively exhaustive events. 
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Now we let G be the event "a  randomly selected pair of R~ reactant 
molecules at time t collides in the next infinitesimal time interval [t, t + d t )" .  

Then it follows from definition (6) that 

Pr (G)  = ~-*(t, d t ) .  (9) 

And we let E~ be the event "a  randomly selected pair of R ,  reactant molecules 
at time t has a relative velocity vector v b - v  a in the infinitesimal Cartesian 
region d3v about v" .  The set of events {E~} is clearly mutually exclusive, and 
it will also be collectively exhaustive if we allow v to vary over all of 3-space. 
As one might expect from elementary kinetic theory, 

m *  ~3/2 * "~ 

Pr(E~) = \ 2 ~ k B T  / e x p ( - m  v ' / 2 k ~ T )  d3v ,  (10) 

where v is the magnitude of v and m* =- m,rnb/(m ~ + mb) is the reduced mass 
of the two R~ reactant molecules. A rigorous proof of eq. (10) can be 
constructed by using the so-called random variable transformation theorem 
[2, 3] to calculate the density function of the random variable V-= V b - V, when 
each of the two statistically independent random variables V, and V b has a 
density function of the form (3). 

Finally, we need for eq. (8) an expression for Pr(G ] Ev), the probability that 
a randomly selected S~,-S b molecular pair at time t, moving with a relative 
velocity that is infinitesimally close to v, will collide with each other in 
It, t + dr). In fig. 1 we show a picture of a randomly selected S a molecule, along 
with the vector v that specifies the relative velocity of the otherwise random S b 
molecule. It should be evident from the figure that an S b molecule at time t, 
moving with velocity v relative to the S~ molecule, will collide with the S a 
molecule in [l, t + dr) if and only if the center of the S b molecule at time t lies 
inside the spherically distorted cylindrical region shown in fig. 1 with effective 
radius ra + r b and effective height v dt #l. So Pr(G ] Ev) is just the probability 
that the center of a randomly selected S b molecule, moving with velocity v 
relative to the randomly selected S a molecule, will at time t have its center 
lying inside a certain subregion of volume (v dr) ~r(r, + rb) 2. We may therefore 
conclude from our premise (I) that 

(v dt) ~-(r. + rb) 2 (11) 
Pr (G I E~) = . 0  

~ Here  we have implicitly invoked the vanishingly small nature of the infinitesimal dr; because 
only if the relative distance v dt is vanishingly small is it permissible to ignore the possibility of  
collisional interference by some third molecule.  
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ra + rb 

Fig. 1. An  S, molecule of  radius r , ,  and the infinitesimal region in which the center  of an S b 
molecule  with radius r b and relative velocity v must  lie if the two molecules are to collide in the 
next dt. The region is essentially a right cylinder of  radius r, + r b and height v dt, whose  upper  and 
lower  surfaces have been deformed into identically or iented hemispheres  of  radii r,, + r b. 

Substituting eqs. (9), (10) and (11) into eq. (8), we obtain 

m* )3/2 

v 

exp(_m,v2/2kBT ) d3 v (v dt) 7r(r~, + rb) 2 

(12) 

Here ,  v is a real 3-dimensional vector variable with unrestricted Cartesian 
components  (v,, vy, vz), differential element d3v=dvxdvydvz ,  and mag- 
nitude v. Evaluation of this triple integral is straightforward, and yields 

1r*(t, d t ) =  S'~ I ( 8 k B T ]  ''2 vm----G-,. / av(r~, + rb) 2 d t .  (13) 

Of course, we should not suppose that every collision between an S a 
molecule and an S h molecule will lead to an R~, reaction. But we shall assume 
that if such a collision does give rise to an R~ reaction, then the reaction 
happens immediately. And we shall define the collision-conditioned reaction 
probability pu by 

p~, ~-probability that a randomly selected pair of colliding 
R reactant molecules will react according to R .  (14) 
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Since the multiplication law tells us that 

Pr(collision & reaction) = Pr(collision) x Pr(reaction [ collision), 

then by definitions (4), (6) and (14) we have 

z r ( t ,  d t ) =  ~-*(t, dt) p~,. (15) 

Substituting eq. (13) into eq. (15), we conclude that the quantity c~, defined in 

eq. (5) exists in the form 

/ 8k  T \1/2 
1 B ( 1 6 )  

It will be crucial for our analysis in subsequent sections that c ,  be in- 

dependent of dt. It is clear from our result (16) that this will be the case if and 
only if p ,  is independent  of dt. The definition (14) makes it rather obvious that 
p~ will have no dt-dependence;  however, it is instructive to check this by 
examining a few specific bimolecular reaction mechanisms. 

