Student Learning Advisory Service

Contact us

Please come and see us if you need any academic advice or guidance.

Canterbury

Our offices are next to Santander Bank

Open

Monday to Friday, 09.00-17.00
E: learning@kent.ac.uk
T: 01227824016

Medway

We are based in room G0-09, in the Gillingham Building and in room DB034, in the Drill Hall Library.

Open

Monday to Friday, 09.00-17.00
E: learningmedway@kent.ac.uk
T: 01634888884
The Student Learning Advisory Service (SLAS) is part of the Unit for the Enhancement of Learning and Teaching (UELT)

Acknowledgments

All materials checked by Dr Scott Wildman, Dr Cleopatra Branch, Jerome Durodie and Andrew Lea, Medway School of Pharmacy, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent. ME4 4TB.

This leaflet has been produced in conjunction with sigma Network for Excellence in Mathematics and Statistics Support

sigma Σ
 network for excellence in mathematics and statistics support

kent.slas
@unikentSLAS
www.kent.ac.uk/learning

Student Learning Advisory Service

AT A GLANCE/ PHARMACY CALCULATIONS SERIAL DILUTIONS

Calculating the amount of a concentration needed to produce a final desired concentration and volume.

Example 1

What volume of $20 \% \mathrm{v} / \mathrm{v}$ solution is required to make 500 mL of $5 \% \mathrm{v} / \mathrm{v}$ solution?

Method

Step 1: Use $c_{1} \times v_{1}=c_{2} \times v_{2}$ percentages cancel out

$$
20(\%) \times x=5(\%) \times 500
$$

Step 2: Transpose for x and solve

$$
x=\frac{5 \times 500}{20}=\mathbf{1 2 5 m L}
$$

Example 2

What volume of $10 \% \mathrm{v} / \mathrm{v}$ solution is required to make 1.25 L of $0.05 \% \mathrm{v} / \mathrm{v}$ solution?

Method

Step 1: Use $c_{1} \times v_{1}=c_{2} \times v_{2}$ percentages cancel out

$$
10(\%) \times x=0.05(\%) \times 1250
$$

Step 2: Transpose for x and solve

$$
x=\frac{0.05 \times 1250}{10}=\mathbf{6 . 2 5 m L}
$$

Example 3

What volume of 1 in $50 \mathrm{v} / \mathrm{v}$ solution is required to make 450 mL of 1 in $2000 \mathrm{v} / \mathrm{v}$ solution?

Method

Step 1: Using $\mathrm{c}_{1} \times \mathrm{v}_{1}=\mathrm{c}_{2} \times \mathrm{v}_{2}$

$$
\frac{1}{50} \times x=\frac{1}{2000} \times 450
$$

Step 2: Simplify

$$
\frac{x}{50}=\frac{450}{2000}
$$

Step 3: Transpose for x and solve

$$
x=\frac{450 \times 50}{2000}=\mathbf{1 1 . 2 5 m L}
$$

Example 4

How much 1 in $40 \mathrm{v} / \mathrm{v}$ solution should you use to make up 1200 mL of $0.04 \% \mathrm{v} / \mathrm{v}$ solution?

Method

Step 1: Using $c_{1} \times v_{1}=c_{2} \times v_{2}$

$$
\frac{1}{40} \times x=\frac{0.04}{100} \times 1200
$$

Step 2: Simplify

$$
\frac{x}{40}=\frac{0.04 \times 1200}{100}
$$

Step 3: Transpose for x and solve

$$
x=\frac{0.04 \times 1200 \times 40}{100}=\mathbf{1 9 . 2 m l}
$$

Example 5

How much $0.5 \mathrm{~g} / 15 \mathrm{~mL}$ solution should you use to make 75 mL of 1 part in $400 \mathrm{w} / \mathrm{v}$ solution?

Method

Step 1: Use $c_{1} \times v_{1}=c_{2} \times v_{2}$

$$
\frac{0.5}{15} \times x=75 \times \frac{1}{400}
$$

Step 2: Simplify

$$
\frac{0.5 x}{15}=\frac{75}{400} \quad \rightarrow \quad \frac{x}{30}=\frac{75}{400}
$$

Step 3: Transpose for x and solve

$$
x=\frac{75 \times 30}{400}=\mathbf{5 . 6 2 5 m L}
$$

Q1

What volume of $15 \% \mathrm{v} / \mathrm{v}$ solution is required to make 1.4 L of 3% v/v solution?

Q2

What volume of $5 \% \mathrm{v} / \mathrm{v}$ solution is required to make 125 mL of $0.25 \% \mathrm{v} / \mathrm{v}$ solution?

Q3

What volume of $0.5 \% \mathrm{v} / \mathrm{v}$ solution is required to make 125 mL of 1 in $10,000 \mathrm{v} / \mathrm{v}$ solution?

Q4

How much $0.05 \% \mathrm{v} / \mathrm{v}$ solution is required to make 1200 L of $25 \mathrm{ppm} \mathrm{v} / \mathrm{v}$ solution?

Q5

How much $200 \mathrm{mg} / \mathrm{mL}$ solution is required to make up 80 mL of a $2 \% \mathrm{w} / \mathrm{v}$ solution?

Answers

$\mathbf{Q 1}=280 \mathrm{~mL} . \mathrm{Q} 2=6.25 \mathrm{~mL} . \mathrm{Q} 3=2.5 \mathrm{~mL} . \mathbf{Q} 4=60 \mathrm{~L}$.
Q5 $=8 \mathrm{~mL}$.