4.2. Some simple bimolecular reaction mechanisms 

Suppose that each R~ reactant molecule has a "sensitive area" inscribed on 
its spherical surface, and that an R~ reaction will occur if and only if the point 
of collisional contact between an R,, reactant pair lies inside both sensitive 
areas. If the sensitive area on the S a molecule subtends a solid angle ~% with 
respect to the center of the molecule, then owing to the well stirred nature of 
the system the probability that the collisional contact point will lie inside that 
area is wJ4w.  Similarly, the probability that the collisional contact point will lie 
inside the sensitive area on the S b molecule is tOb/4~. (See fig. 2.) In the 
absence of any force field that preferentially orients the molecules, the 
probability that the collisional contact point will simultaneously lie inside both 
sensitive areas will, by the multiplication law, be the product of these two 
probabilities. Therefore ,  the collision-conditioned reaction probability in this 
case is simply 

p~ = oJaWb/(4-n) z " (17) 

Another  kind of bimolecular reaction model concerns the impact energy, 
which we define, following Present [4], by 

e ~- the kinetic energy associated with the component  of the relative 
velocity of the colliding molecules along their line of centers 

at contact .  (18) 
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olecule 

Sa molecule 

Fig. 2. A collision between an S, molecule and an S h molecule in which the point of collisional 
contact lies inside a certain solid angle w, on the S, molecule and outside a certain solid angle w,, on 
the S b molecule. 

This  var iable  would typically influence a react ion R .  through some  f u n c t i o n / 4 ,  
according  to 

/ 4 , ( e )  = probabi l i ty  that  a pair  of  R reactant  molecules ,  colliding 
with impact  energy  e, will undergo  an R ,  r eac t ion .  (19) 

T o  der ive  an express ion for  the col l is ion-condi t ioned react ion probabi l i ty  p ,  in 
this case,  it is necessary  to m a k e  a direct calculat ion of the react ion probabi l i ty  
7 r ( t ,  dt)  def ined in (4); we can then deduce  p~ f rom eqs. (15) and (13). For  
this calculat ion,  we shall require  an easily p roved  extension of t h e o r e m  (8): If  
G is any event ,  {Ev} is any set of  mutual ly  exclusive and collectively 
exhaus t ive  events  labeled by the real vec tor  index v, and {F~} is any set of  
mutua l ly  exclusive and collectively exhaust ive  events  labeled by the real scalar 
index /3 ,  then  

Pr(G,=f f f fPr(E,,)×Pr(F IE,,)×Pr(GIEv & 
v F, 

(20) 

We let G be the event  "a  r andomly  selected pair  of  R ,  reactant  molecules  at 
t ime t reacts  accordingly in the next infinitesimal t ime interval  [t, t + d t ) " .  
Def ini t ion (6) then  gives 

P r ( G )  = 7r (t, d t ) .  (21) 
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We let E v be the event "a  randomly selected pair of R ,  reactant molecules at 
t ime t has a relative velocity vector v b - v a in the infinitesimal Cartesian region 
d3v about v" .  This is the same definition for E v that was adopted in subsection 

4.1, so Pr(Ev)  is as given in eq. (10). 
We let F~ be the event "a randomly selected pair of R ,  reactant molecules at 

time t collides in the next infinitesimal time interval It, t + dt) with impact 
parameter  in the infinitesimal interval [/3,/3 + d/3)". The impact parameter  is 
defined to be the perpendicular distance between the precollision trajectories 
of the colliding molecules; so if/3 is allowed to range from 0 to r a + r b then the 
set of events {Ft3 } will indeed be mutually exclusive and collectively exhaus- 
tive. For  eq. (20), we require the probability of the event F¢ given the event 
Ev, i.e.,  given that the colliding molecules have at time t a relative velocity 
v b - va that is infinitesimally close to the vector v. In fig. 3 we show a picture of 
a randomly selected S~ molecule, along with the vector v that specifies the 
relative velocity of the otherwise random S b molecule. It should be clear from 
the figure than an S b molecule at time t, moving with velocity v relative to the 
S~, molecule,  will collide with the S~ molecule in [t, t +  dt) with impact 
parameter  in [/3,/3 + d/3) if and only if the center of the S b molecule at time t 
lies in the cylindrical shell shown in fig. 3 of radius/3, wall thickness d/3, and 
height v dt (see footnote 1). So Pr(F¢ ]E~) is the probability that the center of 

ra + rb 

V 

\ 

Fig. 3. A n  S~, m o l e c u l e ,  and  the  in f in i tes imal  reg ion  in which  the cen t e r  of an S h m o l e c u l e  wi th  
r e l a t ive  ve loc i ty  v m u s t  lie if the two mo lecu l e s  a re  to co l l ide  in the nex t  d t  wi th  impac t  p a r a m e t e r  
b e t w e e n  /3 and  /3 + d/3. The  reg ion  is essen t ia l ly  a cyl indr ica l  shel l  of inner  r ad ius /3 ,  ou t e r  rad ius  
/3 + d/3 and  he igh t  v dt ,  wi th  the  u p p e r  and  lower  surfaces  c o n f o r m e d  upon  a sphe re  of rad ius  

r a + r b . 



a randomly selected S b molecule, moving with velocity v relative to the 
randomly selected S, molecule, will at time t have its center lying inside a 
certain subregion of volume (v dt)(2=[3)(d[3). It follows from premise I that 

Pr(F~ t Ev) = (v dt)(2rr[3 d[3) (22) 
S2 

Finally, we need for eq. (20) an expression for P r ( G I E  v & F~), the 
probability that a randomly selected Sa-S b molecular pair at time t, moving 
with a relative velocity that is infinitesimally close to v and colliding in 
[t, t + dt) with an impact parameter that is infinitesimally close to [3, will 
actually undergo an R ,  reaction. According to our hypothesis (19), this 
probability is just Hu(e) where e is the impact energy defined in (18). Fig. 4 
shows the geometry of the colliding molecules, and it is clear from this figure 
that e is equal to (m*/2)(v cos 0) z, where 0 is the angle between v and the line 
of centers at contact. The figure also shows that sin 0 = [3/(r,, + rb). Thus we 
conclude that 

Pr(GI Ev & F ~ ) =  O ( e ( v ,  [3)), (23) 

where e(v, [3) is the function 

S b molecule 

[3 
2 

e(v, [3) 2 

S a molecule 
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Fig. 4. The geometry of an S. S b molecular collision with impact parameter/3. 
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Substituting into eq. (20) the expressions for the various probabilities in eqs. 
(21), (10), (22) and (23), we obtain 

m* ~3/2 
(t, dt)= J f f f 2-Uk.r/ e x p ( - m * v 2 / 2 k J )  d3v 

v 13 

(v dt)(2~[3 d[3) 
x 1"2 H . ( e ( v ,  [3)). (25) 

In this formula, v is a vector variable with unrestricted Cartesian components 
(vx, Vy, vz), differential element d3v = dv x dry dv z, and magnitude v, [3 is a 
scalar variable ranging from 0 to r a + rb; H~, is the function defined in eq. (19); 
and s(v, [3) is the function defined in eq. (24). 

An evaluation of the four-fold integral (25) obviously cannot be carried out 
unless the function H ,  is specified. As an example, suppose that H~(e) is unity 
for e > e~ and zero for e ~ e . ,  where e.  is some given threshold impact energy. 
In that case, eq. (25) would read 

"a+rb(m, 3,2 
7ru(t, dt) = dv x dvy dv z d/3 \ ~ /  

x exp(-m*vZ/2kBt)  (v dt)(21vfl) 
j~ O(e(v, [3)" e~,), (26a) 

where O(x) is unity for x > 0 and zero otherwise. Evaluating this integral is 
straightforward, and when the result is combined with eqs. (15) and (13) we 
find that p .  has the "Arrhenius form" 

p~, = exp( -  eu/k B T ) .  (26b) 

It seems clear from the foregoing simple examples of bimolecular reaction 
mechanisms that the factor p~, in the c~, formula (16) should always exist and be 
independent of dt. 

4.3. Monomolecular and trimolecular reactions 

A monomolecular reaction has the form 

Sa--->Sc, (27) 

and describes the spontaneous conversion of an S a molecule into an S c 
molecule. This reaction should not be confused with the bimolecular reaction 
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Sa + Sb---> Sc + Sb,  (28) 

in which the conversion of S a to S c is "catalyzed" by a collision with an S b 
molecule.  We must presume that the monomolecular  reaction (27) is caused by 
some internal quantum mechanical mechanism analogous to that responsible 

for the decay of a radioactive nucleus. The t ime-dependent  perturbat ion theory 
of quantum mechanics shows that most weakly per turbed energy-conserving 
transitions have occurrence probabilities in times ~t that are linear in ~t when ~t 
is microscopically large but macroscopically small; i.e., to a good approxi- 
mat ion the probability for a radioactive nucleus to decay in the next dt has the 
mathemat ical  form ~d t ,  where a is some constant. On the basis of  this 

analogy, we may expect % (t, dt) for the monomolecular  reaction (27) to exist 
in the approximate form c~,dt, where c is independent of dt. 

As for trimolecular reactions of the form 

S~ + S b + Sc--->S a + - - . ,  (29) 

a good argument  can be made that they do not really occur as "e lementary  
events" ,  and therefore should not be considered. There is, however,  one 
instance in which a set of three coupled reaction channels, with a total of four 
reactant  molecules, can be approximately described by a single trimolecular 
reaction channel whose reaction probability ~-,(t, dt) is effectively linear in dt. 
Just how this comes about  is discussed on pp. 359-361 of ref. [3]. So if the 
conditions for validity of this approximate description are adequately satisfied, 

then it should be permissible to invoke a trimolecular reaction channel for 
which 7r ( t ,  dt) approximately exists in the form c dt, where c is independent  
of dt. 

5. The chemical master equation 

In section 4 we endeavored to establish the following basic fact: For each of 
the M elementary reaction channels R (/~ = 1 . . . . .  M) open to the molecules 
of a well stirred, thermally equilibrized gas-phase system, there exists a 
dt- independent  scalar c~ such that 

c dt = probabili ty that a randomly selected combination 
of R .  reactant molecules at time t will react accordingly 
in the next infinitesimal time interval [t, t ÷ d t ) .  (30) 

Now, the specific probabili ty rate constant c is but one of three entities that we 
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shall require to fully characterize a particular reaction channel R~,. The other 

two entities are a function h~, and a set of N integers (u~t  . . . . .  UrN ),  and they 

are defined as follows: 

h ( n l , . . .  , n N ) = - - t h e  number  of distinct combinations of R ,  reactant 
molecules in the system when there are exactly 
n i of the S~ molecules (i = 1 . . . . .  N ) ,  (31) 

v~ =-the change in the S~ molecular population caused 
by the occurrence of one Ru reaction. (32) 

The function h ,  and the integers {u~i} can be straightforwardly deduced by 
inspecting the "algebraic structure" of reaction channel R , .  For example, 
consider the reaction channels 

R~:  SI q- $2---~ $3 q- S 4 , (33a) 

Re: 2SI---~S~ -[- $2 , (33b) 

R3 : SI --~ $2 . (33c) 

The h u functions for these channels are 

h t ( n  I . . . . .  nN ) = n l n 2 ,  (34a) 

h 2 ( n l , . . .  , n N )  = n ~ ( n  1 - 1 ) / 2 ,  (34b) 

h 3 ( n ~ , . . .  ' n N )  = n 1 . (34c) 

And the u~ values for these channels are 

/111 = - 1  , •12 = - 1  , 1213 = +1 , /214 = +1 , all other vii  = 0 ,  (35a) 

u 2 1 = - 1 ,  u 2 2 = + 1 ,  all other u 2 i = O ,  (35b) 

u 3 1 = - l ,  U 3 e = + l ,  all other ~ i = 0 .  (35c) 

Notice that the functional f o r m  of h~ uniquely specifies the "reactant  side" of 
R , ,  and the v a l u e s  of u~ , . . . ,  u~, N then uniquely specify the "product  side" of 
R~. 
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To simplify the writing in what follows, we shall adopt the vector notation 

n--=(ni,...,nN), 

where the components  n i (i = 1 . . . . .  N)  of n are understood to be integer- 
valued. In particular, we shall write X(t )=-(Xl( t  ) . . . .  , Xu(t))  and J,~, =-- 

(v~1 . . . . .  ~ u ) "  Notice that if the components  of vector n give the molecular 
populat ions of the various species immediately before the occurrence of an R /x 

reaction, then the components  of the vector n + v~, give the molecular popula- 
tions immediately after the occurrence of that reaction. 

Our  task is to describe the behavior of the species population vector X(t) 
under  the influence of the M reaction channels R (/x = 1 . . . .  , M) ,  where 
each R ,  is specified by its specific probability rate constant c~, its reactant 
combinat ion function h~,, and its jump vector v , .  To accomplish this task, we 
begin by proving three theorems.  

Theorem 1. If  X(t) = n, then the probability that exactly one R~ reaction will 
occur in the system in the time interval It, t +  dt) is equal to c h , ( n ) d t +  
o(dt) ,  where o(dt) denotes terms that go with zero with dt faster than dt. 

Proof. Imagine that every molecule of each reactant species in the system at 
t ime t is assigned a unique label. Since the system is "well stirred", then calling 
out the labels of a particular combination of R ,  reactant molecules is equiva- 
lent to " randomly selecting such a combination.  So by eq. (30), each of the 
h , ( n )  distinct combinations of R ,  reactant molecules in the system at time t 

has probabili ty c dt of reacting according to R in It, t + dt). And by the range 
and addition laws, each has probability 1 - c  dt of not reacting thus in 
[t, t + dt). The multiplication law then implies that the probability that a 
particular one of the h (n) R reactant combinations does react according to 
R in [t, t + dt) while the other h ( n ) -  1 combinations do not, is 

c , , d t ( 1 - -  .~.-,h (,) 1 cuuL) ~ =c  d t + o ( d t )  . 

We can now use the addition law to calculate the probability that any of the 
h~,(n) distinct R reactant combinations at time t will react alone in [t, t + dt) 
as the sum of their separate probabilities (because these events are mutually 
exclusive). Since each of the h ( n )  terms in this probabili ty sum is equal to 
c~,dt + o(dt) ,  then the sum is equal to 

h~,(n) [c~, dt + o(dt)] = cuh~(n) dt + o(dt) . Q E D  
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Theorem 2. If X( t )  = n, then the probability that no reaction will occur in the 
system in the time interval [t, t + dt) is equal to 1 - Z~, c,h~,(n)  dt  + o(dt).  

Proof .  As was noted in the proof  of theorem 1, each of the h~.(n) distinct 
combinations of R .  reactant molecules in the system at time t has probability 
1 - c . d t  of not  reacting according to R .  in [t, t + dt). So by the multiplication 
law, the probability that all of those h . ( n )  combinations of R .  reactant 
molecules will not  react according to R .  in [t, t + dt),  is 

(1 - cudt )  h.(") = 1 - h , ( n )  c~,dt + o(d t ) .  

Therefore ,  appealing once again to the multiplication law, the probability that 
no R 1 reaction and n o  R 2 r e a c t i o n . . ,  and no R M reaction will occur in 
[t, t + dt) ,  is 

M M 

1-[ [1 - h . ( n )  c . d t  + o(dt)] = 1 -  ~'~ h (n) c . d t  + o(d t ) .  
/ x = l  ~ = I  

Q E D  

Theorem 3. The probability of more than one reaction occurring in the system 
in the time interval [t, t + dt) is o(dt).  

Proof .  From the multiplication law and eq. (30), we see that the probability 
for k reactions to occur in It, t + d t )  must be proportional to (dt) ~, and 
therefore  will be o(dt)  for k > 1. Q E D  

Armed  with the foregoing three theorems, we are now in a position to 
develop an analytical description of the behavior of the species population 
vector X(t ) .  It should be obvious that even if we fix the state of the system at 
some initial time to, 

X(to) = n0,  (36) 

we cannot hope to develop a deterministic time-evolution equation for X(t )  for 
t > t 0. So we shall try instead to derive a deterministic time-evolution equation 
for the probabil i ty  function 

P(n, t l n,, ,  to) = probability that X(t )  = n, given that X(to) = n o 

( t  >1 t , , )  . (37) 

Our  strategy for constructing a time-evolution equation for this function P is to 
use our three theorems, along with the addition and multiplication laws of 



422 D.T. Gillespie / Derivation of the chemical master equation 

probability, to express P(n,  t + dt]n0 ,  to) as the sum of the probabilities of 
some mutually exclusive and collectively exhaustive routes from X(to) = n o to 
X( t  ÷ d r ) =  n, these routes being distinguished from one another by what 

happens  in the time interval It, t + d t ) .  In the following paragraph, we shall 
prove by such reasoning that the probability P(n,  t + dt] no, to) can be written 

/ M \ 

P(n ,  t + dt  I to) f . , , ,  × - 2 d ,  + 
,u .=l  

M 

+ 2 e ( n  - , . . ,  t l n,,, t,,) × [ c ~ h ~ ( n  - , . )  dt  + o (d t ) ]  
,a 1 

+ o(dt) .  (38) 

One possible route from X ( t o ) =  n{~ to X(t  + d t )  = n is for no reaction to 
occur in [t, t + d t ) .  For this route, the system obviously must be in state n at 
time t. So it follows from the multiplication law that the probability of this "no 
reaction in It, t + d t ) "  route is equal to the product of {the probability that the 
system will go from X(to) = n o to X(t )  n} times {the subsequent probability 
that no reaction will occur in [t, t +d t )} .  In light of the definition (37) and 
theorem 2, this product is just the first term on the right-hand side of eq. (38). 
Another  possible route from X(to) = n o to X(t  + d t ) =  n is for exactly one R 

reaction to occur in [t, t + dt). For this route, the system obviously must be in 
state n - u  at time t. So it follows from the multiplication law that the 
probability of this "one R reaction in It, t + d t ) "  route is equal to the product 
of {the probability that the system will go from X(t,) n 0 to X(t )  = n -  u , }  

times {the subsequent probability that exactly one R reaction will occur in 
It, t +d t )} .  In light of the definition (37) and theorem 1, this product is just the 
p~th summand of the second term on the right-hand side of eq. (38). (There 
will of course be M routes of this kind, one for each reaction channel R .) 
Finally, if the system's journey from X(to) = n o to X(t  + d t ) =  n is neither by 
the "no reaction in [t, t + d 0 "  route nor by any of the "one reaction in 
[t, t + dt)"  routes, then it obviously must be by a "more  than one reaction in 
[t, t + d t ) "  route. According to theorem 3, the probability of that kind of route 
is o(dt) .  Now, all these routes are mutually exclusive, because they have 
mutually exclusive things taking place in [t, t + d t ) ;  so the addition law allows 
us to calculate the probability that any of them will occur by simply summing 
their separate probabilities. This is precisely the statement that is made by eq. 
(38). 

We now subtract P(n,  tin{}, t ,)  from both sides of eq. (38), divide through 
by dr, and then take the limit titS0. Since all o ( d t ) / d t  terms vanish in this limit, 
we evidently obtain 
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M 

d___ P(n ,  t l no, to) = ~ [c~,h,(n - vu) P(n  - v~,, t[ no, to) Ot ~,=l 

- c h~,(n) P(n, t[ no, t(,)]. (39) 

This is the chemical master equation. It is a t-evolution equation for the 
function P(n,  t l no, to),  for fixed n o and t 0, and it is to be solved subject to the 
initial condition 

1 ,  i f n = n  o , (40)  
P ( n ' t = t ° l n ° ' t ° ) =  O, i f n ~ n  0, 

as required by eq. (36). 

6. Discuss ion  

The foregoing derivation of the chemical master equation is a greatly refined 
version of arguments advanced earlier by the author [5] in developing the 
so-called stochastic s imulation algorithm. It may therefore be appropriate to 
clarify here  precisely how the stochastic simulation algorithm fits into the 
theoretical framework just elaborated. 

The key to the stochastic simulation algorithm is not the probability function 
P(n,  t I no, to) that appears in the chemical master equation, but rather another  
probability function p(~-,/x In, t), which is defined as follows: 

p(~-, /z I n, t) d r  -= probability that, given X(t)  = n, the next reaction in 

the system will occur in the infinitesimal time interval 
[t + ~-, t + r + d~-), and will be an R react ion.  (41) 

In the language of random variable theory, p is the joint density function for 
the two random variables "t ime to the next reaction" and "index of the next 
react ion",  with the possible values of these two random variables being 
represented respectively by the real variable ~- (0~< ~-<~) and the integer 
variable /x (1 ~</x ~< M).  To derive an explicit formula for p,  let 

M 

a ( n ) ~  ~ c . h . ( n ) ,  (42) 
~ = 1  

and imagine the time interval [t, t +  r+d~-)  to be subdivided into k + 1 
subintervals, where k > 1. As indicated in fig. 5, the first k of these subintervals 
are taken to be of equal length e = •'/k, and together they cover the interval 
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I~ LIA LI i TM kintervals of equal length ~ = ~/k -i~dt-i 

I I I ,.. { I I I I , , , -  

t t+t  t+ t+d t  

time axis 

Fig. 5. A partitioning of the time interval [t, t + z + dr) into k + 1 nonoverlapping subintervals. 

[t, t + z); the last subinterval is the interval [t + z, t + ~- + dr). With X(t) = n, 
p(z, /x  ] n, t) dz is evidently the probability of the event "no reaction occurs in 
each of the k e-subintervals and exactly one R,, reaction occurs in the final 
dr-subinterval".  So, recalling theorems 1 and 2 of section 5, and taking 
account of the definition (42), we have by the multiplication law that 

k 
p(~-, ~ In, t )  d~- : [1 - a(n) e + o ( e ) ]  [ Q , h ( n )  dz + o ( d T ) ]  . 

Dividing this equation through by d~- and taking the limit dz~0, we get 

k p(r, / x ln  , t) = [1 - a(n) e + o(e)] c , h , ( n ) .  (43) 

Eq. (43) is valid for any integer k > l ,  and so it is valid in the limit k-->~. 
Before taking that limit, let us write the first factor on the right as 

k 

where the last step uses the fact that ke = z. Now letting k--~ w, and noting that 
o(e)/e$O in that limit, we get 

k~lim [ 1 - a ( n ) e  + o(e)] k=  ~irn (1 a(n) z)  k k  = e-a(") 

Substituting this result into eq. (43), and then multiplying and dividing by a(n), 
we conclude that the function p defined in eq. (41) is given by 

p(r, ~ln,  t) = a(n)e  a(.), c ,  hu(n) 
a(n) 

(44) 

Eq. (44) provides the mathematical basis for the stochastic simulation 
algorithm. Without going into all the details here, eq. (44) says that, given 
X(t) = n, the "time to the next reaction" and the "index of the next reaction" 
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are statistically independent  random variables, the former having the exponen- 
tial density function with decay constant a(n),  and the latter having the integer 
density function c~,h~(n)/a(n) .  It can be shown [3, 5] that we can generate a 
statistically exact sample pair (r, p~) according to this joint density function by 
first generating two unit-interval uniform random numbers r 1 and r 2, then 

taking ~- to be 

7 = [1/a(n)] I n ( l / r 1 ) ,  (45a) 

and finally taking/x to be the smallest integer for which 

c~,.h~,,(n) > r2a(n ) . (45b) 
/x'=l 

With values for ~- and /x chosen thusly, we then "advance the system's state 
vector"  from X( t )  = n to X( t  + ,c) = n + v , .  Repeated application of this ad- 
vancement  procedure is the essence of the stochastic simulation algorithm. It 
should be emphasized that this advancement procedure is exact to the extent 
that r 1 and r 2 are "fair samplings" of the unit-interval uniform random 
variable. In particular, the advancement from t to t + r is not  a finite approxi- 
mation of an infinitesimal time step, as in a standard differential equation 
solver; instead, the species population vector maintains the value n throughout 
the entire finite time interval It, t + r) ,  and then abruptly changes to n + v, at 
the instant t + ~- when the R ,  reaction occurs. 

Since the chemical master equation and the stochastic simulation algorithm 
are derived from the same set of theorems, then they are logically equivalent to 
each other.  In more precise terms, the stochastic simulation algorithm pro- 
duces exact "realizations" of the jump Markov process X(t )  whose initially 
condit ioned density function is determined by the chemical master equation. In 
essence, we have proved here that both the chemical master equation and the 
stochastic simulation algorithm are rigorous consequences of premises (I) and 
(II).  
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